

ASX Announcement | 08 May 2023

Crown Prince Delivers Further Outstanding High Grades

Highlights:

- Initial results from the company's current round of reverse circulation (RC) drilling at the Garden Gully Gold Project received.
- High grade results returned from South-Eastern Ore Body (SEB). Best intercepts included:
 - 33m @ 12.72g/t Au from 57m in OGGRC461, incl. 17m @ 24.40g/t Au from 67m with outstanding high grades of **73.5g/t Au** (71-72m); **67.06g/t Au** (76-77m); **128.2g/t Au** (80-81m) and **62.17g/t Au** (81-82m)
 - 25m @ 3.05g/t Au from 81m in OGGRC464, incl. 11m @ 5.06g/t Au from 84m
 - 30m @ 1.93g/t Au from 47m in OGGRC460 incl. 16m @ 2.33g/t Au from 47m
 - 5m @ 6.03g/t Au from 61m in OGGRC459
 - 3m @ 14.09g/t Au from 86m in OGGRC465
- First phase of RC drilling was undertaken during March and April. Additional RC drilling to follow, with diamond drill holes and diamond tails on selected sections.

Ora Gold Limited ("Ora" or the "Company", ASX: OAU) is pleased to announce further high-grade gold intercepts from a limited number of assay results received so far from a recent reverse circulation (RC) drilling program at the Crown Prince Gold Prospect (M51/886). The drill holes were designed to test extensions to mineralized zones along strike of known mineralization (to the north-west and south-east) and the down-dip potential of the main ore body below a previously designed pit (75m depth) outlined in Ora's 2019 Scoping Study.

The Crown Prince south-east extension appears to be a new stand-alone discovery within this area.

Ora Gold's CEO Alex Passmore commented: "These results demonstrate that high grade mineralisation is present along strike from the Crown Prince Main Ore Body (MOB). Pleasingly, the mineralisation to the south-east of MOB looks to be a continuous and coherent high grade zone which is open at depth. We look forward to drilling the down dip parts of this new zone (SEB) in coming months. The SEB zone will be incorporated in an updated resource model for Crown Prince Prospect in due course. Due to the shallow, wide and high-grade nature of gold mineralisation present at the SEB zone it is likely to show robust economic outcomes in conceptual pit modelling."

Reverse Circulation Drilling

The Crown Prince Prospect is a high-grade gold deposit within Ora Gold's Garden Gully Project. Crown Prince is located 22 kilometers north-west of Meekatharra in Western Australia via the Great Northern Highway and the Mt Clere Road (Figure 1).

An RC drill program was undertaken in April and consisted of 22 reverse circulation holes totaling 2,965m over the north-western, south-eastern, and southern part of the main ore body (Figure 2). All hole details and sampling information are included in Table 1.

Only two batches of **234** assays have returned so far from a total of **1567** samples delivered to Intertek Genalysis in Perth. The assay results with more than 0.1ppm Au are included in Appendix 1.

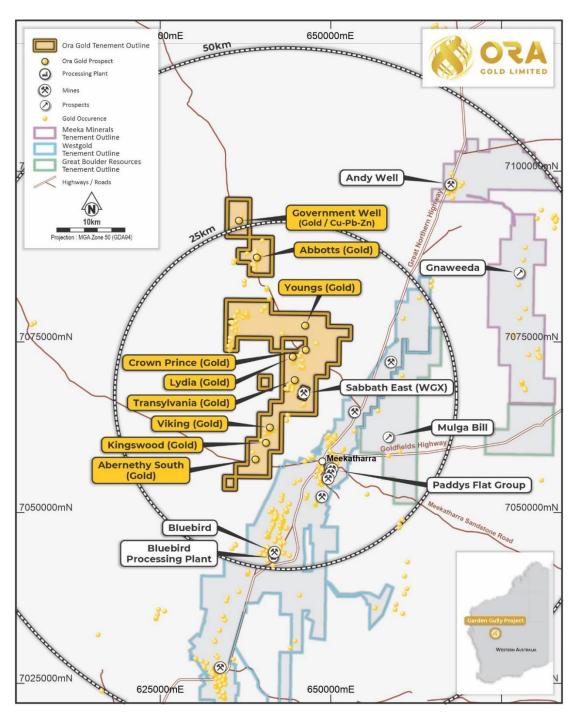


Figure 1. Garden Gully tenements and the main gold prospect's location

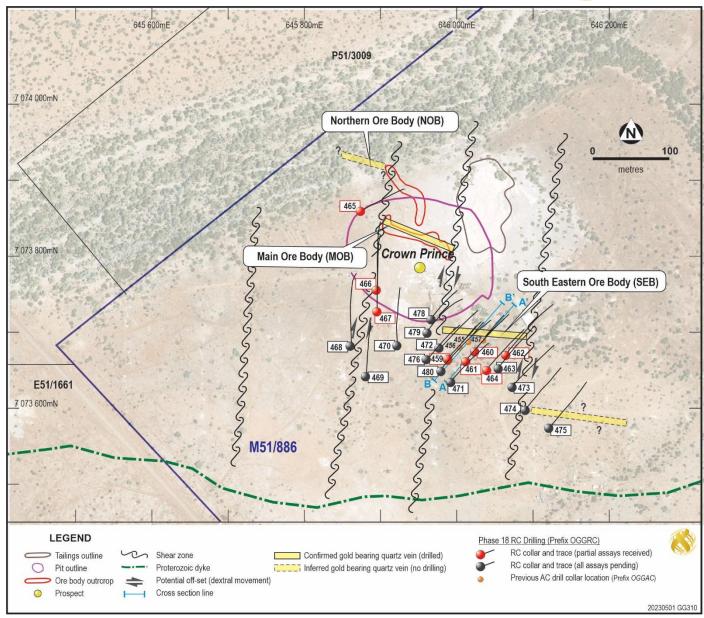


Figure 2. RC drill hole collars, traces, and structural setting over the Crown Prince Gold Prospect

The current program was designed to test for potential extensions to mineralized zones to the north-west and south-east along strike from known mineralization and follow up the exceptional gold intercepts from recent air core drilling, namely OGGAC456 (20m @ 14.49g/t Au from 30m, incl. 6m @ 38.06g/t Au from 41m) and OGGAC457 (23m @ 8.5g/t Au from 22m, incl. 17m @ 10.73g/t Au from 28m).

New RC drill results reported in this release extend known mineralization at Crown Prince along strike to the southeast (Figures 2 and 3) and down dip in this zone also.

In the current drill program high grade intercepts include those from RC hole OGGRC461 which returned 33m @ 12.73g/t Au from 57m in OGGRC461, incl. 17m @ 24.4g/t Au from 67m, refer Figure 4, AA' cross section. This intercept is 40m down dip from shallower air core intercepts noted above.

