

FURTHER HIGH-GRADE GOLD INTERCEPTS AT CROWN PRINCE EXTENSION

Ora Gold Limited (ASX: OAU) is pleased to announce further high-grade results from the remaining assays of the latest drilling program at the Crown Prince Gold Prospect (M51/886). The drill holes were designed to test for potential extensions to mineralised zones along strike of known mineralisation to the north-west and south-east.

Highlights:

- 8 23m @ 8.5g/t Au from 22m in OGGAC457
- 3m @ 6.76g/t Au from 47m in OGGAC456
- 5m @ 3.80g/t Au from surface in OGGAC446
- 3m @ 2.76g/t Au from 43m in OGGAC455

The Crown Prince Prospect is a high-grade gold deposit within Ora Gold's Garden Gully Project. Mineralisation at Garden Gully is controlled by gold bearing structures located in geologically favourable settings within the Archean-age Abbots greenstone belt. At Crown Prince, where mineralisation is hosted in steeply south dipping gold lodes, these new drill results extend the known mineralisation along strike to the west and east.

Crown Prince is located 22 kilometres north-west of Meekatharra in Western Australia via the Great Northern Highway and the Mt Clere Road (Figures 1 and 2).

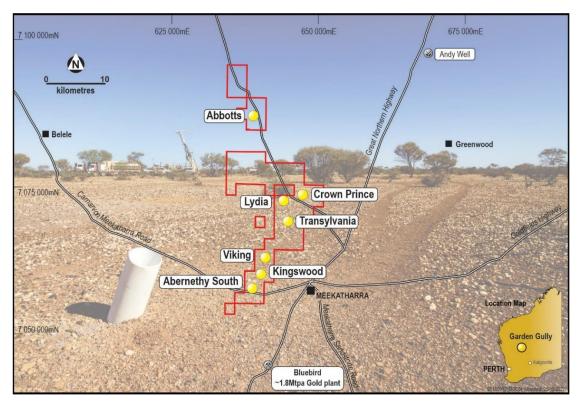


Figure 1. Garden Gully tenements and the main gold prospect's location

Ora Gold Limited | ABN: 74 950 465 654 | Level 2, 47 Stirling Highway, Nedlands, WA 6009 | PO Box 333, Nedlands, WA 6909 www.ora.gold | info@ora.gold | Tel: +61 8 9389 6927

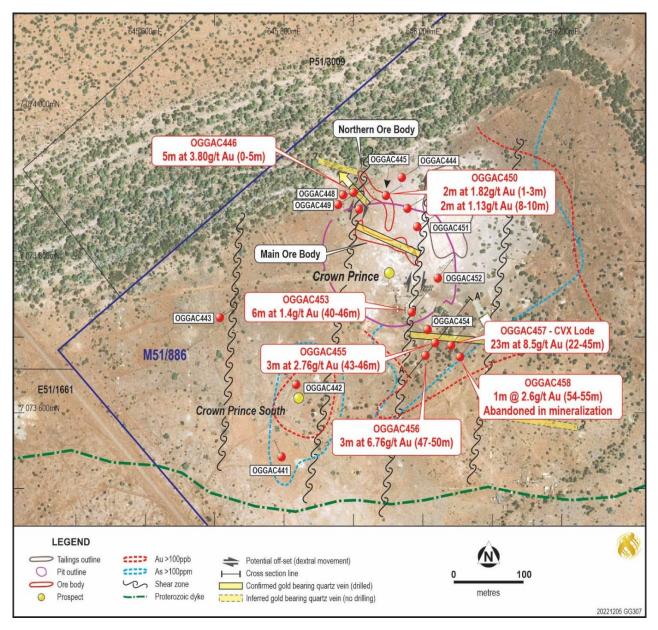


Figure 2. New significant air core drill holes intersections and the inferred extension of the mineralisation at Crown Prince

The Crown Prince deposit is a structurally controlled, orogenic type and is hosted by more competent doleritic rocks above a strongly deformed and ductile ultramafic package and as stockwork veins along the contacts of intercalated black shale units.

Some gold mineralisation occurs in the near surface indurated and saprolitic layers in the lateritic profile as supergene mineralisation.

Importantly, in fresh rock, gold mineralisation occurs in quartz veins hosted by chloritized, carbonated and strongly sheared meta-basalt, dolerite, black shale units and quartz porphyry, showing strong sericite-carbonate alteration in the vicinity of the quartz veins.

