

ASX RELEASE 24 October 2017

# Drilling campaign successfully completed at the Port Moresby Limestone Project (EL 2303) – Large Scale Coastal Deposits

## HIGHLIGHTS:

- 22 diamond drill holes completed across two limestone deposits for a total of 1,592.5 metres.
- Drilling results from first 3 holes confirmed intersections of high grade limestone, (approx. 96% CaCO<sub>3</sub>) over a true thickness of up to 98 metres. These drill holes were terminated in limestone at approximately 0 m RL (sea level).
- Results received for the first 3 holes demonstrate geological and geochemical consistency and returned a weighted average CaCO<sub>3</sub> level of 95.9%. Grades calculated from two metre composite samples based on half cut core from HQ size drill core. The remaining holes to be used in resource modelling reached depths of up to 151 metres and are still being processed.
- Geological resource modelling and estimation works will now commence with the aim of completing this activity before the end of 2017.
- Commercialisation study work has started with expected feasibility study work to be completed by mid CY2018.
- Subject to commercialisation feasibility study work, the project is proposed to create a new lime based domestic and export industry for PNG.

**Mayur Resources Ltd (ASX: MRL)** has completed a drilling campaign at its Port Moresby Limestone Project in Papua New Guinea (EL2303), identifying multiple significant intersections of high grade limestone, (approx. 96% CaCO<sub>3</sub>), that may enable a large deposit to be defined to support a multi decade lime, quick lime and construction materials business. The Exploration Target is 200 to 300 million tonnes across the Kido and Lea Lea deposits within EL2303. In considering the approximate conceptual size and grade of this Exploration Target, a topographic volume by thickness equation was used to assess the potential scale and tenor of the deposits, as the Kido and Lea Lea project areas are significant hills which consist almost entirely of limestone.

Importantly the potential quantity and grade is conceptual in nature, and currently there has been insufficient exploration works to estimate a Mineral Resource. Additionally, it is uncertain if further exploration work or modelling will result in the estimation of a Mineral Resource. That said, additional chemical assaying, material analysis and other relevant test work along with modelling of the deposit will be completed by the end of 2017.

Initial testing of the limestone has demonstrated suitably of this material for use in many industrial applications and has provided a robust dataset to be used for resource modelling and estimation purposes. The brightness of the limestone will also be assessed for use in paper, supplying limestone as inert dust for coal mines, and as filler for the northern Australian and Asian feedlot markets. Although the potential tonnage and grades of the target are currently conceptual in nature MRL believes that sufficient exploration has been completed, given the homogeneity of the geological

setting and geochemical results returned thus far, to commence more detailed resource evaluation work.

The drilling campaign commenced in Q1 2017 and involved drilling 22 diamond drill holes across two adjacent limestone prospects on the same tenement (13 holes at Lea Lea and 9 holes at Kido) with an average hole depth of 72.4 metres for a total of 1,592.5 metres. The core has been logged, cut, sampled and dispatched to the laboratory for analysis, with early assay results indicating the extensive distribution of high grade limestone. These results are consistent with the previous geochemical analysis of 64 surface rock chip samples which returned a weighted average CaCO<sub>3</sub> content of 96.7%<sup>1</sup>. The location of these samples is shown in figures 1 and 2, and results provided in table 1.



Figure 1 - Location of rock chip surface samples at Lea Lea deposit



<sup>&</sup>lt;sup>1</sup> As previously disclosed in the Prospectus dated 21 July 2017