Hand-held XRF readings on RC chips and detailed logging suggest that a deeper hole (OGGRC471) is most likely to extend the high-grade gold on this lode further down dip. The SEB mineralized zone has an 80m strike length and is bounded by two sub-parallel, north/north-east trending shear zones.

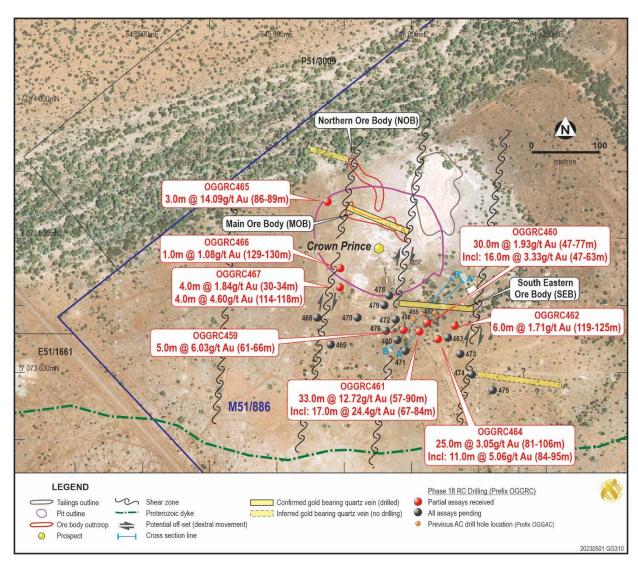


Figure 3. Recent drill holes intersections and the inferred extension of the mineralization at Crown Prince

The drill line to the north-west of OGRC461 (Figure 4, BB' cross section) successfully intersected mineralisation down dip from previous air core drilling returning 5m @ 6.03 g/t Au from 61m in OGGRC459.

Visual inspection of RC chips, alteration, type of deformation and XRF readings in OGGRC480 suggest that the pending assay results are likely to confirm further gold mineralisation at depth (Figure 5, BB' cross section).

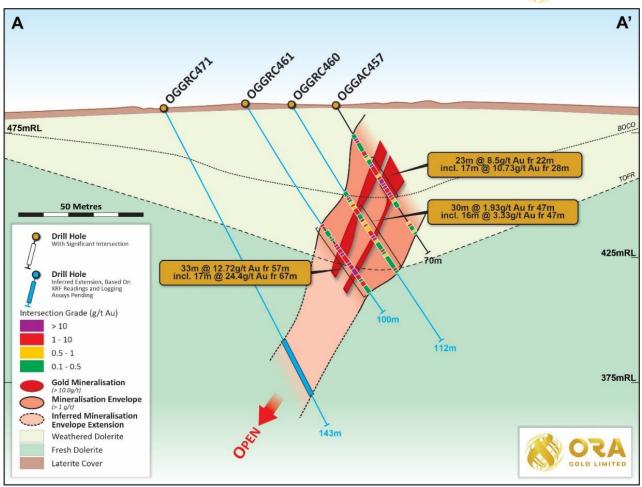


Figure 4. Down-dip gold intercepts on the SEB-Lode and the inferred extension of the mineralisation (AA' cross-section)

North-western extension of the mineralization (NOB)

A single RC hole was drilled versus six planned in this area. A high rainfall weather event in April experienced across the Meekatharra region flooded areas closer to the Garden Gully drainage. This resulted in difficulties accessing drill pads. The Northern Ore Body (NOB) was intersected at 86m in the RC hole that was completed with assay results of 3m @ 14.09g/t Au from this depth in OGGRC465 (Figures 2 and 3, Tables 1 and 2).

Down-dip extension of the Main Ore Body (MOB) – diamond tails required

Five RC holes were drilled with a northerly azimuth under the MOB. Diamond tails will be completed on RC pre-collars to properly test the down-dip potential at the MOB.

Assays received for partial intervals in OGGRC466 and OGGRC467 indicated the presence of a northtrending structure and potential offset of mineralisation in this area (see Appendix 1 and Figure 2).

| E: info@ora.gold com.au

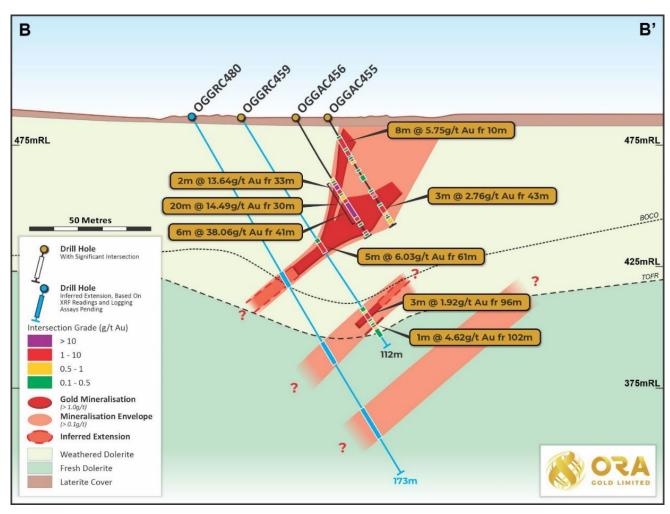


Figure 5. Down-dip gold intercepts and the inferred extension of the mineralisation (BB' cross-section)

Background and History

The greenstone belt is a structurally deformed Archean-age package of mafic, ultramafic, and felsic volcaniclastic rocks that are prospective for gold and base metal deposits. Gold mineralization is associated with quartz veins in various rock types including sediments, volcaniclastics, mafics and ultramafics, and has a spatial association with the northeast trending Abernethy Shear Zone which may represent the northern extension of a major structure which passes through the large Big Bell deposit.

The Garden Gully is well located and highly prospective:

- Commanding 217km² position in the Abbotts Greenstone Belt located in Western Australia to the north of well-established gold centre Meekatharra
- The belt is prospective for large gold and base metal deposits
- Tenure includes granted Mining Leases over Crown Prince, Lydia and Abbotts prospects
- Potential for early, shallow open pit production at Crown Prince¹
- Close to Meekatharra supporting efficient logistics

¹ Refer ASX release on Scoping Study released 11 December 2019

Circa 20km north of Westgold Limited's (WGX.ASX) 1.8 Mtpa Bluebird Processing Plant (Meekatharra Gold Operations "MGO")2

Between 1908 and 1915, the Crown Prince deposit was partially mined along two strongly mineralized quartz veins on four underground levels to a depth of 90m. Production was 29,400 tonnes for 20,178 ounces at a recovered grade of 21.7g/t Au using gravity and cyanidation processing, and no mining has occurred since.

Ora Gold has published a modest Mineral Resource at Crown Prince (see ASX announcement 21 October 2019). This resource comprises 479kt @ 3.6g/t Au for 56koz Au.

Further infill and deeper reverse circulation drilling are likely to delineate additional resources in the new mineralized structures outside of the known resource.