Locally, mineralisation at Crown Prince is hosted within WNW – ESE striking (steep southerly dip) quartz rich lodes. These lodes are offset by N-S to NNE trending shears, which are interpreted to have a near vertical dip or to dip steeply to the west. Movement along the shears is dextral, displacing mineralisation with offsets of around 100 metres (Figure 2).

This pattern of offset lodes was not previously recognised and substantially opens up the potential for new discoveries along strike of known mineralization.

South-eastern extension of the mineralization- another significant gold lode was intersected in OGGAC457 hole approximately 40m east/north-east of OGGAC456 which previously returned **17m** @ **15.75g/t Au** from 30m, incl. **6m** @ **38.06g/t Au** from 41m. This new lode (**CVX**) displays some distinct characteristics and has returned **23m** @ **8.5g/t Au** from 22m, including **17m** @ **10.73g/t Au** from 28m (Figure 2). Several samples have been submitted for petrographic and mineragraphic analyses.

These are the best two drill intercepts identified to date at Crown Prince Prospect. The main shear in this area shows dextral movement off-setting the main ore body by approximately 100m to the south-west.

Interesting to notice that OGGAC453 which has targeted a SAM (sub-audio magnetics) conductor, has intersected a wide interval of low-grade gold with a distinctive sheared zone of **6m @ 1.4g/t Au** from 40m. The last hole OGGAC558 which was abandoned in mineralization at 55m has returned **1m @ 2.60g/t Au** within 54-55m interval.

North-western extension of the mineralization – additional **5m** @ **3.80g/t Au** from surface have returned, within lateritic cap, above the previuous intersection of **8m** @ **5.43g/t Au** from 5m in OGGAC446. Low grade gold mineralization was intersected on both hangingwall and footwall of previous lode of **12m** @ **4.27g/t Au** from 30m in OGGAC447 (Figure 2, Appendix 1).

Recent Drilling Program

The program consisted of eighteen air core holes totalling 1,074m over the north-western, northeastern and south-eastern margin of the proposed pit (Figure 2). Air core holes details and sampling information are included in Table 1.

All the remaining assay results from 776 samples were received to date and the values more than 0.1ppm Au are included in Appendix 1.

Four holes (OGAC444, 445, 450, 451) were designed to test supergene gold anomalism on the northern edge of known mineralization and under tailings from historical workings (Figure 2). Assay results from OGGAC450 shows a wide zone of low grade gold mineralization within a deep weathering profile to at least 73m under the tailings located immediately east of the main ore body (Figure 2).

Background and History

Between 1908 and 1915, the Crown Prince deposit was partially mined along two strongly mineralized quartz veins on four underground levels to a depth of 90m. Production was 29,400 tonnes for 20,178 ounces at a recovered grade of 21.7g/t Au using gravity and cyanidation processing, and no mining has occurred since.

Ora Gold has published a modest Mineral Resource at Crown Prince (see ASX announcement 21 October 2019). This resource comprises 479kt @ 3.6g/t Au for 56koz Au.

Further infill and deeper reverse circulation drilling are likely to delineate additional resources in the new mineralized structures outside of the known resource.

Next Steps

Ora Gold is currently planning an RC drill program to be undertaken in the March quarter to test both newly identified extensions to the known mineralized zone at Crown Prince and down-dip continuity to the south and east.

Hole No	Easting	Northing	Azimuth	Dip	Depth	Sampling details and comments
OGGAC441	645794	7073540	335	-60	48	All assays received
OGGAC442	645816	7073634	310	-60	39	All assays received
OGGAC443	645705	7073724	60	-60	37	All assays received
OGGAC444	645968	7073909	60	-60	57	All assays received
OGGAC445	645945	7073885	60	-60	52	All assays received
OGGAC446	645898	7073889	60	-60	58	(0-5m and 41-58m) assays received
OGGAC447	645906	7073867	60	-60	58	(0-30m and 42-58m) assays received
OGGAC448	645883	7073886	60	-80	61	(0-18 and 35-61m) assays received
OGGAC449	645876	7073873	60	-60	79	(0-65m and 71-79m) assays received
OGGAC450	645976	7073868	60	-60	73	All assays received
OGGAC451	645990	7073844	60	-60	67	All assays received
OGGAC452	646020	7073776	40	-40	79	All assays received
OGGAC453	645982	7073731	40	-40	76	All assays received
OGGAC454	646005	7073708	40	-40	55	(0-26m and 31-55m) assays received
OGGAC455	646016	7073690	40	-40	52	(0-10m and 18-52m) assays received
OGGAC456	646002	7073674	40	-40	58	(0-30m and 47-58m) assays received
OGGAC457	646039	7073687	40	-40	70	(0-16 and 19-70m) assays received
OGGAC458	646052	7073672	40	-40	55	All assays received

