

19 NOVEMBER 2020

ASX/MEDIA RELEASE

LATEST DRILLING SUCCESS CONFIRMS OUTSTANDING GROWTH POTENTIAL IN THE SIGMA LODE AT 1.7Moz APHRODITE DEPOSIT

Significant mineralisation intersected in fresh rock, opening up an exciting new exploration opportunity at depth as drilling also confirms shallow supergene zone

Key Points:

- Excellent results returned from in-fill and extensional drilling targeting shallow supergene mineralization in the Sigma Lode, located immediately east of the planned open pit at the cornerstone 1.7Moz Aphrodite Gold Deposit at the Bardoc Gold Project. Results include:
 - 21m @ 3.94g/t Au from 147m including 7m @ 6.12g/t Au from 161m 20APRC0013
 - 7m @ 2.77g/t Au from 177m in 20APRC0015
 - 8m @ 2.92g/t Au from 78m in 20APRC0024
 - 10m @ 1.23g/t Au from 56m in 20APRC0015
 - 9m @ 1.51g/t Au from 69m in 20APRC0029
- The drilling has confirmed shallow supergene mineralization in the optimized Sigma Pit area in line
 with the current Resource model, highlighting the potential for additions to the current open pit Ore
 Reserve.
- Significant thick zones of mineralisation were also intersected in fresh rock beneath the Sigma Pit
 optimization, with similar grades and widths to the main Alpha and Phi Lodes. This opens up an
 exciting future exploration opportunity at depth within the Sigma Lode.
- Water bore drill rig is onsite and mobilized to the Scotia Borefield.
- Diamond core drilling continuing at the north end of the cornerstone Zoroastrian Deposit, with RC drilling scheduled to commence shortly to follow-up existing recent air-core results at the North Kanowna Star Project.

Bardoc Gold Limited (ASX: **BDC**, **Bardoc** or **the Company**) is pleased to advise that it has received further significant results from recent resource definition and exploration drilling at the cornerstone 1.7Moz Aphrodite Deposit, part of its 100%-owned **3.03Moz Bardoc Gold Project** near Kalgoorlie, with the latest results demonstrating significant growth potential in the under-explored Sigma Lode.

The drilling has successfully confirmed the shallow supergene mineralisation at the Sigma Lode, located immediately east of the planned open pit over the main Alpha and Phi Lodes, while also identifying significant widths and grades of mineralisation within the Sigma Lode at depth in fresh rock.

The Aphrodite Deposit is a multi-lode system containing 1.7Moz in Resources and 500koz in Ore Reserves.

It forms a key baseload ore feed in the later years of the current mine plan for the Bardoc Gold Project, located 40km north of Kalgoorlie, supplementing ore from the Excelsior and Zoroastrian Deposits, 20km to the south, where the central treatment facility will be located.

The supergene mineralisation at Aphrodite is free-milling and will complement free-milling ore feed from the Zoroastrian and Excelsior Deposits.

Further work is required to follow up and expand on the fresh rock mineralisation at the Sigma Lode, which is located about 120-150m east of the main Alpha Lode. The Sigma Lode is under-explored compared to the Alpha and Phi Lodes and has the potential to deliver similar widths and grades to Alpha Lode, which forms part of the Aphrodite underground mining Reserves.

This represents an exciting long-term growth opportunity for Bardoc Gold.

MANAGEMENT COMMENTS

Bardoc Gold's Chief Executive Officer, Mr Robert Ryan, said the recent drilling targeting the Sigma Lode was significant in several respects, as it demonstrated the potential both to expand shallow supergene Ore Reserves and to delineate deeper extensions that could emerge as an exciting longer term growth opportunity.

"In-fill drilling at the Sigma pit has confirmed the presence of a broad high-grade mineralised zone in line with the current resource model. The Sigma pit did not previously form any part of the PFS mine plan or Ore Reserve and will provide a welcome addition to our DFS, due for release in March 2021.

"Meanwhile, the high-grade intercept of 21m @ 3.94g/t presents further opportunity at depth at this emerging prospect. The Sigma lode is located only 400m from the proposed underground workings at Aphrodite and will form part of our future exploration plan at the project.

"Our exploration effort is currently in full flight with diamond drilling underway at the Northern Zoroastrian prospect and RC drilling about to commence at the exciting North Kanowna Star Project, where we recently reported significant shallow air-core results, and we expect strong news-flow from this campaign to continue over the coming weeks."

APHRODITE RESULTS

Recent resource definition and exploration Reverse Circulation (RC) drilling, comprising 26 holes for 4,592m, has successfully targeted and intersected the shallow supergene mineralisation at the Aphrodite Sigma Lode.

A significant intersection from Sigma Lode, 21m @ 3.94g/t Au from 147m including 7m @ 6.12g.t Au from 161m in 20APRC0013, requires additional follow-up work to test for extensions down-plunge and along strike.

