

Australian Mines Limited

ABN 68 073 914 191

Level 34, 1 Eagle Street Brisbane, Queensland 4000 +61 7 3184 9184 info@australianmines.com.au

australianmines.com.au

17 June 2019

Drilling indicates resource expansion potential at Flemington cobalt project

HIGHLIGHTS:

- High grade cobalt and scandium intersections returned from Flemington resource extension drilling
- Intersections included¹:
 - 12 metres at 1,732ppm (0.17%) cobalt from 10 metres deep
 - 10 metres at 1,600ppm (0.16%) cobalt from 4 metres deep
 - 5 metres at 1,383ppm (0.13%) cobalt from 13 metres deep
 - 4 metres at 1,283ppm (0.12%) cobalt from 7 metres deep
 - 12 metres at 402ppm scandium from 9 metres deep
 - 20 metres at 425ppm scandium from 8 metres deep
 - 10 metres at 309ppm scandium from 12 metres deep
 - 10 metres at 267ppm scandium from 1 metre deep
- Early indications suggest the mineralised horizon continues to extend beyond the existing Flemington Mineral Resource²
- Further assays from recently completed resource expansion drilling anticipated to become available throughout the coming month

¹ See Table 1 and Appendix 1 and Appendix 2 of this report for more information

² The Mineral Resource Estimate for the Flemington Cobalt-Nickel-Scandium Project is reported under JORC 2012 Guidelines and was reported by Australian Mines Limited on 31 October 2017. The Mineral Resource for Flemington, as announced on 31 October 2017 is: Measured 2.5Mt @ 0.103% Co & 403ppm Sc, Indicated 0.2Mt @ 0.076% Co & 408ppm Sc. There has been no Material Change or Re-estimation of the Mineral Resource since this 31 October 2017 announcement by Australian Mines

Advanced battery materials developer, **Australian Mines Limited** ("Australian Mines" or "the Company") (Australia ASX: AUZ; USA OTCQB: AMSLF; Frankfurt Stock Exchange: MJH) is pleased to announce positive assay results from the first phase of the Company's resource expansion drilling campaign³ at its 100%-owned Flemington Project in New South Wales, Australia.

The Flemington Project, located in central New South Wales, is Australian Mines' second battery materials project after its flagship Sconi Nickel-Cobalt-Scandium Project in North Queensland, where the Company continues to advance project development following the release of a Bankable Feasibility Study in November 2018⁴ and a subsequent optimised study reported earlier this month⁵.

Over 3,300 metres of air core drilling was completed at Flemington over a 16-day period in May 2019. Based on a nominal 80 metre by 80 metre grid spacing, this first phase of the Company's resource expansion drilling campaign was designed to test the interpreted western continuation of the Flemington mineralisation and to enable the Company's independent mining consultants to update the project's current Mineral Resource Estimate⁶ at a future date.

To date, the Company has received assay results from 26 holes of the total 197 holes that comprise the May 2019 drilling program⁷. These initial results indicate that the mineralisation at Flemington may extend more than one kilometre beyond the boundary of the current Resource and, encouragingly, also appears to remain open to the west, and potentially to the north, of the current drilling.

Further assays results are anticipated to become available throughout the coming month.

Given the highly encouraging early results (as summarised in this report), a follow-up largescale expansion drilling campaign is currently being planned for later in the calendar year to enable the Company to better determine the full extent of the mineralised envelope at Flemington and, in turn, maximise the Mineral Resource⁸ potential for the Project.

Australian Mines notes that the recent drill program returned some anomalous copper results, with grades approaching 0.5%⁹. This will require further analysis by the Company's geological team to understand its significance (if any), and the project's potential to host copper mineralisation.

³ Australian Mines, AUZ secures funds to accelerate cobalt and nickel projects, released 27 February 2019

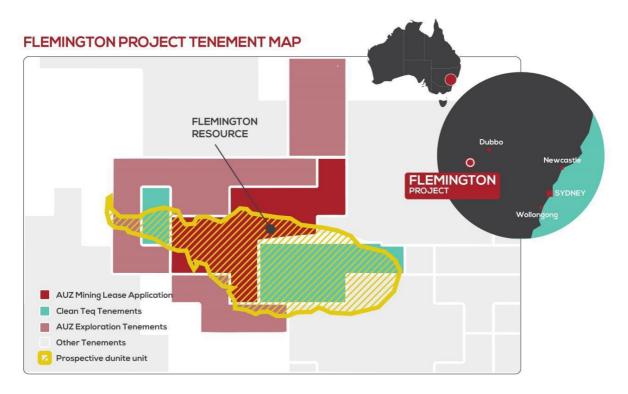
⁴ Australian Mines, BFS supports strong commercial case for developing Sconi, released 20 November 2018

⁵ Australian Mines, Sconi to generate \$5 billion in free cashflow, released 13 June 2019

⁶ The Mineral Resource Estimate for the Flemington Cobalt-Nickel-Scandium Project is reported under JORC 2012 Guidelines and was reported by Australian Mines Limited on 31 October 2017. The Mineral Resource for Flemington, as announced on 31 October 2017 is: Measured 2.5Mt @ 0.103% Co & 403ppm Sc, Indicated 0.2Mt @ 0.076% Co & 408ppm Sc. There has been no Material Change or Re-estimation of the Mineral Resource since this 31 October 2017 announcement by Australian Mines

⁷ see Table 1 and Appendix 1 and 2 for full details of the assays received as at this time of this report

⁸ The Mineral Resource Estimate for the Flemington Cobalt-Nickel-Scandium Project is reported under JORC 2012 Guidelines and was reported by Australian Mines Limited on 31 October 2017. The Mineral Resource for


Flemington, as announced on 31 October 2017 is: Measured 2.5Mt @ 0.103% Co & 403ppm Sc, Indicated 0.2Mt @ 0.076% Co & 408ppm Sc. There has been no Material Change or Re-estimation of the Mineral Resource since this 31 October 2017 announcement by Australian Mines

⁹ see Table 1 and Appendix 1 and 2 for full details of the copper assays

Drill Hole	Intersection	Sub-Sections
FMA19_372	12m @ 1732ppm Co from 10m depth	6m @ 2246ppm Co from 12m depth 1m @ 3520ppm Co at 14m depth
	12m @ 402ppm Sc from 9m depth	3m @ 501ppm Sc from 17m depth
	12m @ 2240ppm Cu from 9m depth	2m @ 2646ppm Cu from 12m depth* 4m @ 2652ppm Cu from 17m depth*
FMA19_377	10m @ 1600ppm Co from 4m depth	4m @ 3185ppm Co from 6m depth 1m @ 3900ppm Co at 8m depth 1m @ 5900ppm Co at 9m depth
	10m @ 267ppm Sc from 1m depth	3m @ 375ppm Sc from 2m depth
	6m @ 3376ppm Cu from 4m depth	1m @ 4330ppm Cu at 6m depth* 2m @ 4810ppm Cu from 8m depth*
FMA19_371	5m @ 1383ppm Co from 13m depth	2m @ 1495ppm Co from 16m depth
		1m @ 1880ppm Co at 14m depth
	20m @ 425ppm Sc from 8m depth	3m @ 525ppm Sc from 24m depth
FMA19_373	4m @ 1283ppm Co from 7m depth	2m @ 1805ppm Co from 7m depth 1m @ 1910ppm Co at 8m depth
	5m @ 1260ppm Cu from 6m depth	2m @ 1700ppm Cu from 8m depth
FMA19_370	3m @ 1406ppm Co from 14m depth	1m @ 2270ppm Co at 15m depth
	10m @ 390ppm Sc from 12m depth	5m @ 511ppm Sc from 12m depth 1m @ 760ppm Sc at 14m depth

Table 1: Highlighted intersections returned from the first 26 holes of Australian Mines' resource expansion drilling campaign¹⁰ at its 100%-owned Flemington Project in New South Wales, Australia. Full details, including the drill hole location information and the assays returned over each individual metre are documented in Appendix 1 and Appendix 2 of this report respectively. Further assays results are anticipated to become available throughout the next four to six weeks.