Next Steps

Ora Gold is currently planning additional RC and DD drill holes at Crown Prince as well as a regional drilling program for testing various other priority targets.

The announcement has been authorised for release to ASX by the Board of Ora Gold Limited.

For Further Information Contact:

Alex Passmore Chief Executive Officer 08 9389 6927

Jane Morgan Investor and Media Relations jm@janemorganmanagement.com.au

+ 61 (0) 405 555 618

² Refer Westgold Ltd (WGX.ASX) ASX Release - 27 January 2023

ABN: 74 950 465 654

Competent Person Statement

The details contained in this report that pertain to Exploration Results, Mineral Resources or Ore Reserves, are based upon, and fairly represent, information and supporting documentation compiled by Mr Costica Vieru, a Member of the Australian Institute of Geoscientists and a full-time employee of the Company. Mr Vieru has sufficient experience which is relevant to the style(s) of mineralisation and type(s) of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Vieru consents to the inclusion in this report of the matters based upon the information in the form and context in which it appears.

ORA GOLD LIMITED ASX Code: OAU

Quoted Shares: 3,937M **Unquoted Options:** 1,833M

About Ora Gold Limited

Ora Gold's wholly owned tenements cover the prospective area of the Abbotts Greenstone Belt and comprise 4 granted Mining Leases, 1 granted Prospecting Licence and 6 granted Exploration Licences covering 217km².

The strategy for the advanced gold projects – Abbotts, Crown Prince and Lydia and base metal prospects at Government Well, is to pursue production while increasing resources and exploring for large gold and base metal deposits.

Table 1. Drill hole details and sampling information

Hole ID	Туре	Easting	Northing	RL	Azi	Dip	Depth	Prospect	Sampling details and comments
OGGRC459	RC	645988.7	7073661.8	486.5	41.6	-59.1	112	SEB	(59-108m, assays received)
OGGRC460	RC	646024.5	7073673.3	486.5	39.7	-60.6	112	SEB	(39-77m, assays received)
OGGRC461	RC	646012.4	7073659.5	486.8	40.5	-59.7	100	SEB	(57-91m, assays received)
OGGRC462	RC	646064.8	7073668.1	486.9	39.6	-59.8	148	SEB	(78-88m, 91-97m, 118-127m, assays received)
OGGRC463	RC	646055	7073650.3	487.2	39.4	-60.2	124	SEB	All assays pending
OGGRC464	RC	646039.8	7073648	487.1	42.2	-59.6	124	SEB	(81-106m, assays received)
OGGRC465	RC	645875.3	7073852.9	482.4	61.8	-60.6	106	NOB	(71-74m, 83-89m, assays received)
OGGRC466	RC	645894.5	7073753.7	484.6	358.7	-59.5	160	МОВ	(110-113m, 127-132m, assays received)
OGGRC467	RC	645893.8	7073725.3	485.1	357.5	-60.4	196	МОВ	(15-44m, 113-118m, 169-187m, assays received)
OGGRC468	RC	645855.9	7073680.6	485.6	359.3	-58.9	198	МОВ	All assays pending
OGGRC469	RC	645879.5	7073640.8	486.4	1.5	-59.5	125	МОВ	All assays pending
OGGRC470	RC	645918.5	7073682.5	485.8	358.2	-60.7	155	МОВ	All assays pending
OGGRC471	RC	645990.6	7073630.5	487.1	39.4	-61.5	143	SEB	All assays pending
OGGRC472	RC	645976.2	7073677.4	486.2	41.9	-60.5	138	SEB	All assays pending
OGGRC473	RC	646072.4	7073625.8	487.7	46	-59.9	143	SEB	All assays pending
OGGRC474	RC	646090	7073596	488.2	39.4	-59.8	143	SEB	All assays pending
OGGRC475	RC	646121.6	7073571.7	488.6	39.8	-60.2	143	SEB	All assays pending
OGGRC476	RC	645962.2	7073660.5	486.4	38.5	-59.9	113	SEB	All assays pending
OGGRC477	RC	645993.2	7073696	486.1	40.2	-60.4	95	SEB	All assays pending
OGGRC478	RC	645966.4	7073713.7	485.8	38	-60.3	95	SEB	All assays pending
OGGRC479	RC	645960.5	7073695.7	485.9	35.6	-60.6	119	SEB	All assays pending
OGGRC480	RC	645979.6	7073647.5	486.8	39.1	-60.8	173	SEB	All assays pending

SEB- South-Eastern Ore Body MOB- Main Ore Body NOB- North-Western Ore Body

Appendix 1. Assay results (>0.1g/t Au) - Fire Assay 50g charge and analysed by ICPO (Atomic) Emission Spectrometry at Intertek labs, Perth.

Hole No	From	То	Au	Au-Rp1	Average	Intersection	Prospect
OGGRC459						Pending Assays	CP SE Extension
	59	60	0.368				(SEB)
	60	61	0.71				
	61	62	3.995				
	62	63	5.75				
	63	64	8.195			5m at 6.03g/t Au	
	64	65	11.34	10.86	11.1	(61-66m)	
	65	66	1.021	1.248	1.135		
						Pending Assays	
OGGRC459	93	94	0.168				
	94	95	0.161				
	95	96	0.545				
	96	97	1.753				
	97	98	2.697			3m at 1.92g/t Au	
	98	99	1.305			(96-99m)	
	99	100	0.485				
	100	101	0.518				
	101	102	0.43				
	102	103	4.619				
	103	104	0.768				
	104	105	0.484				
	105	106	0.258	0.312	0.285		
	106	107	0.229				
	107	108	0.48				
						Pending Assays	
OGGRC460	39	40	0.093				CP SE Extension
	40	41	0.075				(SEB)
	41	42	0.141				
	42	43	0.226				
	43	44	0.032				
	44	45	1.821				
	45	46	0.33				
	46	47	0.525				
	47	48	3.785				
	48	49	0.862			5m at 3.03g/t Au	
	49	50	3.376			(47-52m)	
	50	51	1.288				
	51	52	5.875				
	52	53	0.164				
	53	54	0.227			and	
	54	55	1.197				

