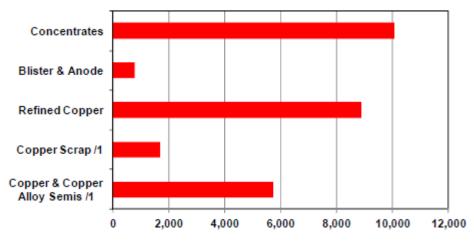


Copper connections

Session 3

Innovation and engagement

Chair: Terry Burgess Independent mining expert



Copper Value Chain – Jacqui McGill

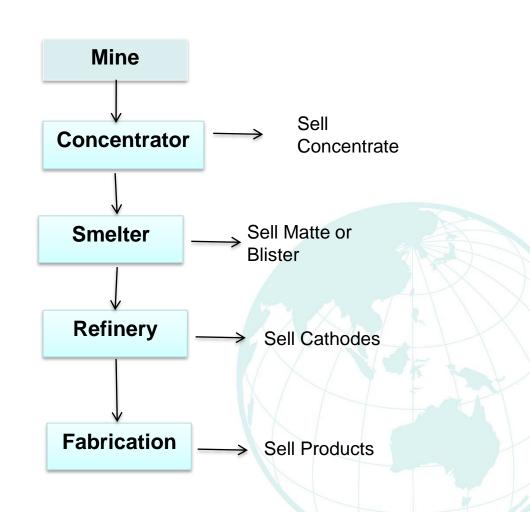
Where is the Value Generated?

- Value is predominantly generated upstream.
 - 90% at Mine
 - 7 % at Smelter
 - 3% at Refinery

World Copper Exports by Product Category, 2017 /2
Thousand metric tonnes copper (unless otherwise noted)
Source: ICSG

Copper Smelting Technology

Dr Ray Shaw Minetometal Pty Ltd.



Copper Production – 100ktpa

Energy (Hourly)	Water (Hourly)	Material	Output (t/yr)
		Ore 1 %Cu Mine Waste	11.5 Mt 20 Mt
Elec. 40 MW	750 M ³	Concentrate Tailings	400 kt 11.1 Mt
Elec. 10-15 MW Gas 20-50 GJ	30-40 M ³	Blister Acid Slag	102 kt 255 kt 190 kt
Elec. 5 MW		Copper Metal	100 kt

- Smelting has Modest Energy Requirement
- Largest Output is Sulphuric Acid

Main Drivers for "Local" Smelting

Acid Value – if Achievable

- Leaching
- Fertiliser Chemicals

Concentrate Transport Costs

- Cost varies but typically \$50-100/t
- Significant of TC/RC

Managing Impurities

Some Recent New Smelters

A Range of Sizes and Technologies – not all are large

Company/Location	Country	Type	Tonnage
Kazzinc	Kazakstan	TSL	90kt
Henan Jincheng Smelter	China	BBRs	100kt
Qinghai	China	BBRs	100kt
Yuguan	China	BBRs	120kt
Hongyue	China	TSL	150kt
Dongying Fangyuan	China	BBRs	300kt
Kansanshi	Zambia	TSL	300kt
Nanguo	China	SBF	300kt
Ngdie	China	FCF	400kt

TSL = Top Submerged Lancing

FCF = Flash Furnace & Converting

BBR = Bottom Blown Smelters

SBF = Side Blown Smelters

Other Recent FCF's and SBF's not listed have been large

SA Copper Smelter Technology

NERIN Paper on Chinese Developments

- Selection Depends on Multiple Factors
- There is no best, only the most appropriate
- Last 8 plants have included 4 different technologies

Front runners for SA

- 1. Top Submerged Lancing IsaSmelt Ausmelt
 - Australian Developed Local Support
- 2. Bottom Blown Smelting (Chinese)
 - Both With Continuous Converting

- ✓ Can meet Environmental Requirements
- ✓ OPEX likely to be similar.
- ✓ CAPEX will be critical
- ✓ Small Size is a factor in choice
- ✓ Local Support will be important

Environmental Performance

Copper Smelters Performance Globally is Variable (SO2)

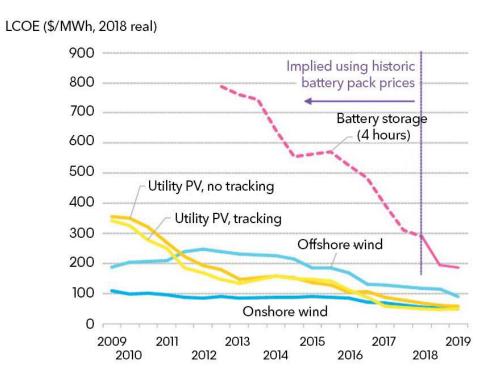
- Japanese (eg Tamano) >99.8% Capture for >30years
- USA Kennecott >99.5%
- Europe Norddeutsche >99.5%
- China Mixed new plants >99.5%
- Older Plants (eg Chile, China must improve or face closure)

Tighter Regulations now in Place in most Countries

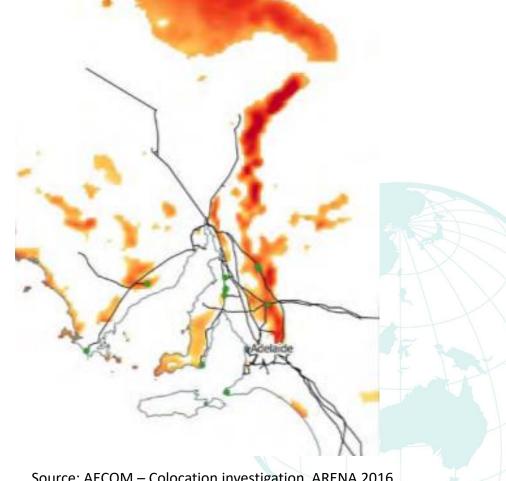
- Particulate Emissions also now very low in "good" Plants
- Effluent Emissions also can be well controlled
- Environmental Performance not a technology barrier
- Do need to manage community perceptions and perform

A Modern New Smelter

Ningde (China) 400,000tpa Smelter - Resembles a Factory



Energy supply - Phil O'Neil


Cost of generation and battery storage

Global benchmarks - PV, wind and batteries

Source: BloombergNEF. Note: The global benchmark is a country weighed-average using the latest annual capacity additions. The storage LCOE is reflective of a utility-scale Li-ion battery storage system running at a daily cycle and includes charging costs assumed to be 60% of whole sale base power price in each country.

SA Wind / Solar co-location

Source: AECOM - Colocation investigation, ARENA 2016

Role of METS in Cu value-adding – lan Dover

Copper customer trends
Technologies + Capabilities
BHAG-driven clustering
Miners + METS + Markets
Transformative Automation
ARC ITRP & CRC-Ps
Project Funds

Simon Corrigan

A working definition

The level of acceptance or approval continually granted to an organisation by society.

Adapted from: Black, L. (2013). *The social licence to operate: Your management framework for complex times*. Sheffield, UK: Greenleaf Publishing.

Global

National

Regional

Local

