

ASX Announcement (ASX:AXE)

5 June 2017

More cobalt and manganese at Ketchowla

Highlights

- Cobalt and manganese focussed drilling completed at Ketchowla with almost all assays received.
- Drilling program was successful in intersecting cobalt and manganese mineralisation, confirming that:
 - K1 mineralisation is open for at least 5km along strike to the north.
 - K2 mineralisation open to the south.
- K1 and K2 are part of a larger mineralised target area at Ketchowla.
- Archer has drilled < 1% of the +20km Ketchowla structure
- Next stage of metallurgical test work underway to determine optimum processing method.
- The positive Ketchowla drill results and the recent discovery at the nearby Blue Hills copper project makes the North Burra Project area a high priority for Archer.

Archer Exploration Limited (ASX: AXE) is pleased to announce that it has received nearly all of the assay results from the recent K1 and K2 Reverse Circulation (RC) drilling at the Company's 100% owned Ketchowla Cobalt Manganese Project (located near Burra, South Australia). The latest drilling has re-confirmed the previous drill results and the potential for Ketchowla to host significant cobalt and manganese deposits.

The drilling campaign was designed to test the width and depth extent of outcropping manganese and cobalt mineralisation where previous sampling by Archer returned grades up to 0.64% cobalt and >50% manganese. The results from the drilling were positive and extended the zone of cobalt and manganese mineralisation at K1.

Figure 1: K1 target looking north showing area of latest drilling (red circle) and previous drill and previous rock chips

All drill intercepts and assay results from the K1 and K2 drilling are tabulated in Annexure 1, but the better intersections comprise:

Hole Id	From (m)	To (m)	Interval (m)	Mn%	Co %	Cu%	Ni%	Zn%
K1RC1701	2	15	13	12.4	0.06	0.17	0.17	0.14
incl.	7	9	2	29.3	0.1	0.3	0.34	0.27
K1RC1705	7	12	5	9.6	0.11	0.14	0.12	0.09
incl.	8	11	3	13.4	0.17	0.17	0.17	0.11
K1RC1707	8	13	5	7.3	0.1	0.13	0.11	0.06
K1RC1710	12	13	1	14.3	0.11	0.26	0.27	0.2

Table 1: Summary of drill results

Archer's Executive Chairman Greg English said: "We are very pleased with the results from this latest drilling at K1 and K2. The latest results are consistent with the results from the earlier drilling and show that K1 is open the north over a strike length of 5km."

"We have multiple drill targets over more than 20km of the greater Ketchowla structure and will undertake further work to prioritise these drill targets. The positive results from the latest Ketchowla drilling and the recent success at the nearby Blue Hills copper project signifies the North Burra Project as a major project for Archer" said Mr English.

Figure 2: K1 cross-section showing extensive copper mineralisation surrounding the cobalt and manganese mineralisation.

The holes at K1 and K2 were drilled on a broad spacing to scope out the immediate strike and depth potential of the known cobalt and manganese surface mineralisation.

K1 and K2 are part of the larger Ketchowla project (comprising targets K1 - K9) which is a structurally fluid focused style system that has an overall strike of length of 20km and is open down plunge beyond the drilling.

At K1 the current drilling focussed on 1km of the total 5km strike length of the known surface mineralisation. The drilling confirms extensive cobalt and manganese mineralisation at K1 and highlights a potential cobalt and manganese target of approximately 5km long that outcrops at surface.

The K1 drilling was only to a maximum depth of 20 metres and over a strike length of approximately 250 metres which represents < 20% of K1 structure and < 1% of the larger Ketchowla structure.

The mineralisation at K1 comprises a near vertical lens of manganese dominated wad containing cobalt and other metals and an adjacent footwall and hangingwall stockwork zone of chalcopyrite (copper sulphate) veins and stringers (Figure 2).

Archer will now undertake a ground base geophysics program to gather information for the identification of future drill targets along the 5km strike length of K1.

Next Steps

Previous exploration by Archer had identified extensive outcropping cobalt and manganese throughput parts of the larger Ketchowla project area (K1 to K9 structures). Archer still has multiple additional targets identified for follow up across the larger Ketchowla Cobalt Manganese Project area from a combination of drilling, geophysics and geological fieldwork.