The widths and grades returned in 20APRC0013, if found to be continuous, may have a positive impact on future resource models and pit optimisations of the Sigma Lode Pit, as well as the evaluation of future underground mining. Recent results include:

- 21m @ 3.94g/t Au from 147m including 7m @ 6.12g/t Au from 161m 20APRC0013
- 7m @ 2.77g/t Au from 177m in 20APRC0015
- 8m @ 2.92g/t Au from 78m in 20APRC0024
- 10m @ 1.23g/t Au from 56m in 20APRC0015
- 9m @ 1.51g/t Au from 69m in 20APRC0029

As shown in Figure 1 below, the supergene mineralisation is flat-lying as anticipated, and an updated Mineral Resource model will be required to advance optimisations in the area.

Further drilling is required to bring the mineralisation from Inferred to Indicated Resource classification, and this will be scheduled as part of future exploration programs.

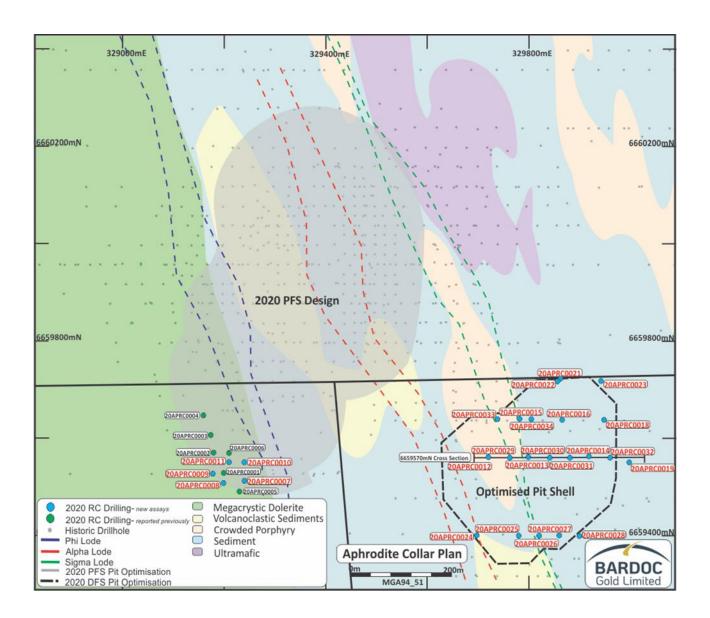


Figure 1: Drill hole location plan.

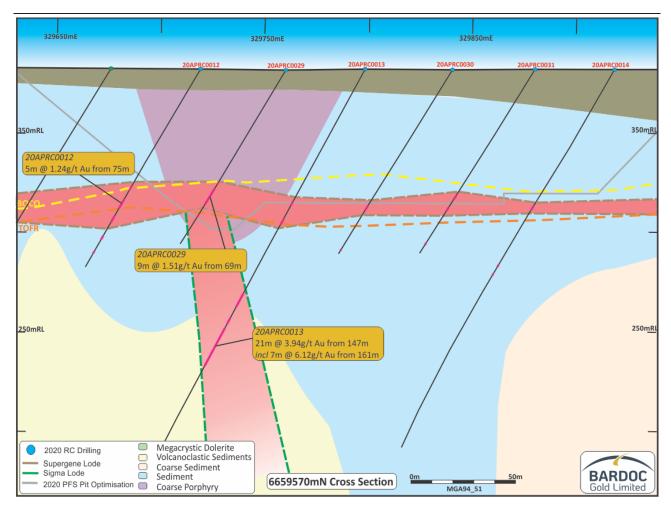


Figure 2: Sigma Lode and pit optimisation.

NEXT STEPS

- An RC drill rig is currently mobilizing to North Kanowna Star this week to follow up the multiple gold trends recently discovered by air-core drilling.
- Air-core drilling at Aphrodite is continuing to the area east of the known mineralization and will return to North Kanowna Star shortly to explore for extensions of the anomalous areas.
- Exploration diamond core drilling is ongoing at the northern end of the cornerstone Zoroastrian Deposit.

