2017
BluGlass Annual General Meeting

MONDAY 13 NOVEMBER 2017



#### **OUR VISION**

Creating a brighter future, through the impacts of lower temperature RPCVD





#### THE RPCVD BREAKTHROUGH

#### RPCVD - Remote Plasma Chemical Vapour Deposition

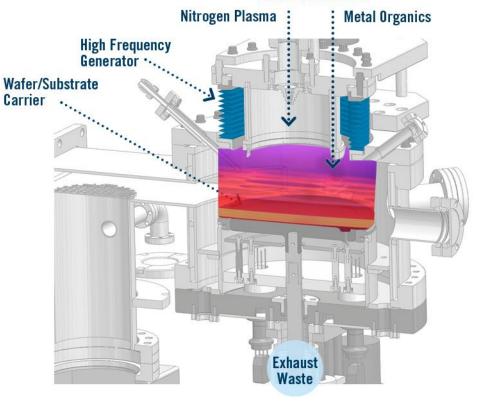




**Lower temperature** manufacturing processes

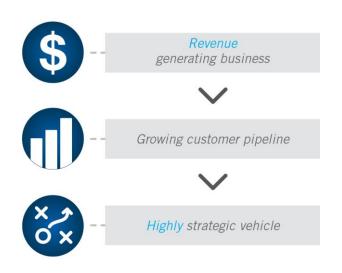


Lower **cost** inputs

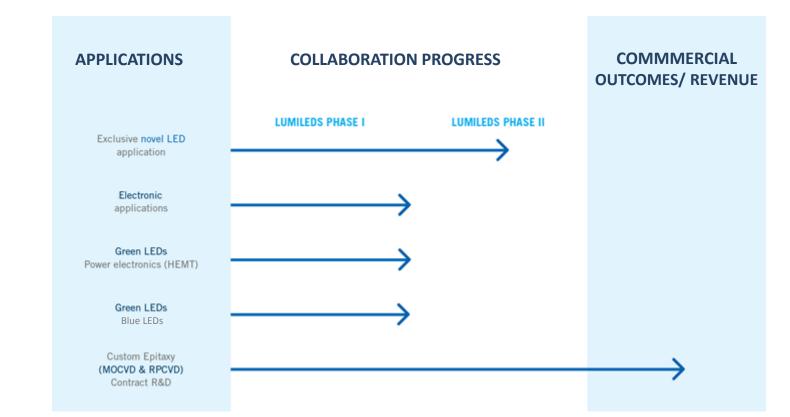



Higher performing devices




More Environmentally friendly & sensitive

#### PRECISE GAS FLOW




### **INTRODUCING EPIBLU**





#### **PROGRESS TOWARDS COMMERICALISATION**













### THE YEAR AHEAD



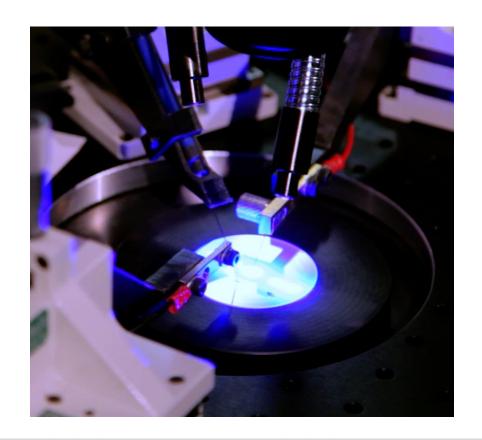
Complete industry evaluations





Select more partners/collaborators

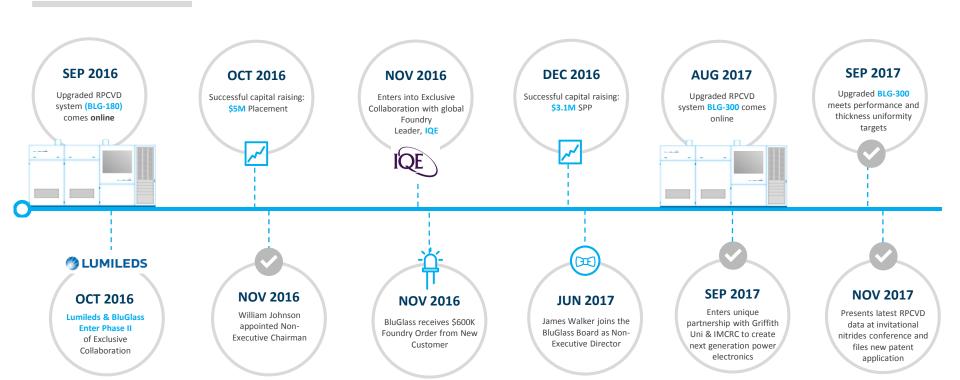





Generate and protect more IP






**Achieve commercial outcome** 





#### **2017 HIGHLIGHTS**

#### BluGlass has made significant technical progress in bringing RPCVD towards commercialisation



#### **IP PORTFOLIO**

#### Hardware & Process Patents



#### FINANCIAL PERFORMANCE

## CURRENT POSITION

#### FORECAST POSITION





BluGlass has a robust cash position to deliver initial commercialisation outcomes

