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Malcolm Pradhan, Chief Medical Officer



Alcidion



About Alcidion

•Founded by Ray Blight and Malcolm Pradhan in 2000 

•Listed on ASX in February 2106 

•Advanced health informatics platform 

•Primarily clinical decision focused (CDS), plus:  

•High performance logistics/workflow (Patient Flow) 

•Performance metrics (businesis and clincal) 

•Business efficiency (Revenue, cost reduction) 

•Patient safety (Avoidable Errors) 

•Now with predictive analytics



The Miya Platform

• Harvests and continuously monitors patient data

• Applies “smarts” to data (AI, algorithms, knowledge bases)

• Identifies presence (or emergence) of clinical risk

• Builds clinical intelligence and pushes to the clinician

• Pushes guidance on best practice risk mitigation

• Captures decisions and monitors completion

An Enterprise Health Informatics Platform

• Alcidion’s application s and products 

• Customer apps and third party apps 

Supports/Turbocharges Applications



The Promise of CDS

•Expert level clinical performance 
since the 1970’s in specialized areas 

•By early 2000’s strong evidence of 
benefit 

•Main centres of CDS & EHR 

•Regenstrief Institute, Indianapolis  

•Columbia-Presbyterian MC, NY  

•Beth Israel Hospital, Boston 

•LDS Hospital, Salt Lake City  

•VA Hospitals 

•Alerting 

•Ordering guidelines 

•Management guidelines 

•Diagnostic CDS

As a consequence, development and study of these protocols has con-
tinued. Figure 8.1 summarizes the results of their use in 111 LDS Hospital
patients, and compares these results to those of two other groups Massa-
chusetts General Hospital (MGH) and a group in Europe (the European
Collaborative Study) interested in the problem of treating ARDS. It is
becoming increasingly clear that the standardization of complex ventilator
care decisions possible with computers has a pronounced benefit for
patients.

It should be noted that here we have focused the definition of systems
for suggesting therapeutic interventions quite narrowly. We have limited
our example to a system that responds with a suggestion when the clinician
has explicitly or implicitly requested one. Such a computerized decision
support process is an area in which we are continuing to explore better ways
to interact with clinicians and better ways to capture and encode protocol
knowledge.

Diagnostic Decision Support in the Help System

The examples above have stressed different approaches to the activation of
medical decision support logic and to the delivery of the resulting decisions
to the computer user. Below, we change our focus. One of the greatest chal-
lenges for a computerized medical decision system is to participate usefully
in the diagnostic process. Diagnostic decision support systems (DDSS)
differ from the CDSS described above.Typical decision support systems can
draw attention to specific data elements and/or derive therapeutic sugges-
tions from these elements. Such applications offer assistance in the basic
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Drivers for EMRs

•Large scale EMR investments 

•Productivity? Safety? Outcomes? CDS? Stage Cumulative Capabilities

7
Medical record fully electronic; HCO able to contribute 
CCD as byproduct of EMR; Data warehousing in use

6
Physician documentation (structured templates), full 
CDSS (variance & compliance), full R-PACS

5 Closed loop medication administration

4 CPOE, CDSS (clinical protocols)

3
Clinical documentation (flow sheets), CDSS (error 
checking), PACS available outside Radiology

2
Clinical Data Repository, Controlled Medical 
Vocabulary, Clinical Data Support System

1 Ancillaries– Lab, Rad, Pharmacy

HIMSS EMRAM



The State of Post-EMR Healthcare

Leading causes of death in the US

Patient	harm	10-50%+	of	multi-day	episodes

Up	to	40% of	lab	results	are	not	seen

30% of	AMI	patients	not	on	guideline	meds

Mis- or	late	diagnosis	in	10%–20% of	cases



The Post-HiTech Reality

“Across clinical settings, 
new generation CDSSs 
integrated with EHRs do 
not affect mortality and 
might moderately improve 
morbidity outcomes”

Am J Public Health. 2014. 
104:e12–e22

“CDSSs … seem to reach a 
plateau with respect to 
their effectiveness when 
implemented in real-world 
settings. One could 
consider that paradigm 
shifts are required either 
in the design, the 
development, or the 
implementation of CDSSs”