¹⁰ Australian Mines, AUZ secures funds to accelerate cobalt and nickel projects, released 27 February 2019

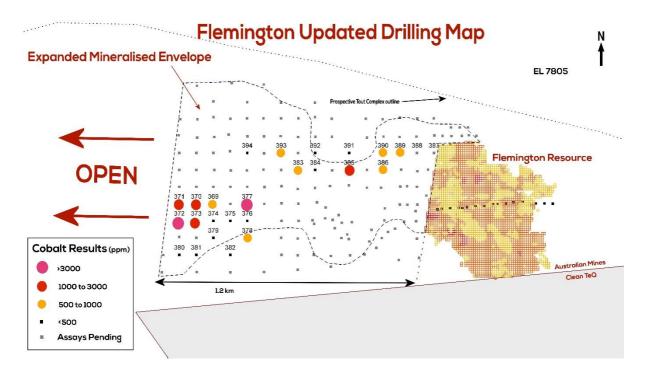


Figure 1: Located in central New South Wales, the Flemington Project covers a significant portion of the prospective Tout Complex (as outlined in yellow in this figure), being the geological unit that hosts both Australian Mines' Flemington cobalt-scandium-nickel deposit¹¹ and Clean TeQ's Sunrise adjoining deposit¹².

¹¹ Australian Mines acquired a 100% interest in the Flemington Project in the September quarter of 2018. The Mineral Resource Estimate for the Flemington Cobalt-Nickel-Scandium Project is reported under JORC 2012 Guidelines and was reported by Australian Mines Limited on 31 October 2017. The Mineral Resource for Flemington, as announced on 31 October 2017 is: Measured 2.5Mt @ 0.103% Co & 403ppm Sc, Indicated 0.2Mt @ 0.076% Co & 408ppm Sc. There has been no Material Change or Re-estimation of the Mineral Resource since this 31 October 2017 announcement by Australian Mines.

There is significant potential to expand the Mineral Resource given only about 1% of the interpreted prospective geology at Flemington has been comprehensively tested to date.

¹² Australian Mines' Flemington Project has been established to be the direct continuation of Clean TeQ Holding's Sunrise orebody, with the deposit separated arbitrarily by the tenement boundary. (See Australian Mines, Resource confirms Flemington's cobalt credentials, released 31 October 2017)

Figure 2: Flemington location map showing the expanded mineralised boundary¹³ targeted by Australian Mines' recent air core drilling program with available assay results locations highlighted. Assays for the remaining drill holes are not currently available. Full details of this drilling program are documented in Appendix 1 and Appendix 2 of this report respectively. Further assays results are anticipated to become available throughout July 2019.

¹³ The drilling program was focused on confirming Australian Mines' geological modelling in known areas of prospective geology and expanding the known boundaries of the mineralised envelope outwards from the existing Flemington resource. During the drilling program a large zone of prospective geology with thicknesses ranging from a few metres to tens-of-metres thick was encountered. Based on observations made by the Company's geological team during the 2017 drilling campaigns, and cross referenced with the resulting 2017 assays, the mineralised zones within the Flemington project have a distinct appearance which enables the Company's geologists to map potential *mineralised envelopes* via visual identification. It is on that basis that the *expanded mineralised envelope* as drafted in Figure 2 is done on a qualitative basis and, thus, is subjective only.

Figure 3: Photo taken of air core drilling rig in operation during Australian Mines' May 2019 resource expansion drill program at its Flemington Project in central New South Wales.

Australian Mines Managing Director, Benjamin Bell, commented: *"Following their highly successful exploration and resource expansion campaigns at Sconi over the past year, I am very pleased to have our exploration team on the ground at Flemington to complete the first phase of, what is slated to be, an extensive resource definition drilling program.*

"Initial results from the Flemington drilling are highly encouraging and the westerly extensions to the mineralisation appear, at this early stage of the program, to have the potential to significantly increase the cobalt mineralisation footprint of the project area.

"I have repeatedly stated that I am optimistic about the exploration potential of Flemington, given only a fraction of the Project's prospective geology has been comprehensively evaluated to date, and the ground that has been drill tested by Australian Mines since taking ownership of the project, has routinely intersected high-grade cobalt mineralisation¹⁴.

¹⁴ ASX-listed (Australia-listed) and TSX-listed (Canadian-listed) cobalt-focussed companies typically refer to any cobalt grade above at or above 1,000ppm (0.1%) as being "high-grade". Thus, based on the assays returned from this resource extension drill program, it would appear reasonable to view Flemington as a high-grade cobalt project (see Australian Mines, Maiden Mineral Resource confirms Flemington Project's cobalt credentials, released 31 October 2017)

"With further extensional exploration drilling planned for later in the year, we anticipate being in a position to review the Mineral Resource Estimate¹⁵ for Flemington towards the end of this year.

We remain committed to advancing the Flemington Project as a future potential second production source of nickel and cobalt sulphate for Australian Mines and will continued to work co-operatively with all stakeholders in the region to minimise any disruption our programs may have on their farming activities."

ENDS

For further information:

Investor contact: Sophia Bolhassan Investor Relations Manager Ph: +61 8 6166 5804 E: investorrelations@australianmines.com.au Media contact: Andrew Rowell Cannings Purple Ph: + 61 400 466 226 E: arowell@canningspurple.com.au

¹⁵ The Mineral Resource Estimate for the Flemington Cobalt-Nickel-Scandium Project is reported under JORC 2012 Guidelines and was reported by Australian Mines Limited on 31 October 2017. The Mineral Resource for Flemington, as announced on 31 October 2017 is: Measured 2.5Mt @ 0.103% Co & 403ppm Sc, Indicated 0.2Mt @ 0.076% Co & 408ppm Sc. There has been no Material Change or Re-estimation of the Mineral Resource since this 31 October 2017 announcement by Australian Mines

Appendix 1

Flemington Air Core Drill Program – Drill hole location table

Note: Grey text indicates drill holes whose assays are still pending

Hole-ID	Easting	Northing	Elevation (Metres)	Hole Depth (Metres)	Azimuth (degrees)	Azimuth (degrees)
FMA19-295	537209	6376947	304	7	0	-90
FMA19-296	537115	6376937	304	4	0	-90
FMA19-297	536794	6376905	304	7	0	-90
FMA19-298	536638	6376891	304	7	0	-90
FMA19-299	536480	6376879	304	7	0	-90
FMA19-300	536322	6376879	305	7	0	-90
FMA19-301	536163	6376879	305	10	0	-90
FMA19-302	535998	6376879	305	10	0	-90
FMA19-303	536080	6377046	305	31	0	-90
FMA19-304	536004	6376959	305	25	0	-90
FMA19-305	536715	6376960	305	10	0	-90
FMA19-306	536720	6377276	297	16	0	-90
FMA19-307	536791	6377285	297	20	0	-90
FMA19-308	536641	6377202	299	4	0	-90
FMA19-309	536643	6377121	299	4	0	-90
FMA19-310	536709	6377123	298	2	0	-90
FMA19-311	536715	6377106	298	9	0	-90
FMA19-312	536717	6377039	301	7	0	-90
FMA19-313	536794	6376955	300	7	0	-90
FMA19-314	536885	6376958	300	7	0	-90
FMA19-315	536844	6377040	299	7	0	-90
FMA19-316	536894	6377115	300	8	0	-90
FMA19-317	536846	6377111	299	3	0	-90
FMA19-318	536885	6377071	299	3	0	-90
FMA19-319	536878	6377035	299	4	0	-90
FMA19-320	536813	6377085	300	4	0	-90
FMA19-321	536803	6377126	300	7	0	-90
FMA19-322	536832	6377149	301	2 /	0	-90
FMA19-323	536769	6377183	305	19	0	-90
FMA19-324	536768	6377133	307	3	0	-90
FMA19-325	536728	6377207	310	19	0	-90
FMA19-326	536880	6377287	304	16	0 /	-90
FMA19-327	536964	6377277	301	10	0	-90
FMA19-328	537045	6377277	301	19	0	-90