| NAME      | WGS84N  | WGS84E | RL  | Location |                     |        |              |                     |      |       |       | Comment                                                                                   |  |
|-----------|---------|--------|-----|----------|---------------------|--------|--------------|---------------------|------|-------|-------|-------------------------------------------------------------------------------------------|--|
|           |         |        |     |          | CaCO <sub>3</sub> % | Al2O₃% | CaO%         | Fe₂O <sub>3</sub> % | MgO% | MnO%  | SiO₂% |                                                                                           |  |
| RCLST001  | 8974981 | 497175 | 19  | Lealea   | 95.31               | 0.68   | 53.4         | 0.41                | 0.42 | 0.01  | 2.44  | Limestone On Foot Hills                                                                   |  |
| RCLST002  | 8975051 | 497135 | 30  | Lealea   | 93.7                | 0.68   | 52.5         | 0.34                | 0.5  | 0.01  | 4.2   | Limestone On Foot Hills                                                                   |  |
| RCLST003  | 89/538/ | 496797 | 34  | Lealea   | 97.27               | 0.28   | 54.5         | 0.17                | 0.33 | <0.01 | 1.06  | Light Orange White Limestone                                                              |  |
| RCI ST004 | 8976171 | 496800 | 45  | Lealea   | 96.56               | 0.4    | 54 1         | 0.3                 | 0.45 | 0.01  | 1.00  | Linestone Light Orange White                                                              |  |
| RCLST006  | 8976602 | 496818 | 23  | Lealea   | 97.27               | 0.40   | 54.5         | 0.19                | 0.28 | 0.01  | 0.87  | Light Orange White Limestone                                                              |  |
| RCLST007  | 8976953 | 496834 | 18  | Lealea   | 96.91               | 0.43   | 54.3         | 0.31                | 0.24 | <0.01 | 1     | Light Orange White Limestone Scree                                                        |  |
| RCLST008  | 8976596 | 497196 | 51  | Lealea   | 95.49               | 0.57   | 53.5         | 0.36                | 0.5  | 0.01  | 1.8   | Light Orange White Recem Fragmental Limestone                                             |  |
| RCLST009  | 8976219 | 496378 | 56  | Lealea   | 88.53               | 1.52   | 49.6         | 0.86                | 0.62 | 0.02  | 6.94  | Light Orange White Limestone                                                              |  |
| RCLST010  | 8975792 | 496367 | 42  | Lealea   | 96.74               | 0.3    | 54.2         | 0.16                | 0.34 | <0.01 | 1.3   | Very Light Orange White Limestone Scree                                                   |  |
| RCLST011  | 8975341 | 496393 | 12  | Lealea   | 92.45               | 1.26   | 51.8         | 0.52                | 0.22 | <0.01 | 4.18  | White Limestone                                                                           |  |
| RCLST012  | 8974999 | 496802 | 10  | Lealea   | 95.49               | 0.61   | 53.5         | 0.44                | 0.47 | 0.01  | 1.76  | Light Orange White Limestone                                                              |  |
| RCLST013  | 8975812 | 489800 | 14  | Kido     | 97.63               | 0.25   | 54.7         | 0.23                | 0.38 | <0.01 | 0.64  | Light Orange White Limestone                                                              |  |
| RCLST014  | 8975779 | 489421 | 58  | Kido     | 86.92               | 0.42   | 48.7         | 0.33                | 4.84 | 0.01  | 1.05  | Light Orange White Limestone                                                              |  |
| RCLST015  | 8975803 | 488994 | 69  | Kido     | 97.45               | 0.3    | 54.6         | 0.21                | 0.39 | 0.01  | 0.7   | Light Orange White Limestone Scree                                                        |  |
| RCLST016  | 8975453 | 488951 | 7   | Kido     | 97.63               | 0.19   | 54.7         | 0.14                | 0.41 | <0.01 | 0.44  | Light Yellow White Limestone                                                              |  |
| RCLST017  | 8975407 | 489390 | 23  | Kido     | 97.63               | 0.25   | 54.7         | 0.19                | 0.43 | <0.01 | 0.49  | Light Orange White Limestone                                                              |  |
| RCLST018  | 8975388 | 490187 | 79  | Kido     | 91 74               | 1.17   | 51.4         | 0.62                | 0.54 | 0.01  | 4.72  | Light Orange White Limestone                                                              |  |
| RCLST020  | 8975370 | 490626 | 30  | Kido     | 97.81               | 0.27   | 54.8         | 0.18                | 0.31 | <0.01 | 0.54  | Light Orange White Limestone Cliff Edge                                                   |  |
| RCLST021  | 8975002 | 490578 | 84  | Kido     | 98.52               | 0.08   | 55.2         | 0.04                | 0.22 | <0.01 | 0.06  | Hard Bleached White Limestone                                                             |  |
| RCLST022  | 8974567 | 490606 | 18  | Kido     | 95.84               | 0.91   | 53.7         | 0.39                | 0.25 | 0.01  | 1.49  | Light RedWhite Fragmental Limestone Bot Of Hill                                           |  |
| RCLST023  | 8974992 | 490209 | 25  | Kido     | 97.81               | 0.17   | 54.8         | 0.07                | 0.13 | <0.01 | 0.28  | -<br>Light Cream-White Limestone Flat Lying Layers?                                       |  |
| RCLST101  | 8975773 | 496093 | 20  | Lealea   | 97.45               | 0.27   | 54.6         | 0.18                | 0.42 | <0.01 | 0.66  | 2.5m <sup>2</sup> selective sample grab sample on a hilltop with rubbly sub-crop-outcrop. |  |
| RCLST102  | 8976232 | 496266 | 20  | Lealea   | 97.09               | 0.39   | 54.4         | 0.32                | 0.35 | 0.01  | 0.84  | 3.5m <sup>2</sup> selective grab sample massive Limestone outcrop on steep slope.         |  |
| RCLST103  | 8976802 | 495793 | 20  | Lealea   | 97.63               | 0.39   | 54.7         | 0.19                | 0.11 | <0.01 | 0.79  | 3m <sup>2</sup> selective selective grab - sub crop and outcrop.                          |  |
| RCLST104  | 8976937 | 495546 | 60  | Lealea   | 97.99               | 0.25   | 54.9         | 0.14                | 0.34 | <0.01 | 0.4   | Numerous sub-crop - outcrop massive orientation. Limsetone.                               |  |
| RCLST105  | 8976631 | 495550 | 90  | Lealea   | 97.81               | 0.13   | 54.8         | 0.16                | 0.51 | <0.01 | 0.21  | Sub-crop on slope 1m wide.                                                                |  |
| RCLST106  | 8976070 | 495615 | 29  | Lealea   | 97.27               | 0.26   | 54.5         | 0.14                | 0.58 | <0.01 | 0.59  | Outcrop subvertical dip strike 7-8m wide exposure on slope                                |  |
| RCLST107  | 8976502 | 494819 | 55  | Lealea   | 97.99               | 0.28   | 54.9         | 0.13                | 0.29 | <0.01 | 0.56  | Fragmental massive limestone outcrop. On foothills of steep cliff. 5m wide.               |  |
| RCLST108  | 8976159 | 495184 | 26  | Lealea   | 97.27               | 0.3    | 54.5         | 0.26                | 0.36 | 0.04  | 0.7   | Fragmental massive limestone subcrop. On foothills of steep cliff. 5m wide.               |  |
