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About Alcidion

•ASX listed health informatics company based in Adelaide 

•Proven track record in innovation 

•Customers currently large public hospitals 

•Western Health (Vic) 

•Northern Territory 

•Royal Melbourne 

•Tasmania 

•Midcentral DHB, NZ 

•Engagement with Calvary Care



Challenges of Healthcare IT

•Health IT systems slow down clinicians 

•Not integrated into workflows 

•Lack of focus on clinical productivity 

•Lack of focus on safety 

•Lack of interoperability 

• IT vendors ‘hide data’ to prevent competition 

• Innovation is stifled 

•Most data entered in EMRs is unstructured 

•Prevents clinical decision support & automation 

•Prevents machine learning

72%	Doesn’t	
decrease	workload

54%	Increased	
operating	costs

AMA	College	of	Physician	survey	on	
attitudes	to	EMRs	(2014)



Paved with Good & Bad Intentions

•By early 2000’s strong evidence of 
clinical benefits of Clinical Decision 
Support (CDS) integrated into EMRs 

•The EMRAM & HiTech Act 

•Data hiding as a strategy 

•Benefits of CPOE meds 

•“CDSs … seem to reach a plateau 
with respect to their effectiveness 
when implemented in real-world 
settings” Am J Public Health. 2014. 104:e12–e22

Stage Cumulative Capabilities

7
Medical record fully electronic; HCO able to contribute 
CCD as byproduct of EMR; Data warehousing in use

6
Physician documentation (structured templates), full 
CDSS (variance & compliance), full R-PACS

5 Closed loop medication administration

4 CPOE, CDSS (clinical protocols)

3
Clinical documentation (flow sheets), CDSS (error 
checking), PACS available outside Radiology

2
Clinical Data Repository, Controlled Medical 
Vocabulary, Clinical Data Support System

1 Ancillaries– Lab, Rad, Pharmacy

HIMSS EMRAM



The Results

Leading causes of death in the US

Patient	harm	10-50%+	of	multi-day	episodes

Up	to	40% of	lab	results	are	not	seen

30% of	AMI	patients	not	on	guideline	meds

Mis- or	late	diagnosis	in	10%–20% of	cases



Miya Platform (v5.6)

•Open standards, real-time platform for healthcare decision support and analytics 

•Logistics – Blazingly fast, platform for innovation  

•Clinical risk – Make the right thing to do the easiest thing to do 

•Revenue – Track patient complexity 

•In the cloud, on premise

FHIR 
Standard 

Format

Hospital Data

Other Data

Decision 
Support, 

Algorithms

Fast Access 
to Data



Miya ED Clinical Risk 
Management

Elecs
25 min ago

FBE
12 min ago

Coag
37 min ago

X-Ray
25 min ago

CRP
5 min ago

Trop
18 min ago









Adaptive User Interface

21

Standard configuration for department Stream specific elements







Miya ED Benefits

•Patient treatment commences an hour earlier, leading to faster recovery 

•Redundant test orders are reduced – 5% savings in ED pathology costs 

•Critical (abnormal) test results are properly witnessed for follow-on action 

•Without Miya ED around 40% of test ordered are not read 

•18% of these will be critical 

•Miya ED saves ED Heads/Senior Consultants several hours a day 

•Care team satisfaction with Miya ED is very high – rated at better than 80% 
compared to other clinical systems at around 30%





Real-Time Metrics





Predictive Analytics



Deep Learning Performance

•Good at perception type problems 

•Image recognition is a ‘solved problem’ 

•State of the art performance 

•Mammographic mass classification  

•Diabetic retinopathy 

•Lung nodule detection on CT 

•Breast cancer metastases detection in 
lymph nodes  

•Skin lesion classification
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Figure 3: Collage of some medical imaging applications in which
deep learning has achieved state-of-the-art results. From top-left to
bottom-right: mammographic mass classification (Kooi et al., 2016),
segmentation of lesions in the brain (top ranking in BRATS, ISLES
and MRBrains challenges, image from Ghafoorian et al. (2016b), leak
detection in airway tree segmentation (Charbonnier et al., 2017), di-
abetic retinopathy classification (Kaggle Diabetic Retinopathy chal-
lenge 2015, image from van Grinsven et al. (2016), prostate segmen-
tation (top rank in PROMISE12 challenge), nodule classification (top
ranking in LUNA16 challenge), breast cancer metastases detection in
lymph nodes (top ranking and human expert performance in CAME-
LYON16), human expert performance in skin lesion classification (Es-
teva et al., 2017), and state-of-the-art bone suppression in x-rays, im-
age from Yang et al. (2016c).

