

AUSTPAC RESOURCES N.L. ACN 002 264 057 Level 3 62 Pitt Street SYDNEY NSW 2000 GPO Box 5297 SYDNEY NSW 2001 Telephone: (+61 2) 9252 2599 Facsimile: (+61 2) 9252 8299 Email: apgtio2@ozemail.com.au www.austpacresources.com

29 August 2017

The Manager Company Announcements Australian Stock Exchange Limited Exchange Centre Level 6 20 Bridge Street SYDNEY NSW 2000

Dear Sir/Madam

RE: SHAREHOLDER UPDATE

We are pleased to provide an announcement from the Managing Director of Austpac Resources NL for immediate release.

Yours faithfully

N.J. Gaston Company Secretary

enc

AUSTPAC RESOURCES N.L. ACN 002 264 057 Level 3 62 Pitt Street SYDNEY NSW 2000 GPO Box 5297 SYDNEY NSW 2001 Telephone: (+61 2) 9252 2599 Facsimile: (+61 2) 9252 8299 Email: apgtio2@ozemail.com.au www.austpacresources.com

Tuesday 29th August 2017

SHAREHOLDER UPDATE

Results confirm the strong alteration and significant zinc mineralisation intersected at Nhill requires follow-up drilling

Austpac (ASX code: APG) is encouraged by the additional results from Nhill and is pleased to advise that:

- The analyses of the second batch of samples confirm and extend the zinc plus accessory coppergold mineralised zone intersected in GG-01, the company's first diamond drillhole within EL 5291 Nhill.
- The strong pervasive alteration of the basement volcanics and the highly anomalous zinc mineralisation (up to 3.6% Zn and 0.44g/t Au) are typical of the outer halo of a nearby porphyry-style hydrothermal system.
- Step out drilling is required to locate the source in this unexplored region of western Victoria.

In May 2017, Austpac completed one exploration drill hole to test the basement rocks for copper-lead-zinc mineralisation under a thick cover of much younger Murray Basin sediments. The program is being cofunded by the Victorian Government under the TARGET Minerals Exploration Initiative. The drill target was developed using recently acquired magnetic and gravity data and the innovative geological concepts developed by the Geological Survey of Victoria. The vertical hole, DH GG-01, passed through the cover sediments using mud rotary equipment and encountered competent basement at 248.9m. Diamond core drilling was then used to continue the hole for a further 75.6m and the hole was terminated at 324.5m.

The basement consists primarily of basaltic volcanics which, apart from two very narrow sections in the hole, have been strongly to intensely altered by hydrothermal fluids. The alteration is accompanied by sulphide mineralisation, which was deposited primarily as pyrite (iron sulphide) in fractures, along breccia boundaries and in vughs/amygdales (voids). The pyrite is often accompanied by significant amounts of sphalerite (zinc sulphide) and minor amounts of finely disseminated chalcopyrite (copper sulphide) and anomalous gold.

The results from initial 38 core samples submitted for analysis were very encouraging, as described in the Company's recent Quarterly Report to the ASX dated 30 July 2017.

Two intervals contain abundant visible sphalerite and pyrite mineralisation:

- 0.5m at 3.6% Zn with 0.44 g/t Au (intercept downhole from 308.0m to 308.5m). This included an 8cm section containing 15% sphalerite and 8% pyrite together with silica flooding (see photo).
- 0.5m at 1.2% Zn with 0.20 g/t Au (intercept downhole from 324.0m to 324.5m; end of the hole).

In July 2017, an additional 31 drill core samples were analysed to fill in the gaps in the initial batch of samples. The results show that the zone of strongly anomalous base metals and gold extends over a broader interval within hole GG-01 than previously known. The additional results are highlighted in light grey in the table below, and anomalous results are marked in bold and an asterisk^{*}.

The basaltic volcanics encountered at the base of drill hole GG-01 at Nhill are considered analogous to parts of the Cambrian Mount Stavely Volcanic Complex, ~170km to the southeast, where results of recent drilling intersected porphyry-style copper-gold mineralisation. Exploration in the Mallee region of western Victoria has been hampered by the thick cover of Murray Basin sediments. The mineralisation encountered in GG-01 is highly encouraging considering it is the first hole drilled in this previously untested terrain.