For further information, please contact:

Mr Greg English Chairman Archer Exploration Limited Tel: (08) 8272 3288 Mr Cary Helenius Investor Relations Market Eye Tel: 03 9591 8906

Competent Person Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Wade Bollenhagen, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy and is a full-time employee of Archer Exploration Limited. Mr Bollenhagen has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Bollenhagen consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

About the Ketchowla Cobalt Manganese Project

The Ketchowla Cobalt Manganese Project comprises the K1 – K9 Prospects with the current drilling focussed on drilling at K1 and K2 (Figure 2).

As previously announced, historic drilling and other exploration by Archer at Ketchowla has identified high grade cobalt and manganese mineralisation. Archer has previously reported grades up to 0.64% cobalt in rock chips (ASX announcement 17 March 2017) and > 0.1% cobalt in shallow drill holes (ASX announcement 17 January 2017).

K1 is centred around a small historic manganese open pit mine (**Ketchowla Mine**) and located on the eastern limp of the main fold structure. K1 is part of a large-scale cobalt and manganese mineralised system which Archer has mapped and sampled over a 5km strike length.

The K2 Prospect is offset 6km to the east of K1. K2 is on the eastern limb of a shallow dipping syncline with discontinuous manganese outcrops mapped by Archer over 1.3km. Previous drilling by Archer at K2 intersected cobalt and manganese mineralisation within 1 - 5 metres of surface.

Figure 3: Location of prospects at Ketchowla Project with recent significant Co rock chips samples

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling Techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Samples comprise that were submitted due to alteration and proximity to alteration observed by the geologist during geological interpretation. Sampling was guided by Archer's protocols as the program was exploratory in nature. No standards were submitted by the company during analyses. All samples were sent to ALS laboratory in Adelaide for preparation and forwarded to Peth for multi-element analyses. All samples are crushed using LM2 mill to -4 mm and pulverised to nominal 80% passing -75 µm.
Drilling Techniques	• Drill type (e.g. core, reverse circulation, open hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	• The drill type is a Reverse Circulation (RC) with a 4 inch face sampling hammer bit. The samples are collected after passing through a 2 tier splitter attached underneath the rig mounted cyclone. The drill company was E drill.

Criteria	JORC Code Explanation	Commentary
Drill Sample Recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No assessment of recoveries was documented. All efforts were made to ensure that the sample was representative. No relationship is believed to exist, but no work has been done to confirm this.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 All samples were geologically logged, as the hole collars were never accurately surveyed (a hand held GPS was used) no data can be used for mineral resource estimation. Logging was qualitative and quantitative, i.e. percentages of vein material and host rock were estimated as well as noted.
Sub- Sampling Techniques and Sample Preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the insitu material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All drilling was Reverse Circulation (RC), with a face sampling hammer bit. All samples were riffle split on a 2-tiered splitter All sample material was dry. No additional quality control measures were taken for the sample submission. The sample sizes are considered appropriate for the material being sampled.

Criteria	JORC Code Explanation	Commentary
Quality of Assay Data and Laboratory Tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Certified standards were not used in the assessment of the analyses. Analyses was by ALS Perth using their ME-MS61 technique for multi-elements. The laboratory uses their own certified standards during analyses.
Verification of Sampling and Assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No verification of sampling, no use of twinned holes. Data is exploratory in nature and exists as excel spread sheets. No data adjustment.
Location of Data Points	 Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 MGA94 Zone 54 grid coordinate system is used. A hand-held GPS was used to identify the sample location Quality and adequacy is appropriate for this level of exploration
Data Spacing and Distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 There is no pattern to the sampling, the spacing is random, the location of the holes was determined by the land surface as no clearing was undertaken for the drill rig so many sites were unsuitable to drill. Some of these may have produced different results to the one being reported. Data spacing and distribution are sufficient to establish the degree of geological and grade continuity for future drill planning, but not for resource reporting.