								JOED E
	55	56	0.656					
	56	57	1.426					
	56	57	1.507					
	57	58	0.767			9m at 3.63g/t Au		
	58	59	0.731			(54-63m)		
	59	60	1.148					
	60	61	1.232					
	61	62	24.75	27.55	26.15			
	62	63	1.441					
	63	64	0.526					
						or 16m at 3.33g/t		
	64	65	0.027			Au		
	65	66	0.019			(47-63)		
	66	67	0.474			22 1122 1		
	67	68	1.353			or 30m at 1.93g/t		
	68	69	0.464			Au (47-77m)		
	69	70	0.818			(47-77111)		
	70	71	0.24					
	71	72	0.193					
	72	73	0.496					
	73	74	0.12					
	74	75	0.279					
	75	76	2.372					
	76	77	0.435					
	, ,		0.100			Pending Assays		
OGGRC461	57	58	1.665			T Chamgrissays	CP SE Exter	nsion
	58	59	0.034				(SEB)	
	59	60	0.026				(015)	
	60	61	0.107			(57-90m)		
	61	62	0.232			33m at 12.72g/t Au		
	62	63	0.142					
	63	64	0.087					
	64	65	0.123					
	65	66	0.089					
	66	67	0.028					
	67	68	5.03					
	68	69	13.64					
	69	70	1.374	0.837	1.106	including		
	70	71	9.89			17m at 24.40g/t Au		
	71	72	69.59	77.41	73.5	(67-84m)		
	72	73	2.819			CVX-LODE		
	73	74	1.883					
	74	75	3.002					
	75	76	5.571					