FMA19-370	536160	6377200	298	28	Ø	-90
FMA19-369	536240	6377200	298	31	0	-90
FMA19-368	536320	6377200	299	17	0	-90
FMA19-367	536480	6377200	299	3	0	-90
FMA19-366	536080	6377440	294	31	0	-90
FMA19-365	536240	6377440	295	28	0	-90
FMA19-364	536319	6377448	295	16	0	-90
FMA19-363	536638	6377038	295	7	Q	-90
FMA19-362	536638	6376959	296	6	0	-90
FMA19-361	536562	6376961	296	7	0	-90
FMA19-360	536561	6377040	296	6	0	-90
FMA19-359	536561	6377121	297	6	0	-90
FMA19-358	536562	6377203	297	4	0	-90
FMA19-357	536561	6377360	297	22	0	-90
FMA19-356	536476	6377361	297	34	0	-90
FMA19-355	536398	6377358	297	41	0	-90
FMA19-354	536322	6377357	298	37	0	-90
FMA19-353	536246	6377359	298	31	0	-90
FMA19-352	536160	6377360	298	31	0	-90
FMA19-351	536080	6377360	298	40	0	-90
FMA19-350	536080	6377280	298	46	0	-90
FMA19-349	536160	6377280	298	46	0	-90
FMA19-348	536240	6377280	298	33	0	-90
FMA19-347	536320	6377280	298	19	0	-90
FMA19-346	536400	6377280	299	16	0	-90
FMA19-345	536481	6377279	299	22	0	-90
FMA19-344	536563	6377284	299	16	0	-90
FMA19-343	536638	6377271	300	18	0	-90
FMA19-342	536986	6377078	300	10	0	-90
FMA19-341	536975	6377023	301	10	0	-90
FMA19-340	536953	6376962	295	7	0	-90
FMA19-339	537008	6376993	295	7	0	-90
FMA19-338	537034	6377039	296	7	0	-90
FMA19-337	537063	6377069	296	10	0	-90
FMA19-336	537046	6377123	297	6	0	-90
FMA19-335	537049	6377179	297	10	0	-90
FMA19-334	537139	6377117	399	13	0	-90
FMA19-333	537195	6377119	399	21	0	-90
FMA19-332	537202	6377355	300	37	0	-90
FMA19-331	537199	6377280	302	25	0	-90
FMA19-330	537201	6377197	301	19	0	-90

FMA19-371	536080	6377200	298	32	0	-90
FMA19-372	536080	6377120	298	28	0	-90
FMA19-373	536160	6377120	297	19	0	-90
FMA19-374	536240	6377120	297	22	0	-90
FMA19-375	536320	6377120	297	10	0	-90
FMA19-376	536400	6377120	297	7	0	-90
FMA19-377	536400	6377200	297	26	0	-90
FMA19-378	536400	6377040	297	10	0	-90
FMA19-379	536240	6377040	297	10	0	-90
FMA19-380	536080	6376960	297	10	0	-90
FMA19-381	536160	6376960	297	7	0	-90
FMA19-382	536320	6376960	297	7	0	-90
FMA19-382 FMA19-383	536640	6377360	290	10	0	-90
FMA19-384	536720	6377360	296	10	0	-90
FMA19-385	536880	6377360	296	10	0	-90
FMA19-386	537040	6377360	295	7	0	-90
FMA19-387	537280	6377440	295	40	0	-90
FMA19-388	537200	6377440	295	33	0	-90
FMA19-389	537120	6377440	295	13	0	-90
FMA19-390	537040	6377440	294	7	0	-90
FMA19-391	536880	6377440	294	7	0	-90
FMA19-392	536720	6377440	301	7	0	-90
FMA19-393	536560	6377440	301	28	0	-90
FMA19-394	536400	6377440	300	43	0	-90
FMA19-395	537261	6377353	300	25	0	-90
FMA19-396	537153	6377283	300	16	0	-90
FMA19-397	537244	6377239	300	24	0	-90
FMA19-398	537193	6377166	300	16	0	-90
FMA19-399	537193	6377084	300	10	0	-90
FMA19-400	537199	6377036	300	9	0	-90
FMA19-401	537168	6377195	299	16	0	-90
FMA19-402	537121	6377281	299	15	0	-90
FMA19-403	537125	6377361	299	8	0	-90
FMA19-404	536964	6377360	299	14	<u> </u>	-90
FMA19-405	536800	6377358	298	7	9	-90
FMA19-406	536479	6377438	298	46	0	-90
FMA19-407	536160	6377440	298	37	0	-90
FMA19-408	536639	6377439	298	24	0	-90
FMA19-409	537197	6377517	297	37	0	-90
FMA19-410	537118	6377515	297	22	0 /	-90
FMA19-411	537042	6377517	297	21	0 /	-90
FMA19-412	536964	6377512	301	7	Ø	-90

FMA19-413	536799	6377516	301	7	0	-90
FMA19-414	536721	6377516	301	9	0	-90
FMA19-415	536640	6377515	300	36	0	-90
FMA19-416	536557	6377519	300	40	0	-90
FMA19-417	536479	6377518	299	43	0	-90
FMA19-418	536401	6377518	299	41	0	-90
FMA19-419	536312	6377526	299	37	0	-90
FMA19-420	536244	6377515	303	34	0	-90
FMA19-421	536164	6377512	303	38	0	-90
FMA19-422	536077	6377523	303	31	0	-90
FMA19-423	536084	6377599	303	34	0	-90
FMA19-424	536165	6377598	302	31	0	-90
FMA19-425	536241	6377608	302	31	0	-90
FMA19-426	536321	6377601	302	34	0	-90
FMA19-427	536399	6377603	302	34	0	-90
FMA19-428	536476	6377603	302	40	0	-90
FMA19-429	536559	6377603	302	33	0	-90
FMA19-430	536641	6377603	302	31	0	-90
FMA19-431	536719	6377608	302	16	0	-90
FMA19-432	536798	6377601	302	7	0	-90
FMA19-433	536958	6377601	302	7	0	-90
FMA19-434	537038	6377599	302	7	0	-90
FMA19-435	537119	6377606	301	31	0	-90
FMA19-436	537201	6377602	301	40	0	-90
FMA19-437	537279	6377603	300	43	0	-90
FMA19-438	537282	6377522	300	43	0	-90
FMA19-439	536719	6377677	295	34	0	-90
FMA19-440	536559	6377677	295	43	0	-90
FMA19-441	536400	6377679	296	28	0	-90
FMA19-442	536240	6377682	296	37	0	-90
FMA19-443	536163	6377756	296	49	0	-90
FMA19-444	536327	6377769	296	34	0	-90
FMA19-445	536478	6377762	298	25	0	-90
FMA19-446	536160	6377040	297	10	∧ 0	-90
FMA19-447	537296	6377174	297	19	0	-90
FMA19-448	537316	6377176	297	31	0	-90
FMA19-449	537356	6377179	297	28	0	-90
FMA19-450	537396	6377183	/297	34	0	-90
FMA19-451	537414	6377181	297	31	0	-90
FMA19-452	537435	6377184	297	34	0 /	-90
FMA19-453	537475	6377191	297	32	0	-90
FMA19-454	537517	6377191	297 /	28	Ø	-90
TOT OT A	001011	0011101	201	20	\backslash	

FMA19-455	537558	6377198	297	29	0	-90
					0	
FMA19-456	537579	6377200	296	25	0	-90
FMA19-457	537618	6377203	296	25	0	-90
FMA19-458	537618	6377203	296	7	0	-90
FMA19-459	537654	6377207	296	7	0	-90
FMA19-460	537698	6377212	296	7	0	-90
FMA19-461	537760	6377202	297	7	0	-90
FMA19-462	537801	6377202	297	7	0	-90
FMA19-463	537840	6377201	296	7	0	-90
FMA19-464	537357	6377479	296	37	0	-90
FMA19-465	537323	6377478	296	34	0	-90
FMA19-466	537320	6377520	296	37	0	-90
FMA19-467	537362	6377519	296	37	0	-90
FMA19-468	537411	6377520	296	31	0	-90
FMA19-469	537444	6377523	296	22	0	-90
FMA19-470	537480	6377520	296	19	0	-90
FMA19-471	537360	6377560	295	43	0	-90
FMA19-472	537401	6377560	295	7	0	-90
FMA19-473	537440	6377560	295	28	0	-90

Appendix 2

Flemington Air Core Drill Program – Assay Table

Assays from the May 2019 Resource expansion drill program as received by the Company at the time of this report. It should be noted that principal elements of interest are reported in the table. Assays of other elements are omitted from Appendix 2 as they are not material to the overall outcome of results.