Criteria		JORC Code Explanation		Commentary
Orientation of Data in Relation to Geological Structure	•	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	•	It is unknown whether the drill holes have interested the mineralisation in a perpendicular manner. The mineralised horizon is folded and has a limited dip strike over the length of the mineralisation, from observations of the strike at each location it was believed that the mineralised structure was being drilled perpendicularly. It is believed there is no bias has been introduced.
Sample Security	•	The measures taken to ensure sample security.	•	It is assumed that best practices were undertaken at the time All residual sample material (pulps) are stored securely.
Audits or Reviews	•	The results of any audits or reviews of sampling techniques and data.	•	None undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral Tenement and Land Tenure Status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Tenement status confirmed on SARIG. All work being reported is from EL 5433 (owned by SA Exploration Pty Ltd, a subsidiary of AXE). The tenement is in good standing with no known impediments.
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	 The most significant exploration was undertaken by Aberfoyle in the early 1980's focussing on Cu-Mo mineralisation associated with granite intrusive. A large program of 1-5m deep holes were completed with little success. As a part of follow up to Mn exploration, in 2012 Archer flew EM over selected parts of the tenement and successfully identified buried anomalies that are not associated with the conductive Tapley Hill Formation.
Geology	Deposit type, geological setting and style of mineralisation.	 The mineralisation was initially interpreted to be strataform, however field evidence indicates that it was emplaced by fluids (e.g. an intrusive source). The orientation of the mineralisation at the K1 is North South and strikes nearly 8km, at the K2 the strike length is considerably shorter (around 1.6km).

Criteria	JORC Code Explanation	Commentary
Drillhole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar Dip and azimuth of the hole Downhole length and interception depth Hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Refer to announcement to which this document is attached, in particular tables titled: "Summary of drill hole information" "Summary of drilling results"
Data Aggregation Methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Interval length weighted assay results are reported Significant Intercepts are chosen based on the context of the results, for example significant intercepts > 100ppm cobalt are reported.
Relationship Between Mineralisation Widths and Intercept Lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (e.g. 'downhole length, true width not known'). 	 All assay intervals are down hole length, the true width not known. The mineralisation is interpreted to be steeply dipping. Drill holes have been angled to intercept the mineralisation as close to perpendicular as possible. Down hole intercepts are reported. True widths are likely to be 60-70% of the down hole widths.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	See main body of report.

₩ 2 C H E S

Criteria	JORC Code Explanation	Commentary
Balanced Reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	The reporting is considered to be balanced.
Other Substantive Exploration Data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysica survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potentia deleterious or contaminating substances. 	• The mineralisation is restricted to within the Nuccaleena Formation which has been mapped by the SA govt geologists and reports up to 17m wide in locations. The unit is mappable over 10's of kilometres
Further Work	• The nature and scale of planned further work (e.g. tests for latera extensions or depth extensions or large-scale step-out drilling).	• Further drilling is required along strike as well as testing for mineralisation under cover.
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Figures in the body of this report highlight the gaps in the data.

Annexure 1

Summary of drill hole information

The following table provides information on RC drilling results reported elsewhere in this announcement. The drilling was undertaken by Archer Exploration Pty Ltd in April to May 2017.

Hole ID	Easting	Northing	RL (m)	Final Depth (m)	Dip (°)	Azimuth (°)
K1RC1701	332005	6313207	364	37	-75	86.5
K1RC1702	332010	6313230	366	15	-75	84
K1RC1703	332006	6313232	367	37	-85	106
K1RC1704	332025	6313254	355	33	-55	284.5
K1RC1705	332029	6313302	360	17	-55	292
K1RC1706	332005	6313308	360	26	-65	102
K1RC1707	332023	6313363	361	18	-60	82
K1RC1708	332006	6313365	375	8	-60	82
K1RC1709	332010	6313364	370	43	-70	82
K1RC1710	332021	6313444	358	24	-60	83
K1RC1711	332019	6313442	355	30	-70	83
K2RC1701	339182	6312608	286	20	-60	80
K2RC1702	339181	6312627	286	25	-60	77
K2RC1703	339190	6312626	286	13	-87	91.5
K2RC1704	339173	6312643	290	25	-60	87
K2RC1705	339133	6312695	286	25	-60	67.5
K2RC1706	339127	6312695	280	19	-60	67
K2RC1707	339120	6312744	280	19	-60	39
K2RC1708	339052	6312891	286	46	-60	96
K2RC1709	338945	6313044	275	25	-60	117
K2RC1710	338961	6312998	279	15	-60	70
K2RC1711	338965	6312963	274	19	-60	31.5
K2RC1712	338935	6313008	270	31	-60	88.5

75 C H E S 📒

Summary of drilling results

The following table provides the significant intersections from the drilling being reported. The following table reports intervals submitted for multi-element assay and being discussed in this release. Intervals that were not submitted for assay are reported as NOT ASSAYED. Assays presented here are considered relevant to the release but do not include the entire suite of elements assayed for, elements that are not reported are not considered economic (e.g. Mg, Al etc.)