79 80 1.362 (SEB) 80 81 0.108 (SEB) 81 82 0.118 (SEB) 82 83 0.119 (SEB) 83 84 0.144 0.214 0.179 92 93 0.113 (SEB) 118 119 0.702 (SEB) 119 120 1.146 (SEB) 120 121 1.523 (SEB) 121 122 4.782 (SEB) 122 123 0.353 (SEB) 123 124 1.067 (SEB) 124 125 1.39 (SEB) 125 126 0.619 (SEB) 126 127 0.022 (SEB) 0GGRC464 81 82 0.912 (SEB) 83 84 0.819 (SEB)	T			,				
78		76	77	67.06				
79		77	78	4.51				
80 81 122 134.4 128.2 81 82 62.17 82 83 9.22 83 84 5.729 84 85 0.86 85 86 2.413 86 87 2.805 87 88 0.483 0.604 0.544 88 89 0.35 89 90 0.416 Pending Assays CP SE Extensi 79 80 1.362 81 82 83 0.119 83 84 0.144 0.214 0.179 92 93 0.113 118 119 0.702 119 120 1.166 121 1.523 122 123 0.353 123 124 1.067 124 125 1.39 125 126 0.619 126 0.79 Extensi Pending Assays CP SE Extensi (119-125m) (119-125m) Pending Assays CP SE Extensi (119-125m) Pending Assays CP SE Extensi (119-125m) Pending Assays CP SE Extensi (SEB)		78	79	3.367				
81 82 62.17 82 83 9.22 83 84 85.729 84 85 0.86 85 86 2.413 86 87 2.805 87 88 0.483 0.604 88 89 0.35 89 90 0.416 Pending Assays OGGRC462 78 79 0.118 81 82 0.118 82 83 0.119 83 84 0.144 0.214 0.179 92 93 0.113 118 119 0.702 119 120 1.146 110 121 1.523 112 122 4.782 112 122 4.782 112 122 4.782 112 123 0.353 123 124 1.067 126 127 0.022 127 128 0.034 Pending Assays OGGRC464 81 82 0.912 OGGRC466 81 82 83 0.075 (SEB) OGGRC466 81 82 0.919 OGGRC466 81 82 0.912 OGGRC467 (SEB) OGGRC468 81 82 0.919 OGGRC468 81 82 0.919 OGGRC469 (SEB) OGGRC469 (SEB)		79	80	13.16				
82 83 9.22 83 84 5.729 84 85 0.86 85 86 2.413 86 87 2.805 87 88 0.483 0.604 0.544 88 89 90 0.416 Pending Assays OGGRC462 78 79 0.118 81 0.108 81 82 0.118 82 83 0.119 83 84 0.144 0.214 0.179 92 93 0.113 118 119 0.702 119 120 1.146 110 121 1.523 121 122 4.782 122 123 0.353 123 124 1.067 124 125 1.39 125 126 0.619 126 127 0.022 127 128 0.034 Pending Assays CP SE Extensi (SEB) (SEB) (SEB) Reat 1.71g/t Au (119-125m) Pending Assays CP SE Extensi (SEB)		80	81	122	134.4	128.2		
83 84 5.729		81	82	62.17				
84 85 0.86 85 86 2.413 86 87 2.805 87 88 0.483 0.604 0.544 88 89 0.35 89 90 0.416 89 90 0.416 81 82 0.118 82 83 0.119 83 84 0.144 0.214 0.179 82 83 84 0.144 0.214 0.179 84 0.118 85 0.118 85 0.118 85 0.118 85 0.118 85 0.118 85 0.119 85 0.118 85 0.119 85 0.118 85 0.119 85 0.118 85 0.119 85 0.		82	83	9.22				
85 86 2.413 86 87 2.805 87 88 0.483 0.604 0.544 88 89 0.35 89 90 0.416 Pending Assays OGGRC462 78 79 0.118 80 81 0.108 81 82 0.118 82 83 0.119 83 84 0.144 0.214 0.179 118 119 0.702 119 120 1.146 120 121 1.523 (119-125m) 121 122 4.782 122 123 0.353 123 124 1.067 124 125 1.39 125 126 0.619 126 127 0.022 127 128 0.034 OGGRC464 81 82 0.912		83	84	5.729				
86 87 2.805 87 88 0.483 0.604 0.544 88 89 0.35 Pending Assays OGGRC462 78 79 0.118 CP SE Extensi 79 80 1.362 (SEB) 80 81 0.108 (SEB) 81 82 0.118 (SEB) 82 83 0.119 (SEB) 83 84 0.144 0.214 0.179 92 93 0.113 (SEB) 118 119 0.702 (SEB) 119 120 1.146 (SEB) 121 122 4.782 (119-125m) 121 122 4.782 (119-125m) 122 123 0.353 (123-125m) 123 124 1.067 (SEB) 126 127 0.022 (SEB) 127 128 0.034 (SEB) OGGRC464 81 82 0.912 (SEB) 83 84 0.819 <th></th> <th>84</th> <th>85</th> <th>0.86</th> <th></th> <th></th> <th></th> <th></th>		84	85	0.86				
87 88 0.483 0.604 0.544 88 89 0.35 89 90 0.416 Pending Assays CP SE Extensi (SEB) 80 81 0.108 81 82 0.118 82 83 0.119 83 84 0.144 0.214 0.179 92 93 0.113 118 119 0.702 119 120 1.146 120 121 1.523 (119-125m) 121 122 4.782 122 123 0.353 123 124 1.067 124 125 1.39 125 126 0.619 126 127 0.022 127 128 0.034 Pending Assays CP SE Extensi (SEB) 6 mat 1.71g/t Au (119-125m) (119-125m) Pending Assays CP SE Extensi (SEB) Pending Assays CP SE Extensi (SEB)		85	86	2.413				
88 89 90 0.416 Pending Assays OGGRC462 78 79 0.118 CP SE Extension 79 80 1.362 (SEB) 80 81 0.108 SEB) 81 82 0.118 SEB) 82 83 0.119 SEB) 83 84 0.144 0.214 0.179 92 93 0.113 SEB) 118 119 0.702 SEB) 119 120 1.146 SEB) 120 121 1.523 (119-125m) 121 122 4.782 SEB) 121 122 4.782 SEB) 123 124 1.067 SEB) 124 125 1.39 SEB) 126 0.619 SEB) SEB) OGGRC464 81 82 0.912 CP SE Extension OGGRC464 81 82 0.819 SEB)		86	87	2.805				
89 90 0.416 Pending Assays OGGRC462 78 79 0.118 CP SE Extension 79 80 1.362 (SEB) 80 81 0.108 SEB) 81 82 0.118 SEB) 82 83 0.119 SEB) 83 84 0.144 0.214 0.179 92 93 0.113 SEB) 118 119 0.702 SEB) 119 120 1.146 SEB) 120 121 1.523 (119-125m) 121 122 4.782 (119-125m) 121 122 4.782 SEB) 123 124 1.067 SEB) 124 125 1.39 SEB) 125 126 0.619 SEB) 127 1.28 0.034 SEB) OGGRC464 81 82 0.912 SEB 83 84 0.819 SEB)		87	88	0.483	0.604	0.544		
OGGRC462 78 79 0.118 CP SE Extensis 79 80 1.362 (SEB) 80 81 0.108 (SEB) 81 82 0.118 (SEB) 82 83 0.119 (SEB) 92 93 0.113 (SEB) 118 119 0.702 (SEB) 119 120 1.146 6m at 1.71g/t Au 120 121 1.523 (119-125m) 121 122 4.782 (119-125m) 123 124 1.067 (124 124 125 1.39 (125 124 125 1.39 (126 127 128 0.044 (127 0GGRC464 81 82 0.912 (Pending Assays) OGGRC464 81 82 0.912 (SEB) 83 84 0.819 (SEB)		88	89	0.35				
OGGRC462 78 79 0.118 CP SE Extensis 79 80 1.362 (SEB) 80 81 0.108 (SEB) 81 82 0.118 (SEB) 82 83 0.119 (SEB) 92 93 0.113 (SEB) 118 119 0.702 (SEB) 119 120 1.146 (SEB) 121 1.22 4.782 (119-125m) 121 122 4.782 (119-125m) 123 124 1.067 (124 123 124 1.067 (124 125 126 0.619 (126 127 1.28 0.034 (Pending Assays) OGGRC464 81 82 0.912 (SEB) 83 84 0.819 (SEB)		89	90	0.416				
OGGRC462 78 79 0.118 CP SE Extensis 79 80 1.362 (SEB) 80 81 0.108 (SEB) 81 82 0.118 (SEB) 82 83 0.119 (SEB) 92 93 0.113 (SEB) 118 119 0.702 (SEB) 119 120 1.146 (SEB) 121 1.22 4.782 (119-125m) 121 122 4.782 (119-125m) 123 124 1.067 (124 123 124 1.067 (124 125 126 0.619 (126 127 1.28 0.034 (Pending Assays) OGGRC464 81 82 0.912 (SEB) 83 84 0.819 (SEB)							Pending Assays	
80 81 0.108 81 82 0.118 82 0.118 82 83 0.119 83 84 0.144 0.214 0.179 83 84 0.113 84 0.113 85 0.119 85 0.113 85 0.119 85 0.113 85 0.119 85 0.113 85 0.119 120 1.146 86 0.171g/t Au 120 121 1.523 121 122 4.782 122 123 0.353 123 124 1.067 124 125 1.39 125 126 0.619 126 127 0.022 127 128 0.034 81 82 0.912 82 83 0.075 83 84 0.819 84 85 3.696	OGGRC462	78	79	0.118				CP SE Extension
81 82 0.118 82 83 0.119 83 84 0.144 0.214 0.179 92 93 0.113		79	80	1.362				(SEB)
82 83 0.119 0.179 83 84 0.144 0.214 0.179 92 93 0.113 0.113 118 119 0.702 0.114 119 120 1.146 6m at 1.71g/t Au 120 121 1.523 (119-125m) 121 122 4.782 0.353 122 123 0.353 0.353 123 124 1.067 0.07 124 125 1.39 0.07 125 126 0.619 0.022 127 128 0.034 0.034 OGGRC464 81 82 0.912 0.912 82 83 0.075 (SEB) 83 84 0.819 0.819 84 85 3.696 0.0179		80	81	0.108				
83 84 0.144 0.214 0.179 92 93 0.113 118 119 0.702 119 120 1.146 120 121 1.523 (119-125m) 121 122 4.782 122 123 0.353 123 124 1.067 124 125 1.39 125 126 0.619 126 127 0.022 127 128 0.034 Pending Assays OGGRC464 81 82 0.912 OGGRC464 81 82 0.912 SEB) 83 84 0.819 84 85 3.696		81	82	0.118				
92 93 0.113		82	83	0.119				
118 119 0.702		83	84	0.144	0.214	0.179		
118 119 0.702 119 120 1.146 6m at 1.71g/t Au 120 121 1.523 (119-125m) 121 122 4.782 (119-125m) 122 123 0.353 (123 123 124 1.067 (124 125 126 0.619 (126 126 127 0.022 (127 127 128 0.034 (127 Pending Assays (2 P SE Extension SEB) 82 83 0.075 (SEB) 83 84 0.819 (SEB)								
119 120 1.146 6m at 1.71g/t Au 120 121 1.523 (119-125m) 121 122 4.782 (119-125m) 122 123 0.353 (123 124 1.067) 124 125 1.39 (125 126 0.619) (126 127 0.022) 126 127 0.022 (127 128 0.034) (127 128 0.034) Pending Assays (Pending Assays) (SEB) 83 84 0.819 (SEB) 84 85 3.696		92	93	0.113				
119 120 1.146 6m at 1.71g/t Au 120 121 1.523 (119-125m) 121 122 4.782 (119-125m) 122 123 0.353 (123 124 1.067) 124 125 1.39 (125 126 0.619) (126 127 0.022) 126 127 0.022 (127 128 0.034) (127 128 0.034) Pending Assays (Pending Assays) (SEB) 83 84 0.819 (SEB) 84 85 3.696								
120 121 1.523 (119-125m) 121 122 4.782 (122 122 123 0.353 (123 123 124 1.067 (124 124 125 1.39 (125 125 126 0.619 (126 127 128 0.034 (127 Pending Assays (127 (128 0GGRC464 81 82 0.912 (128 82 83 0.075 (128 (129 83 84 0.819 (129 (1		118	119	0.702				
121 122 4.782 122 123 0.353 123 124 1.067 124 125 1.39 125 126 0.619 126 127 0.022 127 128 0.034 Pending Assays OGGRC464 81 82 0.912 82 83 0.075 (SEB) 83 84 0.819 84 85 3.696 (SEB)		119	120	1.146			6m at 1.71g/t Au	
122 123 0.353 123 124 1.067 124 125 1.39 125 126 0.619 126 127 0.022 127 128 0.034 Pending Assays OGGRC464 81 82 0.912 82 83 0.075 (SEB) 83 84 0.819 84 85 3.696		120	121	1.523			(119-125m)	
123 124 1.067 124 125 1.39 125 126 0.619 126 127 0.022 127 128 0.034 Pending Assays OGGRC464 81 82 0.912 82 83 0.075 (SEB) 83 84 0.819 (SEB)		121	122	4.782				
124 125 1.39 125 126 0.619 126 127 0.022 127 128 0.034 Pending Assays OGGRC464 81 82 0.912 82 83 0.075 CP SE Extension (SEB) 83 84 0.819 84 85 3.696		122	123	0.353				
125 126 0.619		123	124	1.067				
126 127 0.022		124	125	1.39				
127 128 0.034 Pending Assays OGGRC464 81 82 0.912 CP SE Extension 82 83 0.075 (SEB) 83 84 0.819 84 85 3.696 3.696		125	126	0.619				
OGGRC464 81 82 0.912 CP SE Extension 82 83 0.075 (SEB) 83 84 0.819 (SEB) 84 85 3.696 (SEB)		126	127	0.022				
OGGRC464 81 82 0.912 CP SE Extension 82 83 0.075 (SEB) 83 84 0.819 (SEB) 84 85 3.696 (SEB)		127	128	0.034				
OGGRC464 81 82 0.912 CP SE Extension 82 83 0.075 (SEB) 83 84 0.819 84 85 3.696							Pending Assays	
83 84 0.819 84 85 3.696	OGGRC464	81	82	0.912				CP SE Extension
84 85 3.696		82	83	0.075				(SEB)
		83	84	0.819				
85 86 2.959 25m at 3.05g/t Au		84	85	3.696				
		85	86	2.959			25m at 3.05g/t Au	
86 87 1.773 (81-106m)		86	87	1.773				
87 88 0.625 2.194 1.41		87	88		2.194	1.41		
88 89 1.434 incl.		88	89				incl.	
89 90 0.42			90	0.42				

