

12 September 2017

## JERVOIS COPPER PROJECT – DHEM AND GRAVITY SURVEYS CONTINUE TO VALIDATE EXPLORATION MODEL

### **Strong Conductor R6 modelled in the hanging wall of Conductor R1**

**)** Gravity anomalies on Unca Creek tenement highlight further exploration potential

KGL Resources Limited (KGL:ASX) (KGL or the Company) is pleased to announce the Down Hole Electromagnetic (DHEM) results for Hole KJD216, following the ASX Announcement *"Jervois Drilling Confirms Significant Discovery at Reward" released on 30 August 2017* which discovered a significant extension of mineralisation at Reward.

#### <u>Reward Prospect – Discovery of deeper, Rockface-like mineralisation</u>

As announced on 30 August 2017, hole KJD216 intersected a zone of visible, strong chalcopyrite plus pyrite mineralisation while targeting DHEM Conductors R1 and R3 at Reward. The intersection corresponded to the expected position of Conductor R1 and is 95m below the deepest previous intercept of Conductor R1.

DHEM surveying of KJD216 has confirmed that the hole intersected Conductor R1 approximately 25m inside the northern edge and 90m above the bottom edge.

Updated modelling, positions the bottom edge of Conductor R3 approximately 20m above hole KJD216

The DHEM survey also identified a strong conductor R6, down dip of Conductor R3, centred on and to the west of Conductor R1. Further drilling will be required to determine whether this represents a larger zone of conductivity rather than two discrete conductors.

The northern end of Reward includes several other conductors that were identified in DHEM surveys undertaken during November 2014<sup>1</sup> using the same DigiAtlantis DHEM sensor and GAP transmitter configuration that has continued to be used so successfully at Rockface.

No drilling had been undertaken to evaluate these conductors until the recent drilling of KJD216. Conductor R2 is along strike to the north of R1 and has been intercepted by KJCD075 coincident with a zone of lead/silver mineralisation. Conductors R4 and R5 were detected by

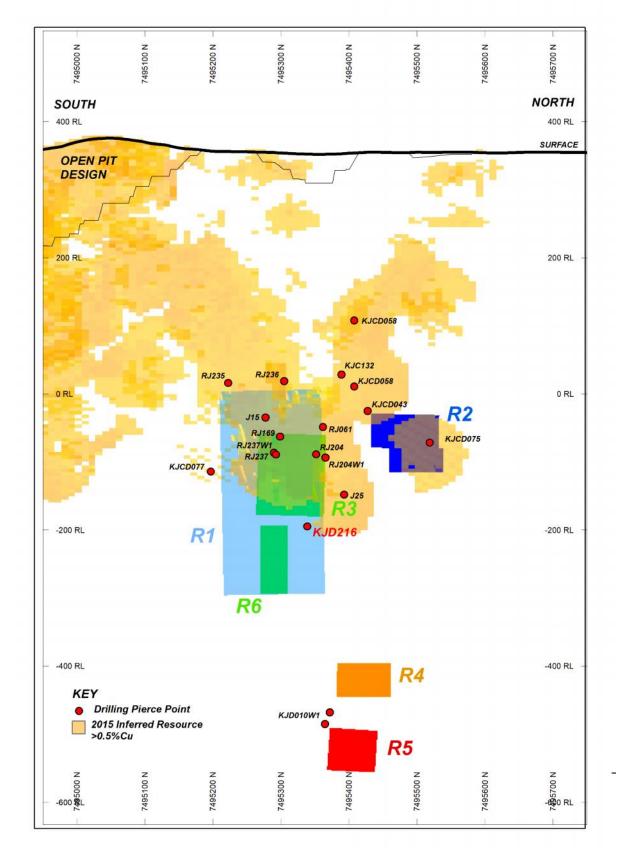
<sup>&</sup>lt;sup>1</sup> Refer ASX Announcements *"Geophysics Identifies New Targets at Jervois"* released on 21 November 2014 and *"High Grade Zones Intersected in Deep Drilling at Jervois"* released on 15 January 2015.

a DHEM survey of KJD010W1. Both conductors are modelled to be north of the hole with Conductor R4 along strike from a silver/lead/zinc zone and Conductor R5 along strike from a copper intersection.