Hole ID	From (meters)	To (meters)	Sample ID	Drilling Type	Co (ppm)	Cu (ppm)	Ni (ppm)	Sc (ppm)
EN440 ,000	, ,	· ,						
FMA19_369	0	1	6295	AC	379	315	1020	75
FMA19_369	1	2	6296	AC	126	330	275	50
FMA19_369	2	3	6297	AC	48	340	140	35
FMA19_369	3	4	6298	AC	42	360	145	30
FMA19_369	4	5	6299	AC	43	330	165	55
FMA19_369	5	6	6301	AC	28	460	105	90
FMA19_369	6	7	6302	AC	35	395	160	80
FMA19_369	7	8	6303	AC	43	685	190	205
FMA19_369	8	9	6304	AC	93	595	200	285
FMA19_369	9	10	6305	AC	697	560	325	235
FMA19_369	10	11	6306	AC	793	760	430	300
FMA19_369	11	12	6307	AC	532	885	500	255
FMA19_369	12	13	6308	AC	545	440	730	185
FMA19_369	13	14	6309	AC	320	175	860	175
FMA19_369	14	15	6310	AC	165	95	525	170
FMA19_369	15	16	6311	AC	105	85	380	170
FMA19_369	16	17	6312	AC	71	45	255	145
FMA19_369	17	18	6313	AC	166	40	565	155
FMA19_369	18	19	6314	AC	213	35	715	150
FMA19_369	19	20	6315	AC	324	35	1140	140
FMA19_369	20	21	6316	AC	395	35	1470	150
FMA19_369	21	22	6317	AC	347	40	1520	140
FMA19_369	22	23	6318	AC	371	30	1540	140
FMA19_369	23	24	6319	AC	336	30	1290	135
FMA19_369	24	25	6320	AC	345	50	1330	145
FMA19_369	25	26	6321	AÇ	340	45	1310	140
FMA19_369	26	27	6322	AC	342	40	1380	140
FMA19_369	27	28	6323	AC	256	40	920	145
FMA19_369	28	29	6324	AC	75	25	270	130
FMA19_369	29	30	6326	AC	104	25	330	130
FMA19_370	0	1	6327	AC	122	125	395	75
FMA19_370	1	2	6328	AC	119	185	250	60
FMA19_370	2	3	6329	AC	68	190	155	65
FMA19_370	3	4	6330	AC	89	195	215	70

Hole ID	From (meters)	To (meters)	Sample ID	Drilling Type	Co (ppm)	Cu (ppm)	Ni (ppm)	Sc (ppm)
FMA19_370	4	5	6332	AC	62	255	170	90
FMA19_370	5	6	6333	AC	62	335	155	110
FMA19_370	6	7	6334	AC	81	670	175	125
FMA19_370	7	8	6335	AC	51	665	120	115
FMA19_370	8	9	6336	AC	53	625	130	105
FMA19_370	9	10	6337	AC	55	690	130	115
FMA19_370	10	11	6338	AC	46	630	110	80
FMA19_370	11	12	6339	AC	77	755	165	170
FMA19_370	12	13	6340	AC	85	1060	235	385
FMA19_370	13	14	6341	AC	296	860	345	605
FMA19_370	14	15	6342	AC	910	1270	520	760
FMA19_370	15	16	6343	AC	2270	1220	1030	430
FMA19_370	16	17	6344	AC	1040	800	1250	375
FMA19_370	17	18	6345	AC	674	340	1470	340
FMA19_370	18	19	6346	AC	458	220	1610	285
FMA19_370	19	20	6347	AC	268	105	1410	315
FMA19_370	20	21	6348	AC	182	60	1060	235
FMA19_370	21	22	6349	AC	150	70	690	175
FMA19_370	22	23	6351	AC	71	65	315	125
FMA19_370	23	24	6352	AC	93	50	490	135
FMA19_370	24	25	6353	AC	112	40	550	160
FMA19_370	25	26	6354	AC	75	20	465	130
FMA19_370	26	27	6355	AC	66	30	415	120
FMA19_371	0	1	6356	AC	87	80	440	105
FMA19_371	1	2	6357	AC	54	150	160	45
FMA19_371	2	3	6358	AC	39	150	190	55
FMA19_371	3	4	6359	AC	35	130	155	50
FMA19_371	4	5	6360	AC	25	135	115	40
FMA19_371	5	6	6362	AC	23	135	115	50
FMA19_371	6	7	6363	AC	61	185	525	160
FMA19_371	7	8	6364	AC	53	150	470	145
FMA19_371	8	9	6365	AC	56	205	610	195
FMA19_371	9	10	6366	AC	71	300	1290	285
FMA19_371	10	11	6367	AĆ	101	325	1920	280
FMA19_371	11	12	6368	AC	54	225	1230	340
FMA19_371	12	13	6369	AC	49	280	905	395
FMA19_371	13	14	6370	AC	1270	595	1130	425
FMA19_371	14	15	6371	AC	1880	845	1210	400
FMA19_371	15	16	6372	AC	775	595	790	450
FMA19_371	16	17	6373	AC	1470	780	860	505
FMA19_371	17	18	6374	AC	1520	765	905	475

Hole ID	From (meters)	To (meters)	Sample ID	Drilling Type	Co (ppm)	Cu (ppm)	Ni (ppm)	Sc (ppm)
FMA19_371	18	19	6376	AC	558	400	650	485
	19	20	6377	AC	394	325	655	530
FMA19_371	20	21	6378	AC	437	265	690	485
FMA19_371	21	22	6379	AC	307	305	735	545
FMA19_371	22	23	6380	AC	320	225	1900	405
FMA19_371	23	24	6381	AC	362	235	1970	405
FMA19_371	24	25	6382	AC	432	310	1120	615
FMA19_371	25	26	6383	AC	410	235	930	505
FMA19_371	26	27	6384	AC	324	135	1150	455
FMA19_371	27	28	6385	AC	225	70	1460	325
FMA19_371	28	29	6386	AC	83	30	555	165
FMA19_371	29	30	6387	AC	69	25	305	125
FMA19_371	30	31	6388	AC	65	25	285	140
FMA19_372	0	1	6389	AC	67	245	260	80
FMA19_372	1	2	6390	AC	38	385	140	55
FMA19_372	2	3	6392	AC	35	575	185	95
FMA19_372	3	4	6393	AC	24	500	155	65
FMA19_372	4	5	6394	AC	24	730	190	105
FMA19_372	5	6	6395	AC	24	605	165	95
FMA19_372	6	7	6396	AC	31	655	190	135
FMA19_372	7	8	6397	AC	99	485	320	165
FMA19_372	8	9	6398	AC	157	635	295	215
FMA19_372	9	10	6399	AC	319	1460	385	340
FMA19_372	10	11	6401	AC	1130	1590	400	345
FMA19_372	11	12	6402	AC	808	1530	390	335
FMA19_372	12	13	6403	AC	2480	2670	520	360
FMA19_372	13	14	6404	AC	1480	2420	670	390
FMA19_372	14	15	6405	AC	3520	2850	1040	370
FMA19_372	15	16	6406	AC	860	1780	740	450
FMA19_372	16	17	6407	AC	2570	1980	730	365
FMA19_372	17	18	6408	AC	2560	2610	1090	485
FMA19_372	18	19	6409	AC	1490	2900	1240	510
FMA19_372	19	20	6410	AC	1170	2540	1540	510
FMA19_372	20	21	6411	AĆ	1860	2560	1640	375
FMA19_372	21	22	6412	AC	857	865	2500	265
FMA19_372	22	23	6413	AC	204	230	735	165
FMA19_372	23	24	6414	AC	514	630	850	245
FMA19_372	24	25	6415	AC	198	210	495	190
FMA19_372	25	26	6416	AC	141	140	400	160
FMA19_372	26	27	6417	AC	95	70	330	120
FMA19_373	0	1 /	6418	AC	166	255	280	85