	90	91	2.449			11m at 5.06g/t Au	
	91	92	5.504			(84-95m)	
	92	93	12.86				
	93	94	16.75				
	94	95	6.435				
	95	96	0.642				
	96	97	1.046				
	97	98	1.743				
	98	99	2.867				
	99	100	2.033				
	100	101	0.4				
	101	102	2.064				
	102	103	4.087				
	103	104	3.297				
	104	105	0.501				
	105	106	0.233	0.116	0.175		
						Pending Assays	
							CP NW
OGGRC465	71	72	0.031				Extension
	72	73	0.035				(NOB)
	73	74	0.089				
	83	84	0.021				
	84	85	0.16				
	85	86	0.041				
	86	87	6.768			3m at 14.09g/t Au	
	87	88	31.18	36.82	34	(86-89m)	
	88	89	1.514				
						Pending Assays	
OGGRC466	110	111	0.541				CP DEEP
	111	112	0.466				(MOB)
	112	113	0.444				
	127	128	0.005				
	128	129	0.013				
	129	130	1.081				
	130	131	0.051				
	131	132	0.015				
						Pending Assays	
OGGRC467	22	23	0.109				CP DEEP
	23	24	0.285				(MOB)
	24	25	0.337				•
	27	28	0.258				
	29	30	0.32				
	30	31	1.43			4m at 1.84g/t Au	
	31	32	2.794			(30-34m)	

32	33	2.595			
33	34	0.561			
34	35	0.145			
114	115	0.684		4m at 4.60g/t Au	
115	116	7.501		(114-118m)	
116	117	9.271			
117	118	0.962			
171	172	0.18			
173	174	0.12			
174	175	0.328			
175	176	0.267			
179	180	0.119			
185	186	0.3			

Appendix 2: JORC Table 1 Checklist of Assessment and Reporting Criteria

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representativity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	RC sample was collected and split in even metre intervals where sample was dry. Wet sample was speared or on occasion sampled by scooping. RC drill chips from each metre were examined visually and logged by the geologist. Evidence of alteration or the presence of mineralisation was noted on the drill logs. Intervals selected by the site geologist were tested by hand-held XRF and all those with elevated arsenic contents have been bagged and numbered for laboratory analysis. Duplicate samples are submitted at a rate of approximately 10% of total samples taken (ie one duplicate submitted for every 20 samples). The Vanta XRF Analyser is calibrated before each session and is serviced according to the manufacturer's (Olympus) recommended schedule. The presence or absence of mineralisation is initially determined visually by the site geologist, based on experience and expertise in evaluating the styles of mineralisation being sought.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Drilling technique was Reverse Circulation (RC) with a hammer diameter of 5.5" (140 mm) using a KWL700/T685 drill rig and a B7/1000 Atlas Copco booster unit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Volume of material collected from each metre interval of drilling completed is monitored visually by the site geologist and field assistants. Dry sample recoveries were estimated at ~95%. Wet sample recovery was lower, estimated to an average of 40%. Samples were collected and dry sample split using a riffle splitter. Based on the relatively small number of assays received to date, there is no evidence of either a recovery/grade relationship or of sample bias.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	RC chips are logged visually by qualified geologists. Lithology, and where possible structures, textures, colours, alteration types and minerals estimates are recorded. Representative chips are retained in chip trays for each metre interval drilled. The entire length of each drill hole is logged and evaluated.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	RC samples were collected and dry sample split using a riffle splitter. Material too moist for effective riffle splitting was sampled using a 4cm diameter spear. Sample submitted to the laboratory comprised three spear samples in different directions into the material for each meter interval.