#### <u>Unca Creek Exploration Project – Gravity Survey</u>

The gravity survey conducted over the Unca Creek tenement, surrounding the Jervois tenement is now completed and gravity data is being processed and interpreted.

Large gravity highs that can be seen in Figure 3, centred over both the Reward - Pioneer and Rockface - Bellbird areas suggest a deep-seated zone of higher density that may be associated with the alteration and mineralisation observed in these areas at higher levels.


Many of the shallower gravity anomalies that can be seen In Figure 4 correlate well with zones of know mineralisation on both tenements and numerous other anomalies remain to be field checked to assess their prospectivity.

Completion of the gravity survey complemented with the existing magnetic and radiometric surveys will be key datasets for the mapping program to be completed on the Unca Creek tenement.

KGL Executive Chairman Mr Denis Wood said:

"This is a great result with DHEM surveys continuing to validate our exploration model. To have the scale of Conductor R1 confirmed and identification of further strong conductors such as R6 ensures the company focuses the exploration program to drill the most prospective areas.

Separately the gravity survey work has continued to offer us new insights into the geology and controls on mineralisation. It is very encouraging to see such a good correlation between known mineralisation and the gravity anomalies on our recently acquired Unca Creek tenement. This will certainly help focus our exploration efforts."



### **Reward Longitudinal Section – Looking West**

Figure 1 Reward Long section 630 380E highlighting the DHEM conductors

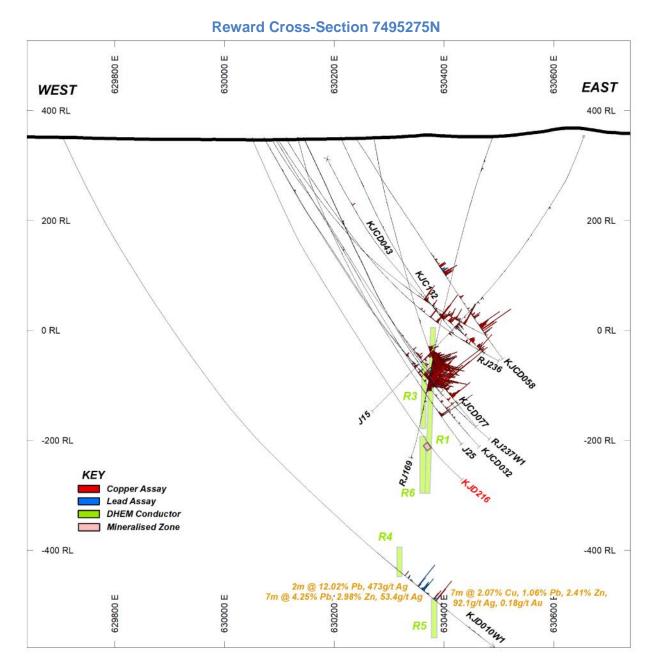
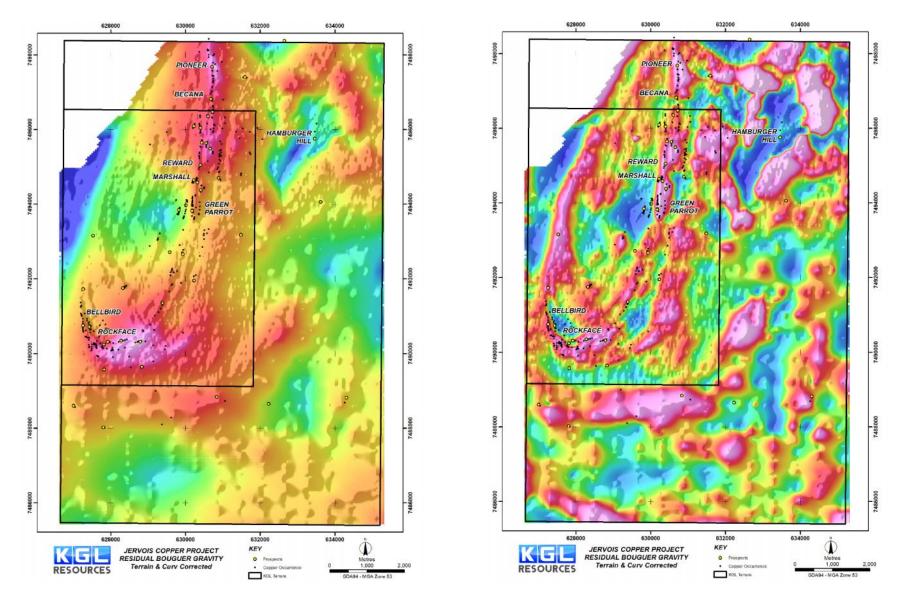