methods yet, but given the results in other areas it seems
only a matter of time. An interesting avenue of research
could be the direct training of deep networks for the re-
trieval task itself.

3.5.2. Image Generation and Enhancement
A variety of image generation and enhancement

methods using deep architectures have been proposed,
ranging from removing obstructing elements in im-
ages, normalizing images, improving image quality,
data completion, and pattern discovery.

In image generation, 2D or 3D CNNs are used to
convert one input image into another. Typically these
architectures lack the pooling layers present in classifi-
cation networks. These systems are then trained with a
data set in which both the input and the desired output
are present, defining the di↵erences between the gener-
ated and desired output as the loss function. Examples
are regular and bone-suppressed X-ray in Yang et al.

(2016c), 3T and 7T brain MRI in Bahrami et al. (2016),
PET from MRI in Li et al. (2014), and CT from MRI in
Nie et al. (2016a). Li et al. (2014) even showed that one
can use these generated images in computer-aided diag-
nosis systems for Alzheimer’s disease when the original
data is missing or not acquired.

With multi-stream CNNs super-resolution images
can be generated from multiple low-resolution inputs
(section 2.4.2). In Oktay et al. (2016), multi-stream net-
works reconstructed high-resolution cardiac MRI from
one or more low-resolution input MRI volumes. Not
only can this strategy be used to infer missing spatial in-
formation, but can also be leveraged in other domains;
for example, inferring advanced MRI di↵usion parame-
ters from limited data (Golkov et al., 2016). Other im-
age enhancement applications like intensity normaliza-
tion and denoising have seen only limited application of
deep learning algorithms. Janowczyk et al. (2016a) used
SAEs to normalize H&E-stained histopathology images
whereas Benou et al. (2016) used CNNs to perform de-
noising in DCE-MRI time-series.

Image generation has seen impressive results with
very creative applications of deep networks in signifi-
cantly di↵ering tasks. One can only expect the number
of tasks to increase further in the future.

3.5.3. Combining Image Data With Reports
The combination of text reports and medical image

data has led to two avenues of research: (1) leverag-
ing reports to improve image classification accuracy
(Schlegl et al., 2015), and (2) generating text reports
from images (Kisilev et al., 2016; Shin et al., 2015,
2016a; Wang et al., 2016e); the latter inspired by recent
caption generation papers from natural images (Karpa-
thy and Fei-Fei, 2015). To the best of our knowledge,
the first step towards leveraging reports was taken by
Schlegl et al. (2015), who argued that large amounts of
annotated data may be di�cult to acquire and proposed
to add semantic descriptions from reports as labels. The
system was trained on sets of images along with their
textual descriptions and was taught to predict semantic
class labels during test time. They showed that semantic
information increases classification accuracy for a va-
riety of pathologies in Optical Coherence Tomography
(OCT) images.

Shin et al. (2015) and Wang et al. (2016e) mined se-
mantic interactions between radiology reports and im-
ages from a large data set extracted from a PACS sys-
tem. They employed latent Dirichlet allocation (LDA),
a type of stochastic model that generates a distribution
over a vocabulary of topics based on words in a docu-
ment. In a later work, Shin et al. (2016a) proposed a sys-
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Prediction for the ED?

•We can now use more contextual data for prediction 

•Per patient prediction of admission & destination 

•Age, triage, presenting problem 

•Previous visits, labs, medications 

•Problem list (or ICD codes) 

•ED Occupancy 

•Resource utilisation 

•Detection of patients ready for discharge

Admission Prediction AUC=0.84



Occupancy Prediction

•12 hour occupancy prediction model 

•Multiple models (e.g. 1, 3, 6, 12, 24 hour models)
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