Hole ID	From (meters)	To (meters)	Sample ID	Drilling Type	Co (ppm)	Cu (ppm)	Ni (ppm)	Sc (ppm)
FMA19_373	1	2	6419	AC	1470	440	280	85
FMA19_373	2	3	6420	AC	134	745	255	145
FMA19_373	3	4	6421	AC	212	700	225	150
FMA19 373	4	5	6422	AC	446	705	205	135
FMA19 373	5	6	6423	AC	744	840	195	85
FMA19_373	6	7	6424	AC	648	930	190	55
FMA19 373	7	8	6426	AC	1700	1000	295	60
FMA19 373	8	9	6427	AC	1910	1530	390	55
FMA19_373	9	10	6428	AC	1110	1870	440	65
FMA19_373	10	11	6429	AC	414	970	470	105
FMA19 373	11	12	6430	AC	198	255	390	150
FMA19 373	12	13	6432	AC	100	110	240	145
FMA19 373	13	14	6433	AC	97	90	290	170
FMA19 373	14	15	6434	AC	106	70	375	190
	15	16	6435	AC	65	45	235	130
	16	17	6436	AC	71	35	260	145
	17	18	6437	AC	65	35	235	130
	0	1	6438	AC	139	210	145	55
FMA19 374	1	2	6439	AC	124	215	120	55
FMA19_374	2	3	6440	AC	50	155	85	40
FMA19_374	3	4	6441	AC	50	140	60	25
FMA19_374	4	5	6442	AC	70	155	60	35
FMA19_374	5	6	6443	AC	39	115	90	25
FMA19_374	6	7	6444	AC	30	90	45	25
FMA19_374	7	8	6445	AC	32	105	25	25
FMA19_374	8	9	6446	AC	54	120	60	25
FMA19_374	9	10	6447	AC	36	140	55	20
FMA19_374	10	11	6448	AC	34	140	25	25
FMA19_374	11	12	6449	AC	31	130	40	20
FMA19_374	12	13	6451	AC	51	180	70	35
FMA19_374	13	14	6452	AC	31	155	45	30
FMA19_374	14	15	6453	AC	32	140	10	30 <
FMA19_374	15	16	6454	AC	32	165	20	30
FMA19_374	16	17	6455	AC	53	250	35	40
FMA19_374	17	18	6456	AC	44	225	30	35
FMA19_374	18	19	6457	AC	45	225	40	35
FMA19_374	19	20	6458	AC	51	295	55	70
FMA19_374	20	21	6459	AC	56	360	30	65
FMA19_375	0	1	6460	AC	98	280	195	60
FMA19_375	1	2	6462	AC	46	270	60	35
FMA19_375	2	3	6463	AC	36	130	30	35

Hole ID	From (meters)	To (meters)	Sample ID	Drilling Type	Co (ppm)	Cu (ppm)	Ni (ppm)	Sc (ppm)
FMA19_375	3	4	6464	AC	40	115	10	35
FMA19_375	4	5	6465	AC	36	115	25	35
FMA19_375	5	6	6466	AC	37	110	25	30
FMA19_375	6	7	6467	AC	50	145	25	40
FMA19_375	7	8	6468	AC	41	125	15	30
FMA19_375	8	9	6469	AC	35	120	15	30
FMA19_376	0	1	6470	AC	47	200	100	45
FMA19_376	1	2	6471	AC	58	220	60	65
FMA19_376	2	3	6472	AC	57	210	25	60
FMA19_376	3	4	6473	AC	63	275	60	60
FMA19_376	4	5	6474	AC	58	200	50	65
FMA19_376	5	6	6476	AC	65	230	60	70
FMA19_377	0	1	6477	AC	129	330	250	85
FMA19_377	1	2	6478	AC	116	490	315	190
FMA19_377	2	3	6479	AC	89	765	265	385
FMA19_377	3	4	6480	AC	134	615	375	390
FMA19_377	4	5	6481	AC	688	2000	545	350
FMA19_377	5	6	6482	AC	1160	3100	900	290
FMA19_377	6	7	6483	AC	1210	4330	930	250
FMA19_377	7	8	6484	AC	1730	1210	755	220
FMA19_377	8	9	6485	AC	3900	4660	1510	240
FMA19_377	9	10	6486	AC	5900	4960	2590	200
FMA19_377	10	11	6487	AC	727	730	615	160
FMA19_377	11	12	6488	AC	331	320	705	160
FMA19_377	12	13	6489	AC	238	255	355	150
FMA19_377	13	14	6490	AC	116	90	210	120
FMA19_377	14	15	6492	AC	136	70	440	155
FMA19_377	15	16	6493	AC	239	80	790	190
FMA19_377	16	17	6494	AC	144	40	510	170
FMA19_377	17	18	6495	AC	245	55	795	145
FMA19_377	18	19	6496	AC	351	85	1260	125
FMA19_377	19	20	6497	AC	436	60	1660	115 <
FMA19_377	20	21	6498	AC	462	60	1870	125
FMA19_377	21	22	6499	AĆ	433	115	1680	125
FMA19_377	22	23	6501	AC	467	110	1740	120
FMA19_377	23	24	6502	AC	445	80	1630	115
FMA19_377	24	25	6503	AC	503	345	1280	135
FMA19_378	0	1	6504	AC	506	775	790	165
FMA19_378	1	2	6505	AC	106	225	200	65
FMA19_378	2	3	6506	AC	78	255	110	55
FMA19_378	3	4	6507	AC	69	210	85	50

Hole ID	From (meters)	To (meters)	Sample ID	Drilling Type	Co (ppm)	Cu (ppm)	Ni (ppm)	Sc (ppm)
FMA19 378	4	5	6508	AC	83	270	75	80
	5	6	6509	AC	64	265	60	70
	6	7	6510	AC	70	255	70	85
	7	8	6511	AC	70	260	60	80
	8	9	6512	AC	77	375	70	110
FMA19_379	0	1	6513	AC	77	220	125	55
FMA19_379	1	2	6514	AC	56	175	95	45
FMA19_379	2	3	6515	AC	41	115	30	40
FMA19_379	3	4	6516	AC	53	150	35	50
FMA19_379	4	5	6517	AC	45	170	35	45
FMA19_379	5	6	6518	AC	49	115	25	45
FMA19_379	6	7	6519	AC	43	110	15	35
FMA19_379	7	8	6520	AC	40	120	10	30
FMA19_379	8	9	6521	AC	46	155	15	40
FMA19_380	0	1	6522	AC	58	125	85	50
FMA19_380	1	2	6523	AC	99	175	165	55
FMA19_380	2	3	6524	AC	83	90	550	75
FMA19_380	3	4	6526	AC	88	45	475	120
FMA19_380	4	5	6527	AC	110	85	540	115
FMA19_380	5	6	6528	AC	80	30	645	110
FMA19_380	6	7	6529	AC	93	50	470	140
FMA19_380	7	8	6530	AC	148	40	415	170
FMA19_380	8	9	6532	AC	139	50	880	250
FMA19_380	9	10	6533	AC	152	55	705	255
FMA19_380	10	11	6534	AC	147	50	700	235
FMA19_380	11	12	6535	AC	129	45	595	240
FMA19_380	12	13	6536	AC	84	35	360	165
FMA19_380	13	14	6537	AC	60	25	190	140
FMA19_380	14	15	6538	AC	55	25	150	135
FMA19_380	15	16	6539	AC	54	30	145	125
FMA19_380	16	17	6540	AC	48	25	135	120
FMA19_380	17	18	6541	AC	52	60	155	125
FMA19_381	0	1	6542	AC	48	120	100	50
FMA19_381	1	2	6543	AĆ	35	120	50	25
FMA19_381	2	3	6544	AC	30	75	10	25
FMA19_381	3	4	6545	AC	32	75	25	25
FMA19_381	4	5	6546	AC	32	85	15	25
FMA19_381	5	6	6547	AC	33	110	15	35
FMA19_382	0	1	6548	AC	51	210	140	50
FMA19_382	1	2	6549	AC	55	230	125	60
FMA19_382	2	3	6551	AC	65	450	55	70