Figure 2. Reward Cross-Section 7495275N

| HoleID   | Interval                                                                                                                                                        | С              | ETW<br>(m)        | RL*<br>(m)                 | SG<br>(t/m <sup>3</sup> ) |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|----------------------------|---------------------------|
| J15      | 11m @ 4.73% Cu, 1.84g/t Au from 512                                                                                                                             | R1             | 8.7               | -35.5                      | -                         |
| RJ236    | 3.7m @ 4.68% Cu, 54g/t Ag, 1.96g/t Au from 433 m                                                                                                                |                | 3.0               | 15.6                       | 3.29                      |
| KJCD043  | 7m @ 1.36% Cu, 25g/t Ag, 0.5g/t Au from 413<br>7m @1.28%Cu, 20.1g/t Ag, 0.06g/t Au from 483m                                                                    | -              | 5.6<br>5.6        | 17.2<br>-29                | 2.96<br>3.04              |
| RJ061    | 22.4m @ 2.84% Cu from 408 m                                                                                                                                     | R1             | 7.7               | -43.3                      | -                         |
| KJCD075  | 7m @ 5.07% Pb, 0.29% Zn, 106.6g/t Ag from 498m                                                                                                                  | R2             | 5.2               | -73.6                      | 3.54                      |
| RJ169    | 72m @ 3.27% Cu, 51.3g/t Ag, 1.16g/t Au from 414m                                                                                                                | R1 R3          | 16                | -40.6                      | 3.33                      |
| RJ237    | 23.6m @1.82% Cu, 23.9g/t Ag. 0.27g/t Au from 521.7                                                                                                              | R1 R3          | 16.1              | -81.8                      | -                         |
| RJ237W1  | 25m @ 1.74%Cu, 35.9g/t Ag, 0.82g/t Au from 518m                                                                                                                 | R1 R3          | 17                | -79.9                      | 3.29                      |
| RJ204    | 8m @ 4.8% Cu, 62.1g/t Ag, 0.35g/t Au from 502m                                                                                                                  | R1 R3          | 5.0               | -94                        | 3.30                      |
| RJ204W1  | 9.05m @ 4.9%Cu, 66.2g/t Ag, 1.22g/t Au from 509m                                                                                                                | R1 R3          | 5.8               | -95.8                      | 3.20                      |
| J25      | 3.64m @ 2.79% Cu from 570.4 m                                                                                                                                   | -              | 2.2               | -154                       | -                         |
| KJCD216  | 11.6m of mineralisation from 636.1m                                                                                                                             | R1             | 7.5               | -200                       |                           |
| KJD010W1 | 2m @ 12.02% Pb, 473g/t Ag from 1062m<br>7m @ 4.25% Pb, 2.98% Zn, 53.4g/t Ag from 1070m<br>7m @ 2.07% Cu, 1.06% Pb, 2.41% Zn, 92g/t Ag, 0.18g/t Au<br>from 1100m | R4<br>R4<br>R5 | 1.6<br>5.6<br>5.6 | -465.3<br>-470.2<br>-488.7 | 3.87<br>3.11<br>3.17      |

Table 1 - Summary of significant results for Reward North

\*RL start of mineralised interval



(Gravity high- White/Red, Gravity low – Blue/green)

Figure 3 Residual Bouguer Gravity highlighting deeper gravity anomalies Figure 4 Residual Bouguer Gravity highlighting shallower gravity anomalies (Gravity high- White/Red, Gravity low – Blue/green)

#### For further information, contact:

Ms Kylie Anderson Company Secretary Phone: 07 3071 9003

#### **About KGL Resources**

KGL Resources Limited is an Australian mineral exploration company focussed on increasing the high-grade resource at the Jervois Copper Project in the Northern Territory and developing it into a multi-metal mine.