Significant assays listed within the announcement to which this table is attached are summaries of the data below.

	From	То	Interval	Co mqq	Mn %	Cu ppm	Ni ppm	Zn ppm	Mo mqq	Li ppm
	(<i>m</i>)	(<i>m</i>)	(<i>m</i>)							
	0	1	1	24.2	0.00		125		24	40.4
		2	1	31.2	0.22	20.4	130	724	3.4	49.4
	2	3	1	519	5.74	239	1305	124	37.3	490
KIRC1701	3	4	1	605	7.04	740	2410	1220	05.2	840
K1RC1701	4	5	1	363	7.81	/13	1475	851	37.1	520
K1RC1701	5	6	1	116.5	3.58	426	113	541	44.3	208
K1RC1701	6	/	1	419	16.70	1690	3240	1940	143	560
K1RC1701	/	8	1	1125	36.10	3420	4710	3240	284	640
K1RC1701	8	9	1	958	22.60	2700	2020	2160	144.5	276
K1RC1701	9	10	1	876	18.10	2640	2260	2150	136.5	335
K1RC1701	10	11	1	736	13.00	2370	1575	1520	148.5	217
K1RC1701	11	12	1	650	9.00	2070	814	1060	119.5	80.2
K1RC1701	12	13	1	653	9.18	2140	719	1140	128	39
K1RC1701	13	14	1	373	4.42	1370	782	933	95.8	54
K1RC1701	14	15	1	204	1.27	1030	703	831	75.3	38.1
K1RC1701	15	16	1	116.5	0.74	547	440	672	29.7	48.3
K1RC1701	16	17	1	99.1	0.49	476	341	653	24.5	38.3
K1RC1701	17	18	1	60.3	0.25	352	230	509	16.2	31.7
K1RC1701	18	19	1	55.6	0.36	346	193.5	467	12.8	35.8
K1RC1701	19	20	1	49.6	0.26	302	193	454	10.7	35.2
K1RC1701	20	21	1	28.6	0.41	192	87	211	12.65	28.1
K1RC1701	21	22	1	15	0.34	85.3	43.9	128	6.72	18.4
K1RC1701	22	37	15			NC	T ASSA	/ED		
K1RC1702	0	1	1		-	NC	T ASSA	<u>YED</u>		
K1RC1702	1	2	1	27.7	0.39	69.6	120	241	8.08	44.5
K1RC1702	2	3	1	30.4	0.22	147	156	339	7.15	53.2
K1RC1702	3	4	1	28.5	0.12	183	139.5	424	5.58	46.1
K1RC1702	4	5	1	480	6.09	792	1320	1260	63.1	410
K1RC1702	5	6	1	1570	20.10	1130	1415	2300	178	203
K1RC1702	6	7	1	578	4.73	665	998	1550	130	62.3
K1RC1702	7	8	1	771	10.45	1100	911	1380	148	59.8
K1RC1702	8	9	1	851	6.07	1370	1755	1360	246	560
K1RC1702	9	10	1	283	1.04	650	706	821	150.5	46.4
K1RC1702	10	11	1	324	1.62	740	760	679	125.5	115
K1RC1702	11	15	4			NC	T ASSA	/ED	•	·
K1RC1703	0	5	5			NC	T ASSA	/ED		
K1RC1703	5	6	1	26	0.18	28.6 6	5.7 11	4 4	.67	38