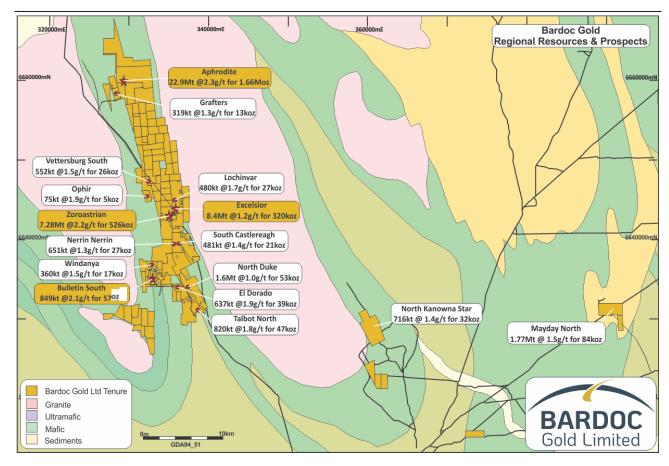


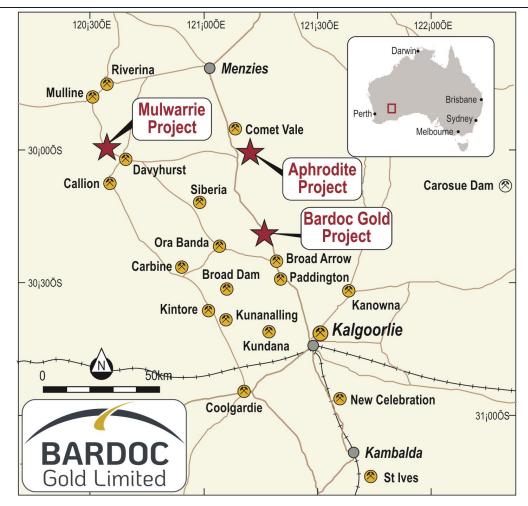
Figure 3: Bardoc Gold Project, tenement location plan.

BARDOC GOLD PROJECT - BACKGROUND

The Bardoc Gold Project was formed in October 2018 following completion of the merger between Excelsior Gold and Spitfire Materials, bringing together significant resources and excellent potential for growth. The Bardoc Gold Project runs contiguously north for 40km in the Eastern Goldfields. There are four main deposits and a multitude of smaller projects within the 250km² land-holding, providing a large Resource base and excellent exploration potential within the prolific Norseman-Wiluna greenstone belt and junction of the Bardoc Tectonic Zone (BTZ) and the Black Flag Fault (BFF).

These two deep-seated crustal structures host many multi-million-ounce deposits, including the world-renowned Golden Mile in Kalgoorlie.

GLOBAL RESOURCE – BARDOC GOLD PROJECT


		Cut-Off	MEASURED		D	INDICATED		INFERRED		TOTAL RESOURCES				
Deposit	Type	(g/t Au)	Tonnes (,000t)	Grade (g/t Au)	Ounces (,000oz)									
Aphrodite	OP	0.4	-	-	-	12,770	1.8	740	4,741	1.4	208	17,511	1.7	948
Aphrodite	UG	2.0	-	-	-	3,072	3.9	366	2,313	4.3	322	5,385	4.1	710
Aphrodite	TOTAL		-	-	-	15,842	2.2	1,106	7,054	2.3	530	22,896	2.3	1,658
Zoroastrian	OP	0.4	-	-	-	3,862	1.8	229	1,835	1.5	89	5,698	1.7	318
Zoroastrian	UG	1.8	-	-	-	789	4.7	119	790	3.5	88	1,579	4.1	208
Zoroastrian	TOTAL		-	-	-	4,651	2.3	348	2,625	2.1	177	7,277	2.2	526
Excelsior	OP	0.4	-	-	-	6,729	1.2	266	1,749	1.0	54	8,478	1.2	320
Mayday North	OP	0.5	-	-	-	1,325	1.6	66	430	1.3	18	1,778	1.5	84
Talbot North	OP	0.4	-	-	-	698	1.8	40	123	1.8	7	820	1.8	47
Bulletin South	OP	0.4	152	2.2	11	546	2.1	36	150	2.1	10	849	2.1	57
Duke North	OP	0.4	-	-	-	851	1.0	28	795	1.0	25	1,646	1.0	53
Lochinvar	OP	0.4	-	-	-	423	1.8	24	57	1.6	3	480	1.7	27
El Dorado	OP	0.5	-	-	-	203	1.4	9	383	1.5	18	586	1.5	28
El Dorado	UG	2.0	-	-	-	-	-	-	51	6.5	11	51	6.5	11
El Dorado	TOTAL		-	-	-	203	1.4	9	434	2.1	29	637	1.9	39
North Kanowna Star	OP	0.5	-	-	-	157	1.6	8	559	1.3	24	716	1.4	32
South Castlereagh	OP	0.5	-	-	-	111	1.6	6	369	1.3	15	481	1.4	21
Mulwarrie	OP	0.5	-	-	-	-	-	-	881	2.8	79	881	2.8	79
Nerrin Nerrin	OP	0.5	-	-	-	-	-	-	651	1.3	26	651	1.3	26
Vettersburg South	OP	0.6	-	-	-	-	-	-	552	1.5	26	552	1.5	26
Windanya	OP	0.6	-	-	-	-	-	-	360	1.5	17	360	1.5	17
Grafters	OP	0.5	-	-	-	-	-	-	319	1.3	14	319	1.3	14
Ophir	OP	0.6	-	-	-	-	-	-	75	1.9	5	75	1.9	5

Note: Differences may occur due to rounding. Full details of the Mineral Resource estimate were provided in the Company's ASX Announcement dated 30 September 2020.