| RCLST109  | 8976498 | 495130 | 134 | Lealea   | 97.63               | 0.32   | 54.7         | 0.2                 | 0.39 | 0.01  | 0.57  | Outcrop on hilltop. Fragmental massive limestone. 3m selective grab.                      |  |
| RCIST110  | 8976944 | 494960 | 101 | Lealea   | 90.58               | 0.55   | 54 7         | 0.2                 | 0.34 | <0.01 | 0.49  | Outcrop magmental innestone bedrock. Dip 24-3, Strike 328 - On hintop.                    |  |
| RCLST112  | 8976984 | 495180 | 92  | Lealea   | 97.81               | 0.20   | 54.8         | 0.13                | 0.44 | <0.01 | 0.45  | Limestone - Silica around 10-15%?                                                         |  |
| RCLST113  | 8975018 | 490915 | 25  | Kido     | 97.45               | 0.45   | 54.6         | 0.18                | 0.17 | <0.01 | 0.75  | Fragmental limestone subcrop on slope, select grab 2.5m                                   |  |
| RCLST114  | 8974633 | 491398 | 23  | Kido     | 98.34               | 0.11   | 55.1         | 0.05                | 0.15 | <0.01 | 0.21  | Fragmental limestone subcrop on slope.                                                    |  |
| RCLST115  | 8974657 | 491716 | 10  | Kido     | 97.99               | 0.21   | 54.9         | 0.14                | 0.36 | 0.01  | 0.46  | Fragmental massive limestone outcrop.                                                     |  |
| RCLST116  | 8974304 | 492084 | 14  | Kido     | 98.34               | 0.13   | 55.1         | 0.17                | 0.19 | 0.01  | 0.26  | Quarry site. Fragmental limestone outcrop. Dip 20° S, Strike 264°.                        |  |
| RCLST117  | 8974197 | 491865 | 48  | Kido     | 98.16               | 0.18   | 55           | 0.12                | 0.21 | <0.01 | 0.36  | Fragmental massive outcrop, limestone on hilltop.                                         |  |
| RCLST118  | 8974257 | 491469 | 49  | Kido     | 97.99               | 0.2    | 54.9         | 0.11                | 0.2  | <0.01 | 0.44  | Fragmental massive outcrop, limestone near cliff edge.                                    |  |
| RCLST119  | 8974568 | 491020 | 93  | Kido     | 99.06               | 0.03   | 55.5         | 0.08                | 0.13 | <0.01 | <0.02 | Fragmental massive Outcrop of limestone on hilltop.                                       |  |
| RCLST024  | 8976731 | 495603 | 65  | Lealea   | 92.63               | 0.64   | 51.9         | 0.41                | 0.52 | 0.01  | 4.72  | Biomicritic limestone sub-crop                                                            |  |
| RCLST025  | 8976780 | 495181 | 112 | Lealea   | 97.45               | 0.31   | 54.6         | 0.19                | 0.35 | 0.01  | 0.74  | Massive light pink white limestone                                                        |  |
| RCL51026  | 89//179 | 495142 | 18  | Lealea   | 88.7                | 1.66   | 49.7         | 1.18                | 0.61 | 0.16  | 6.33  | biomicruc imestone, minor visible silica.                                                 |  |
| RCI ST020 | 8976002 | 474010 | 35  | Lealea   | 97.81               | 0.21   | 54.8<br>54.2 | 0.12                | 0.47 | 0.01  | 1.02  | Riomicrite limestone outcron                                                              |  |
| RCLST029  | 8976797 | 494859 | 172 | Lealea   | 97.09               | 0.39   | 54.4         | 0.26                | 0.34 | <0.01 | 1.02  | Massive limestone outcrop hilltop                                                         |  |
| RCLST030  | 8976333 | 494784 | 34  | Lealea   | 96.56               | 0.55   | 54.1         | 0.31                | 0.33 | <0.01 | 1.28  | Fragmental biomicritic limestone                                                          |  |
| RCLST031  | 8976414 | 495220 | 144 | Lealea   | 99.59               | 0.06   | 55.8         | 0.02                | 0.36 | <0.01 | 0.19  | Bleached white massive limestone sub-crop                                                 |  |
| RCLST032  | 8976560 | 495377 | 132 | Lealea   | 97.63               | 0.12   | 54.7         | 0.19                | 0.48 | <0.01 | 0.3   | Biomicritic limestone sub-crop white orange                                               |  |
| RCLST123  | 8975195 | 490466 | 75  | Kido     | 97.99               | 0.25   | 54.9         | 0.16                | 0.22 | <0.01 | 0.47  | Fragmental massive chalky white trace silica biomicritic limestone. Outcrop.              |  |
| RCLST124  | 8974771 | 490551 | 68  | Kido     | 96.91               | 0.36   | 54.3         | 0.24                | 0.52 | <0.01 | 0.93  | Porous massive coral like biomicritic fragmental limestone                                |  |
| RCLST125  | 8974696 | 490576 | 80  | Kido     | 98.16               | 0.16   | 55           | 0.13                | 0.35 | 0.01  | 0.36  | Coral-like cavity filled biomicritic limestone, massive on hilltop.                       |  |
| RCLST126  | 8974596 | 491209 | 69  | Kido     | 97.81               | 0.25   | 54.8         | 0.19                | 0.27 | 0.01  | 0.49  | Cavity - filled massive biomicritic limestone, fragmental                                 |  |
| RCLST127  | 8974832 | 491017 | 31  | Kido     | 97.81               | 0.13   | 54.8         | 0.07                | 0.23 | <0.01 | 0.28  | Fragmental massive white trace silica biomicritic limestone. Outcrop on a slope.          |  |
| RCLST128  | 8974800 | 491400 | 19  | Kido     | 97.63               | 0.33   | 54.7         | 0.2                 | 0.28 | 0.01  | 0.75  | Vuggy porous biomicritic limestone looks like flat lying coral                            |  |
| RCLST129  | 8974600 | 491600 | 15  | Kido     | 97.63               | 0.27   | 54.7         | 0.23                | 0.28 | 0.01  | 0.64  | Fragmental vuggy biomicritic limestoneon na gentle slope, sub-crop                        |  |
| RCLST130  | 8974408 | 491764 | 29  | KIDO     | 97.81               | 0.28   | 54.8         | 0.2                 | 0.31 | 0.01  | 0.67  | Sub-crop on hilitop - tragmental limestone                                                |  |
| RCI ST132 | 8974200 | 491440 | 72  | Kido     | 97.81<br>98.89      | 0.27   | 54.8<br>55 / | 0.2                 | 0.25 | 0.01  | 0.56  | Vuggy massive coramerous promicritic imestone, on hilltop.                                |  |
| CCLST132  | 8974642 | 490315 | 13  | Kido     | 98.00               | 0.12   | 55.4         | 0.08                | 0.21 | <0.01 | 0.21  | 4m channel chip on cliff, fragmental limestone                                            |  |
| CCLST134  | 8974371 | 491014 | 1   | Kido     | 95.84               | 0,98   | 53.7         | 0.24                | 0.36 | 0.02  | 0.9   | 4m channel chip on cliff, fragmental limestone                                            |  |
| CCLST135  | 8974081 | 491902 | 10  | Kido     | 97.27               | 0.41   | 54.5         | 0.25                | 0.34 | <0.01 | 1.04  | 4m channel chip on cliff face                                                             |  |
|           |         | -      | A   | VERAGE   | 96.73               | 0.39   | 54.2         | 0.24                | 0.41 | 0.02  | 1.15  |                                                                                           |  |