Holo Id	From	To (m)	Interval	Co ppm	Mn %	Cu ppm	Ni ppm	Zn ppm	Mo ppm	Li ppm
	(<i>III)</i> 6	(111)	(11)	16.4	0.30	13.5	110	185	63	13.2
K1RC1703	7	8	1	40.4	0.39	34.8	118.5	184	2 31	43.2 51.1
K1RC1703	8	a	1	24.8	0.40	46.2	87.6	159	1 77	46.9
K1RC1703	9	10	1	173.5	1.89	229	189.5	294	16 35	45.5
K1RC1703	10	11	1	60.1	0.51	164 5	137	240	5 72	40.0
K1RC1703	10	12	1	39.3	0.01	120.5	122	213	3.55	41.7
K1RC1703	12	12	1	22.4	0.20	60.3	94.6	189	1 94	42.6
K1RC1703	12	14	1	26.5	0.00	140.5	145	197	5.38	43.4
K1RC1703	14	15	1	37.5	0.00	229	177	249	7.87	41.8
K1RC1703	15	16	1	35.5	0.04	201	167.5	235	9.26	41.5
K1RC1703	16	17	1	45.3	0.00	419	163.5	247	21.3	24.9
K1RC1703	17	18	1	23.8	0.13	364	112.5	172	12 95	30.8
K1RC1703	18	19	1	19.4	0.10	266	97.5	172	8 17	40.3
K1RC1703	19	20	1	17.1	0.10	166.5	89	173	5.09	40.4
K1RC1703	20	21	1	17	0.11	197.5	85.2	178	6 17	42.5
K1RC1703	21	22	1	14.1	0.16	278	52.2	112	12.5	15.4
K1RC1703	22	23	1	38.4	0.70	846	100.5	185	36.2	13.3
K1RC1703	23	24	1	32.8	0.62	660	78.4	139	28.1	11.9
K1RC1703	24	25	1	17	0.42	370	51.6	122	17.15	11.3
K1RC1703	25	26	1	10.9	0.35	215	32.2	102	14.4	3.8
K1RC1703	26	27	1	28.4	0.25	423	92.6	214	23.1	7.5
K1RC1703	27	28	1	17.4	0.28	318	57	144	16.05	5.1
K1RC1703	28	29	1	9.2	0.26	212	32	95	9.57	4
K1RC1703	29	30	1	14.2	0.38	343	47.8	144	14.35	7.9
K1RC1703	30	31	1	17.3	0.35	407	52.7	151	15.05	8.2
K1RC1703	31	32	1	14.3	0.30	369	36.4	119	12.4	7.4
K1RC1703	32	33	1	13.3	0.40	368	28.3	106	10.3	4
K1RC1703	33	34	1	21.8	0.46	619	52.7	175	14.05	9.4
K1RC1703	34	35	1	20.8	0.22	488	75	199	14.15	35
K1RC1703	35	37	2			NO	T ASSAY	ΈD		
K1RC1704	0	17	17			NO	T ASSAY	ΈD		
K1RC1704	17	18	1	6	0.20	50.7	12.5	58	1.31	8.4
K1RC1704	18	19	1	5.7	0.20	81.6	11.7	61	2.23	10.1
K1RC1704	19	20	1	5	0.20	342	9.7	49	16.65	6.5
K1RC1704	20	21	1	7.9	0.30	352	16	67	39.9	4.1
K1RC1704	21	22	1	6.2	0.26	516	14.4	70	36.2	3.4
K1RC1704	22	23	1	16.1	0.74	847	38.5	116	74.3	7.4
K1RC1704	23	24	1	8.6	0.35	402	19.3	85	40.3	3.8
K1RC1704	24	25	1	7.3	0.33	244	19.8	98	28.1	2.6
K1RC1704	25	26	1	6.7	0.27	147	15.1	85	59.2	2.5
K1RC1704	26	27	1	5.3	0.28	146	13.2	77	63.6	2.1
K1RC1704	27	28	1	11.3	0.19	689	40	139	86.6	18.3
K1RC1704	28	29	1	18.8	0.05	205	100	206	17	51.8
K1RC1704	29	30	1	15.5	0.06	166.5	48.2	125	3.79	41.1
K1RC1704	30	33	3			NO	T ASSAY	ΈD		
K1RC1705	0	2	2			NO	T ASSAY	'ED		
K1RC1705	2	3	1	38.8	0.12	101	150	95	65.4	59.4
K1RC1705	3	4	1	20.9	0.13	141.5	230	174	53.6	71.6