The strong alteration and mineralisation encountered in GG-01 is the result of the introduction of mineralrich fluids into permeable fractures and breccia zones. The mineral assemblage observed is typical of the outer halo of a hydrothermal system, the source of which is offset from present drill hole. However, the distance and direction of its source cannot be assessed with a single drill hole and step-out drilling is required to fully test this hitherto unexplored region.

Below is a photograph of a 6cm section of core from 308.0m from the upper breccia zone:

Core sample showing altered basalt fragments (greenish) enclosed by a hydrothermal matrix of ~15% brown sphalerite (zinc sulphide), ~8% yellowish pyrite and subordinate pale grey quartz. Scale bar in centimetres.

ANALYSES FOR DRILLHOLE GG-01 - EL 5291 NHILL, VICTORIA

Note: Technical details regarding the sampling and analytical procedures used are attached to Austpac's Quarterly Report to the ASX for the Quarter dated 30 July 2017.

Batch 1 - 38 core samples plus 2 standards (no highlight) Batch 2 - 31 core samples plus 2 standards (light grey highlight) * indicates anomalous values (bold)

SAMPLE	FROM	то	Interval		Au Au-TL <i>4</i> 3	Ag ME-CP43	Cu ME-ICP43	Pb ME-CP43	Zn ME-CP43	Zn Zn-G46
ID	m	m	m		nnm	nnm	nnm	nnm	nnm	211 G 4 0
GGS001	234.0	243.0	9.0		0.00	0.4	159	28	408	,,,
GGS002	243.0	248.9	5.9		0.00	0.3	78	19	233	
GGS003	250.2	251.1	0.9		0.00	<0.1	6	21	91	
GGS004	251.1	251.6	0.5		0.00	0.2	286	13	185	
GGS041	251.6	252.6	1.0		0.00	<0.1	62	1.3	94	
GGS042	252.6	253.6	1.0		0.00	<0.1	76	2.3	95	
GGS044	259.0	260.0	1.0	*	0.00	0.3	552	3.9	103	
GGS045	260.0	261.0	1.0		0.00	<0.1	26	2.6	119	
GGS005	276.8	277.5	0.7		0.01	0.2	106	12	119	
GGS046	277.5	278.0	0.5		0.01	0.1	159	3.5	158	
GGS006	278.0	278.3	0.3		0.01	0.1	143	10	106	
GGS007	278.3	278.5	0.2		0.00	0.1	117	11	159	
GGS008	278.5	279.2	0.7		0.10	0.4	174	38	178	
GGS047	279.2	280.1	0.9		0.01	<0.1	35	3.5	99	
GGS048	280.1	281.1	1.0	*	0.27	0.2	108	6.0	198	
GGS009	281.1	281.6	0.5		0.10	0.4	155	22	140	
GGS010	281.6	282.2	0.6		0.09	0.6	144	25	285	
GGS011	282.2	282.5	0.3		0.06	0.4	244	19	277	
GGS012	282.5	283.0	0.5		0.02	0.3	214	11	149	
GGS013	283.0	283.5	0.5		0.03	0.2	127	11	107	
GGS014	283.5	284.0	0.5	*	0.57	0.3	198	7	117	
GGS016	284.0	284.5	0.5		0.05	0.2	178	8	137	
GGS017	284.5	285.0	0.5		0.03	0.4	320	11	143	
GGS018	285.0	285.5	0.5	*	0.03	0.8	716	19	156	
GGS019	285.5	286.0	0.5		0.02	0.2	179	6	103	
GGS020	286.0	286.5	0.5		0.03	0.1	70	5	103	
GGS021	286.5	287.0	0.5		0.03	0.4	284	5	167	
GGS022	287.0	287.5	0.5		0.03	0.3	181	9	107	
GGS023	287.5	288.0	0.5		0.04	0.2	209	4	140	
GGS049	288.0	289.0	1.0	*	0.36	0.1	108	1.7	83	
GGS050	289.0	290.0	1.0		0.11	0.1	113	2.9	77	
GGS051	292.5	293.5	1.0		0.02	0.1	207	3.8	135	
GGS052	293.5	294.5	1.0		0.01	<0.1	124	4.2	137	
GGS053	294.5	295.5	1.0		0.01	<0.1	119	3.2	115	
GGS054	295.5	296.5	1.0		0.01	<0.1	90	3.0	84	
GGS055	296.5	297.5	1.0		0.01	< 0.1	85	3.1	92	