Table 1 - Assay Results for Rock Chip Samples on EL2303.

The drilling has demonstrated a very high level of geological continuity over much of the project area, with every hole commencing in limestone near surface, beneath a thin skeletal soil profile, and terminating in limestone at approximately 0m RL. Although this elevation is an arbitrary cut off level drilling was stopped at this depth in order to leave any future pit free draining. The following figures and tables show the locations and assay results received from ALS Global to date for the first 3 holes (namely MRDD001, MRD002 and MRDD005) and the margin of error in this testing regime is +/- 1.5% of total assayed elements being equal to 100%.



Figure 3 – (Clockwise from top left) Location of Port Moresby Limestone project, drill rig and core trays on Lea Lea, and location of drill holes at Kido and Lea Lea within Mayur's EL2303 (note red circles indicate the 3 holes for which results have been received and are being reported in this announcement)

| PROSPECT | HOLE_NAME | RL (m) | Hole_Depth (m) | Dip ° | Hole_Az ° | WGS84_E | WGS84_N |
|----------|-----------|--------|----------------|-------|-----------|---------|---------|
| LEALEA   | LDH01     | 57     | 65.1           | 90    | 0         | 496362  | 8976319 |
| LEALEA   | LDH02     | 83     | 82.1           | 90    | 0         | 496591  | 8976127 |
| LEALEA   | LDH03     | 65     | 70.1           | 60    | 258.1     | 496732  | 8976020 |
| LEALEA   | BOREHOLE  | 21     | 30.7           | 90    | 0         | 495706  | 8976880 |
| LEALEA   | LDH04     | 88     | 71.6           | 90    | 0         | 495596  | 8976698 |
| LEALEA   | LDH05     | 80     | 67.1           | 90    | 0         | 495513  | 8977009 |
| LEALEA   | LDH06     | 100    | 64.1           | 90    | 0         | 495178  | 8976988 |
| LEALEA   | LDH07     | 145    | 139.8          | 90    | 0         | 494911  | 8976974 |
| LEALEA   | LDH08     | 58     | 61.2           | 90    | 0         | 495303  | 8976692 |
| LEALEA   | LDH09     | 147    | 151.3          | 90    | 0         | 494957  | 8976706 |
| LEALEA   | LDH10     | 73     | 74.8           | 75    | 231.6     | 496953  | 8976796 |
| LEALEA   | LDH11     | 97     | 85.1           | 75    | 239.3     | 497032  | 8976519 |
| LEALEA   | LDH12     | 91     | 88.2           | 75    | 244.6     | 497230  | 8976314 |
| KIDO     | MRDD001   | 98     | 98             | 90    | 0         | 490910  | 8974606 |
| KIDO     | MRDD002   | 73     | 72             | 90    | 0         | 491189  | 8974537 |
| KIDO     | MRDD003   | 72     | 57.6           | 90    | 0         | 491480  | 8974404 |
| KIDO     | MRDD004   | 40     | 40             | 90    | 0         | 491213  | 8974814 |
| KIDO     | MRDD005   | 28     | 28.2           | 90    | 0         | 490901  | 8974800 |
| KIDO     | MRDD006a  | 72     | 32             | 90    | 0         | 490556  | 8974753 |
| KIDO     | MRDD006b  | 72     | 73             | 90    | 0         | 490555  | 8974753 |
| KIDO     | MRDD007   | 91     | 95.2           | 90    | 0         | 490468  | 8975084 |
| KIDO     | MRDD008   | 45     | 45.3           | 90    | 0         | 491036  | 8974963 |
|          |           | TOTAL  | 1592.5         |       |           |         |         |

Table 2 - Drill Hole Details for EL2303



Figure 4 - Rock chips and drill core from the Port Moresby Limestone project



Figure 5 - Limestone cliffs on the Kido prospect

| _       |      |      | Al2O3 | CaO  | CaCO3 | Fe2O3 | MgO  | MnO    | SiO2 |
|---------|------|------|-------|------|-------|-------|------|--------|------|
| Hole ID | From | То   | %     | %    | %     | %     | %    | %      | %    |
| MRDD001 | 0.0  | 2.0  | 0.9   | 53.1 | 94.8  | 0.58  | 0.41 | <0.01  | 2.59 |