Holo Id	From	To (m)	Interval	Co ppm	Mn %	Cu ppm	Ni ppm	Zn ppm	Mo ppm	Li ppm
K1RC1705	(<i>III)</i>	 	1	177	0.14	132.5	222	167	01 1	65.4
K1RC1705	5	6	1	14.6	0.14	427	185.5	259	61.7	62.4
K1RC1705	6	7	1	15.8	0.10	568	147	287	33.3	44 9
K1RC1705	7	8	1	465	2 54	724	354	379	78.3	206
K1RC1705	8	9	1	1360	5.26	1220	964	603	86.8	650
K1RC1705	9	10	1	2510	17.30	2340	2240	1380	106	1380
K1RC1705	10	11	1	1180	17.00	1630	1830	1320	87.5	910
K1RC1705	10	12	1	194	4 94	940	722	722	42.5	270
K1RC1705	12	13	1	89.4	1.01	439	321	367	22.2	88.2
K1RC1705	13	14	1	59.9	0.94	306	172.5	240	19.9	77.6
K1RC1705	14	17	3	00.0	0.01	NO	T ASSAY	ED	1010	
K1RC1706	0	26	26			NO	TASSAY	ED		
K1RC1707	0	1	1			NO	T ASSAY	ED		
K1RC1707	1	2	1	195	1.49	719	336	176	86	160
K1RC1707	2	3	1	533	3.88	2210	1340	357	332	470
K1RC1707	3	4	1	129	1.22	1770	416	257	167	120
K1RC1707	4	5	1	36	0.457	2060	202	282	89	50
K1RC1707	5	6	1	53	0.537	1445	188	334	81	50
K1RC1707	6	7	1	16	0.447	899	98	336	65	40
K1RC1707	7	8	1	32	0.574	642	141	346	55	50
K1RC1707	8	9	1	808	6.15	1290	952	456	142	520
K1RC1707	9	10	1	592	6.07	1010	645	386	155	350
K1RC1707	10	11	1	2190	11.05	1890	1445	627	206	1010
K1RC1707	11	12	1	1170	9.45	1515	1630	826	189	870
K1RC1707	12	13	1	701	3.94	553	922	644	102	520
K1RC1707	13	14	1	95	0.794	112	202	299	24	110
K1RC1707	14	15	1	51	0.347	61	82	136	12	60
K1RC1707	15	18	3			NO	T ASSAY	ΈD		
K1RC1708	0	8	8			NO	T ASSAY	ΈD		
K1RC1709	0	19	19		-	NO	T ASSAY	ED	-	
K1RC1709	19	20	1	22	0.13	177	81	186	4	40
K1RC1709	20	21	1	16	0.22	494	80	186	12	20
K1RC1709	21	22	1	45	0.89	702	62	152	21	10
K1RC1709	22	23	1	139	2.70	1465	63	146	48	10
K1RC1709	23	24	1	78	1.73	953	40	114	34	10
K1RC1709	24	25	1	36	0.82	476	25	99	19	10
K1RC1709	25	32	7			NO	T ASSAY	ΈD		
K1RC1709	32	33	1	14	0.15	8	32	81	1	30
K1RC1709	33	34	1	14	0.15	13	37	91	2	30
K1RC1709	34	36	2			NO	T ASSAY	ΈD		
K1RC1709	36	37	1	19	0.09	10	48	107	2	40
K1RC1709	37	43	6			NO	T ASSAY	ΈD		
K1RC1710	0	9	9			NO	T ASSAY	ED		
K1RC1710	9	10	1	25	0.45	29	221	330	3	40
K1RC1710	10	11	1	67	1.73	187	236	468	26	50
K1RC1710	11	12	1	101	2.23	366	474	936	30	60
K1RC1710	12	13	1	1065	14.30	2630	2680	2020	303	1350
K1RC1710	13	14	1	142	2.40	1095	543	817	67	180