#### **Competent Person Statement**

The Jervois Exploration data in this report is based on information compiled by Adriaan van Herk, a member of the Australian Institute of Geoscientists, Chief Geologist and a full-time employee of KGL Resources Limited.

Mr. van Herk has sufficient experience which is relevant to the style of the mineralisation and the type of deposit under consideration and to the activity to which he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. van Herk has consented to the inclusion of this information in the form and context in which it appears in this report.

The following drill holes were originally reported on the date indicated and using the JORC code specified in the table. Results reported under JORC 2004 have not been updated to comply with JORC 2012 on the basis that the information has not materially changed since it was last reported.

| Hole     | Date originally Reported | JORC Reported Under |  |  |
|----------|--------------------------|---------------------|--|--|
| J15      | 17/05/2011               | 2004                |  |  |
| RJ236    | 02/10/2012               | 2004                |  |  |
| KJCD043  | 20/03/2014               | 2004                |  |  |
| RJ061    | 17/05/2011               | 2004                |  |  |
| KJCD075  | 21/07/2014               | 2012                |  |  |
| RJ169    | 22/10/2015               | 2012                |  |  |
| RJ237    | 02/10/2012               | 2004                |  |  |
| RJ237W1  | 29/05/2014               | 2012                |  |  |
| RJ204    | 24/10/2014               | 2012                |  |  |
| RJ204W1  | 24/10/2014               | 2012                |  |  |
| J25      | 17/05/2011               | 2004                |  |  |
| KJCD216  | 17/11/2014               | 2012                |  |  |
| KJD010W1 | 15/01/2015               | 2012                |  |  |