| MRDD001 | 2.0  | 4.0  | 2.49  | 48.4 | 86.4  | 1.27  | 0.69 | 0.01   | 8.12 |
| MRDD001 | 4.0  | 6.0  | 1.26  | 51.8 | 92.4  | 0.79  | 0.49 | <0.01  | 4.08 |
| MRDD001 | 6.0  | 8.0  | 1.29  | 51.7 | 92.3  | 0.72  | 0.5  | <0.01  | 4.12 |
| MRDD001 | 8.0  | 10.0 | 1.64  | 49.8 | 88.9  | 0.91  | 0.58 | <0.01  | 5.51 |
| MRDD001 | 10.0 | 12.0 | 1.16  | 52   | 92.8  | 0.76  | 0.53 | 0.01   | 3.49 |
| MRDD001 | 12.0 | 14.0 | 0.22  | 54.4 | 97.1  | 0.19  | 0.31 | 0.01   | 0.62 |
| MRDD001 | 14.0 | 16.0 | 0.53  | 54   | 96.4  | 0.47  | 0.39 | 0.01   | 1.57 |
| MRDD001 | 16.0 | 18.0 | 0.61  | 53.6 | 95.7  | 0.42  | 0.43 | 0.01   | 1.87 |
| MRDD001 | 18.0 | 20.0 | 0.56  | 53.8 | 96    | 0.42  | 0.41 | 0.01   | 1.79 |
| MRDD001 | 20.0 | 22.0 | 0.65  | 53.7 | 95.8  | 0.48  | 0.45 | 0.01   | 2.04 |
| MRDD001 | 22.0 | 24.0 | 0.68  | 53.5 | 95.5  | 0.5   | 0.44 | 0.01   | 2.02 |
| MRDD001 | 24.0 | 26.0 | 0.53  | 52.9 | 94.4  | 0.36  | 0.38 | <0.01  | 1.65 |
| MRDD001 | 26.0 | 28.0 | 0.77  | 53   | 94.6  | 0.48  | 0.42 | 0.01   | 2.63 |
| MRDD001 | 28.0 | 30.0 | 0.39  | 53.6 | 95.7  | 0.29  | 0.32 | <0.01  | 1.32 |
| MRDD001 | 30.0 | 32.0 | 0.32  | 54.7 | 97.6  | 0.24  | 0.33 | < 0.01 | 0.98 |
| MRDD001 | 32.0 | 34.0 | 0.38  | 53.5 | 95.5  | 0.27  | 0.32 | 0.01   | 1.1  |
| MRDD001 | 34.0 | 36.0 | 0.27  | 54.6 | 97.4  | 0.22  | 0.34 | 0.01   | 0.8  |
| MRDD001 | 36.0 | 38.0 | 0.5   | 53.3 | 95.1  | 0.35  | 0.35 | 0.01   | 1.54 |
| MRDD001 | 38.0 | 40.0 | 0.38  | 54.3 | 96.9  | 0.26  | 0.33 | 0.01   | 1.19 |
| MRDD001 | 40.0 | 42.0 | 0.39  | 54.2 | 96.7  | 0.29  | 0.32 | <0.01  | 1.18 |
| MRDD001 | 42.0 | 44.0 | 0.24  | 54.6 | 97.4  | 0.2   | 0.33 | <0.01  | 0.67 |
| MRDD001 | 44.0 | 46.0 | 0.17  | 54.9 | 98    | 0.16  | 0.29 | <0.01  | 0.46 |
| MRDD001 | 46.0 | 48.0 | 0.26  | 54.5 | 97.3  | 0.23  | 0.32 | <0.01  | 0.71 |
| MRDD001 | 48.0 | 50.0 | 0.35  | 53.7 | 95.8  | 0.3   | 0.34 | 0.01   | 1.01 |
| MRDD001 | 50.0 | 52.0 | 0.23  | 54.8 | 97.8  | 0.18  | 0.33 | 0.01   | 0.62 |
| MRDD001 | 52.0 | 54.0 | 0.26  | 54.7 | 97.6  | 0.22  | 0.32 | <0.01  | 0.7  |
| MRDD001 | 54.0 | 56.0 | 0.24  | 54.7 | 97.6  | 0.17  | 0.36 | <0.01  | 0.63 |
| MRDD001 | 56.0 | 58.0 | 0.17  | 54.9 | 98    | 0.11  | 0.33 | <0.01  | 0.42 |
| MRDD001 | 58.0 | 60.0 | 0.21  | 54.5 | 97.3  | 0.18  | 0.4  | 0.01   | 0.54 |
| MRDD001 | 60.0 | 62.0 | 0.29  | 54.5 | 97.3  | 0.21  | 0.42 | 0.01   | 0.74 |
| MRDD001 | 62.0 | 64.0 | 0.37  | 54.3 | 96.9  | 0.22  | 0.44 | 0.01   | 0.91 |
| MRDD001 | 64.0 | 66.0 | 0.37  | 53.4 | 95.3  | 0.24  | 0.39 | 0.01   | 0.92 |
| MRDD001 | 66.0 | 68.0 | 0.41  | 53.3 | 95.1  | 0.27  | 0.4  | 0.01   | 1.06 |
| MRDD001 | 68.0 | 70.0 | 0.45  | 53.7 | 95.8  | 0.32  | 0.74 | 0.02   | 1.16 |
| MRDD001 | 70.0 | 72.0 | 0.47  | 53.8 | 96    | 0.41  | 0.47 | 0.03   | 1.19 |
| MRDD001 | 72.0 | 74.0 | 0.59  | 52.9 | 94.4  | 0.38  | 0.53 | 0.03   | 1.5  |
| MRDD001 | 74.0 | 76.0 | 0.53  | 53.4 | 95.3  | 0.52  | 0.54 | 0.03   | 1.44 |
| MRDD001 | 76.0 | 78.0 | 0.22  | 53.8 | 96    | 0.15  | 0.33 | 0.01   | 0.54 |
| MRDD001 | 78.0 | 80.0 | 0.18  | 54.7 | 97.6  | 0.13  | 0.27 | <0.01  | 0.45 |
| MRDD001 | 80.0 | 82.0 | 0.22  | 55   | 98.2  | 0.15  | 0.28 | <0.01  | 0.53 |
| MRDD001 | 82.0 | 84.0 | 0.23  | 54.9 | 98    | 0.15  | 0.27 | <0.01  | 0.56 |
| MRDD001 | 84.0 | 86.0 | 0.25  | 54.8 | 97.8  | 0.16  | 0.27 | <0.01  | 0.61 |
| MRDD001 | 86.0 | 88.0 | 0.26  | 53.9 | 96.2  | 0.17  | 0.31 | <0.01  | 0.63 |
| MRDD001 | 88.0 | 90.0 | 0.26  | 53.9 | 96.2  | 0.16  | 0.31 | <0.01  | 0.63 |
| MRDD001 | 90.0 | 92.0 | 0.13  | 55   | 98.2  | 0.09  | 0.26 | <0.01  | 0.31 |
| MRDD001 | 92.0 | 94.0 | 0.13  | 54.3 | 96.9  | 0.1   | 0.27 | <0.01  | 0.34 |
| MRDD001 | 94.0 | 96.0 | 0.22  | 54.6 | 97.4  | 0.14  | 0.31 | <0.01  | 0.5  |
| MRDD001 | 96.0 | 98.0 | 0.21  | 54.7 | 97.6  | 0.13  | 0.31 | <0.01  | 0.51 |