# 2.5YRS CASH RUNWAY



#### **LUMILEDS COLLABORATION** - PHASE II PROGRESS

Exclusive collaboration agreement with market leader—device manufacturer



## PARTNERSHIP WITH WORLD LEADING LED COMPANY TO DEVELOP NOVEL LED APPLICATIONS

#### **RPCVD EVALUATION**

collaboration is focused on a novel application of RPCVD for LEDs

Phase I Complete

~

Phase II progressing well

**STATUS** 

Phase II is working to integrate BluGlass' RPCVD technology into certain Lumileds LED applications Lumileds and BluGlass
are both pleased with the progress of
Phase II and are confident in the project
achievement



#### **IQE COLLABORATION**

Strategic Partnership with world leading foundry manufacturer of advanced semiconductor wafer products to the

global semiconductor industry



IQE

PARTNERSHIP WITH WORLD LEADING FOUNDRY TO DEVELOP A RANGE OF ELECTRONIC APPLICATIONS

Exclusive Collaboration Agreement to co-develop nitride films for a range of electronic devices on both silicon and IQE's cREO™ technology using BluGlass' unique low temperature RPCVD technology

IQE products are used by major global chip companies to produce the high performance components that enable a wide range of high-tech applications including for the wireless industry

Positive collaboration is ongoing and both companies remain committed to achieving the technology goals



#### **VEECO & HC SEMITEK EVALUATIONS – RECENTLY RECOMMENCED**



# RPCVD EVALUATION WITH WORLDS LARGEST MOCVD EQUIPMENT MANUFACTURER



LEADING CHINESE
LED COMPANY EXPLORING RPCVD
FOR MULTIPLE APPLICATIONS

#### **RPCVD EVALUATION**

#### **STATUS**

Positive initial 2 inch trials for green LEDs







Recently upgraded BLG-300 with uniformity over 4 & 6" wafers has enabled this evaluation to recommence

#### RPCVD EVALUATION

#### **STATUS**

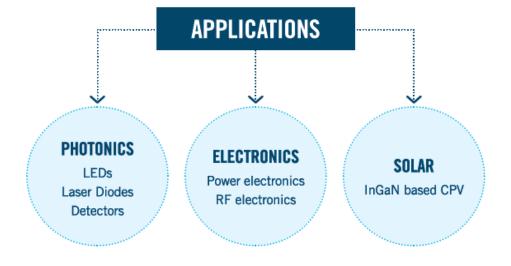
Targeting enhanced performance and lower cost LEDs using RPCVD



Recently upgraded BLG-300 with uniformity over 4 & 6" wafers has enabled this evaluation to recommence



#### **EPIBLU – CUSTOM EPITAXY SERVICE BUSINESS**



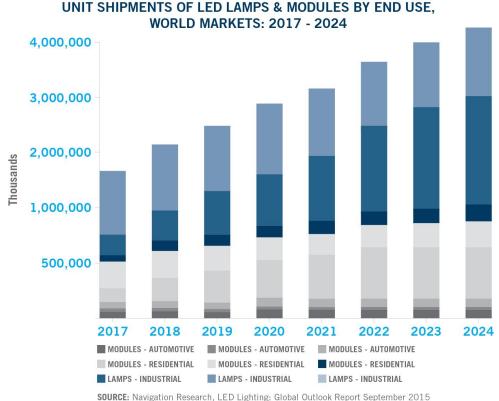



Growing pipeline of new customers

Providing both MOCVD & RPCVD services

Conducting services for green and blue LEDs, power electronics, and laser diodes




#### **END MARKETS** LED

10.4%

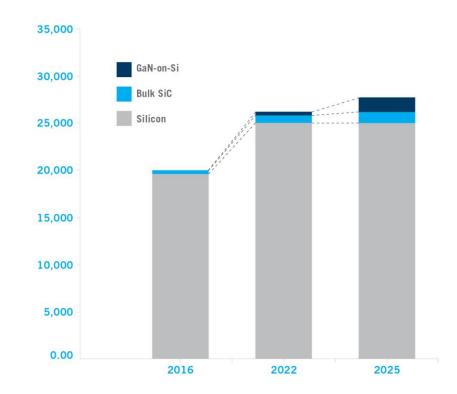
The LED market is expected to experience *CAGR of* **10.4%** through to 2025