GLOBAL RESERVE – BARDOC GOLD PROJECT

PROJECT		PROBABLE		TOTAL		
PROJECT	Tonnes (kt)	Grade (g/t)	Gold (koz)	Tonnes (kt)	Grade (g/t)	Gold (koz)
Excelsior OP	3,540	1.4	160	3,540	1.4	160
Zoroastrian OP	350	1.9	20	350	1.9	20
Aphrodite OP	2,830	2.3	210	2,830	2.3	210
Bulletin OP	520	2.0	30	520	2.0	30
Zoroastrian UG	810	3.2	80	810	3.2	80
Aphrodite UG	2,380	3.7	290	2,380	3.7	290
TOTAL	10,430	2.4	790	10,430	2.4	790

Figure 4: Project Location Plan

DISCLAIMERS AND FORWARD-LOOKING STATEMENTS

This announcement contains forward looking statements. Forward looking statements are often, but not always, identified by the use of words such as "seek", "target", "anticipate", "forecast", "believe", "plan", "estimate", "expect" and "intend" and statements that an event or result "may", "will", "should", "could" or "might" occur or be achieved and other similar expressions.

The forward-looking statements in this announcement are based on current expectations, estimates, forecasts and projections about Bardoc and the industry in which they operate. They do, however, relate to future matters and are subject to various inherent risks and uncertainties. Actual events or results may differ materially from the events or results expressed or implied by any forward-looking statements. The past performance of Bardoc is no guarantee of future performance.

None of Bardoc's directors, officers, employees, agents or contractors makes any representation or warranty (either express or implied) as to the accuracy or likelihood of fulfilment of any forward-looking statement, or any events or results expressed or implied in any forward-looking statement, except to the extent required by law. You are cautioned not to place undue reliance on any forward-looking statement. The forward-looking statements in this announcement reflect views held only as at the date of this announcement.

Approved for release by

Robert Ryan Chief Executive Officer

For further information contact:

INVESTORS: MEDIA:

Robert Ryan Bardoc Gold Limited Nicholas Read Corporate

Telephone: (08) 6215 0090 Telephone: 0419 929 046

Email: admin@bardocgold.com.au Email: info@readcorporate.com.au

Competent Person's Statement

Exploration Results

Information in this announcement that relates to exploration results and mineral resources is based on information compiled by Mr. Bradley Toms who is the Exploration Manager of Bardoc Gold Limited. Mr. Toms is a Member of The Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking, to qualify as Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Toms consents to the inclusion in the document of the information in the form and context in which it appears.

Mineral Resources

The Company confirms it is not aware of any new information or data that materially affects the information included in the 30 September 2020 Bardoc Resource Estimate and that all material assumptions and technical parameters underpinning the estimate continue to apply and have not materially changed when referring to its resource announcement made on 30 September 2020.

Ore Reserves - Open Pit & Underground

The information referred to in this announcement has been extracted from the Pre-Feasibility Report and Ore Reserve Statement dated 17 March 2020 and available to view on www.bardocgold.com. The Company confirms that it is not aware of any new information or data that materially affects the information included in the Ore Reserves Statement and that all material assumptions and technical parameters underpinning the estimates in the Ore Reserves Statement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the Ore Reserves Statement.

Appendix 1

Table 1 – Drill Hole Location Table

Only completed holes, with assay results received, are reported

Hole ID	Collar East (MGA94- z51) m	Collar North (MGA94- z51) m	Collar RL m	Max Depth (m)	Collar dip	Collar Azi Magnetic ⁰
20APRC0007	329240	6659511	386	240	-60	91
20APRC0008	329199	6659508	385	180	-60	93
20APRC0009	329178	6659527	385	216	-60	92
20APRC0010	329239	6659551	386	228	-60	92
20APRC0011	329210	6659550	386	210	-60	89
20APRC0012	329719	6659561	382	114	-60	270
20APRC0013	329798	6659562	382	221	-60	271
20APRC0014	329918	6659561	382	216	-60	269
20APRC0015	329782	6659639	383	198	-61	274
20APRC0016	329867	6659638	382	252	-61	270
20APRC0018	329950	6659638	382	200	-60	270
20APRC0019	329997	6659553	382	114	-60	272
20APRC0021	329861	6659720	387	162	-60	270
20APRC0022	329856	6659719	383	249	-60	273
20APRC0023	329941	6659718	383	228	-60	270
20APRC0024	329696	6659400	382	140	-61	270
20APRC0025	329780	6659400	388	120	-60	270
20APRC0026	329820	6659400	387	150	-60	274
20APRC0027	329860	6659400	387	252	-61	271
20APRC0028	329900	6659400	387	156	-61	269
20APRC0029	329760	6659560	388	102	-61	274
20APRC0030	329840	6659560	387	108	-60	270
20APRC0031	329880	6659560	387	108	-60	274
20APRC0032	329960	6659560	387	102	-60	273
20APRC0033	329737	6659640	384	190	-60	270
20APRC0034	329804	6659640	384	126	-60	270

Appendix 2

Table 2 - Significant Intersections >= 1m@0.10g/t Au, Intersections >= 10grammetres are in **bold**. Maximum 2m internal downhole dilution. No upper cuts applied, 4m composite samples are collected over the entire length of the drill hole. NSA is "No Significant Assays"

Hole_ID	Depth_From	Depth_To	Thickness	Au_ppm
20APRC0007	118	119	1	0.70
20APRC0007	189	190	1	0.56
20APRC0008	138	139	1	0.85
20APRC0008	166	167	1	1.84
20APRC0009	101	102	1	1.13