Table 3 - Assay results for hole MRDD001

|          |      |      | AI2O3 | CaO          | CaCO3        | Fe2O3 | MgO  | MnO   | SiO2 |
|----------|------|------|-------|--------------|--------------|-------|------|-------|------|
| Hole ID  | From | То   | %     | %            | %            | %     | %    | %     | %    |
| MRDD002  | 0.0  | 2.0  | 0.23  | 54.6         | 97.4         | 0.15  | 0.27 | <0.01 | 0.52 |
| MRDD002  | 2.0  | 4.0  | 1.4   | 51.2         | 91.4         | 0.71  | 0.45 | <0.01 | 4.12 |
| MRDD002  | 4.0  | 6.0  | 1.14  | 52           | 92.8         | 0.69  | 0.43 | <0.01 | 3.22 |
| MRDD002  | 6.0  | 8.0  | 0.93  | 52.7         | 94           | 0.6   | 0.4  | <0.01 | 2.59 |
| MRDD002  | 8.0  | 10.0 | 1.62  | 50.8         | 90.7         | 0.9   | 0.5  | 0.01  | 4.57 |
| MRDD002  | 10.0 | 12.0 | 1.23  | 51.9         | 92.6         | 0.73  | 0.46 | <0.01 | 3.48 |
| MRDD002  | 12.0 | 14.0 | 1.19  | 52.1         | 93           | 0.72  | 0.46 | <0.01 | 3.35 |
| MRDD002  | 14.0 | 16.0 | 1.14  | 52.2         | 93.2         | 0.68  | 0.44 | <0.01 | 3.17 |
| MRDD002  | 16.0 | 18.0 | 1.46  | 51.3         | 91.5         | 0.86  | 0.53 | <0.01 | 4.11 |
| MRDD002  | 18.0 | 20.0 | 1.29  | 51.7         | 92.3         | 0.79  | 0.47 | 0.01  | 3.56 |
| MRDD002  | 20.0 | 22.0 | 0.54  | 53.7         | 95.8         | 0.41  | 0.34 | <0.01 | 1.45 |
| MRDD002  | 22.0 | 24.0 | 0.85  | 52.7         | 94           | 0.6   | 0.44 | 0.01  | 2.34 |
| MRDD002  | 24.0 | 26.0 | 1.18  | 51.7         | 92.3         | 0.82  | 0.49 | 0.01  | 3.48 |
| MRDD002  | 26.0 | 28.0 | 0.65  | 53.3         | 95.1         | 0.47  | 0.4  | <0.01 | 2.09 |
| MRDD002  | 28.0 | 30.0 | 0.46  | 54.1         | 96.5         | 0.33  | 0.36 | <0.01 | 1.32 |
| MRDD002  | 30.0 | 32.0 | 0.6   | 53.3         | 95.1         | 0.43  | 0.39 | <0.01 | 1.62 |
| MRDD002  | 32.0 | 34.0 | 0.55  | 53.6         | 95.7         | 0.37  | 0.37 | <0.01 | 1 47 |
| MRDD002  | 34.0 | 36.0 | 0.95  | 52.2         | 93.2         | 0.57  | 0.57 | 0.01  | 2.66 |
| MRDD002  | 36.0 | 38.0 | 1.04  | 52.2         | 93.2         | 0.67  | 0.5  | 0.01  | 2.00 |
| MRDD002  | 38.0 | 40.0 | 0.5   | 53.6         | 95.7         | 0.07  | 0.55 | <0.01 | 1 38 |
| MRDD002  | 40.0 | 40.0 | 0.3   | 54.7         | 97.6         | 0.34  | 0.33 | <0.01 | 0.65 |
| MRDD002  | 42.0 | 44.0 | 0.24  | 54.5         | 97.3         | 0.10  | 0.33 | <0.01 | 0.05 |
| MRDD002  | 44.0 | 46.0 | 0.23  | 5/ 1         | 96.5         | 0.13  | 0.32 | <0.01 | 1 1  |
|          | 44.0 | 40.0 | 0.44  | 54.1         | 90.5         | 0.5   | 0.34 | <0.01 | 0.52 |
| MRDD002  | 40.0 | 50.0 | 0.22  | 55.2         | 97.4         | 0.10  | 0.29 | <0.01 | 0.32 |
| MRDD002  | 50.0 | 52.0 | 0.13  | 5/           | 96.4         | 0.13  | 0.20 | <0.01 | 0.51 |
| MRDD002  | 52.0 | 54.0 | 0.17  | 54.4         | 97.1         | 0.13  | 0.5  | <0.01 | 0.4  |
| MRDD002  | 54.0 | 56.0 | 0.32  | 54.4         | 97.1         | 0.21  | 0.30 | <0.01 | 0.70 |
| MRDD002  | 56.0 | 58.0 | 0.33  | 5/ 5         | 97.3         | 0.23  | 0.32 | 0.01  | 0.77 |
| MRDD002  | 58.0 | 60.0 | 0.22  | 54.5         | 97.5         | 0.13  | 0.34 | 0.01  | 0.51 |
| MRDD002  | 60.0 | 62.0 | 0.20  | 54.1         | 96.5         | 0.22  | 0.34 | 0.01  | 0.05 |
| MRDD002  | 62.0 | 64.0 | 0.37  | 5/           | 96.4         | 0.23  | 0.43 | 0.02  | 0.91 |
| MRDD002  | 64.0 | 66.0 | 0.35  | 5/ 1         | 96.5         | 0.5   | 0.4  | 0.02  | 0.52 |
| MRDD002  | 66.0 | 68.0 | 0.37  | 54.1         | 96.5         | 0.27  | 0.42 | 0.02  | 0.95 |
| MRDD002  | 68.0 | 70.0 | 0.37  | 5/ 1         | 96.5         | 0.23  | 0.33 | 0.02  | 0.55 |
| MRDD002  | 70.0 | 72.0 | 0.55  | 55.1         | 98.3         | 0.23  | 0.30 | 0.02  | 0.31 |
| MINDBOOL | 70.0 | 72.0 | AI203 | CaO          | CaCO3        | Fe2O3 | MgO  | MnO   | SiO2 |
| Hole ID  | From | То   | %     | %            | %            | %     | %    | %     | %    |
| MRDD005  | 0.0  | 1.8  | 0.31  | 55.2         | 98.5         | 0.17  | 0.2  | <0.01 | 0.74 |
| MRDD005  | 1.8  | 4.0  | 0.39  | 55.6         | 99.2         | 0.27  | 0.22 | <0.01 | 0.95 |
| MRDD005  | 4.0  | 6.0  | 0.63  | 53.9         | 96.2         | 0.43  | 0.31 | <0.01 | 1.65 |
| MRDD005  | 6.0  | 8.0  | 0.35  | 54.6         | 97.4         | 0.29  | 0.28 | <0.01 | 0.93 |
| MRDD005  | 8.0  | 10.0 | 0.33  | 55.3         | 98.7         | 0.25  | 0.32 | <0.01 | 0.81 |
| MRDD005  | 10.0 | 12.0 | 0.32  | 54.4         | 97.1         | 0.23  | 0.32 | <0.01 | 0.01 |
| MRDD005  | 12.0 | 14.0 | 0.32  | 55.4         | 98.9         | 0.21  | 0.25 | <0.01 | 0.75 |
| MRDD005  | 14.0 | 16.0 | 0.23  | 54.2         | 96.9         | 0.21  | 0.20 | <0.01 | 0.09 |
| MRDD005  | 16.0 | 18.0 | 0.4   | 54.5         | 96.7         | 0.31  | 0.20 | <0.01 | 0.50 |
| MRDD005  | 18.0 | 20.0 | 0.39  | 5/1 2        | 96.0         | 0.23  | 0.3  | <0.01 | 0.9  |
| MRDDOOF  | 20.0 | 20.0 | 0.52  | 54.5         | 07 C         | 0.23  | 0.31 | <0.01 | 0.74 |
|          | 20.0 | 22.0 | 0.2   | 54.7         | 97.0<br>00 0 | 0.13  | 0.52 | 0.01  | 0.58 |
|          | 22.0 | 24.0 | 0.10  | 53.4<br>57 F | 90.9<br>07 2 | 0.12  | 0.29 | 0.01  | 0.51 |
| MRDDOOF  | 24.0 | 20.0 | 0.10  | 54.5         | 57.5         | 0.15  | 0.29 | 0.01  | 0.30 |
|          | 20.0 | 20.2 | 0.20  | 55.5         | 30.7         | 0.19  | 0.3  | 0.01  | 0.50 |

Table 4 - Assay results for holes MRDD002 and MRDD005



Figure 6 – Plan view and assays of holes MRDD001, MRDD002 and MRDD005 at Kido deposit

Level 7, 300 Adelaide St, Brisbane, 4000 www.mayurresources.com ARBN 619 770 277 Mayur Resources



Figure 7 – Cross section and assays of holes MRDD001, MRDD002 and MRDD005 at Kido deposit

The project is located immediately adjacent to the coastline approximately 25 km northwest from Port Moresby, in close proximity to the Exxon Mobil PNG LNG plant and associated infrastructure. The drilling program has been independently designed and executed to delineate geological and geochemical continuity on site, and ultimately underpin a Definitive Feasibility Study for a vertically integrated limestone aggregate quarry and a quicklime plant. A secondary focus is to examine a domestic based cement industry and limestone/lime exports to the Pacific region and Australia (given the fact PNG is currently importing product from more distant Asian jurisdictions). Initial decrepitation tests have also been completed with encouraging results as to the suitability of the material for use as a construction material.

Managing Director Paul Mulder said he was delighted with the progress being made at the project to date.

"Fresh from our recent successful listing and capital raising, we are moving quickly to advance our projects per the commitments made in the Prospectus. The Port Moresby limestone project has great potential for rapid development of a low-cost facility that would be highly competitive in the domestic and international market place, producing strong cash flows for the Company and assisting in the industrial development of PNG."

"The fact we have had intersections of limestone from surface to depths of up to 98 metres for the first 3 holes, and subsequent holes reaching up to 151 metres, demonstrates the large opportunity for PNG to establish a self-sufficient lime industry. The project has enormous potential and enjoys major advantages including:

- the Kido and Lea Lea areas that have been drilled are unpopulated but easily accessible from nearby villages for labour support,
- being close to established world class gas facilities (Exxon Mobil PNG LNG),
- deposition being at surface,
- located right on the coastline for ease of access,
- next to the capital city of Port Moresby,
- close proximity to Asia & Australia,
- providing a domestically produced raw material replacement for imported quicklime and cement, and
- having the potential to create an important new industry with several hundred jobs and long-term wealth creation opportunities for PNG."