Hole ID	From (meters)	To (meters)	Sample ID	Drilling Type	Co (ppm)	Cu (ppm)	Ni (ppm)	Sc (ppm)
FMA19_382	3	4	6552	AC	71	320	80	110
FMA19_382	4	5	6553	AC	58	280	35	90
FMA19_382	5	6	6554	AC	60	345	50	85
FMA19_383	0	1	6555	AC	281	150	1440	140
FMA19_383	1	2	6556	AC	259	110	1790	210
FMA19_383	2	3	6557	AC	119	70	2760	285
FMA19_383	3	4	6558	AC	110	80	2480	315
FMA19_383	4	5	6559	AC	255	75	2370	235
FMA19_383	5	6	6560	AC	567	85	2300	275
FMA19_383	6	7	6562	AC	827	55	3970	240
FMA19_383	7	8	6563	AC	202	35	2890	205
FMA19_383	8	9	6564	AC	123	40	625	165
FMA19_384	0	1	6565	AC	294	205	1120	120
FMA19_384	1	2	6566	AC	234	565	490	70
FMA19_384	2	3	6567	AC	490	595	530	80
FMA19_384	3	4	6568	AC	354	370	325	75
FMA19_384	4	5	6569	AC	265	295	250	90
FMA19_384	5	6	6570	AC	143	200	185	70
FMA19_384	6	7	6571	AC	96	155	145	90
FMA19_384	7	8	6572	AC	79	50	135	120
FMA19_384	8	9	6573	AC	78	40	165	140
FMA19_385	0	1	6574	AC	507	180	980	135
FMA19_385	1	2	6576	AC	1120	335	1390	155
FMA19_385	2	3	6577	AC	1440	730	4220	180
FMA19_385	3	4	6578	AC	570	150	2040	180
FMA19_385	4	5	6579	AC	334	75	1330	195
FMA19_385	5	6	6580	AC	94	30	415	140
FMA19_385	6	7	6581	AC	82	35	330	180
FMA19_385	7	8	6582	AC	73	75	185	170
FMA19_385	8	9	6583	AC	85	150	165	135
FMA19_386	0	1	6584	AC	470	85	1130	165
FMA19_386	1	2	6585	AC	524	50	1070	150
FMA19_386	2	3	6586	AC	537	40	1050	165
FMA19_386	3	4	6587	AĆ	375	40	830	160
FMA19_386	4	5	6588	AC	329	25	635	135
FMA19_386	5	6	6589	AC	158	30	425	155
FMA19_387	0	1	6590	AC	141	160	320	90
FMA19_387	1	2	6592	AC	96	225	245	85
FMA19_387	2	3	6593	AC	38	210	180	75
FMA19_387	3	4	6594	AC	45	315	150	95
FMA19_387	4	5	6595	AC	43	520	135	85

Hole ID	From (meters)	To (meters)	Sample ID	Drilling Type	Co (ppm)	Cu (ppm)	Ni (ppm)	Sc (ppm)
FMA19_387	5	6	6596	AC	42	525	220	85
FMA19_387	6	7	6597	AC	41	580	205	100
FMA19_387	7	8	6598	AC	30	440	180	85
FMA19_387	8	9	6599	AC	25	335	140	80
FMA19_387	9	10	6601	AC	60	350	225	90
FMA19_387	10	11	6602	AC	16	370	115	70
FMA19_387	11	12	6603	AC	16	430	120	60
FMA19_387	12	13	6604	AC	9	295	120	50
FMA19_387	13	14	6605	AC	11	295	95	50
FMA19_387	14	15	6606	AC	10	455	175	90
FMA19_387	15	16	6607	AC	19	340	120	55
FMA19_387	16	17	6608	AC	70	340	165	60
FMA19_387	17	18	6609	AC	86	280	120	50
FMA19_387	18	19	6610	AC	50	325	110	40
FMA19_387	19	20	6611	AC	215	440	175	50
FMA19_387	20	21	6612	AC	166	390	185	55
FMA19_387	21	22	6613	AC	195	425	205	55
FMA19_387	22	23	6614	AC	150	495	190	55
FMA19_387	23	24	6615	AC	153	370	170	45
FMA19_387	24	25	6616	AC	121	315	200	50
FMA19_387	25	26	6617	AC	74	335	170	55
FMA19_387	26	27	6618	AC	114	265	245	55
FMA19_387	27	28	6619	AC	112	260	230	50
FMA19_387	28	29	6620	AC	85	195	210	55
FMA19_387	29	30	6621	AC	105	215	225	60
FMA19_387	30	31	6622	AC	107	195	265	55
FMA19_387	31	32	6623	AC	102	255	175	55
FMA19_387	32	33	6624	AC	117	240	170	55
FMA19_387	33	34	6626	AC	119	220	140	70
FMA19_387	34	35	6627	AC	98	180	165	50
FMA19_387	35	36	6628	AC	105	205	210	60
FMA19_387	36	37	6629	AC	85	175	220	55 <
FMA19_387	37	38	6630	AC	51	150	375	50
FMA19_387	38	39	6632	AĆ	43	130	195	55
FMA19_388	0	1	6633	AC	194	145	555	125
FMA19_388	1	2	6634	AC	84	365	390	105
FMA19_388	2	3	6635	AC	21	545	105	55
FMA19_388	3	4	6636	AC	19	535	100	35
FMA19_388	4	5	6637	AC	16	440	-70	35
FMA19_388	5	6	6638	AC	18	395	60	25
FMA19_388	6	7	6639	AC	24	495	120	50

Hole ID	From (meters)	To (meters)	Sample ID	Drilling Type	Co (ppm)	Cu (ppm)	Ni (ppm)	Sc (ppm)
FMA19_388	7	8	6640	AC	27	450	110	40
	8	9	6641	AC	111	440	115	20
	9	10	6642	AC	352	625	150	50
	10	11	6643	AC	343	555	100	30
	11	12	6644	AC	164	450	95	20
FMA19_388	12	13	6645	AC	243	645	210	60
FMA19_388	13	14	6646	AC	397	740	200	70
FMA19_388	14	15	6647	AC	263	580	225	55
FMA19_388	15	16	6648	AC	135	435	160	25
FMA19_388	16	17	6649	AC	128	465	135	45
FMA19_388	17	18	6651	AC	127	455	85	20
FMA19_388	18	19	6652	AC	95	325	85	20
FMA19_388	19	20	6653	AC	80	250	60	25
FMA19_388	20	21	6654	AC	85	310	85	35
FMA19_388	21	22	6655	AC	87	305	85	45
FMA19_388	22	23	6656	AC	90	330	100	55
FMA19_388	23	24	6657	AC	105	300	115	60
FMA19_388	24	25	6658	AC	103	260	95	60
FMA19_388	25	26	6659	AC	118	240	145	65
FMA19_388	26	27	6660	AC	104	200	140	55
FMA19_388	27	28	6662	AC	60	165	175	70
FMA19_388	28	29	6663	AC	51	145	190	60
FMA19_388	29	30	6664	AC	45	145	125	60
FMA19_388	30	31	6665	AC	49	220	230	80
FMA19_388	31	32	6666	AC	55	225	95	60
FMA19_389	0	1	6667	AC	283	165	595	155
FMA19_389	1	2	6668	AC	538	315	565	140
FMA19_389	2	3	6669	AC	389	560	155	60
FMA19_389	3	4	6670	AC	214	705	195	85
FMA19_389	4	5	6671	AC	353	735	210	85
FMA19_389	5	6	6672	AC	290	825	210	75
FMA19_389	6	7	6673	AC	176	705	195	75
FMA19_389	7	8	6674	AC	67	635	205	75
FMA19_389	8	9	6676	AĆ	56	225	205	35
FMA19_389	9	10	6677	AC	55	185	120	35
FMA19_389	10	11	6678	AC	51	150	25	40
FMA19_389	11	12	6679	AC	48	125	25	35
FMA19_390	0	1	6680	AC	330	320	630	125
FMA19_390	1	2	6681	AC	305	340	315	65
FMA19_390	2	3	6682	AC	397	460	150	40
FMA19_390	3	4	6683	AC	209	505	280	35