Table 1. Drill hole details and sampling information

About Ora Gold Limited

Ora Gold's wholly-owned tenements cover the prospective area of the Abbotts Greenstone Belt and comprise 4 granted Mining Leases, 1 granted Prospecting Licence and 6 granted Exploration Licences covering about 217 square kilometres.

The strategy for the advanced gold projects – Abbotts, Crown Prince and Lydia and base metal prospects at Government Well, is to pursue early gold production while increasing resources and exploring for large gold and base metal deposits.

The announcement has been authorised for release to ASX by the Board of Ora Gold Limited.

For further information contact:

Frank DeMarte Director 08 9389 6927

Competent Person Statement

The details contained in this report that pertain to Exploration Results, Mineral Resources or Ore Reserves, are based upon, and fairly represent, information and supporting documentation compiled by Mr Costica Vieru, a Member of the Australian Institute of Geoscientists and a full-time employee of the Company. Mr Vieru has sufficient experience which is relevant to the style(s) of mineralisation and type(s) of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Vieru consents to the inclusion in this report of the matters based upon the information in the form and context in which it appears.

ORA GOLD LIMITED ASX Code: OAU

Quoted Shares:984.2MUnquoted Options:62.6M

REGISTERED OFFICE	Level 2, 47 Stirling Hwy, Nedlands, WA 6009
	PO Box 333, Nedlands, WA 6909
	Tel: +61 8 9389 6927 www.ora.gold
	info@ora.gold

Appendix 1. Assay results (>0.1ppm) - Fire Assay 50g charge and analysed by Flame Atomic Absorption Spectrometry at Intertek Genalysis labs in Perth

Hole No	From	То	Int(m)	Au(ppm)	Au Rpt	Avg.	Comments
OGGAC444	0	2	2	2.392			Gold in laterite cap
	2	6	4	0.454			
	6	7	1	0.177			
	9	10	1	0.313			
	10	11	1	0.109			
OGGAC445	0	1	1	0.967			
	1	2	1	0.504			
	2	3	1	0.511			
	3	4	1	0.116			Low Grade
	4	5	1	0.184			
	5	6	1	0.146			
	6	7	1	0.303			
	7	8	1	0.105			
	11	12	1	0.304			
	12	13	1	0.118			
	13	14	1	0.131			
OGGAC446	0	1	1	1.248			5m at 3.80 g/t Au
	1	2	1	0.212			(0-5m)
	2	3	1	0.309			
	3	4	1	4.854			
	4	5	1	12.364			
							Previous
							8m at 5.43g/t Au (5-13m)
OGGAC447	0	1	1	1.321			Gold in laterite cap
	1	2	1	0.284			
	23	24	1	0.833			
	24	25	1	0.353			
	25	26	1	0.416			Low Grade
	26	27	1	0.496			
	27	28	1	0.171			
	28	29	1	0.033			
	29	30	1	0.126			Previous 12m at 4.27g/t Au
							(30-43m)
	42	43	1	4.829			
	45	46	1	0.181			
	51	52	1	0.277			
	52	53	1	0.378			Low Grade
	53	54	1	0.342			
	54	55	1	0.884			
	55	56	1	0.237			