### COMPETENT PERSONS STATEMENT

Statements contained in this announcement relating to exploration results and Exploration Targets are based on, and fairly represents, information and supporting documentation prepared by Mr. Rod Huntley, who is a member of the Australian Institute of Mining & Metallurgy (AusIMM). Mr. Huntley has decades of sufficient and relevant experience (including PNG) that specifically relate to the delineation of limestone deposits. The type and method of assay testing used to obtain the results reported in this announcement (provided by ALS Global) were set by Mr Huntley in advance of this exploration campaign taking place. Mr Huntley qualifies as a Competent Person as defined in the Australian Code for Reporting of Identified Mineral Resources and Ore Reserves (JORC) Code 2012. Mr Huntley is an employee of Groundworks Pty Ltd and is contracted as a consultant to Mayur Resources and consents to the use of the matters based on his information in the form and context in which it appears. As a competent person Mr Huntley takes responsibility for the form and context in which both the Exploration Results and Exploration Target appears.

#### About Mayur Resources

Mayur has been operating since 2011 with the purpose of acquiring, exploring and developing mineral and energy development opportunities in Papua New Guinea and neighbouring countries.



Over the last 5 years Mayur has established an impressive portfolio of projects that includes:

- (a) Industrial Minerals. (construction sands, magnetite sands, heavy mineral sands and limestone) The Company is focusing its efforts on developing the Orokolo Bay Industrial Sands Project along the southern coast of PNG. Following the delineation of a JORC Resource, a Pre-Feasibility Study was completed based on a low-cost mining operation using a combination of excavators and simple gravity and magnetic mineral processing. The PFS also identified the opportunity to establish a multi-product mine that could produce fine grain construction sands, titanomagnetite (iron ore), industrial magnetite and a zircon-rich Valuable Heavy Mineral Concentrate by-product. The Company has secured a permit to export up to 200,000 tonnes of material that may enable the company to begin bulk sample shipments for customer testing by December 2018. The other key project in this portfolio is the Port Moresby Limestone Project which seeks to develop a multi-product lime based business for both domestic and export markets.
- (b) Copper and Gold. The Company holds the Feni Island Project in New Ireland Province, as well as the prospective Basilaki/ Sideia project in Milne Bay Province and the Sitipu project located in the Eastern Highlands region of the prolific Owen Stanley Fold Belt. The company is undertaking or planning exploration activities at each of the projects.
- (c) Coal and Power. The Company has delineated PNG's first JORC coal Resource at Depot Creek in the Gulf Province and has been developing a vertically integrated domestic power project at PNG's second largest city of Lae. A definitive feasibility study has been completed for a project that utilizes domestic coal from Depot Creek together with other renewable fuel sources to power a 52.5MW (net) power facility at Lae (with future scalability to 200MW). The Company has, via PNG Ports, secured an Environmental Approval from the Conservation and Environmental Protection Authority in PNG, to construct the power facility and on the request of PNG Power, the state-owned power entity, has submitted a detailed Power Purchase Agreement (PPA).

#### Enquiries

Jonathan Rees - General Manager info@mayurresources.com +61 7 3157 4400

## **APPENDIX A – JORC Table 1 Report – Port Moresby Limestone Project**

## JORC Code, 2012 Edition – Table 1 report

### Section 1 Sampling Techniques and Data

| Criteria                 | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques   | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>64 Rock chip samples selected on a grid pattern.</li> <li>The core samples were logged by the field geologist and then photographed for future reference.</li> <li>All HQ Diamond drill half core sampled by over two metre sample lengths by diamond core saw.</li> <li>Samples were then bagged up with an independent reference number</li> <li>All samples sent to ALS Laboratory in Brisbane and assayed for CaCO3, Al2O3, CaO, Fe2O3, MgO, MnO, SiO2. Samples not taken where rocks not available.</li> <li>Hole numbers were designated in incremental order as 'for Kido MRDD or Lea Lea LDH.</li> </ul> |
| Drilling<br>techniques   | • Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>HQ triple tube core drill.</li> <li>The drill rig required a supervising Geologist to log the hole, a trained drilling foreman to supervise drilling activities and 3-4 field hands to assist with operating the rig.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                 |
| Drill sample<br>recovery | <ul> <li>Method of recording and assessing core and chip sample recoveries and results assessed.</li> <li>Measures taken to maximise sample recovery and ensure representative nature of the samples.</li> <li>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Rock chip surface samples</li> <li>HQ half core 2m samples sent to ALS for crushing, pulverizing and assay analysis.</li> <li>Drilled triple tube to minimize core loss.</li> <li>Some core loss of finer material has occurred.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                      |



| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Logging                                                 | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                                                                                                                                             | <ul> <li>All rock chip samples visually inspected and recorded.</li> <li>All core geologically logged.</li> <li>The drill rig had its own Geologist. Each sample was logged by the Geologist supervising that specific rig. Two logging forms were used – one was the 'Sample Run Sheet' and the 'Lithology Log Sheet'. These forms were filled in by hand, and then later photographed and digitised into an Excel spreadsheet. The 'Sample Run Sheet' was recorded with the date, drillhole number, sample number, from and to depths, the hole co-ordinates, the sample recovery and magnetic susceptibility information. A 'comments' column was also provided.</li> <li>The 'Lithology Log Sheet' was recorded with the Drillhole number, the proposed hole number, the date, the co-ordinates in WGS84, the hole depth, the sampler and the Geologist's name.</li> <li>The columns consisted of the 'from-to' depths, the Lith codes, the colour, weathering, CaCO3 content, and sand size. A 'comments' column was also</li> </ul> |
|                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | to each geologist with assigned logging codes for them to use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sub-sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>All samples were collected at 2m interval.</li> <li>Core cut in half along orientation line left half to the lab right side of core remains.</li> <li>Representative sample retained.</li> <li>Field duplicate samples were collected roughly every 20 samples. Duplicate samples were split and placed into two separate sample bags after the sample was thoroughly homogenised. The sample was marked as a duplicate sample on the sample run sheet.</li> <li>HQ core is halved and sent to laboratory. Half core retained by Mayur.</li> <li>Insertion of blinds and blanks samples occurred approximately every 20 samples.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                      |