Source: Research and Markets Report Global Light-Emitting Diodes (LED) Market Analysis & Trends - Industry Forecast to 2025; and Navigant Research



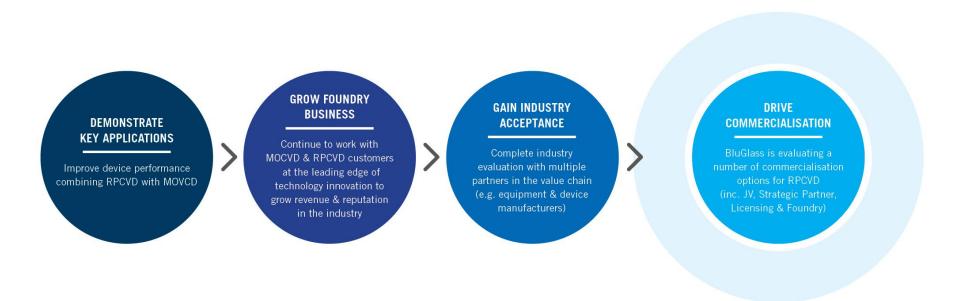
SOURCE: Navigation Research, LED Lighting: Global Outlook Report September 2015


#### **END MARKETS** POWER ELECTRONICS

The Power Electronics markets also presents a growing opportunity for the RPCVD technology

\$2.6B
The GaN and SiC
power electronics
market is expected to
be worth \$2.6B by
2022

GaN for power semiconductors is expected to grow at


~90% CAGR



Source: Stifel, Sep 2017; and Research and Markets

#### **PATH TO MARKET**

BluGlass continues to be active in all four segments of its path to market



#### **CONCLUSION** INVESTMENT HIGHLIGHTS



Disruptive platform technology



LED,

Power &

Multiple, growing end markets



Well funded, approaching commercialisation



Sales from

Services

High end service capability



A team with global leading expertise in semiconductors



Multiple awards & grants



#### **LUMILEDS PHASE II AND OTHER INDUSTRY COLLABORATIONS**

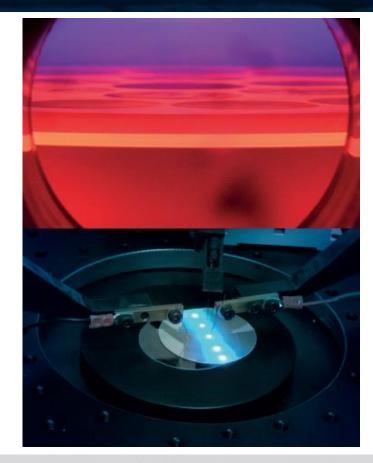


Lumileds pleased with progress and are committed to project

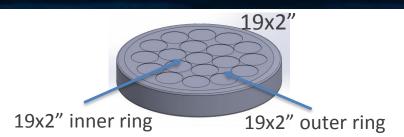


A number of iterations of BluGlass wafers have been fabricated at Lumileds

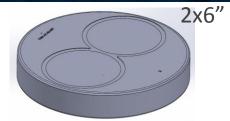


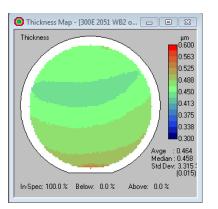

Both RPCVD systems with the latest chamber design are delivering on technical roadmap for Lumileds project

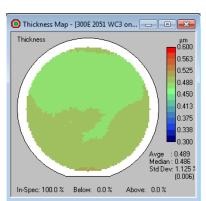


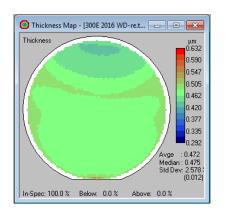

HC Semitek, IQE, and Veeco collaborations are all recommencing with the success of the upgraded BLG-300 RPCVD capability