Quality of assay data and laboratory tests	 Quality control procedures adopted for all subsampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The samples were sent to Intertek labs in Perth for Au analysis by FA50 (Fire Assay on 50g charge). Sample preparation techniques are wellestablished standard industry best practice techniques. Drill chips are dried and crushed and pulverised (whole sample) to 95% of the sample passing -75µm grind size. Field QC procedures include using certified reference materials as assay standards at every 20m. One duplicate sample is submitted for every 20 samples and a blank at 50 samples, approximately. Evaluation of the standards, blanks and duplicate samples assays shows them to be within acceptable limits of variability. Sample representativity and possible relationship between grain size and grade was confirmed following re-sampling and re-assaying of high-grade interval. Sample size follows industry standard best practice and is considered appropriate for these style(s) of mineralisation. The assay techniques used for these assays are international standard and can be considered total. Samples were dried, crushed and pulverised to 95% passing -75µm using 50g Fire Assay and analysed by Inductively Coupled Plasma Optical (Atomic) Emission Spectrometry. The handheld XRF equipment used is an Olympus Vanta XRF Analyser and Ora Gold Ltd. follows the manufacturer's recommended calibration protocols and usage practices but does not consider XRF readings sufficiently robust for public reporting. Ora Gold Ltd. uses the handheld XRF data as an indicator to support the selection of intervals for submission to laboratories for formal assay. The laboratory that carried out the assays is an AQIS registered site and is ISO certified. It conducts its own internal QA/QC processes in addition to the QA/QC implemented by Ora Gold Ltd, as its sample submission procedures. Evaluation of the relevant data indicates satisfactory performance of the field sampling protocols in place and of the assay laboratory. The laboratory uses check samples and assay standards to com
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Procedures practiced by Ora Gold Ltd. All significant intersections are calculated and verified on screen and are reviewed prior to reporting. The programme included no twin holes. Data is collected and recorded initially on handwritten logs with summary data subsequently transcribed in the field to electronic files that are then copied to head office. No adjustment to assay data has been needed.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole locations have been established using a differential GPS with an accuracy of ±0.3m. Regular surveys were undertaken every 18m using a Gyro survey tool. The map projection applicable to the area is Australian Geodetic GDA94, Zone 50.
Data spacing	Data spacing for reporting of Exploration Results.	Drill hole collars were located and oriented to deliver maximum relevant geological information

and distribution	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	to allow the geological model being tested to be assessed effectively. • This is still early-stage exploration and is not sufficiently advanced for this to be applicable. • Various composite sampling was applied depending on the geology of the hole. All anomalous sample intervals are reported in Appendix 1. Zones where geological logging and/or XRF analyses indicated the presence of mineralised intervals were sampled on one metre intervals.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	This programme is the second exploration drilling to test the south-east extension of the Crown Prince main ore body. All drill holes within this area have been drilled 40 degrees northeasterly at -60 degrees dip. Insufficient data has been collected and compiled to be able to establish true widths, orientation of lithologies, relationships between lithologies, or the nature of any structural controls as no diamond drilling was undertaken. The main aim of this programme is to generate geological data to develop an understanding of these parameters. Data collected so far presents no suggestion that any sampling bias has been introduced.
Sample security	The measures taken to ensure sample security.	When all relevant intervals have been sampled, the samples are collected and transported by company personnel to secure locked storage in Perth before delivery by company personnel to the laboratory for assay.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Internal reviews are carried out regularly as a matter of policy. All assay results are considered representative as both the duplicates, standards and blanks from this programme have returned satisfactory replicated results.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Garden Gully project comprises one granted prospecting licence, P51/3009, six granted exploration licences E51/1661, E51/1737, E51/1609, E51/1708, E51/1790, E51/1791 and four mining leases M51/390, M51/567, M51/886 and M51/889, totalling approximately 207 square kilometres. Ora Gold Limited holds a 100% interest in each lease. The project is partially located in the Yoothapina pastoral lease, 15km north of Meekatharra, in the Murchison of WA.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The licences are in good standing and there are no known impediments to obtaining a licence to operate.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• First workings in the Garden Gully area: 1895 - 1901 with the Crown gold mine. 264 tonnes gold at 1.99 oz/t average (~ 56 g/t Au). Maximum depth~24m. Kyarra Gold Mine (1909 – 1917): 18,790 oz gold from quartz veins in "strongly sheared, decomposed, sericite rich country rock" Seltrust explored for copper and zinc from 1977, reporting stratigraphically controlled "gossanous" rock from chip sampling and drilling In 1988, Dominion gold exploration at Crown defined a >100ppb gold soil anomaly. RAB to 32m: "no significant mineralisation": drilling was