#### JORC Code, 2012 Edition – Table 1 1

# Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

| Criteria                 | JOI    | RC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                         | Со     | mmentary                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques   | J      | Nature and quality of sampling (eg cut channels,<br>random chips, or specific specialised industry standard<br>measurement tools appropriate to the minerals under<br>investigation, such as down hole gamma sondes, or<br>handheld XRF instruments, etc). These examples<br>should not be taken as limiting the broad meaning of<br>sampling.                                                                                              | )<br>J | Diamond drilling and reverse circulation<br>(RC) drilling were used to obtain samples<br>for geological logging and assaying.<br>RC drill holes are sampled at 1m<br>intervals and split using a cone splitter<br>attached to the cyclone to generate a<br>split of ~3kg.                                                                                                            |
|                          | )<br>J | Include reference to measures taken to ensure sample<br>representivity and the appropriate calibration of any<br>measurement tools or systems used.<br>Aspects of the determination of mineralisation that are<br>Material to the Public Report.<br>In cases where 'industry standard' work has been done                                                                                                                                   | )<br>J | Diamond core was quartered with a<br>diamond saw and generally sampled at<br>1m intervals with shorter samples at<br>geological contacts.<br>Field duplicate samples were taken to<br>determine representivity of the primary                                                                                                                                                        |
|                          | )      | this would be relatively simple (eg 'reverse circulation<br>drilling was used to obtain 1 m samples from which 3<br>kg was pulverised to produce a 30 g charge for fire<br>assay'). In other cases more explanation may be<br>required, such as where there is coarse gold that has<br>inherent sampling problems. Unusual commodities or<br>mineralisation types (eg submarine nodules) may<br>warrant disclosure of detailed information. | J      | sample.<br>RC samples are routinely scanned with a<br>Niton XRF. Samples assaying greater<br>than 0.1% Cu, Pb or Zn are submitted for<br>analysis at a commercial laboratory.                                                                                                                                                                                                        |
| Drilling<br>techniques   | J      | Drill type (eg core, reverse circulation, open-hole<br>hammer, rotary air blast, auger, Bangka, sonic, etc)<br>and details (eg core diameter, triple or standard tube,<br>depth of diamond tails, face-sampling bit or other type,<br>whether core is oriented and if so, by what method,<br>etc).                                                                                                                                          | J      | RC drilling was conducted using a<br>reverse circulation rig with a 5.25" face-<br>sampling bit. Diamond drilling was either<br>in NQ2 or HQ3 drill diameters.<br>Metallurgical diamond drilling (JMET<br>holes) were PQ                                                                                                                                                             |
| Drill sample<br>recovery | J      | Method of recording and assessing core and chip sample recoveries and results assessed.                                                                                                                                                                                                                                                                                                                                                     | J      | Diamond core recoveries are determined by orientating core and measuring the                                                                                                                                                                                                                                                                                                         |
|                          | )<br>J | Measures taken to maximise sample recovery and<br>ensure representative nature of the samples.<br>Whether a relationship exists between sample recovery                                                                                                                                                                                                                                                                                     |        | recovered core between drill intervals<br>provided by the drilling company. Any<br>core loss is recorded as a percentage of<br>the interval.                                                                                                                                                                                                                                         |
|                          |        | and grade and whether sample bias may have<br>occurred due to preferential loss/gain of fine/coarse<br>material.                                                                                                                                                                                                                                                                                                                            | J      | At the start of each RC drill program the<br>bulk sample residue (drill cuttings) for 2-3<br>holes were weighed and compared to the<br>theoretical weight of sample based on<br>the interval length (1m) and the bit<br>diameter. The ratio between the split<br>and the bulk residue is calculated to<br>ensure the split is representative<br>applying Gy's sample theory (~1:15). |
|                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                             | J      | Drill rigs with high air pressure and CFM are utilised to ensure samples are dry and sample recovery is maximised.                                                                                                                                                                                                                                                                   |
|                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                             | J      | Drill intervals with suspected sample loss are recorded on the drill log.                                                                                                                                                                                                                                                                                                            |
|                          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                             | J      | RC holes are twinned with diamond<br>holes to determine if there is a sampling<br>bias from loss of fines.                                                                                                                                                                                                                                                                           |
| Logging                  | J      | Whether core and chip samples have been geologically<br>and geotechnically logged to a level of detail to support<br>appropriate Mineral Resource estimation, mining<br>studies and metallurgical studies.                                                                                                                                                                                                                                  | J      | All RC and diamond core samples are<br>geologically logged with fields including<br>lithology, alteration, mineralisation and<br>structural fabric.                                                                                                                                                                                                                                  |
|                          | J      | Whether logging is qualitative or quantitative in nature.<br>Core (or costean, channel, etc) photography.                                                                                                                                                                                                                                                                                                                                   | J      | Representative samples of core were<br>submitted for petrology and a logging<br>atlas created to standardize geological                                                                                                                                                                                                                                                              |
|                          | J      | The total length and percentage of the relevant intersections logged.                                                                                                                                                                                                                                                                                                                                                                       | J      | Diamond core is orientated and logged<br>for geotechnical information including<br>recovery, RQD and structural fabric.                                                                                                                                                                                                                                                              |

| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                    |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                          | RC drilling is logged in 1m intervals.                                                                                                                                                                                                        |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                          | Diamond core is logged in intervals<br>based on the lithology, alteration and<br>mineralisation.                                                                                                                                              |
| Sub-sampling<br>techniques and<br>sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half<br/>or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split,<br/>ot a product for a correlation and have been allowed as a low.</li> </ul>                                                                                                                                                  | RC drill holes are sampled at 1m<br>intervals and split using a cone splitter<br>attached to the cyclone to generate a<br>split of ~3kg.                                                                                                      |
|                                                         | <ul> <li>etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling</li> </ul>                                                                                                                                                     | <ul> <li>Diamond core was quartered with a<br/>diamond saw and generally sampled at<br/>1m intervals with shorter samples at</li> </ul>                                                                                                       |
|                                                         | <ul> <li>stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is</li> </ul>                                                                                                                                                                                                                                                                 | <ul> <li>geological contacts.</li> <li>RC sample splits (~3kg) are pulverized to<br/>85% passing 75 microns.</li> </ul>                                                                                                                       |
|                                                         | representative of the in situ material collected,<br>including for instance results for field duplicate/second-<br>half sampling.                                                                                                                                                                                                                                                        | <ul> <li>Diamond core samples are crushed to<br/>70% passing 2mm and then pulverized to<br/>85% passing 75 microns.</li> </ul>                                                                                                                |
|                                                         | ) Whether sample sizes are appropriate to the grain size of the material being sampled.                                                                                                                                                                                                                                                                                                  | <ul> <li>Sample preparation has been designed<br/>to ensure compliance with Gy's sample<br/>theory.</li> </ul>                                                                                                                                |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>RC duplicates are collected as an<br/>additional split from the cone splitter on<br/>the drill rig.</li> </ul>                                                                                                                       |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                          | Diamond core duplicates are a second interval of quarter core.                                                                                                                                                                                |
| Quality of assay<br>data and<br>laboratory tests        | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments on the permeters used in determining</li> </ul>                                                                                                        | The QA/QC procedure includes<br>standards, blanks, duplicates and<br>laboratory checks. In ore zones<br>Standards are added at a ratio of 1:10<br>and duplicates and blanks 1:20.                                                             |
|                                                         | <ul> <li>instruments, etc, the parameters used in determining<br/>the analysis including instrument make and model,<br/>reading times, calibrations factors applied and their<br/>derivation, etc.</li> <li>Nature of quality control procedures adopted (eg<br/>standards, blanks, duplicates, external laboratory<br/>checks) and whether acceptable levels of accuracy (ie</li> </ul> | Basemetal samples are assayed using a<br>four acid (total) digest with an ICP AES<br>finish. Gold samples are assayed by<br>Aqua Regia with an ICP MS finish.<br>Samples over 1ppm Au are re-assayed<br>by Fire Assay with an AAS finish.     |
|                                                         | lack of bias) and precision have been established.                                                                                                                                                                                                                                                                                                                                       | <ul> <li>An umpire laboratory is used to check<br/>~1% of samples analysed.</li> </ul>                                                                                                                                                        |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                          | ) QA/QC data is assessed on a monthly<br>basis to assess precision and accuracy<br>of sample assays. Variances in the<br>assay value of standards of greater than<br>10% (~3 standard deviations) triggers<br>reanalysis of the sample batch. |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                          | XRF analyses are only used to prescan<br>samples. Samples with greater than<br>0.1% Cu, Pb or Zn are then submitted fo<br>analysis at a commercial laboratory.                                                                                |
| Verification of<br>sampling and<br>assaying             | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> </ul>                                                                                                                                                                                                                             | Data is validated on entry into the<br>Datashed database using the Logchief<br>data acquisition software.                                                                                                                                     |
|                                                         | <ul> <li>Documentation of primary data, data entry procedures,<br/>data verification, data storage (physical and electronic)<br/>protocols.</li> </ul>                                                                                                                                                                                                                                   | Further validation is conducted by a geologist when data is imported into Vulcan.                                                                                                                                                             |
|                                                         | ) Discuss any adjustment to assay data.                                                                                                                                                                                                                                                                                                                                                  | Validation of drill results at each resource<br>was aided by twinning selected holes<br>with variances investigated to determine<br>the source of sampling or assaying error                                                                  |
| Location of data<br>points                              | ) Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine                                                                                                                                                                                                                                                                              | ) Surface collar surveys were picked up using a Trimble DGPS.                                                                                                                                                                                 |
|                                                         | workings and other locations used in Mineral Resource<br>estimation.                                                                                                                                                                                                                                                                                                                     | A selection of drill collars were periodically checked by a surveyor.                                                                                                                                                                         |
|                                                         | <ul> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                                                                                                                                                                                                         | Downhole surveys were taken during<br>drilling with a Reflex MEMS gyro or a<br>Reflex EZ gyro.                                                                                                                                                |