Hole ID	From (meters)	To (meters)	Sample ID	Drilling Type	Co (ppm)	Cu (ppm)	Ni (ppm)	Sc (ppm)
FMA19_390	4	5	6684	AC	66	225	105	25
FMA19_390	5	6	6685	AC	63	200	40	10
FMA19-391	0	1	6686	AC	87	210	185	75
FMA19-391	1	2	6687	AC	58	165	30	65
FMA19-391	2	3	6688	AC	57	150	25	65
FMA19-391	3	4	6689	AC	65	170	45	85
FMA19-391	4	5	6690	AC	57	150	35	65
FMA19-391	5	6	6692	AC	62	155	45	75
FMA19_392	0	1	6693	AC	163	210	525	55
FMA19_392	1	2	6694	AC	105	170	180	60
FMA19_392	2	3	6695	AC	73	180	50	65
FMA19_392	3	4	6696	AC	62	160	30	55
FMA19_392	4	5	6697	AC	63	160	105	90
FMA19_392	5	6	6698	AC	69	210	95	95
FMA19_393	0	1	6699	AC	49	270	280	85
FMA19_393	1	2	6701	AC	31	305	240	90
FMA19_393	2	3	6702	AC	72	340	240	90
FMA19_393	3	4	6703	AC	26	315	235	70
FMA19_393	4	5	6704	AC	29	360	290	80
FMA19_393	5	6	6705	AC	25	335	200	90
FMA19_393	6	7	6706	AC	25	380	245	120
FMA19_393	7	8	6707	AC	39	370	255	120
FMA19_393	8	9	6708	AC	48	505	430	105
FMA19_393	9	10	6709	AC	55	610	650	110
FMA19_393	10	11	6710	AC	254	500	555	75
FMA19_393	11	12	6711	AC	490	560	810	75
FMA19_393	12	13	6712	AC	507	550	1020	70
FMA19_393	13	14	6713	AC	394	450	1170	85
FMA19_393	14	15	6714	AC	292	475	2000	100
FMA19_393	15	16	6715	AC	298	325	1970	90
FMA19_393	16	17	6716	AC	203	300	1380	105
FMA19_393	17	18	6717	AC	157	210	785	95 <
FMA19_393	18	19	6718	AC	120	230	735	135
FMA19_393	19	20	6719	AĆ	85	205	810	100
FMA19_393	20	21	6720	AC	76	225	670	95
FMA19_393	21	22	6721	AC	66	140	295	115
FMA19_393	22	23	6722	AC	61	200	265	80
FMA19_393	23	24	6723	AC	54	180	310	75
FMA19_393	24	25	6724	AC	64	180	240	90
FMA19_393	25	26	6726	AC	52	140	110	80
FMA19_393	26	27	6727	AC	55	160	/ 110	70

Hole ID	From (meters)	To (meters)	Sample ID	Drilling Type	Co (ppm)	Cu (ppm)	Ni (ppm)	Sc (ppm)
FMA19_394	0	1	6728	AC	64	195	275	75
FMA19_394	1	2	6729	AC	53	315	600	115
FMA19_394	2	3	6730	AC	41	340	380	110
FMA19_394	3	4	6732	AC	32	420	355	125
FMA19_394	4	5	6733	AC	27	370	265	125
FMA19_394	5	6	6734	AC	46	305	290	115
FMA19_394	6	7	6735	AC	30	285	265	100
FMA19_394	7	8	6736	AC	26	275	250	95
FMA19_394	8	9	6737	AC	24	290	260	85
FMA19_394	9	10	6738	AC	23	235	200	75
FMA19_394	10	11	6739	AC	19	220	195	90
FMA19_394	11	12	6740	AC	24	185	190	85
FMA19_394	12	13	6741	AC	30	195	270	95
FMA19_394	13	14	6742	AC	32	215	220	95
FMA19_394	14	15	6743	AC	30	205	360	110
FMA19_394	15	16	6744	AC	34	215	685	80
FMA19_394	16	17	6745	AC	44	230	1040	70
FMA19_394	17	18	6746	AC	40	230	1080	80
FMA19_394	18	19	6747	AC	41	230	1030	75
FMA19_394	19	20	6748	AC	51	215	765	60
FMA19_394	20	21	6749	AC	121	185	650	50
FMA19_394	21	22	6751	AC	96	170	500	50
FMA19_394	22	23	6752	AC	215	165	450	50
FMA19_394	23	24	6753	AC	138	200	485	65
FMA19_394	24	25	6754	AC	111	205	500	60
FMA19_394	25	26	6755	AC	69	175	455	60
FMA19_394	26	27	6756	AC	109	150	470	65
FMA19_394	27	28	6757	AC	59	175	420	65
FMA19_394	28	29	6758	AC	84	170	420	70
FMA19_394	29	30	6759	AC	64	175	435	90
FMA19_394	30	31	6760	AC	87	140	360	85
FMA19_394	31	32	6762	AC	80	160	345	80
FMA19_394	32	33	6763	AC	54	130	305	75
FMA19_394	33	34	6764	AĆ	63	160	320	70
FMA19_394	34	35	6765	AC	63	130	420	80
FMA19_394	35	36	6766	AC	58	120	400	80
FMA19_394	36	37	6767	AC	53	110	350	85
FMA19_394	37	38	6768	AC	50	110	290	80
FMA19_394	38	39	6769	AC	55	135	190	80
FMA19_394	39	40	6770	AC	57	135	275	85
FMA19_394	40	41	6771	AC	53	140	165	75

Appendix 3

JORC Code, 2012 Edition Section 1: Sampling Techniques and Data

Criteria JORC Code explanation Commentary Sampling techniques Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the mimerals under investigation, such as down hole gamma sondes, or handheid XRF instruments, etc.). These examples shoud not be taken as limiting the broad meaning of sampling. All of samples were collected on 1 metre intervals. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. reverse circulation driling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay). In other cases more explanation may be required, such as where there is coarse goid that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.

Duillin -:		The helps relevant to the second
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	The holes relevant to this report were drilled by air core technique using a truck- mounted rig fitted with a 95 mm open- bladed bit, and an inner tube diameter of 57 mm.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/ coarse material. 	Sample recovery from this air core program was high with more than 90% of the sample returned from most metres. The cyclone-mounted rotary splitter was cleaned on a regular basis to eliminate down-hole and cross-hole contamination. The majority of the samples are described as being relatively dry, with limited moist or wet samples. There is no observable relationship between recovery and grade, and therefore no sample bias is assumed. Australian Mines protocols designed in consultation with CSA Global (Perth) are followed to preclude any issues of sample bias due to material loss or gain.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	The chip samples were logged during drilling by the site geologist Geological logging of drill chips included the recording of lithology, mineralogy, texture, weathering, oxidation, colour and other features of the samples, with the data considered by the Company's Competent Person sufficient to support a future Mineral Resource Estimation. 100% of the samples/holes were logged by the geologists. Air core logging is deemed to be qualitative.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the 	The air core samples were collected from each 1 metre interval from the rig- mounted rotary splitter configured to give a 1/6 split. The splits were sent for laboratory preparation and assaying, with the remainder bagged and transported to a sample farm.

sample preparation technique.	Upon receipt by the laboratory, the samples were sorted and oven dried before being crushed.
 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	Splits of approximately 250 grams were pulverised to nominal size of 85% passing 75 µm.
 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half 	Sampling nomograms have not been prepared to assess the adequacy of the sample weight and grind size combinations; however, the quality assurance results do not indicate significant issues.
 sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Field duplicates, Certified standards, and Blanks were inserted into the sample batches by the site geologist at frequencies of approximately 1:25.
• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All assay values were determined by the ICP 4 acid digest method with a MS finish. Samples with results designated by this technique as too high to be accurately determined by MS, were re-analysed by AES.
 For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in 	No geophysical tools or instruments were used during this drill program See above regarding performance of
determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	duplicates and blanks. One industry-supplied Certified Reference Material (CRM or "standard") was inserted every 25 th sample submitted to the assay laboratory.
 Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	Similarly, a duplicate sample was taken every 30 th sample submitted to the lab for analysis, resulting in nine check samples per hundred samples submitted to the lab from this resource extension drill program, which is consistent with the protocols established by Australian Mines in close consultation with CSA Global in Perth.
	In addition to Australian Mines check samples, the lab also routinely includes their own CRM during each assay run.
The verification of significant intersections by either independent or alternative company personnel.	Each intersection has been separately verified by the technical staff at Australian Mines, including the Competent Person. Primary data was entered in Excel files by
 The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage 	the site geologist, and stored on a secure server, and later checked by Australian Mines' Exploration Manager
	 technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data