Yearb Med Inform 2014:163-6

“CDSS malfunctions 
are widespread and 
often persist for long 
periods”

J Am Med Inform Assoc 2016; 
23:1068–1076

CPOE was associated 
with half as many pADEs
and medication errors

Syst Rev. 2014 Jun 4; 3:56

�



Lessons from the 80’s–90’s

•Workflow is paramount 

•Avoid punishing the user with 
additional obstacles 

•Response-times should be sub-
second i.e. “blazingly fast” 

•Users should be able to override 
nearly every decision 

We use a combination of executable logic, order-specific billboard text,
and fill-in-the-blank templates to solve many institutional cost and opera-
tional problems, while at the same time improving physicians’ workflow and
reducing their paperwork.

Reference Materials and Tools
In addition to the decision support described above, we provide easy access
to online references and resources, including MEDLINE, PubMed, UpTo-
Date,® drug information resources, a nutritional handbook, disease man-
agement guidelines, and a clinical calculator, as well as a link to our medical
library with access to hundreds of online medical journals.

Architecture of the Regenstrief Medical Record System

In this section, we offer a brief overview of the RMRS architecture, includ-
ing the knowledge base, inference engines, and user interfaces used for deci-
sion support.

Knowledgebase
The knowledge within RMRS is spread throughout multiple, integrated
resources. The electronic medical record (EMR) exists on a central system
that is tied to all of the ancillary systems and data sources.39 The PC-based
Medical Gopher order-entry system runs on a local area network (LAN)
connected to, yet distinct from, the central repository. The majority of our

206 B.W. Mamlin et al.

Figure 9.6. Ordering vancomycin.
Berner (ed). Clinical Decision Support Systems Theory and Practice. 
2ed. Springer. 2007



Some Lessons for Healthcare IT



Alcidion’s Approach

•Maximise the value of existing data sources 

•Every click (or tap) for the user is pushing a friendship 

•Each specialty is a separate business 

•What does a specialist want to know? 

•What should they know? 

•Smart infrastructure 

•Predictive 

•CDS 

•CDS/Predictive will only be widespread when we can trust it



The Miya Platform

Data to FHIR
Ontology mapping
Event generation

Decision support
Predictive models
Data storage

Data caching
Context management
Push to clients

HL7
SQL
Other

Integration & 
Mapping

FHIR-Based
Events

Client Access 
& APIs



Fewer Technology Barriers

•Recent advances in machine learning and ‘AI’ (expert systems) 

•We have very powerful systems for pattern recognition 

•Deep learning/deep networks 

•We have systems for 
uncertainty and rational 
decision making 

•Bayesian networks, 
Gaussian processes, etc. 

•Decision theoretic systems



Deep Learning Performance

•Good at perception type problems 

•Image recognition is a ‘solved problem’ 

•State of the art performance 

•Mammographic mass classification  

•Diabetic retinopathy 

•Lung nodule detection on CT 

•Breast cancer metastases detection in 
lymph nodes  

•Skin lesion classification

!
0

5

10

15

20

25

30

2010 2011 2012 2013 2014 2015 2016

ImageNet Image Recognition

Figure 3: Collage of some medical imaging applications in which
deep learning has achieved state-of-the-art results. From top-left to
bottom-right: mammographic mass classification (Kooi et al., 2016),
segmentation of lesions in the brain (top ranking in BRATS, ISLES
and MRBrains challenges, image from Ghafoorian et al. (2016b), leak
detection in airway tree segmentation (Charbonnier et al., 2017), di-
abetic retinopathy classification (Kaggle Diabetic Retinopathy chal-
lenge 2015, image from van Grinsven et al. (2016), prostate segmen-
tation (top rank in PROMISE12 challenge), nodule classification (top
ranking in LUNA16 challenge), breast cancer metastases detection in
lymph nodes (top ranking and human expert performance in CAME-
LYON16), human expert performance in skin lesion classification (Es-
teva et al., 2017), and state-of-the-art bone suppression in x-rays, im-
age from Yang et al. (2016c).

methods yet, but given the results in other areas it seems
only a matter of time. An interesting avenue of research
could be the direct training of deep networks for the re-
trieval task itself.