то	Intorval		Au	Ag	Cu	Pb	Zn	Zn	
10	interval		Au-TL43	ME-CP43	ME-ICP43	ME-CP43	ME-CP43	Zn-G46	
m	m		ppm	ppm	ppm	ppm	ppm	%	
298.0	0.5	*	0.08	0.4	747	5	200		
298.5	0.5	*	0.07	0.4	544	10	384		
299.25	0.8		0.02	0.1	183	17.2	388		
300.25	1.0		0.02	0.1	226	3.0	154		
301.25	1.0		0.08	0.1	215	3.2	148		
302.25	1.0		0.04	0.1	99	4.4	142		
303.25	1.0	*	0.02	0.2	326	15.1	453		
305.5	0.5	*	0.07	0.5	307	56	783		
306.0	0.5	*	0.02	0.2	223	43	1,380		
306.5	0.5	*	0.20	0.3	257	47	2,280		
307.0	0.5		0.01	0.2	280	6	287		
307.5	0.5	*	0.59	0.3	273	7	544		
308.0	0.5	*	0.23	0.2	199	6	332		
308.5	0.5	*	0.44	0.4	269	13	>10000	3.60	
309.2	0.7		0.01	<0.1	135	9.7	282		
309.9	0.7		0.01	0.1	216	11.1	180		
310.7	0.8		0.02	0.1	200	4.4	135		
311.5	0.8	*	0.51	0.1	171	3.1	94		
312.0	0.5		0.02	0.2	257	8	255		
312.5	0.5		0.04	0.2	266	22	365		

For further information please contact:
Mike Turbott
Managing Director
Austpac Resources N.L.
Tel (+61-2) 9252-2599

SAMPLE

ID

GGS024

GGS025

GGS056

GGS057

GGS058

GGS059

GGS060

GGS026

GGS027

GGS028

GGS029

GGS031

GGS032

GGS033

GGS061

GGS062

GGS063

GGS064

GGS034

GGS035

GGS036

GGS037

GGS038

GGS039

GGS065

GGS066

GGS067

GGS068

GGS069

GGS070

GGS071

GGS072

GGS040

FROM

m

297.5

298.0

298.50

299.25

300.25

301.25

302.25

305.0

305.5

306.0

306.5

307.0

307.5

308.0

308.5

309.2

309.9

310.7

311.5

312.0

312.5

313.0

313.5

314.0

317.5

318.2

319.0

319.8

320.6

321.4

322.2

323.1

324.0

313.0

313.5

314.0

314.5

318.2

319.0

319.8

320.6

321.4

322.2

323.1

324.0

324.5

EOH

0.5

0.5

0.5

0.5

0.7

0.8

0.8

0.8

0.8

0.8

0.9

0.9

0.5

About Austpac Resources N.L. (ASX code: APG)

Austpac Resources N.L. [www.austpacresources.com] is a minerals technology company currently focused on recycling waste chloride solutions and iron oxides produced by steelmaking to recover hydrochloric acid and iron metal. Austpac's technologies also transform ilmenite into high-grade synthetic rutile, a preferred feedstock for titanium metal and titanium dioxide pigment production. The Company has been listed on the Australian Stock Exchange since 1986.

0.02

0.09

0.22

0.01

0.21

0.00

0.00

0.00

0.02

0.07

0.01

0.01

0.20

*

*

*

*

*

*

*

*

0.1

0.2

0.2

0.1

0.3

0.1

0.1

< 0.1

0.1

< 0.1

0.1

0.2

0.8

165

219

205

157

1,230

558

227

276

354

169

336

214

619

8

5

12

3

3.8

2.6

2.4

1.5

2.4

2.9

1.6

3.2

5

170

192

311

150

1,400

201

146

133

1,410

887

564

498

>10000

1.20