	From	To	Interval	Co ppm	Mn %	Cu ppm	Ni ppm	Zn ppm	Mo ppm	Li ppm
	(<i>M</i>)	(<i>M</i>)	(<i>M</i>)	00	1.0.4	560	270	746	20	110
KIRC1710	14	15	1	225	1.04	203	3/0	740	- 39 - 50	190
K1RC1710	10	10	1	320	3.20	720	700 501	622	- <u>59</u> - 49	140
KIRC1710	10	21	1	312	3.21	129 NO			40	140
	21	21	4	NOT ASSAYED						50
KIRC1710	21	22	1	20	0.15	29			4	50
K1RC1710	22	24					T ASSAT			
K1RC1711	0	18	18	0.40	744		T ASSAT		1.10	100
K1RC1711	18	19	1	248	7.11	1825	788	932	149	180
K1RC1711	19	20	1	614	11.75	3310	2840	1480	427	1230
K1RC1711	20	21	1	195.5	4.60	2110	1290	829	182.5	447
K1RC1711	21	22	1	115	1.98	1570	320	486	69.4	126.5
K1RC1711	22	23	1	59.7	1.17	668	169.5	2/1	35.2	86.6
K1RC1711	23	24	1	15.2	0.36	81.7	46	90	4.96	31.6
K1RC1711	24	30	6			NO	TASSAY	ED		
K2RC1701	0	20	20	~~ 7	0.00	NO	TASSAY	ED	0.40	
K2RC1702	0	1	1	28.7	0.26	18.9	114.5	150	2.46	57.8
K2RC1702	1	2	1	141.5	0.90	38.1	266	2//	13	106
K2RC1702	2	3	1	535	4.12	215	440	532	22.7	123.5
K2RC1702	3	4	1	1390	16.35	1020	914	1320	69.1	194
K2RC1702	4	5	1	159	1.69	271	204	302	22.3	68.7
K2RC1702	5	6	1	53.4	0.42	223	137	176	4.33	49.7
K2RC1702	6	7	1	62.3	0.51	102.5	133	163	3.06	56.7
K2RC1702	7	8	1	37.6	0.33	75.2	94.3	130	2.69	51.2
K2RC1702	8	25	17			NO	T ASSAY	<u>ED</u>		
K2RC1703	0	1	1	43.7	0.31	149.5	134.5	236	8.32	71
K2RC1703	1	2	1	40.7	0.26	60.5	123.5	180	4.94	56.9
K2RC1703	2	3	1	29.1	0.17	136	116.5	98	1.67	49.5
K2RC1703	3	4	1	26.3	0.14	88.5	105	98	2.16	58.6
K2RC1703	4	5	1	24.7	0.13	71.2	91.1	92	2.13	56.5
K2RC1703	5	13	8	NOT ASSAYED						
K2RC1704	0	1	1	38.5	0.38	32.8	150	173	3.09	53.2
K2RC1704	1	2	1	248	1.59	96.3	382	329	17.05	148
K2RC1704	2	3	1	89.7	0.29	39	137	140	7.49	85.7
K2RC1704	3	4	1	90.1	0.32	32.5	137	149	2.59	81.1
K2RC1704	4	5	1	60.8	0.30	43.8	151	178	1.59	70.9
K2RC1704	5	6	1	52.2	0.22	1385	192.5	187	0.72	66.6
K2RC1704	6	7	1	42.8	0.17	1275	138.5	171	1.09	60.1
K2RC1704	7	8	1	32.5	0.21	231	97.5	139	1.36	55.4
K2RC1704	8	9	1	20.8	0.16	38.9	63.1	112	0.99	52.9
K2RC1704	9	10	1	20.9	0.15	44.4	58	102	0.87	47.4
K2RC1704	10	25	15	NOT ASSAYED						
K2RC1705	0	2	2	NOT ASSAYED						
K2RC1705	2	3	1	41	0.21	68.1	83.7	124	4.33	49.1
K2RC1705	3	4	1	21.5	0.11	137.5	72.3	150	4.69	39.7
K2RC1705	4	5	1	48.3	0.31	229	109	240	8.76	34.3
K2RC1705	5	6	1	74	0.55	287	155.5	290	18.5	45.7
K2RC1705	6	25	19	NOT ASSAYED						
K2RC1706	0	4	4	NOT ASSAYED						