Hole No	From	То	Int(m)	Au(ppm)	Au Rpt	Avg.	Comments
	56	57	1	0.237			
	57	58	1	0.53	0.48	0.51	
OGGAC448	0	1	1	1.037			Gold in laterite cap
	1	2	1	0.135			
	10	11	1	0.146			
	11	12	1	0.163			
	46	47	1	0.126			Low Grade
	47	48	1	0.193			
	48	49	1	0.481			
	49	50	1	0.226			
	50	51	1	0.418			
	51	52	1	0.557			
	52	53	1	0.821			
	60	61	1	0.24			
OGGAC449	0	2	2	0.32			
	12	13	1	0.17	0.073	0.12	
	32	33	1	0.408			
	33	34	1	0.205			
	37	38	1	0.435			
	38	39	1	0.278			
	39	40	1	1.028	0.977	1	
	40	41	1	0.238			
	44	45	1	0.126			
	49	50	1	0.16			
	50	51	1	0.218			Low Grade
	51	52	1	0.16			
	52	53	1	0.114			
OGGAC450	0	1	1	0.774			Gold in laterite cap
	1	2	1	1.732			2m at 1.82 g/t Au
	2	3	1	1.902			(1-3m)
	3	4	1	0.614			
	4	5	1	0.203			
	5	6	1	0.095			
	6	7	1	0.049			
	7	8	1	0.105			
	8	9	1	1.406			2m at 1.13g/t Au
	9	10	1	0.864			(8-10m)
	12	13	1	0.775			
	13	14	1	0.125			
	14	15	1	0.201			
	15	16	1	0.07			
	16	17	1	0.207			
	43	44	1	0.336			Low Grade
	44	45	1	0.445			

Hole No	From	То	Int(m)	Au(ppm)	Au Rpt	Avg.	Comments
	45	46	1	0.112			
	46	47	1	0.021			
	47	48	1	0.33			
	48	49	1	0.157			
	49	50	1	0.19			
	50	51	1	0.195			
	51	52	1	0.837			
	52	53	1	0.288			
	53	54	1	0.223	0.218	0.22	
	54	55	1	0.243			
	55	56	1	1.501			
	56	57	1	0.668			
	57	58	1	0.304			
	58	59	1	0.409			
	59	60	1	0.256			
	60	61	1	0.321			
	61	62	1	0.132			
	62	63	1	0.102			
	63	64	1	0.08			
	64	65	1	0.79			
	65	66	1	0.636			
	66	67	1	0.374			
	67	68	1	0.35			Low Grade
	68	69	1	0.134			
	69	70	1	0.065			
	70	71	1	0.102			
	71	72	1	0.135			
	72	73	1	0.155			
				OPEN			
OGGAC451	0	1	1	0.458			Gold in laterite cap
	1	2	1	1.707			
	2	З	1	0.639			
	3	4	1	0.397			
	4	5	1	0.149			
	5	6	1	0.147			
	6	7	1	0.361			Low Grade
	11	12	1	0.158			
	14	15	1	0.101			
OGGAC452	0	1	1	0.795			
	1	7	6	0.141			
	31	33	2	0.436			
	33	34	1	0.181			
OGGAC453	0	1	1	1.673			Gold in laterite cap
	1	7	6	0.101			

Hole No	From	То	Int(m)	Au(ppm)	Au Rpt	Avg.	Comments
	7	13	6	0.04			
	13	19	6	0.045			
	19	24	5	0.374			
	24	25	1	0.011			
	25	26	1	0.121			
	26	27	1	0.088			
	27	28	1	0.046			
	28	29	1	0.177			
	29	30	1	0.177			Low Grade
	30	31	1	0.174			
	31	32	1	0.224			
	32	33	1	0.176	0.146	0.16	
	33	34	1	0.209			
	34	35	1	0.135			
	35	36	1	0.064			
	36	37	1	0.111			
	39	40	1	0.113			
	40	41	1	0.913			
	41	42	1	1.809	1.639	1.72	6m at 1.4 g/t Au
	42	43	1	0.488			(40-46m)
	43	44	1	3.287	3.264	3.28	
	44	45	1	1.034			
	45	46	1	1.016			
	46	47	1	0.272			
	47	48	1	0.1			
	48	49	1	1.233			
	49	50	1	0.442			
	50	51	1	0.191			
OGGAC454	0	1	1	1.925	1.336	1.63	Gold in laterite cap
	11	12	1	1.471	1.123	1.3	
	12	13	1	0.033			
	13	14	1	0.056			
	14	15	1	0.675			
	15	16	1	0.448			
	16	17	1	0.227			
	17	18	1	0.832			Low Grade
	18	19	1	0.071			
	19	20	1	0.142			
	20	21	1	0.125			
	21	22	1	0.214			
	45	46	1	0.128			
OGGAC455	0	1	1	0.393			
	9	10	1	0.103			
							Previous 8m at 5.75 g/t Au