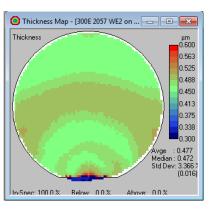



BluGlass has filed a patent





#### **BLG-300 RPCVD CHAMBER UPGRADE** – THICKNESS UNIFORMITY IMPROVEMENT














| WAFER DIAMETER                     | 2" (OUTER) | 2" (INNER) | 100 mm | 150 mm |
|------------------------------------|------------|------------|--------|--------|
| 2017 CHAMBER (THICKNESS STD DEV %) | 1.1        | 3.3        | 2.6    | 3.4    |
| 2016 CHAMBER (THICKNESS STD DEV %) | 6.8        | 7.8        | 10.9   |        |

#### **BLUGLASS CUSTOM EPITAXIAL SERVICES**





Targeting strategic customers requiring both RPCVD and MOCVD combined



BluGlass has repeat customers developing applications in both LEDs and Laser Diodes

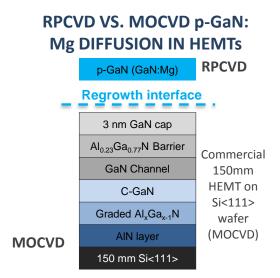


BluGlass has enhanced several demonstrators using our in-house RPCVD and MOCVD capabilities to market to the industry

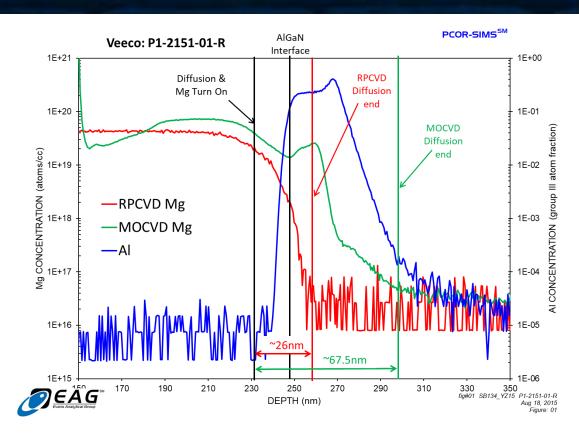


Recently showcased several **Key Demonstrators** at the recent semiconductor conference




#### **RPCVD TECHNOLOGY DEVELOPMENT AREAS**

| RPCVD<br>DIFFERENTIATOR | BLUE LEDS | GREEN LEDS | LASER DIODES | RGB MICRO -<br>LEDS AND SOLAR | UV LEDS | POWER<br>ELECTRONICS | ELECTRONICS<br>APPLICATIONS |
|-------------------------|-----------|------------|--------------|-------------------------------|---------|----------------------|-----------------------------|
| p-GaN                   | •         | ••         | ••           | •                             |         | ••                   |                             |
| p-AlGaN                 | •         | •          | ••           | •                             | •       |                      |                             |
| InGaN                   | •         | •          | •            | •                             |         |                      |                             |
| AIN / Silicon           |           |            |              |                               |         |                      | ••                          |
| AIN / sapphire          | ••        |            |              |                               | •       |                      |                             |


BluGlass active collaborations and/or customers

BluGlass actives areas in discussions with potential collaborators and/or customers

#### RPCVD p-GaN FOR E-MODE HEMTs — COLLABORATION WITH VEECO



Note the Mg SIMS trace for the MOCVD growth is overlayed on the RPCVD p-GaN on HEMT SIMS trace for ease of comparison. The Al traces from the 2DEG (common to both structures) was used for alignment purposes.



# LED STRUCTURE GROWN USING MOCVD

#### p-GaN GROWN USING RPCVD

p-GaN grown at INTERMEDIATE

to HIGH temperature


Multi-Quantum-Well (MQW) InGaN layer, the ACTIVE REGION of an LED grown at low temperature



n-GaN grown at high temperature

GaN grown at high temperature

Sapphire Substrate





Multi-Quantum-Well (MQW) InGaN layer, the ACTIVE REGION of an LED – grown at low temperature



n-GaN grown at high temperature

GaN grown at high temperature

Sapphire Substrate

AOCVE

#### **KEY DEMONSTRATOR:** RPCVD p-GaN + MOCVD FOR GREEN LEDs

#### **2016 AGM DATA**

| MOCVD* EL DATA       | 20 mA |
|----------------------|-------|
| Light Output (mW)    | 1.3   |
| V <sub>f</sub> (V)   | 3.5   |
| Peak Wavelength (nm) | 525   |
| FWHM (nm)            | 35    |

| RPCVD* EL DATA       | 20 mA |  |
|----------------------|-------|--|
| Light Output (mW)    | 1.6   |  |
| V <sub>f</sub> (V)   | 3.9   |  |
| Peak Wavelength (nm) | 525   |  |
| FWHM (nm)            | 33    |  |