	(physical and electronic)	Validation included numerical range
	 protocols. Discuss any adjustment to assay data. 	checks on survey and interval data, library code lists, and visual checks along with validation in Micromine® mining software.
	,	All assay data were accepted into the database as supplied by the laboratory, with no adjustments applied.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole 	The drill hole collars were surveyed using a hand-held GPS unit (Trimble Geoexplorer 6000).
	surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	The surveying was conducted by the site geologist, to a reported accuracy of ± 1 m (horizontal) and ± 10 m (vertical).
	 Specification of the grid system used. 	All survey data are reported according to MGA94 Zone 55, with elevations based on AHD.
	 Quality and adequacy of topographic control. 	Due to the flat lying terrain RL data is to be assumed accurate with a hand-held GPS unit for all non-resource field work.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The drilling was performed on section lines to the MGA94 grid.
	• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity	Australian Mines drill holes extended the Company's existing drill coverage to the north and were drilled on a nominal spacing of 80 x 80 metres.
	appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The drill samples were not composited prior to assaying.
	 Whether sample compositing has been applied. 	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is 	All drill holes are assumed vertical, which means that most of the sampling is orthogonal to the sub-horizontal zones of elevated grades.
	known, considering the deposit type.	No orientation-based sampling biases have been identified, nor are expected for this
	• If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	style of mineralisation.
Sample security	The measures taken to ensure sample security.	Australian Mines retained responsibility for the samples until they were received by the laboratory.
		Individual samples for laboratory testing were collected from the rig into labelled calico bags, which were then packed into labelled and sealed polyweave bags.

		The bags were collected from the drill rig at the end of each daily shift and stored in a locked shed located at the exploration team's accommodation facilities in Tullamore (15 kilometres to the north of the site).
		The samples were then transported by road to the laboratory in West Wyalong by a local contractor.
		Upon receipt, the samples were checked against the submission sheets and entered into the laboratory's information management system.
		Assay results were provided electronically to Expedio in both CSV and locked PDF format.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	An independent review / audit of the data collection procedures will be conducted as part of any follow-up Mineral Resource Estimate work for the Flemington Project.

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint	The Flemington Project, located within 400 kilometres of Sydney (New South Wales, Australia), comprises Exploration Licence numbers (EL) 7805 and 8478, and Mining Lease Application (MLA) 538.
	ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	An application to renew the full area of EL 7805 was lodged with the NSW Department of Planning and Environment by Australian Mines and is currently pending.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to	EL 7805 will continue to have effect until the application for renewal is determined by the Department.
	operate in the area.	The Department has issued a notice of proposed decision to renew EL 7805 and the Company is currently finalising the documentation with the Department.
		There are no historical sites, wilderness, national park or environmental settings apparent which may affect either the security of the Flemington Project tenure or provide any impediment to mining operations.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	Australian Mines is not in possession of any third party or historic datasets that may be directly relevant to the results described in the report.
Geology	 Deposit type, geological setting and style of mineralisation. 	Cobalt, scandium, nickel, platinum and chromium occurs in a thick laterite sequence developed over the Ordovician- aged Tout ultramafic intrusive complex.
		The laterite sequence includes (from top to bottom) transported (alluvial and colluvial), haematitic, limonitic, transitional and saprolitic lithotypes.
		The higher cobalt, scandium, nickel and platinum grades dominantly occur in the limonitic laterite and appear to have been derived from the long-term weathering of underlying Ordovician dunite and pyroxenite.
		In addition to hosting Australian Mines' Flemington ore body, the Tout ultramafic intrusive complex also hosts Clean TeQ Holdings' adjacent Sunrise deposit.

Section 2: Reporting of Exploration Results

Drill hole Information	• A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Refer to Appendix 1 of this report.
	 easting and northing of the drill hole collar 	
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	 dip and azimuth of the hole 	
	 down hole length and interception depth 	
	 hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades)	The reported intersections of Australian Mines' resource extension drilling at Flemington are based on a regular sample interval of one metre. The quoted intersections are based on a
	and cut-off grades are usually Material and should be stated.	minimum cobalt threshold of 500ppm, and a minimum scandium threshold of 100ppm.
	 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	Whilst a lower cut-off grade of 100ppm scandium was used for the scandium, a Scoping Study of the Flemington project completed by SRK Consulting and released by Australian Mines via its 31 March 2017 announcement titled <i>Technical Reports</i> suggest that a breakeven grade for any future mining operation at Flemington would be less than 50 ppm scandium.
	The assumptions used for any reporting of metal equivalent values should be clearly stated. No exploration results	No upper cuts have been applied. An internal dilution of 1 metre has been used for the intersection calculations.
	are reported for this study. Relationship between mineralisation widths and intercept lengths	No metal equivalents have been used in this report.

 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole length, true width not known? These relationships are reported, there should be a clear statement to this effect (e.g. down hole length, true width not known?). Relationship between mineralisation with respect to the drill hole angle is known, its nature should be reported. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the drill hole angle is known, its nature should be reported. If it is not known and only the drill hole angle is known, its nature should be reported. If it is not known and only the drill hole angle is known, its nature should be a clear statement to this effect (eg 'down hole length, true width not known?). Diagrams Appropriate maps and sections are included for any significant discovery being reported These should be included for any significant discovery being reported These should be included for any significant discovery being reported These should be included for any significant discovery being reported These should be practicable, representative reporting of all Exploration Results is not practicable, representative reporting of all Exploration Results. Balanced reporting of all Exploration Results. 			
bit bit dill hole angle is known, its nature should be reported. e If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). Relationship between mineralisation withs and intercept lengths • These relationships are particularly important in the reporting of Exploration Results. Intercept lengths • These relationships and the drill hole angle is known, its nature should be reported. If it is not known and only the down hole length, true width not known'). All holes were drilled vertically, and as the laterite sequence is close to flat-lying, the intersected widths of cobalt and scandium mineralisation approximate true widths. Intercept lengths • These angle is known, its nature should be reported. If it is not known and only the down hole length, true width not known'). Appropriate maps and sections are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). Diagrams • Appropriate maps and sections (with scales) and itabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Balanced reporting • Where comprehensive reporting of al Exploration Results is not practicable, representative reporting of al Exploration reporting of al Exploration reporting of al Exploration reporting of al Exploration reporting of practicable, representative reporting of al Exploration The reported results		 particularly important in the reporting of Exploration Results. If the geometry of the 	
down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). All holes were drilled vertically, and as the laterite sequence is close to flat-lying, the intersected widths of cobalt and scandium mineralisation widths and intercept lengths • If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be eported. All holes were drilled vertically, and as the laterite sequence is close to flat-lying, the intersected widths of cobalt and scandium mineralisation approximate true widths. • If it is not known and only the down hole length, true width not known'). • Appropriate maps and sections (with scales) and tabulations of intercepts should be loculade for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Appropriate maps and sections and appropriate sectional views. Balanced reporting • Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration The reported results reflect a full range of intersected widths and grades available to Australian Mines as at the time of this report.		the drill hole angle is known,	
between mineralisation widths and intercept lengths particularly important in the reporting of Exploration Results. laterite sequence is close to flat-lying, the intersected widths of cobalt and scandium mineralisation are sported. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known). Diagrams Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Appropriate maps and sections are included in the body of this report. Balanced reporting Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration The reported results reflect a full range of intersected widths and grades available to Australian Mines as at the time of this report.		down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true	
sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.included in the body of this report.Balanced reporting• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of ExplorationThe reported results reflect a full range of intersected widths and grades available to Australian Mines as at the time of this	between mineralisation widths and	 particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width 	laterite sequence is close to flat-lying, the intersected widths of cobalt and scandium
reporting reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration	Diagrams	sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate	
		reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration	intersected widths and grades available to Australian Mines as at the time of this

Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Australian Mines is not aware of any meaningful and material exploration datasets that are additional to those reported by the Company via the ASX Platform on 11 August 2017 and 31 October 2017.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further work will likely include further resource extension drilling across the interpreted western, northern and possible eastern continuation of the mineralised zones. The specifications of any future drill program, including the location and targeted depth of these holes, will be announced by Australian Mines prior to the commencement of drilling.

Appendix 4: Competent Persons' Statement

Flemington Project

Information in this report that relates to Flemington Project's Exploration Results is based on information compiled by Mr Mick Elias, who is a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Elias is a director of Australian Mines Limited. Mr Elias has sufficient experience relevant to this style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Elias consents to the inclusion in this report of the matters based on his information in the form and context in which is appears.