Hole No	From	То	Int(m)	Au(ppm)	Au Rpt	Avg.	Comments
							(10-18m)
	19	20	1	0.166			
	21	22	1	0.512			Low Grade
	25	26	1	0.103			
	28	29	1	0.341			
	29	30	1	0.109			
	35	36	1	0.257			
	36	37	1	1.505			
	38	39	1	1.227			
	42	43	1	0.209			
	43	44	1	3.71			3m at 2.76 g/t Au (43-46m)
	44	45	1	1.441			
	45	46	1	3.133			
	46	47	1	0.508			
	48	49	1	0.118			
	49	50	1	0.863			
	50	51	1	0.538			
OGGAC456	0	1	1	0.681			
	1	2	1	0.127			
							Previous 17m at 15.75g/t Au
							(30-47m)
	47	48	1	2.294			3m at 6.76 g/t Au
	48	49	1	11.458			(47-50m)
	49	50	1	6.522			
	50	51	1	0.371			
	52	53	1	0.246			
	56	57	1	1.916			
	57	58	1	0.418			
OGGAC457	0	1	1	0.352			
	1	2	1	0.163			
	2	3	1	0.222			
	3	4	1	0.156			
	14	15	1	0.315			
	15	16	1	0.307			
	19	20	1	0.1			
	20	21	1	0.211			
	21	22	1	0.127			New CVX Lode
	22	23	1	1.683			23m at 8.5 g/t Au
	23	24	1	6.123			(22-45m)
	24	25	1	0.495			including
	25	26	1	2.591	6.238	4.41	17m at 10.73 g/t Au
	26	27	1	0.106			(28-45m)
	27	28	1	0.334			()
	28	29	1	34.075	37.68	35.9	

Hole No	From	То	Int(m)	Au(ppm)	Au Rpt	Avg.	Comments
	29	30	1	5.088			
	30	31	1	7.371			
	31	32	1	2.811			
	32	33	1	3.656			
	33	34	1	0.918			
	34	35	1	2.339			
	35	36	1	39.929	39.52	39.7	
	36	37	1	19.152			
	37	38	1	9.328			
	38	39	1	12.129			
	39	40	1	5.258			
	40	41	1	9.771			
	41	42	1	17.596			
	42	43	1	9.174			
	43	44	1	1.278			
	44	45	1	0.923			
	45	46	1	0.42			
	46	47	1	0.124			
	47	48	1	0.128			
	55	56	1	0.83			
	56	57	1	1.449			
	57	58	1	0.439			
	58	59	1	0.166			
	59	60	1	0.905			
	60	61	1	0.1			
	69	70	1	0.279			
				OPEN			
OGGAC458	0	1	1	0.068			
	1	2	1	0.202			
	2	3	1	0.56			
	3	4	1	0.162			
	4	5	1	0.192			Low Grade
	5	6	1	0.093			
	6	7	1	0.227			
	7	8	1	0.169			
	8	9	1	0.229			
	9	10	1	0.821			
	18	19	1	0.268			
	19	20	1	0.08			
	20	21	1	0.21			
	21	22	1	0.132			
	24	25	1	0.202			
	29	30	1	0.115			
	44	45	1	0.508			

Hole No	From	То	Int(m)	Au(ppm)	Au Rpt	Avg.	Comments
	47	48	1	0.271	0.288	0.28	
	54	55	1	2.597			Abandoned in mineralization