| Criteria                                            | JO | RC Code explanation                                                                                                                                                                                                                                                                            | Со | Commentary                                                                                                                                                                                                               |  |
|-----------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                     |    |                                                                                                                                                                                                                                                                                                | J  | All drilling is conducted on the GDA94<br>MGA Zone 53 grid. All downhole<br>surveys were converted to GDA94 MGA<br>Z53 grid.                                                                                             |  |
|                                                     |    |                                                                                                                                                                                                                                                                                                | J  | A DTM has been generated from a close<br>spaced grid of sample points using a<br>DGPS. Additional sample points have<br>been added is areas with steep or<br>rugged topography.                                          |  |
| Data spacing<br>and distribution                    | J  | Data spacing for reporting of Exploration Results.<br>Whether the data spacing and distribution is sufficient<br>to establish the degree of geological and grade<br>continuity appropriate for the Mineral Resource and<br>Ore Reserve estimation procedure(s) and<br>classifications applied. | )  | Drilling for Inferred resources has been<br>conducted at a spacing of 50m along<br>strike and 80m within the plane of the<br>mineralized zone. Closer spaced 50m by<br>40m drilling was used for Indicated<br>resources. |  |
|                                                     | J  | Whether sample compositing has been applied.                                                                                                                                                                                                                                                   | J  | Shallow oxide RC drilling was conducted<br>on 80m spaced traverses with holes 10m<br>apart                                                                                                                               |  |
| Orientation of<br>data in relation<br>to geological | )  | Whether the orientation of sampling achieves unbiased<br>sampling of possible structures and the extent to which<br>this is known, considering the deposit type.                                                                                                                               | J  | Holes were drilled perpendicular to the strike of the mineralization at a default angle of -60 degrees but holes vary from -45 to -80.                                                                                   |  |
| structure                                           | )  | If the relationship between the drilling orientation and<br>the orientation of key mineralised structures is<br>considered to have introduced a sampling bias, this<br>should be assessed and reported if material.                                                                            | J  | The orientation of drill holes relative to<br>the mineralised structures is not thought<br>to have generated any significant sample<br>bias.                                                                             |  |
| Sample security                                     | J  | The measures taken to ensure sample security.                                                                                                                                                                                                                                                  | J  | Samples were stored in sealed<br>polyweave bags on site and transported<br>to the laboratory at regular intervals by<br>KGL staff or a transport contractor.                                                             |  |
| Audits or reviews                                   | J  | The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                          | J  | The sampling techniques are regularly reviewed.                                                                                                                                                                          |  |

# Section 2 Reporting of Exploration Results

#### (Criteria listed in the preceding section also apply to this section.)

| Criteria                                         | JO | RC Code explanation                                                                                                                                                                                                                                                                      | Со | mmentary                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | J  | Type, reference name/number, location and ownership<br>including agreements or material issues with third<br>parties such as joint ventures, partnerships, overriding<br>royalties, native title interests, historical sites,<br>wilderness or national park and environmental settings. | J  | The Jervois project is within EL25429<br>and EL28082 100% owned by Jinka<br>Minerals and operated by Kentor<br>Minerals (NT), both wholly owned<br>subsidiaries of KGL Resources.                                                                                                                                                                                                              |
|                                                  | J  | The security of the tenure held at the time of reporting<br>along with any known impediments to obtaining a<br>licence to operate in the area.                                                                                                                                           | J  | The Jervois project is covered by Mining<br>Leases and two Exploration licences<br>owned by KGL Resources subsidiary<br>Jinka Minerals.                                                                                                                                                                                                                                                        |
| Exploration done by other parties                | J  | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                            | J  | Previous exploration has primarily been<br>conducted by Reward Minerals, MIM and<br>Plenty River.                                                                                                                                                                                                                                                                                              |
| Geology                                          | J  | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                            | J  | EL25429 and EL28082 lie on the<br>Huckitta 1: 250 000 map sheet (SF 53-<br>11). The tenement is located mainly<br>within the Palaeo-Proterozoic Bonya<br>Schist on the north-eastern boundary of<br>the Arunta Orogenic Domain. The Arunta<br>Orogenic Domain in the north western<br>part of the tenement is overlain<br>unconformably by Neo-Proterozoic<br>sediments of the Georgina Basin. |
|                                                  |    |                                                                                                                                                                                                                                                                                          | J  | The copper-lead-zinc mineralisation is<br>interpreted to be stratabound in nature,<br>probably relating to the discharge of base<br>metal-rich fluids in association with<br>volcanism or metamorphism or<br>dewatering of the underlying rocks at a<br>particular time in the geological history of                                                                                           |