20APRC0010 20APRC0010	Depth From 69	Depth To		Au ppm
		72	3	1.27
	74	75	1	0.83
20APRC0010	144	148	4	0.89
20APRC0010	175	178	3	1.09
20APRC0011	66	67	1	1.79
20APRC0011	125	130	5	1.07
20APRC0011	133	134	1	0.95
20APRC0011	205	206	1	1.65
20APRC0012	68	70	2	0.95
20APRC0012	75	80	5	1.24
20APRC0012	85	88	3	1.56
20APRC0012	96	98	2	0.94
20APRC0012	105	106	1	1.08
20APRC0013	75	77	2	1.08
20APRC0013	85	88	3	1.31
20APRC0013	115	116	1	0.62
20APRC0013	127	135	8	2.89
20APRC0013	141	144	3	1.44
20APRC0013	147	168	21	3.94
including	161	168	7	6.12
20APRC0013	180	181	1	0.64
20APRC0014	79	81	2	2.21
20APRC0014	113	114	1	0.64
20APRC0014	118	119	1	0.55
20APRC0015	56	66	10	1.23
20APRC0015	75	77	2	2.34
20APRC0015	177	184	7	2.77
20APRC0016	52	53	1	0.83
20APRC0016	78	80	2	0.87
204 PD C004 0	No significant			
20APRC0018	assay	77		2.45
20APRC0019	76 No significant	77	1	2.15
20APRC0021	assay			
	No significant			
20APRC0022	assay			
20APRC0023	No significant assay			
20APRC0024	67	68	1	2.24
20APRC0024	72	73	1	0.52
20APRC0024	78	86	8	2.92
20APRC0024	93	98	5	1.75
20APRC0024	103	105	2	1.17
20APRC0024	131	132	1	0.81
20APRC0025	71	75	4	1.87
20APRC0025	78	80	2	2.09

Hole ID	Depth From	Depth To	Thickness	Au ppm
20APRC0025	90	91	1	1.01
20APRC0025	97	98	1	1.34
20APRC0025	102	104	2	0.87
20APRC0026	69	72	3	1.36
20APRC0026	99	100	1	0.53
20APRC0026	107	109	2	1.19
20APRC0026	111	112	1	0.61
20APRC0026	141	142	1	0.89
20APRC0027	67	74	7	0.92
20APRC0027	77	78	1	1.26
20APRC0027	115	117	2	1.01
20APRC0027	179	180	1	0.91
20APRC0028	80	84	4	1.62
20APRC0028	89	90	1	0.69
20APRC0028	95	96	1	0.76
20APRC0028	104	105	1	0.60
20APRC0028	107	110	3	1.07
20APRC0028	113	114	1	2.23
20APRC0029	65	66	1	0.78
20APRC0029	69	78	9	1.51
20APRC0029	85	86	1	0.71
20APRC0030	47	48	1	0.71
20APRC0030	80	82	2	2.07
20APRC0030	105	106	1	0.68
20APRC0031	74	76	2	0.86
20APRC0031	81	83	2	2.36
20APRC0031	102	103	1	0.51
20APRC0032	78	82	4	1.50
20APRC0033	63	66	3	1.49
20APRC0033	70	71	1	2.08
20APRC0033	110	117	7	1.05
20APRC0033	120	121	1	4.98
20APRC0033	123	124	1	0.74
20APRC0033	148	149	1	1.21
20APRC0033	154	155	1	0.54
20APRC0034	58	59	1	1.91
20APRC0034	82	83	1	0.99
20APRC0034	86	90	4	1.56