Appendix 2: JORC Table 1 Checklist of Assessment and Reporting Criteria

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling	Nature and quality of sampling (eg. cut channels, random	Air core (AC) sample was collected in plastic bag and split in
techniques	chips, or specific specialised industry standard measurement	even metre intervals where sample was dry. Wet sample was
	tools appropriate to the minerals under investigation, such as	speared or on occasion sampled by scooping. AC drill chips
	down-hole gamma sondes, or handheld XRF instruments, etc).	from each metre were examined visually and logged by the
	These examples should not be taken as limiting the broad	geologist. Evidence of alteration or the presence of
	meaning of sampling.	mineralisation was noted on the drill logs. Intervals selected by
	 Include reference to measures taken to ensure sample 	the site geologist were tested by hand-held XRF and all those
	representativity and the appropriate calibration of any	with elevated arsenic contents have been bagged and
	measurement tools or systems used.	numbered for laboratory analysis.
	Aspects of the determination of mineralisation that are	Duplicate samples were submitted at a rate of approximately
	material to the Public Report. In cases where 'industry	10% of total samples taken (ie one duplicate submitted for
	standard' work has been done this would be relatively simple	every 20 samples). The Vanta XRF Analyser is calibrated
	(eg 'reverse circulation drilling was used to obtain 1m samples	before each session and is serviced according to the
	from which 3 kg was pulverised to produce a 30g charge for fire	manufacturer's (Olympus) recommended schedule.
	assay'). In other cases more explanation may be required,	The presence or absence of mineralisation is initially
	such as where there is coarse gold that has inherent sampling	determined visually by the site geologist, based on experience
	problems. Unusual commodities or mineralisation types (eg.	and expertise in evaluating the styles of mineralisation being
	submarine nodules) may warrant disclosure of detailed	sought.
-	information.	
Drilling	Drill type (eg. core, reverse circulation, open-hole hammer,	Narrow diameter air core drilling using a Hino GT scout drill
techniques	rotary air blast, auger, Bangka, sonic, etc) and details (eg. core	rig with the capacity of 100m 600cfm.
	diameter, triple or standard tube, depth of diamond tails, face-	
	sampling bit or other type, whether core is oriented and if so, by	
	what method, etc).	
Drill sample	Method of recording and assessing core and chip sample	Volume of material collected from each metre interval of
recovery	recoveries and results assessed.	drilling completed is monitored visually by the site geologist and
	Measures taken to maximise sample recovery and ensure	field assistants. Dry sample recoveries were estimated at
	representative nature of the samples.	~95%. Wet sample recovery was lower, estimated to an
	Whether a relationship exists between sample recovery and grade and whether sample bigs may have accurred due to	average of 70%.
	grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Samples were collected by spearing the bag content. Based on the relatively small number of assays received to
	preferential 1055/gain of fine/coarse material.	date, there is no evidence of either a recovery/grade
		relationship or of sample bias.
Logging	Whether core and chip samples have been geologically and	AC chips are logged visually by qualified geologists.
20999	geotechnically logged to a level of detail to support appropriate	Lithology, and where possible structures, textures, colours,
	Mineral Resource estimation, mining studies and metallurgical	alteration types and mineral estimates, are recorded.
	studies.	Representative chips are retained in chip trays for each metre
	Whether logging is qualitative or quantitative in nature. Core	interval drilled.
	(or costean, channel, etc) photography.	• The entire length of each drill hole is logged and evaluated.
	The total length and percentage of the relevant intersections	
	logged.	
Sub-	If core, whether cut or sawn and whether quarter, half or all	AC samples collected in plastic bags were speared for further
sampling	core taken.	sampling. Material was sampled using a 4cm diameter spear.
techniques	• If non-core, whether riffled, tube sampled, rotary split, etc and	Sample submitted to the laboratory comprised three spear
and sample	whether sampled wet or dry.	samples in different directions into the material for each metre
preparation	For all sample types, the nature, quality and appropriateness	interval.
	of the sample preparation technique.	The samples were sent to Intertek labs in Perth for Au
	 Quality control procedures adopted for all sub-sampling 	analysis by FA50 (Fire Assay on 50g charge). Sample
	stages to maximise representativity of samples.	preparation techniques are well-established standard industry
	Measures taken to ensure that the sampling is representative	best practice techniques. Drill chips are dried and crushed and
	of the in-situ material collected, including for instance results for	pulverised (whole sample) to 95% of the sample passing -75µm
	of the molecular beneficed, molecular for molecule results for	partoneed (more campio) to cove or me campio pacong i opin