3.5.2. Image Generation and Enhancement
A variety of image generation and enhancement

methods using deep architectures have been proposed,
ranging from removing obstructing elements in im-
ages, normalizing images, improving image quality,
data completion, and pattern discovery.

In image generation, 2D or 3D CNNs are used to
convert one input image into another. Typically these
architectures lack the pooling layers present in classifi-
cation networks. These systems are then trained with a
data set in which both the input and the desired output
are present, defining the di↵erences between the gener-
ated and desired output as the loss function. Examples
are regular and bone-suppressed X-ray in Yang et al.

(2016c), 3T and 7T brain MRI in Bahrami et al. (2016),
PET from MRI in Li et al. (2014), and CT from MRI in
Nie et al. (2016a). Li et al. (2014) even showed that one
can use these generated images in computer-aided diag-
nosis systems for Alzheimer’s disease when the original
data is missing or not acquired.

With multi-stream CNNs super-resolution images
can be generated from multiple low-resolution inputs
(section 2.4.2). In Oktay et al. (2016), multi-stream net-
works reconstructed high-resolution cardiac MRI from
one or more low-resolution input MRI volumes. Not
only can this strategy be used to infer missing spatial in-
formation, but can also be leveraged in other domains;
for example, inferring advanced MRI di↵usion parame-
ters from limited data (Golkov et al., 2016). Other im-
age enhancement applications like intensity normaliza-
tion and denoising have seen only limited application of
deep learning algorithms. Janowczyk et al. (2016a) used
SAEs to normalize H&E-stained histopathology images
whereas Benou et al. (2016) used CNNs to perform de-
noising in DCE-MRI time-series.

Image generation has seen impressive results with
very creative applications of deep networks in signifi-
cantly di↵ering tasks. One can only expect the number
of tasks to increase further in the future.

3.5.3. Combining Image Data With Reports
The combination of text reports and medical image

data has led to two avenues of research: (1) leverag-
ing reports to improve image classification accuracy
(Schlegl et al., 2015), and (2) generating text reports
from images (Kisilev et al., 2016; Shin et al., 2015,
2016a; Wang et al., 2016e); the latter inspired by recent
caption generation papers from natural images (Karpa-
thy and Fei-Fei, 2015). To the best of our knowledge,
the first step towards leveraging reports was taken by
Schlegl et al. (2015), who argued that large amounts of
annotated data may be di�cult to acquire and proposed
to add semantic descriptions from reports as labels. The
system was trained on sets of images along with their
textual descriptions and was taught to predict semantic
class labels during test time. They showed that semantic
information increases classification accuracy for a va-
riety of pathologies in Optical Coherence Tomography
(OCT) images.

Shin et al. (2015) and Wang et al. (2016e) mined se-
mantic interactions between radiology reports and im-
ages from a large data set extracted from a PACS sys-
tem. They employed latent Dirichlet allocation (LDA),
a type of stochastic model that generates a distribution
over a vocabulary of topics based on words in a docu-
ment. In a later work, Shin et al. (2016a) proposed a sys-
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deep learning algorithms. Janowczyk et al. (2016a) used
SAEs to normalize H&E-stained histopathology images
whereas Benou et al. (2016) used CNNs to perform de-
noising in DCE-MRI time-series.

Image generation has seen impressive results with
very creative applications of deep networks in signifi-
cantly di↵ering tasks. One can only expect the number
of tasks to increase further in the future.

3.5.3. Combining Image Data With Reports
The combination of text reports and medical image

data has led to two avenues of research: (1) leverag-
ing reports to improve image classification accuracy
(Schlegl et al., 2015), and (2) generating text reports
from images (Kisilev et al., 2016; Shin et al., 2015,
2016a; Wang et al., 2016e); the latter inspired by recent
caption generation papers from natural images (Karpa-
thy and Fei-Fei, 2015). To the best of our knowledge,
the first step towards leveraging reports was taken by
Schlegl et al. (2015), who argued that large amounts of
annotated data may be di�cult to acquire and proposed
to add semantic descriptions from reports as labels. The
system was trained on sets of images along with their
textual descriptions and was taught to predict semantic
class labels during test time. They showed that semantic
information increases classification accuracy for a va-
riety of pathologies in Optical Coherence Tomography
(OCT) images.