JORC, 2012 Edition – Tables – Aphrodite

1.1 Section 1 Sampling techniques and data

Criteria	JORC Code explanation	Commentary
Criteria Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation tynes 	 Commentary The mineralization was primarily sampled by Reverse Circulation (RC) and Diamond Core (DC) drilling on nominal 40m x 40m (N x E) grid spacing. The holes were generally drilled towards grid east at varying angles to optimally intersect the mineralized zones. Complete details are un-available for historic drilling. BDC RC recovered chip samples were collected and passed through a cone splitter. Limited numbers of field duplicates and screen fire assays have been undertaken to support sample representivity. BDC DC core has been sampled by submission of cut quarter core. All BDC RC drilling was sampled on one metre down hole intervals. The recovered samples were passed through a cone splitter and a nominal 2.5kg – 3.5kg sample was taken to a Kalgoorlie contract laboratory. Samples were oven dried, reduced by riffle splitting to 3kg as required and pulverized in a single stage process to 85% passing 75 µm. The sample is then prepared by standard fire assay techniques with a 40g charge. Approximately 200g of pulp material is returned to BDC for storage and potential assay at a later date. The BDC DC samples are collected at nominated intervals by BDC staff from core that has been cut in half and transported to a Kalgoorlie based laboratory. Samples were oven dried, crushed to a nominal 10mm by a jaw crusher, reduced by riffle splitting to 3kg as required and pulverized in a single stage process to 85% passing 75 µm. The sample is then prepared by standard fire assay techniques with a 40g charge. Approximately 200g of pulp material is returned to 3kg as required and pulverized in a single stage process to 85% passing 75 µm. The sample is then prepared by standard fire assay techniques with a 40g charge. Approximately 200g of pulp material is returned to 3kg as required and pulverized in a single stage process to 85% passing 75 µm. The sample is then prepared by standard fire assay techniques with a 40g charge. <!--</th-->
D. 111	Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	standard fire assay techniques with a 40g charge. Approximately 200g of pulp material is returned to BDC for storage and potential additional assay at a later date.
Drilling techniques	 Drill type (e.g. core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 There are holes drilled by previous owners over the area prior to mid 2010. These holes are occasionally without documentation of the rig type and capability, core size, sample selection and handling. For BDC drilling, the RC drilling system employed the use of a face sampling hammer and a nominal 146mm diameter drill bit. The DC drilling is HQ size core (nominal 50.6mm core diameter) or HQ (nominal 63.5mm core diameter). All BDC drill core is orientated by the drilling contractor, usually every 3m
		run. The results in this announcement are all from HQ size core.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed Measures taken to maximise sample recovery and ensure representative nature of the samples Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All BDC RC 1m samples are logged for drilling recovery by a visual estimate and this information is recorded and stored in the drilling database. At least every 10th metre is collected in a plastic bag and these are weighed when they are utilized for the collection of field duplicate samples. All samples received by the laboratory are weighed with the data collected and stored in the database. The BDC DC samples are orientated, length measured and compared to core blocks placed in the tray by the drillers, any core loss or other variance from that expected from the core blocks is logged and recorded in the database. Sample loss or gain is reviewed on an ongoing basis and feedback given to the drillers to enable the best representative sample to always be obtained. BDC RC samples are visually logged for moisture content, sample recovery and contamination. This is information is stored in the database. The RC drill system utilizes a face sampling hammer which is industry best practice and the contractor aims to maximize recovery at all times. RC holes are drilled dry whenever practicable to maximize recovery of sample. The DC drillers use a core barrel and wire line unit to recover the core, they aim to recover all core at all times and adjust their drilling methods and rates to minimise core loss, i.e. different techniques for broken ground to ensure as little core as possible is washed away with drill cuttings. Study of sample recovery vs gold grade does not show any bias towards differing sample recoveries or gold grade. The drilling contractor uses standard industry drilling techniques to ensure minimal loss of any size fraction.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All BDC RC samples are geologically logged directly into hand-held devices generally using Geobank Mobile software. All BDC DC is logged for core loss, marked into metre intervals, orientated, structurally logged, geotechnically logged and logged with a hand lens with the following parameters recorded where observed: weathering, regolith,

Sub-sampling	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether	 rock type, alteration, mineralization, shearing/foliation and any other features that are present All BDC DC is photographed both wet and dry after logging but before cutting. The entire lengths of BDC RC holes are logged on a 1m interval basis, i.e. 100% of the drilling is logged, and where no sample is returned due to voids (or potentially lost sample) it is logged and recorded as such. Drill core is logged over its entire length and any core loss or voids intersected are recorded. BDC Exploration results reported in this announcement are for quarter cut
techniques and sample preparation	quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 drill core taken from the right hand side of the core looking down hole. Core is cut by BDC staff onsite at the core cutting facility. All BDC RC samples are put through a cone splitter and the sample is collected in a unique pre-numbered calico sample bag. The moisture content of each sample is recorded in the database. The BDC RC samples are sorted, oven dried, the entire sample is pulverized in a one stage process to 85% passing 75 μm. The bulk pulverized sample is then bagged and approximately 200g extracted by spatula to a numbered paper bag that is used for the 50g fire assay charge. The BDC DC samples are oven dried, jaw crushed to nominal <10mm, 3.5kg is obtained by riffle splitting and the remainder of the coarse reject is bagged while the 3.5kg is pulverized in a one stage process to 85% passing 75 μm. The bulk pulverized sample is then bagged and approximately 200g extracted by spatula to a numbered paper bag that is used for a 40g or 50g fire assay charge. BDC RC and DC samples submitted to the laboratory are sorted and reconciled against the submission documents. BDC inserts blanks and standards with blanks submitted in sample number sequence at 1 in 50 and standards submitted in sample number sequence at 1 in 50 and standards submitted in sample number sequence at 1 in 20. The laboratory uses their own internal standards of 2 duplicates, 2 replicates, 2 standards, and 1 blank per 40 or 50g fire assay batch. The laboratory also uses barren flushes on the pulveriser. In the field every 10th metre from the bulk sample port on the cone splitter is bagged and placed in order on the ground with other samples. This sample is then used for collection of field duplicates via riffle splitting. RC field duplicate samples are collected after results are received from the original sample assay. Generally, field duplicates are only collected where the original assay result is equal to or greater than 0.1g/t Au. The field duplicates are submitted. BDC inse
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 BDC has routinely used local Kalgoorlie Certified Laboratories for all sample preparation and analysis. The most commonly used laboratories have been SGS Australia, Bureau Veritas Australia and Intertek. No complete details (ie most details captured, but not all details for all holes) of the sample preparation, analysis or security are available for either the historic AC, DD or RC drilling results in the database. The assay method is designed to measure total gold in the sample. The laboratory procedures are appropriate for the testing of gold at this project given its mineralization style. The technique involves using a 40g or 50g sample charge with a lead flux which is decomposed in a furnace with the prill being totally digested by 2 acids (HCl and HNO3) before measurement of the gold content by an AA machine. The QC procedures are industry best practice. The laboratories are accredited and use their own certified reference materials. BDC submits blanks at the rate of 1 in 50 samples and certified reference material standards at the rate of 1 in 20 samples in the normal run of sample submission numbers. As part of normal procedures BDC examines all standards and blanks to ensure that they are within tolerances. Additionally, sample size, grind size and field duplicates are examined to ensure no bias to gold grade exists.

Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. Discuss any adjustment to assay data. BDC's Exploration Manager and site geologist have inspected RC chips and drill core in the field to verify the correlation of mineralized zones between assay results and lithology/alteration/mineralization A number of RC holes have also been drilled that confirmed results obtained from historical drillholes. No holes have been directly twinned, there are however holes within 12m of each other. Primary data is sent digitally every 2-3 days from the field to BDC's Database Administrator (DBA). The DBA imports the data into the commercially available and industry accepted DataShed database software. Assay results are merged when received electronically from the laboratory. The responsible geologist reviews the data in the database to ensure that it is correct and has merged properly and that all data has been received and entered. Any variations that are required are recorded permanently in the database. No adjustments or calibrations were made to any assay data used in this storage.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation Specification of the grid system used Quality and adequacy of topographic control. BDC routinely contracted down hole surveys during the programmes of exploration multi-shot tool or north seeking gyro, both of which are maintained by Contractors to manufacturer specifications. The current drill program was downhole surveyed by the drill contractor using a north seeking gyro. All drill holes have their collar location recorded by a contract surveyor using RTK GPS. Downhole surveys are completed every 30m downhole. Incomplete down hole surveying information is available for the historic RC or DD drilling. BDC routinely contracted down hole surveys during the programmes of exploration drilling for each RC and DC drill hole completed using either digital electronic multi-shot tool or north seeking gyro, both of which are maintained by Contractors to manufacturer specifications. The current drill program was downhole surveyed by the drill contractor using a north seeking gyro. All drill holes and resource estimation use the MGA94, Zone 51 grid system. The topographic data used was obtained from consultant surveyors and is based on a LiDAR survey flown in 2012. It is adequate for the reporting of Exploration Results and subsequent Mineral Resource estimates.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. Whether sample compositing has been applied. The nominal exploration drill spacing is 40m x 40m with many E-W cross-sections in-filled to 20m across strike. This has been infilled with variable spacing for resource estimate purposes to 20 x 20m. This report is for the reporting of recent exploration drilling. The drill spacing, spatial distribution and quality of assay results is sufficient to support the JORC classification of material reported previously and is appropriate for the nature and style of mineralisation being reported. The majority of RC holes were sampled at 1m, but when this isn't the case, sample compositing to 4m has been applied. The BDC DC drilling has no sample composites applied to the raw sample assays. The results reported in this announcement are length weighted
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. The majority of previous drilling is to grid east. The bulk of the mineralized zones are perpendicular to this drilling is oriented towards grid east (89 degrees magnetic) or grid west (269 degrees magnetic). There is no sampling bias recognised from the intersection angle of the drilling and the lode orientation.
Sample security	 The measures taken to ensure sample security. RC samples are delivered directly from the field to the Kalgoorlie laboratory by BDC personnel on a daily basis with no detours, the laboratory then checks the physically received samples against an BDC generated sample submission list and reports back any discrepancies. Drill core is transported daily directly from the drill site to BDC's core processing facility by BDC personnel. The core is then placed on racks and processed until it requires cutting. Core is then cut onsite by BDC's staff. The core is then assaylaboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques as well as data handling and validation was regularly conducted by Aphrodite Geologists prior to the merger, as part of due diligence and continuous improvement and review of procedures.