		"sub-parallel to the dip of mineralisation"; best
		intersection: 15m at 2.38g/t from 5m.
		- 1989 at Lydia: Julia Mines RAB drill holes 30 m
		intervals 100m apart across the shear zone
		targeting the arsenic anomaly. 12m at 5.16 g/t Au
		from 18m; 6m at 3.04 g/t Au from 18m. No
		samples deeper than 24m due to poor recovery,
		so open at depth in the prospective shear zone.
		Julia also drilled shallow air core at Crown mine,
		returned best intersection of 2m at 0.4g/t Au from
		34m in quartz veins in felsic volcanics.
		- In 1989, Matlock Mining explored North Granite
		Well and Nineteenth Hole; best result 8m at 2.1 g/t Au. Supergene zone: grades to 3.17 g/t Au and
		still open.
		- 1993 – 2003: St Barbara Mines: RAB, RC on
		E51/1661. Gold associated with black shale (best:
		1m at 0.64 g/t).
		- In 1996, Australian Gold Resources RAB and
		RC drilling found Cu, Zn and Ag anomalies (up to
		1800ppm Cu, 1650ppm Zn and 3.8 g/t Ag)
		associated with saprolitic clay and black shales at
		60-80m deep on current E51/1661.
		- 2001-2002, Gamen (Bellissimo & Red Bluff
		Noms) trenched, sampled, mapped and RC drilled
		at Crown. Results (up to 0.19 g/t Au) suggest the
		presence of gold mineralisation further to the east
		of Crown Gold Mine.
		- 2008 – 2009: Accent defined targets N and S of
		Nineteenth Hole from satellite imagery and
		airborne magnetics.
Geology	Deposit type, geological setting and style of	- The Garden Gully project comprises now most of
]		
1	mineralisation.	the Abbotts Greenstone Belt; comprised of
	mineralisation.	the Abbotts Greenstone Belt; comprised of Archaean rocks of the Greensleeves Formation
	mmeransation.	Archaean rocks of the Greensleeves Formation
	mmeransation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of
	mmeransation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain
	mmeransation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments,
	mmeransation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes.
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. - The project is blanketed by broad alluvial flats,
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. - The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. - The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. - The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. - The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of dolerite, typically massive and unaltered. Small
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. - The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of dolerite, typically massive and unaltered. Small basalt and metasediment outcrops exist, with
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. - The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of dolerite, typically massive and unaltered. Small basalt and metasediment outcrops exist, with some exposures of gossanous outcrops and
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. - The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of dolerite, typically massive and unaltered. Small basalt and metasediment outcrops exist, with some exposures of gossanous outcrops and quartz vein scree.
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. - The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of dolerite, typically massive and unaltered. Small basalt and metasediment outcrops exist, with some exposures of gossanous outcrops and quartz vein scree. Gold bearing quartz reefs, veins and lodes occur
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. - The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of dolerite, typically massive and unaltered. Small basalt and metasediment outcrops exist, with some exposures of gossanous outcrops and quartz vein scree. Gold bearing quartz reefs, veins and lodes occur almost exclusively as siliceous impregnations into
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. - The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of dolerite, typically massive and unaltered. Small basalt and metasediment outcrops exist, with some exposures of gossanous outcrops and quartz vein scree. Gold bearing quartz reefs, veins and lodes occur almost exclusively as siliceous impregnations into zones within
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. - The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of dolerite, typically massive and unaltered. Small basalt and metasediment outcrops exist, with some exposures of gossanous outcrops and quartz vein scree. Gold bearing quartz reefs, veins and lodes occur almost exclusively as siliceous impregnations into zones within the Kyarra Schist Series, schistose derivatives of
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. - The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of dolerite, typically massive and unaltered. Small basalt and metasediment outcrops exist, with some exposures of gossanous outcrops and quartz vein scree. Gold bearing quartz reefs, veins and lodes occur almost exclusively as siliceous impregnations into zones within the Kyarra Schist Series, schistose derivatives of dolerites, gabbros and tuffs, typically occurring
	mineralisation.	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. - The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of dolerite, typically massive and unaltered. Small basalt and metasediment outcrops exist, with some exposures of gossanous outcrops and quartz vein scree. Gold bearing quartz reefs, veins and lodes occur almost exclusively as siliceous impregnations into zones within the Kyarra Schist Series, schistose derivatives of dolerites, gabbros and tuffs, typically occurring close to axial planes of folds and within
		Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. - The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of dolerite, typically massive and unaltered. Small basalt and metasediment outcrops exist, with some exposures of gossanous outcrops and quartz vein scree. Gold bearing quartz reefs, veins and lodes occur almost exclusively as siliceous impregnations into zones within the Kyarra Schist Series, schistose derivatives of dolerites, gabbros and tuffs, typically occurring close to axial planes of folds and within anastomosing ductile shear zones.
Drill hole	A summary of all information material to the	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. - The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of dolerite, typically massive and unaltered. Small basalt and metasediment outcrops exist, with some exposures of gossanous outcrops and quartz vein scree. Gold bearing quartz reefs, veins and lodes occur almost exclusively as siliceous impregnations into zones within the Kyarra Schist Series, schistose derivatives of dolerites, gabbros and tuffs, typically occurring close to axial planes of folds and within anastomosing ductile shear zones. • All relevant drill hole details are presented in
Drill hole Information	A summary of all information material to the understanding of the exploration results including	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. - The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of dolerite, typically massive and unaltered. Small basalt and metasediment outcrops exist, with some exposures of gossanous outcrops and quartz vein scree. Gold bearing quartz reefs, veins and lodes occur almost exclusively as siliceous impregnations into zones within the Kyarra Schist Series, schistose derivatives of dolerites, gabbros and tuffs, typically occurring close to axial planes of folds and within anastomosing ductile shear zones. • All relevant drill hole details are presented in Table 1.
	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. - The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of dolerite, typically massive and unaltered. Small basalt and metasediment outcrops exist, with some exposures of gossanous outcrops and quartz vein scree. Gold bearing quartz reefs, veins and lodes occur almost exclusively as siliceous impregnations into zones within the Kyarra Schist Series, schistose derivatives of dolerites, gabbros and tuffs, typically occurring close to axial planes of folds and within anastomosing ductile shear zones. • All relevant drill hole details are presented in Table 1. • The principal geologic conclusion of the work
	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all material drill holes:	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of dolerite, typically massive and unaltered. Small basalt and metasediment outcrops exist, with some exposures of gossanous outcrops and quartz vein scree. Gold bearing quartz reefs, veins and lodes occur almost exclusively as siliceous impregnations into zones within the Kyarra Schist Series, schistose derivatives of dolerites, gabbros and tuffs, typically occurring close to axial planes of folds and within anastomosing ductile shear zones. All relevant drill hole details are presented in Table 1. The principal geologic conclusion of the work reported from this programme at the Crown Prince
	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all	Archaean rocks of the Greensleeves Formation (Formerly Gabanintha); a bimodal succession of komatiitic volcanic mafics and ultramafics overlain by felsic volcanics and volcaniclastic sediments, black shales and siltstones and interlayered with mafic to ultramafic sills. Regional synclinal succession trending N-NE with a northern fold closure postdating E-W synform, further transected by NE trending shear zones, linearity with the NE trend of the Abernathy Shear, which is a proven regional influence on structurally controlled gold emplacement in Abbotts and Meekatharra Greenstone Belts and in the Meekatharra Granite and associated dykes. - The project is blanketed by broad alluvial flats, occasional lateritic duricrust and drainage channels braiding into the Garden Gully drainage system. Bedrock exposures are limited to areas of dolerite, typically massive and unaltered. Small basalt and metasediment outcrops exist, with some exposures of gossanous outcrops and quartz vein scree. Gold bearing quartz reefs, veins and lodes occur almost exclusively as siliceous impregnations into zones within the Kyarra Schist Series, schistose derivatives of dolerites, gabbros and tuffs, typically occurring close to axial planes of folds and within anastomosing ductile shear zones. • All relevant drill hole details are presented in Table 1. • The principal geologic conclusion of the work

	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	mineralisation in what are interpreted to be steep plunging shoots. Extensive primary gold mineralisation was also intercepted below the base of oxidation; primary mineralisation associated with sulphides, mainly arsenopyrite, which offers a very positive outlook for deep potential for the prospect which is to be further tested in follow-up drilling.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually material and should be stated.	All significant drill intercepts are displayed in Figures 2-3. Full assay data over 0.1g/t Au are included in Appendix 1. No assay grades have been cut.
	 Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Arithmetic weighted averages are used. For example, 96m to 99m in OGGRC459 is reported as 3m at 1.92g/t Au. This comprised 3 samples, each of 1m, calculated as follows: [(1*1.753) +(1*2.697) +(1*1.305)] = [5.755/3] = 1.92g/t Au. No metal equivalent values are used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg. 'down hole length, true width not known'). 	 Insufficient geological data have yet been collected to allow the geometry of the mineralisation to be interpreted. True widths are unknown and insufficient information is available yet to permit interpretation of geometry. Reported intercepts are downhole intercepts and are noted as such.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to, a plan view of drill hole collar locations and appropriate sectional views.	Relevant location maps and figures are included in the body of this announcement (Figures 2-3). Sufficient data have been collected to allow two meaningful cross-sections to be drawn with confidence (Figures 4-5).
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	This announcement includes the partial results of 234 Au assays for eight RC holes from twenty-two holes drilled at the Crown Prince Prospect. The reporting is comprehensive and thus by definition balanced. It represents early results of a larger programme to investigate the potential for economic mineralisation at Garden Gully.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including, but not limited to: geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density; groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	This announcement includes qualitative data relating to interpretations and potential significance of geological observations made during the programme. As additional relevant information becomes available it will be reported and announced to provide context to current and planned programmes.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Deeper RC drilling is planned to commence at Crown Prince as soon as possible to test the potential for down-dip primary mineralisation to the south-east, north-west and down-dip under the main ore body. Diamond drilling will be undertaken to better define the structural setting of the mineralised system.