| Criteria                                 | JOI | RC Code explanation                                                                                                                                                                                                                                                                                                                                                                                        | Со | mmentary                                                                                                    |
|------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------|
|                                          |     |                                                                                                                                                                                                                                                                                                                                                                                                            |    | the area.                                                                                                   |
|                                          |     |                                                                                                                                                                                                                                                                                                                                                                                                            | J  | The copper mineralisation is interpreted<br>to be a later structurally controlled,<br>mineralising event(s) |
| Drill hole<br>Information                | J   | A summary of all information material to the<br>understanding of the exploration results including a<br>tabulation of the following information for all Material<br>drill holes:                                                                                                                                                                                                                           | )  |                                                                                                             |
|                                          |     | <ul> <li>easting and northing of the drill hole collar</li> </ul>                                                                                                                                                                                                                                                                                                                                          |    |                                                                                                             |
|                                          |     | <ul> <li>elevation or RL (Reduced Level – elevation above<br/>sea level in metres) of the drill hole collar</li> </ul>                                                                                                                                                                                                                                                                                     |    |                                                                                                             |
|                                          |     | <ul> <li>dip and azimuth of the hole</li> </ul>                                                                                                                                                                                                                                                                                                                                                            |    |                                                                                                             |
|                                          |     | <ul> <li>o down hole length and interception depth</li> <li>o hole length.</li> </ul>                                                                                                                                                                                                                                                                                                                      |    |                                                                                                             |
|                                          | J   | If the exclusion of this information is justified on the<br>basis that the information is not Material and this<br>exclusion does not detract from the understanding of<br>the report, the Competent Person should clearly<br>explain why this is the case.                                                                                                                                                |    |                                                                                                             |
| Data<br>aggregation<br>methods           | J   | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.                                                                                                                                                                                                       | J  | Refer Table 1                                                                                               |
|                                          | J   | Where aggregate intercepts incorporate short lengths<br>of high grade results and longer lengths of low grade<br>results, the procedure used for such aggregation<br>should be stated and some typical examples of such<br>aggregations should be shown in detail.                                                                                                                                         |    |                                                                                                             |
|                                          | J   | The assumptions used for any reporting of metal equivalent values should be clearly stated.                                                                                                                                                                                                                                                                                                                |    |                                                                                                             |
| Relationship<br>between                  | J   | These relationships are particularly important in the reporting of Exploration Results.                                                                                                                                                                                                                                                                                                                    | J  | Refer Table 1                                                                                               |
| mineralisation<br>widths and             | J   | If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.                                                                                                                                                                                                                                                                                        |    |                                                                                                             |
| intercept lengths                        | J   | If it is not known and only the down hole lengths are<br>reported, there should be a clear statement to this<br>effect (eg 'down hole length, true width not known').                                                                                                                                                                                                                                      |    |                                                                                                             |
| Diagrams                                 | J   | Appropriate maps and sections (with scales) and<br>tabulations of intercepts should be included for any<br>significant discovery being reported These should<br>include, but not be limited to a plan view of drill hole<br>collar locations and appropriate sectional views.                                                                                                                              | J  | Refer Figures 1-2                                                                                           |
| Balanced<br>reporting                    | J   | Where comprehensive reporting of all Exploration<br>Results is not practicable, representative reporting of<br>both low and high grades and/or widths should be<br>practiced to avoid misleading reporting of Exploration<br>Results.                                                                                                                                                                      | J  |                                                                                                             |
| Other<br>substantive<br>exploration data | J   | Other exploration data, if meaningful and material,<br>should be reported including (but not limited to):<br>geological observations; geophysical survey results;<br>geochemical survey results; bulk samples – size and<br>method of treatment; metallurgical test results; bulk<br>density, groundwater, geotechnical and rock<br>characteristics; potential deleterious or contaminating<br>substances. | J  | Refer Figures 1-4                                                                                           |
| Further work                             | J   | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).                                                                                                                                                                                                                                                                       | J  | Refer Figures 1 - 4                                                                                         |
|                                          | J   | Diagrams clearly highlighting the areas of possible<br>extensions, including the main geological<br>interpretations and future drilling areas, provided this<br>information is not commercially sensitive.                                                                                                                                                                                                 |    |                                                                                                             |