% Performance improvement of

RPCVD compared to MOCVD +10%

[Light Output / (I x Vf)]

#### 2017 DATA\*\*

| MOCVD EL DATA        | 20 mA | 50 mA | 100 mA |
|----------------------|-------|-------|--------|
| Light Output (mW)    | 1.3   | 3.3   | 6.2    |
| V, (V)               | 3.1   | 3.7   | 4.6    |
| Peak Wavelength (nm) | 514   | 511   | 508    |
| FWHM (nm)            | 28    | 31    | 33     |

| RPCVD EL DATA        | 20 mA | 50 mA | 100 mA |
|----------------------|-------|-------|--------|
| Light Output (mW)    | 1.9   | 4.5   | 8.1    |
| V, (V)               | 3.0   | 3.6   | 4.5    |
| Peak Wavelength (nm) | 515   | 512   | 510    |
| FWHM (nm)            | 30    | 30    | 33     |

% Performance improvement of RPCVD compared to MOCVD [Light Output / (i x Vf)]

+47% +39% +35%

\*\* Both RPCVD and MOCVD data obtained from p-GaN overgrown on the same partial LEDs grown by MOCVD up to and including the EBL. All measurements taken at wafer level using indium dot contacts.



<sup>\*</sup> MOCVD data from best results for complete LED structure grown without any interruption and using a p-AlGaN EBL. RPCVD data taken from best results overgrown on equivalent MOCVD-grown MQWs. RPCVD samples do not contain an EBL. All measurements taken at wafer level using indium dot contacts.

# LED STRUCTURE GROWN USING MOCVD

# p-GaN & MQW GROWN USING RPCVD

p-GaN grown at **INTERMEDIATE** 

to HIGH temperature



Multi-Quantum-Well (MQW) InGaN layer, the ACTIVE REGION of an LED – grown at low temperature



n-GaN grown at high temperature

GaN grown at high temperature

Sapphire Substrate

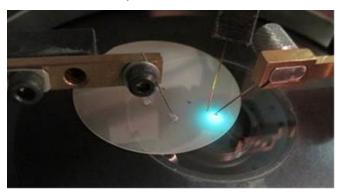




Multi-Quantum-Well (MQW) InGaN layer, the *ACTIVE REGION* of an LED – grown at low temperature



n-GaN grown at high temperature


GaN grown at high temperature

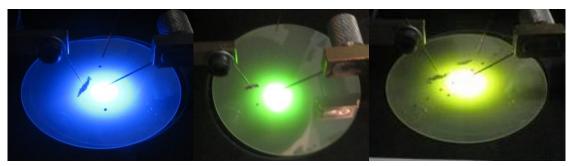
Sapphire Substrate

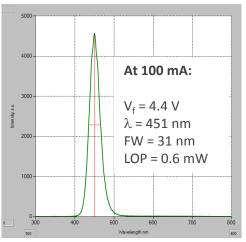


#### **KEY DEMONSTRATOR:** RPCVD MQWs for RGB LEDs

#### **RPCVD MQW BASED LED 2016**







To attract further industry interest BluGlass continues to enhance the RPCVD capability



Low temperature RPCVD is favourable for In rich InGaN MQWs useful for longer wavelength LEDs

#### **RPCVD MQW BASED LEDs 2017**

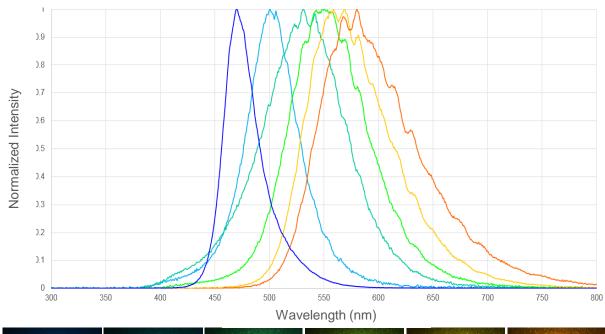






**Micro-LED** players have shown interest in RPCVD capability for blue, green, yellow and red LEDs for display and other applications

#### **KEY DEMONSTRATOR:** RGB RPCVD FOR MICRO-LEDS AND SOLAR APPLICATIONS




Preliminary RPCVD demonstration of RGB LED capability



RPCVD MQW capability is also a key step to the realisation of high efficiency solar cells through multi junction architecture

#### **EL SPECTRA OF LEDs GROWN USING RPCVD MQWS**

















bluglass.com.au