	• Whether sample sizes are appropriate to the grain size of the material being sampled.	Field QC procedures include using certified reference materials as assay standards. One duplicate sample is submitted for every 20 complex and a black at 100 complex.
		 submitted for every 20 samples and a blank at 100 samples, approximately. Evaluation of the standards, blanks and duplicate samples assays shows them to be within acceptable limits of variability. Sample representativity and possible relationship between grain size and grade was confirmed following re-sampling and re-assaying of high-grade interval. Sample size follows industry standard best practice and is considered appropriate for these style(s) of mineralisation.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie. lack of bias) and precision have been established. 	 The assay techniques used for these assays are international standard and can be considered total. Samples were dried, crushed and pulverised to 95% passing -75µm and assayed for gold by 50g Fire Assay following ICPO (Atomic) Emission Spectrometry. The handheld XRF equipment used is an Olympus Vanta XRF Analyser and Ora Gold Ltd. follows the manufacturer's recommended calibration protocols and usage practices but does not consider XRF readings sufficiently robust for public reporting. Ora Gold Ltd. uses the handheld XRF data as an indicator to support the selection of intervals for submission to laboratories for formal assay. The laboratory that carried out the assays is an AQIS registered site and is ISO certified. It conducts its own internal QA/QC processes in addition to the QA/QC implemented by Ora Gold Ltd, as its sample submission procedures. Evaluation of the relevant data indicates satisfactory performance of the field sampling protocols in place and of the assay tandards to complement the duplicate sampling procedures practiced by Ora Gold Ltd.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All significant intersections are calculated and verified on screen and are reviewed prior to reporting. The programme included no twin holes. Data is collected and recorded initially on hand-written logs with summary data subsequently transcribed in the field to electronic files that are then copied to head office. No adjustment to assay data has been needed.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Collar locations were located and recorded using hand-held GPS (Garmin 62S model) with a typical accuracy of ±5m. Due to the short hole length and scout drilling nature of the programme, no down-hole surveys were carried out. The map projection applicable to the area is Australian Geodetic GDA94, Zone 50 and converted to MGA2020. Topographic control is based on standard industry practice of using the GPS readings. Local topography is relatively flat. Detailed altimetry is not warranted.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill hole collars were located and oriented to deliver maximum relevant geological information to allow the geological model being tested to be assessed effectively. This is still early-stage exploration and is not sufficiently advanced for this to be applicable. Various composite sampling was applied depending on the geology of the hole. All assay results received to date are reported in Appendix 1. Zones where geological logging and/or XRF analyses indicated the presence of mineralised intervals were sampled on one metre intervals.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	• This programme is the first exploration drilling undertaken by Ora Gold Limited aiming to extend the known gold mineralization outside of the designed pit at Crown Prince prospects. It was aimed to follow up and replicate the previous intersections and to test the supergene potential of these areas, along the inferred structures/shears splays and as such insufficient data has been collected and compiled yet to be able to establish true widths, orientation of lithologies, relationships between lithologies, or the nature of any structural controls. The

		main aim of this programme is to generate geological data to develop an understanding of these parameters.Data collected so far presents no suggestion that any sampling bias has been introduced.
Sample security	The measures taken to ensure sample security.	 When all relevant intervals have been sampled, the samples are collected and transported by company personnel to secure locked storage in Perth before delivery by company personnel to the laboratory for assay.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Internal reviews are carried out regularly as a matter of policy. All assay results are considered representative as both the duplicates, standards and blanks from this programme have returned satisfactory replicated results.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral	Type, reference name/number, location and ownership	The Garden Gully project comprises one granted prospecting
tenement and	including agreements or material issues with third parties such	licence, P51/3009, six granted exploration licence E51/1661,
land tenure	as joint ventures, partnerships, overriding royalties, native title	E51/1737, E51/1609, E51/1708, E51/1790, E51/1791 and four
status	interests, historical sites, wilderness or national park and	mining leases M51/390, M51/567, M51/886 and M51/889,
	environmental settings.	totalling approximately 217 square kilometres. Ora Gold
	 The security of the tenure held at the time of reporting along 	Limited holds a 100% interest in each lease. The project is
	with any known impediments to obtaining a licence to operate	partially located in the Yoothapina pastoral lease, 15km north-
	in the area.	west of Meekatharra, in the Murchison of WA.
		 The licences are in good standing and there are no known
		impediments to obtaining a licence to operate.
Exploration	 Acknowledgment and appraisal of exploration by other 	 Workings at Garden Gully began with the Crown Gold Mine
done by other	parties.	(1895 – 1901: 264 tonnes at 1.99 oz/t (~56 g/t) Au average).
parties		The Kyarra Mine followed (1909 – 1917): 18,790 oz gold from
		quartz veins in "strongly sheared, decomposed, sericite rich
		country rock". Over the northern part of Sabbath area (currently
		Transylvania), Matlock and Kestral Mining have conducted
		exploration including three RAB drilling lines between 1989-
		1991. Best intersections included 6m at 3.54g/t from 10m in
		GGR-19 (Wamex a29334) and 8m at 2.1g/t Au from 12m in
		GGR-32 (Wamex a33351).
		Abernethy Shear Zone was intensely explored by Western
		Mining Corporation, Tantalum Australia NL, Accent Resources
		and more recently by Doray Minerals Ltd. starting from early
		1990's (Wamex a 041275, a069958, a084025, a093068,
		a097544, a39471, a45387, a59788 and a83010).
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Garden Gully project comprises now most of the Abbotts
		Greenstone Belt and consists of Archaean rocks of the
		Greensleeves Formation (Formerly Gabanintha); a bimodal
		succession of komatiitic volcanic mafics and ultramafics
		overlain by felsic volcanics and volcaniclastic sediments, black
		shales and siltstones and interlayered with mafic to ultramafic
		sills. Regional synclinal succession trending N-NE with a
		northern fold closure postdating E-W synform, further
		transected by NE trending shear zones, linearity with the NE
		trend of the Abernethy Shear, which is a proven regional
		influence on structurally controlled gold emplacement in Abbotts
		and Meekatharra Greenstone Belts and in the Meekatharra
		Granite and associated dykes.
		 The project is blanketed by broad alluvial flats, occasional
		lateritic duricrust and drainage channels braiding into the
		Garden Gully drainage system. Bedrock exposures are limited
		to areas of dolerite, typically massive and unaltered. Small
		basalt and metasediment outcrops exist, with some exposures
		of gossanous outcrops and quartz vein scree.
		 Gold bearing quartz reefs, veins and lodes occur almost
		exclusively as siliceous impregnations into zones within
		the Kyarra Schist Series, schistose derivatives of dolerites,
		gabbros and tuffs, typically occurring close to axial planes of
		folds and within anastomosing ductile shear zones.