| Criteria                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality of<br>assay data and<br>laboratory<br>tests | <ul> <li>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</li> <li>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</li> <li>Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.</li> </ul> | <ul> <li>Once dry, the samples were packed into labelled polyweave bags with approximately 10 samples per bag.</li> <li>All samples sent to a suitably qualified Assay Laboratory in Brisbane. Namely ALS, Brisbane. Quality control done by laboratory where they were dried / crushed / split and pulverised.</li> <li>All assays done using the ME-ICP86 method.</li> <li>Blanks and standards inserted by Mayur. ALS also duplicated samples for assay regularly.</li> </ul>                                                                                                                                                            |
| Verification of<br>sampling and<br>assaying         | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> <li>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</li> <li>Discuss any adjustment to assay data.</li> </ul>                                                                                                                                                                                                                                                                                      | <ul> <li>One twinned hole was drilled.</li> <li>A total of 22 holes were twinned during the field programme, with good correlations. The hand written drillhole logs prepared by the field geologists were input into two Excel files that were proofread by the supervising Geologist for errors in data entry, logic and formatting.</li> </ul>                                                                                                                                                                                                                                                                                           |
| Location of<br>data points                          | <ul> <li>Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</li> <li>Specification of the grid system used.</li> <li>Quality and adequacy of topographic control.</li> </ul>                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Location of rock chip samples done using Garmin hand held GPS. Accuracy within 4m<sup>2</sup></li> <li>Table of rock sample locations – refer to table 1 of accompanying ASX announcement.</li> <li>Drill holes are all vertical. Collar locations are tabulated in table 2 of accompanying ASX announcement.</li> <li>Hole number, from and to for drill core samples – refer to in table 3 and 4 of accompanying ASX announcement.</li> <li>Drill Collar points will be rectified back to detailed survey when this survey is completed in the next few weeks.</li> <li>The data has been projected to UTM WGS84 55S.</li> </ul> |



| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data spacing<br>and<br>distribution                                 | <ul> <li>Data spacing for reporting of Exploration Results.</li> <li>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</li> <li>Whether sample compositing has been applied.</li> </ul>                                 | <ul> <li>High level drillhole planning and layout was guided by the extent ofurace outcrop and geological and topographic features patterns that showed the limestone unit.</li> <li>The drill pattern was based on holes 200 - 300 metres apart.</li> <li>All holes were situated perpendicular to the orientation of the limestone and where practical at 900 to the dip of the strata.</li> <li>The data density in the majority of areas is sufficient to establish grade and thickness continuity of the mineralised units. In some.</li> <li>Sample compositing has not been applied.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                   |
| Orientation of<br>data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | <ul> <li>No geological interpretation or relationships observed to bias the sampling</li> <li>Basic flat lying to moderately dipping limestone formation, allowing for majority of vertical holes with several angled holes.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sample<br>security                                                  | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Mayur developed a 'chain of custody' flowsheet prior to the of the commencement of the programme that was strictly adhered to.</li> <li>All drill sample/core trays were supervised for collection and logged onsite.</li> <li>Following this they were repacked into polyweave bags ready for dispatch from site. The Polybags were then transported to Port Moresby with Mayur staff members on board. The samples were then trucked to Port Moresby under the supervision of Mayur staff, either stored temporarily in the Mayur Container or taken directly to Mayur's freight forwarder in Port Moresby, Pacific Cargo Services, where a dispatch inventory was prepared and the samples either airfreighted by pallet or sea freighted FCL by container to Port of Brisbane.</li> <li>The company's Australian freight logistics representative Aussie Freight then cleared the samples through customs and quarantine and transported them to the ALS Laboratory in Brisbane.</li> </ul> |



### Section 2 Reporting of Exploration Results

Criteria

Audits or

reviews

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul>                                                                                                                                                                                                                                                                                                  | • The tenement (EL2303) comprising the Port Moresby Limestone Project is 100% owned by Mayur Iron PNG Ltd, a 100% owned subsidiary of Mayur Resources Limited. EL2303 is valid until 13 May 2018                                                                                                                                                                                   |
| Exploration<br>done by other<br>parties          | • Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | None known at this stage.                                                                                                                                                                                                                                                                                                                                                          |
| Geology                                          | • Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Early Tertiary Limestone deposit.</li> <li>Partially recrystallized.</li> <li>Flat lying to gently dipping massive homogeneous limestone.</li> <li>Slightly weathered and unaltered.</li> </ul>                                                                                                                                                                           |
| Drill hole<br>Information                        | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:         <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | <ul> <li>All rock chip samples taken at surface with coordinates and RL recorded.</li> <li>All drill hole collar locations including easting, northing and RL are recorded in table 2 of accompanying ASX announcement.</li> <li>All drill core samples record the from and to distance from the collar location down hole.</li> <li>Refer Tables 2 to 4 for specifics.</li> </ul> |



| Criteria                                                                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data<br>aggregation<br>methods                                                  | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul> | <ul> <li>No cut off used as yet</li> <li>Weighted average ie length x grade samples used for initial assessment</li> <li>No sample aggregates or compositing done.</li> <li>No metal equivalents being reported.</li> </ul>                                                                   |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>                                                                                                                                                                             | <ul> <li>Rock chip samples collected over a gridded pattern.</li> <li>Drill holes on each prospect is spaced approximately on 200m centres.</li> <li>The mineralisation is reported to be flat to shallow dipping hence intercept widths can be considered as the 'true thickness'</li> </ul> |
| Diagrams                                                                        | <ul> <li>Appropriate maps and sections (with scales) and tabulations of intercepts<br/>should be included for any significant discovery being reported These should<br/>include, but not be limited to a plan view of drill hole collar locations and<br/>appropriate sectional views.</li> </ul>                                                                                                                                                                                                                                                                                             | See location maps in accompanying ASX announcement.                                                                                                                                                                                                                                           |
| Balanced<br>reporting                                                           | <ul> <li>Where comprehensive reporting of all Exploration Results is not practicable,<br/>representative reporting of both low and high grades and/or widths should<br/>be practiced to avoid misleading reporting of Exploration Results.</li> </ul>                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Location and assay results only reported. No interpretive work done with<br/>these results as yet.</li> </ul>                                                                                                                                                                        |
| Other<br>substantive<br>exploration<br>data                                     | <ul> <li>Other exploration data, if meaningful and material, should be reported<br/>including (but not limited to): geological observations; geophysical survey<br/>results; geochemical survey results; bulk samples – size and method of<br/>treatment; metallurgical test results; bulk density, groundwater,<br/>geotechnical and rock characteristics; potential deleterious or<br/>contaminating substances.</li> </ul>                                                                                                                                                                 | <ul> <li>No other data has yet been collected. Survey and material testing is ongoing.</li> </ul>                                                                                                                                                                                             |
| Further work                                                                    | <ul> <li>The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</li> </ul>                                                                                                                                                                                                                           | • Further drilling will be done within the prospect areas once all assay data is received and processed. Additional assaying and survey work will also be completed. A bulk sample and trial blast may be completed in the near future.                                                       |