@jopo when posting on HC in the future feel free to post...

  1. 9,165 Posts.
    lightbulb Created with Sketch. 506
    @jopo when posting on HC in the future feel free to post material that is comprehendible by others. I can understand why you don't, ie clueless about what you're trying to say, but that's no excuse. Sharpen up son.

    @nippy McNought rather than making your often groundless, unattributed sweeping statements about the impact of events as you regularly do, why not try to access material from people who have actually studied the event. It doesn't reflect poorly on you if you reference people with greater knowledge, but that happens when you try to pull the wool over others eyes. People see through bs easily.

    the article below directly addresses the impact on global warming from the Tongan underwater volcanic eruption in January 2022, and came from an internet page marked eos.org.

    first the headlines, then most of the report.

    "Tonga Eruption May Temporarily Push Earth Closer to 1.5°C of Warming"
    "The underwater eruption of Hunga Tonga–Hunga Ha‘apai sent megatons of water vapor into the stratosphere, contributing to an increase in global warming over the next 5 years.
    By J. Besl March 16, 2023

    "When Hunga Tonga–Hunga Ha‘apai (HTHH) erupted in January 2022, it shot the standard volcanic cocktail of ash, gas, and pulverized rock into the sky. But the eruption included one extra ingredient that’s now causing climate concerns: a significant splash of ocean water. The underwater caldera shot 146 metric megatons of water into the stratosphere like a geyser, potentially contributing to atmospheric warming over the next 5 years, according to a new study published in Nature Climate Change.

    "Earth’s average temperature is teetering on the edge of surpassing its preindustrial level by 1.5°C—the target set by the United Nations in the Paris Agreement. In May 2022, the World Meteorological Organization announced there was a 50% chance of exceeding the 1.5°C threshold over the next 5 years. The new study showed that slight warming caused by the HTHH eruption increased the likelihood of Earth temporarily tipping past that mark by another 7%.

    "The HTHH eruption was unusual. Unlike other eruptions its size, HTHH had a relatively low sulfur dioxide content. Researchers assumed it led to only 0.004°C of global cooling in 2022.

    "HTHH also exploded just below the ocean surface, injecting vaporized seawater into the stratosphere like a syringe. Though seemingly innocuous, water vapor is the planet’s most common greenhouse gas. Whereas volcanic sulfates commonly block sunlight from reaching Earth, water vapor keeps it from leaving.

    ""If we’re only a quarter of a degree from 1.5°C, those four hundredths of a degree do actually make a tangible difference.”

    "The HTHH blast sent water vapor and other gases to at least 40 kilometers (25 miles) above Earth’s surface and punched through the boundary of the stratosphere. In this atmospheric layer, cool, heavy air rests below less dense warmer air. Because there is little turbulence to stir the system, “you can get a perturbation lasting for, in an atmospheric sense, quite a long time,” said Stuart Jenkins, an atmospheric physicist at the University of Oxford and lead author of the new study.

    " The eruption boosted the water vapor content of the stratosphere by 10%–15%, according to the study.

    "Using reconstructions of global climate, Jenkins and his colleagues established the monthly baseline conditions for the 7 years prior to the eruption, then simulated the effect of water vapor in the stratosphere for 7 years after the event. The researchers assumed that the injected water vapor would settle out of the stratosphere in that time. Their model parameters are conservative, Jenkins said, and assumed the volcanic plume spread widely between altitudes and latitudes.

    "The model calculated the monthly change in Earth’s energy balance caused by the eruption and showed that water vapor could increase the average global temperature by up to 0.035°C over the next 5 years. That’s a large anomaly for a single event, but it’s not outside the usual level of noise in the climate system, Jenkins said.

    "But in the context of the Paris Agreement, it’s a big concern.“If we’re only a quarter of a degree from 1.5°C, those four hundredths of a degree do actually make a tangible difference,” he said.

    "The planet was already 50% likely to warm past 1.5°C in the next 5 years, and the presence of HTHH’s water vapor increased the odds of temporarily exceeding that threshold to 57%, according to the simulation.

    "The volcano launched an “unprecedented” amount of water vapor into the stratosphere, said Patrick Sheese, a climate physicist at the University of Toronto who was not involved in the study. But the event’s impact can’t compare with that of human emissions, he said.

    "Even if the eruption increases temperatures as the simulation predicted, that’s only a small, temporary lift toward the 1.5°C threshold. Decades of research have shown that humans are still responsible for most of the warming."


 
arrow-down-2 Created with Sketch. arrow-down-2 Created with Sketch.