Drill hole	A summary of all information material to the understanding of the exploration results including a tabulation of the following	All relevant drill hole details are presented in Table 1. The principal application of the work reported from
Information	the exploration results including a tabulation of the following information for all material drill holes: • easting and northing of the drill hole collar	The principal geologic conclusion of the work reported from this programme at Crown Prince prospect confirms the presence of high-grade gold mineralisation in what are
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	interpreted to be steep shear zones within mafic schists; the presence of primary mineralisation associated with sulphides offers a very positive outlook for deep potential for the prospect which is to be further tested in follow-up drilling.
	• If the exclusion of this information is justified on the basis that the information is not material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually material and should be stated. 	The significant drill intercepts are displayed in Figure 2. All assay data received to date are included in Appendix 1. No assay grades have been cut.
	 Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Arithmetic weighted averages are used. For example, 47m to 50m in OGGAC456 is reported as 3m at 6.76g/t Au. This comprised 3 samples, each of 1m, calculated as follows: [(1*2.294) + (1*11.458) + (1*6.522)] = [20.274/3] = 6.76g/t Au. No metal equivalent values are used.
Relationship between mineralisation widths and	• These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	 Insufficient geological data have yet been collected to allow the geometry of the mineralisation to be interpreted. True widths are unknown and insufficient information is available yet to permit interpretation of geometry. Reported
intercept lengths	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known'). 	intercepts are downhole intercepts and are noted as such.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to, a plan view of drill hole collar locations and appropriate sectional views.	 Relevant location maps and figures are included in the body of this announcement (Figures 1-2). Based on the historical and recent drill data information, seven cross sections have been drawn with enough confidence to display the structural and lithological and metallogenic setting.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	• This announcement includes the results of the remaining 776 Au assays for the eighteen AC holes drilled at the Crown Prince prospect. The reporting is comprehensive and thus by definition balanced. It represents early results of a larger programme to investigate the potential for economic mineralisation at Garden Gully.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including, but not limited to: geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density; groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• This announcement includes qualitative data relating to interpretations and potential significance of geological observations made during the programme. As additional relevant information becomes available it will be reported and announced to provide context to current and planned programmes.
Further work	 The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Additional deep RC drilling is planned to commence in the next quarter at Crown Prince prospects as soon as possible to test the potential for strike extension and down-dip primary mineralisation along the newly defined mineralised structures. Limited diamond drilling will be undertaken to better define the structural setting of the mineralised system.