1.2 Section 2 Reporting of Exploration Results – Aphrodite

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral	Type, reference name/number, location and	The results reported in this Announcement are on granted Mining
tenement and	ownership including agreements or material	Tenements held by Aphrodite Resources Pty Ltd, a wholly owned subsidiary
land tenure	issues with third parties such as joint ventures,	of Bardoc Gold Limited. A 2.5% State Royalty and 2.5% Franco Nevada
status	partnerships, overriding royalties, native title	Royalty exist on gold ores mined from the Aphrodite Deposit.
	interests, historical sites, wilderness or national	Tenement Holder Area (Ha) Expiry Date
	park and environmental settings.	M24/662 Aphrodite Gold Pty Ltd 363.3 27/06/2028
	The security of the tenure held at the time of	M24/720 Aphrodite Gold Pty Ltd 995.4 20/08/2028
	reporting along with any known impediments	M24/681 Aphrodite Gold Pty Ltd 446.3 09/08/2030
	to obtaining a licence to operate in the area.	At this time, the tenements are in good standing. There are known existing
		impediments to obtain a license to operate a mine.
Exploration done	Acknowledgment and appraisal of exploration	Project has had many owners over more than 20 years and has been
by other parties	by other parties.	reviewed multiple times. Historic documents are not always available. • Drilling, geological, sampling and assay protocols and methods were to
		industry standard and adequate for inclusion in Mineral Resource
		Estimation.
Geology	Deposit type, geological setting and style of	Discontinuous shoots of low to moderate tenor gold mineralisation within
,	mineralisation.	two broader sub-parallel mineralised structural zones. Mineralisation is
		beneath a substantial thickness of leached overburden. Free milling in upper
		oxidized and partially oxidized zones but mostly refractory in the primary
		zone.
Drill hole	A summary of all information material to the	See Table in this announcement
Information	understanding of the exploration results	No results from previous un-reported exploration are the subject of this
	including a tabulation of the following information for all Material drill holes:	announcement.
	 easting and northing of the drill hole collar 	Easting and Northing define the collar location in MGA94 zone 51 map projection. The map projection is a transverse Mercator projection, which
	elevation or RL (Reduced Level – elevation)	conforms with the internationally accepted Universal Transverse Mercator
	above sea level in metres) of the drill hole	Grid system. Collar elevations are RL's (elevation above sea level)
	collar	Dip is the inclination of the hole from the horizontal (i.e. a vertically down
	 dip and azimuth of the hole 	drilled hole from the surface is -90°). Azimuth for current drilling is reported
	 down hole length and interception depth 	in magnetic degrees as the direction toward which the hole is drilled.
	o hole length.	MGA94 and magnetic degrees vary by approximately 1° in this project area
	If the exclusion of this information is justified on	Down hole length of the hole is the distance from the surface to the end of
	the basis that the information is not Material	the hole, as measured along the drill trace. Intercept depth is the distance
	and this exclusion does not detract from the understanding of the report, the Competent	down the hole as measured along the drill trace. Intersection width is the
	Person should clearly explain why this is the	downhole distance of an intersection as measured along the drill trace. Hole length is the distance from the surface to the end of the hole, as
	case.	measured along the drill trace.
Data aggregation	In reporting Exploration Results, weighting	No high grade cuts have been applied to assay results. RC assay results are
methods	averaging techniques, maximum and/or	distance weighted using 1m for each assay. DC assay results are distance
	minimum grade truncations (e.g. cutting of	(length) weighted using the grades and intersection width applicable to
	high grades) and cut-off grades are usually	each individual sample.
	Material and should be stated.	Intersections are reported if the interval is at least 1m wide at 0.5g/t Au
	Where aggregate intercepts incorporate short langths of high grade results and languar langths.	grade. Intersections greater than 1m in downhole distance can contain up
	lengths of high grade results and longer lengths of low grade results, the procedure used for	to 2m of low grade or barren material.
	such aggregation should be stated and some	No metal equivalent reporting is used or applied.
	typical examples of such aggregations should	
	be shown in detail.	
	The assumptions used for any reporting of	
	metal equivalent values should be clearly	
8-1-11 11	stated.	
Relationship	These relationships are particularly important in the reporting of Fundamental Results.	The intersection width is measured down the hole trace, it is not usually the
between mineralisation	in the reporting of Exploration Results.	true width. Cross sections in this announcement allows the relationship between true and down hole width to be viewed.
mineralisation widths and	If the geometry of the mineralisation with	Data collected from historical workings and shafts within the area and from
intercept lengths	respect to the drill hole angle is known, its	structural measurements from orientated diamond core drilling show the
	nature should be reported.	primary ore zones to be sub-vertical (steeply west or east dipping) in nature
	,	with a general northerly strike.
	If it is not known and only the down hole	All drill results within this announcement are downhole intervals only and
	lengths are reported, there should be a clear	true widths are not reported. True widths are approximately 40% of the
	statement to this effect (e.g. 'down hole length,	reported drill intercept widths.
	true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intersents chould be	Plan and cross sectional views are contained within this announcement.
	and tabulations of intercepts should be included for any significant discovery being	
	miciaaca joi any significant aiscovery being	

	and the state of t	
	reported These should include, but not be limited to a plan view of drill hole collar	
	locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All results >= 0.5g/t Au are reported. The results are length weighted composites based on the Au grade and down hole length, a maximum of 2m of internal dilution is included.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 The previous exploration work completed on the deposit was done by previous owners and are too extensive to report in the context of this announcement. Fresh rock samples are refractory in nature and in order to maximize gold recoveries, alternative processing methods to standard CIL/CIP are being investigated. Arsenic and Sulphur are present in quantities that will require additional consideration of tailings disposal options
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Exploration work is ongoing at this time and may involve the drilling of more drill holes, both DC and RC, to further extend the mineralised zones and to collect additional detailed data on known and as yet unidentified mineralized zones. Bardoc Gold is continuing with mine planning studies, including metallurgical test work.