Shin et al. (2015) and Wang et al. (2016e) mined se-
mantic interactions between radiology reports and im-
ages from a large data set extracted from a PACS sys-
tem. They employed latent Dirichlet allocation (LDA),
a type of stochastic model that generates a distribution
over a vocabulary of topics based on words in a docu-
ment. In a later work, Shin et al. (2016a) proposed a sys-
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Non-Image Performance

•Prediction of CCF and COPD 

•Chronic disease prediction 

•Predict suicide risk 

•Unplanned readmission after 
discharge 

•Alcidion applications 

•Occupancy prediction 

•Per patient resource utilisation 

•LOS (predicted discharge date) 

•Readmission prediction 

•Clinical risks



What are Deep Networks?

•Deep networks do not ‘understand’ the data they process

In reality much more 
deep and complex 

e.g. 24m nodes, 15b 
connections

Lee, H. et. al. Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations. ICML 09



Technical Challenges for Predictive AI & CDS

•Interoperability – data hiding as a 
strategy 

•Workflow integration 

•Many systems are not designed for 
integrated CDS and Predictive Analytics 

•Testing new models of care, enabled by 
algorithms, is hard 

•Deep models can be brittle 

•Confidently incorrect 

•Representing complex clinical data 
to neural networks 

•Lack of outcome data 

•Successful ML is supervised needing 
outcome data 

•Implies capturing the right data, in the 
right way (structured data) 

•Most data in EMRs is free text



`

•Login time 1 second 

•Important information assembled to the main patient list 

•Clinical risks highlighted

Specialty configuration Patient specific



Patient Flow Examples

•ED admission prediction 

•Probability of inpatient admission 

•Most likely unit 

•Based on previous history, lab 
orders, lab results 

•ED occupancy 

•Hospital occupancy 

•Resource prediction 

•State of art performance using 
deep learning



Real-Time Safety Monitoring

•Safety has been a post-hoc assessment of harm          → real-time risk 

•Monitoring for commission and omission errors 

•Using data to determine conditions for each patient   → level of complexity 

•Real-time contextual risk & complication detection     → early warnings 

•Highlight complexity and exposed risks 

•How many patients with INR > 5 right now 

•Who on an aminoglycoside antibiotic not monitored for levels & renal function 

•Financial drivers through Hospital Acquired Complications





Patient Complexity

•Patient complexity is important 

•Understanding LOS, expected discharge 

•Planning care within and in the community 

• Appropriate reimbursement through ABF 

• EMR data is largely free text with little structured data 

• Problem lists not routinely and consistently updated 

• Daily complications in nursing/allied health notes



Natural Language Processing (NLP)

•Significant improvements in non-health areas 

•Sentiment analysis 

•Product mentions 

•Support request routing 

•Non-health NLP based on large volumes of tagged data 

•Challenges for health care NLP 

•Concept detection 

•Disambiguation 

•Negation detection 



Alcidion’s Deep Learning Negation Detection

•Original note with concepts detected

While on the surface, this woman has suffered a [CVA], the [CT] brain [imaging] 
as well as the clinical picture are not congruent with one another. One  
would always have to exclude the possibility of a [brain_tumour].



Alcidion’s Deep Learning Negation Detection

•Original note with concepts detected 

•Negation detection

While on the surface, this woman has suffered a [CVA], the [CT] brain [imaging] 
as well as the clinical picture are not congruent with one another. One  
would always have to exclude the possibility of a [brain_tumour].

Pos/Neg Indicator CUI Concept Term Category Original String

pos C0040405 X-Ray Computed Tomography Diagnostic Procedure CT

pos C0079595 Imaging Techniques Diagnostic Procedure imaging

neg C0038454 Cerebrovascular accident Disease or Syndrome CVA

neg C0006118 Brain Neoplasms Neoplastic Process brain tumour



Demo



Summary

•Innovation is essential to building a sustainable healthcare system 

•Key factors for innovation 

• Interoperability 

•Workflow improvements 

•Automation 

•Predictive analytics, CDS and AI are possible today 

•Alcidion has built the Miya Platform as the foundation for real-time predictive 
analytics and CDS 



Q&A
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