Holo Id	From	To (m)	Interval	Co ppm	Mn %	Cu ppm	Ni ppm	Zn ppm	Mo ppm	Li ppm
K2RC1706	(<i>III)</i>	5	1	13.3	0.30	6.5	37	11	1 77	28.0
K2RC1706	5	6	1	18.2	0.30	15.6	<i>AA</i> 3	64	3.61	20.3
K2RC1706	6	7	1	208	5 20	366	352	463	21.7	109.5
K2RC1706	7	8	1	64.8	1.60	103	133	202	87/	52.8
K2RC1706	8	10	11	04.0 1.00 103 133 202 8.74 52.8						
K2RC1700	0	13	1				1 <u>7007 1</u> 7 8928 T			
K2RC1707	1	2	1	10	0.17	72	1 70071	61	1 1 5	37
K2RC1707	2	2	1	20.6	0.17	10.0	50.5	69	3.78	30.2
K2RC1707	2	3	1	10.0	0.20	10.9	50.5	72	3.70	26.5
K2RC1707	3	- 4 - 5	1	10.4	0.40	126.5	224	275	12.6	195 5
K2RC1707	4 5	5	1	120	1.10	255	204	275	21	100.5
K2RC1707	5	7	1	101.0	0.22	106	107	110	0.46	109.0
K2RC1707	7	/ 0	1	40.Z	0.53	100	120	126	0.40	90.Z
K2RC1707	/ 0	0	11	00.7	0.55	120.0 NO			7.39	100.5
K2RC1707	0	19	17				TASSAT			
K2RC1708	17	17	17	22.0	0.16	NU 24.7	CO F		1	40.0
K2RC1708	17	18	1	23.9	0.16	31.7	60.5 50.4	104	0.76	48.8
K2RC1708	18	19	1	18.4	0.09	28.4	52.1	104	0.76	44.7
K2RC1708	19	20	1	17.7	0.09	31.7	53	110	0.64	47.2
K2RC1708	20	21	1	18.3	0.08	46.1	52.6 T A C C A Y	116	0.6	48.8
K2RC1708	21	28	1	40.4	0.00	NO 10.0	TASSAY	ED	0.00	
K2RC1708	28	29	1	18.4	0.06	43.9	59.5	118	0.63	50.5
K2RC1708	29	30	1	18.7	0.03	46.5	65.9	11/	0.48	51.5
K2RC1708	30	31	1	22	0.02	100.5	94.6	111	0.57	38.7
K2RC1708	31	32	1	20.9	0.03	78.1	73.6	116	0.5	44.6
K2RC1708	32	33	1	20.4	0.05	76.3	69.4	113	0.57	45.3
K2RC1708	33	34	1	16.2	0.02	57.7	62.9	96	0.43	40.4
K2RC1708	34	38	4			NO	T ASSAY	ED		
K2RC1708	38	39	1	19.1	0.04	36.8	59.6	118	0.79	50.4
K2RC1708	39	40	1	18.2	0.07	28.9	50.5	92	1.2	39.7
K2RC1708	40	41	1	24	0.04	34.1	51.9	97	3.21	43.5
K2RC1708	41	42	1	20.8	0.04	29	52.8	107	1.76	46.9
K2RC1708	42	43	1	15.5	0.08	19.3	44.3	100	1.26	41.8
K2RC1708	43	46	3	NOT ASSAYED						
K2RC1709	0	3	3	NOT ASSAYED						
K2RC1709	3	4	1	70.2	0.042	13.1	126.5	143	0.91	42.9
K2RC1709	4	5	1	57	0.052	14.7	115.5	147	0.83	43.2
K2RC1709	5	6	1	38.9	0.086	28.6	106	165	1.88	35.9
K2RC1709	6	7	1	34.3	0.057	23.1	99.7	152	1.66	29.6
K2RC1709	7	8	1	44.2	0.042	13.9	119.5	152	1.27	35.6
K2RC1709	8	25	17	NOT ASSAYED						
K2RC1710	0	2	2		r	NO	T ASSAY	ED	1	
K2RC1710	2	3	1	40.9	0.04	20.1	99.2	138	1.62	38.1
K2RC1710	3	4	1	102.5	0.20	152	255	332	4.32	35.2
K2RC1710	4	5	1	42.8	0.27	16.7	118	101	1.2	45.6
K2RC1710	5	15	10			NO	T ASSAY	ΈD		
K2RC1711	0	1	1	NOT ASSAYED						
K2RC1711	1	2	1	21.4	0.44	12	46.3	67	3.44	36.7
K2RC1711	2	3	1	58.9	0.15	45	128.5	155	1.54	38

Hole Id	From (m)	То (m)	Interval (m)	Co ppm	Mn %	Cu ppm	Ni ppm	Zn ppm	Mo ppm	Li ppm
K2RC1711	3	4	1	55.9	0.14	34.1	138	155	1.48	47.4
K2RC1711	4	19	15	NOT ASSAYED						
K2RC1712	0	8	8	NOT ASSAYED						
K2RC1712	8	9	1	19.3	0.09	5.2	48.1	49	0.81	38.1
K2RC1712	9	10	1	18.1	0.14	4.3	48.5	47	0.76	37.6
K2RC1712	10	11	1	16.3	0.28	35.2	45.1	65	1.13	25.8
K2RC1712	11	12	1	16.2	0.35	41.3	53.6	88	1.2	12.9
K2RC1712	12	13	1	18.1	0.30	44.5	55.1	82	1.36	17.7
K2RC1712	13	14	1	17.2	0.14	9.8	65	53	1.22	35
K2RC1712	14	31	17	NOT ASSAYED						