FIRST U.S. CLINICAL DATA WITH APAS® INDEPENDENCE PRESENTED AT ASM MICROBE Dr Glen Hansen's Poster presentation at American Society of Microbiology meeting San Francisco, Saturday 22nd June 2019 Adelaide, Australia, 24 June 2019: Australian medical technology company LBT Innovations Limited (ASX: LBT) (LBT or the Company), a leader in medical technology automation using artificial intelligence, is pleased to announce that Dr Glen Hansen from the APAS® Independence U.S. reference site, Hennepin Medical Centre in Minneapolis, presented a Poster presentation on Saturday 22 June 2019 at the American Society of Microbiology (ASM Microbe) meeting in San Francisco. The Poster presented data from Hennepin Medical Centre's performance evaluation of the APAS® Independence in combination with the urine analysis module. The Poster, *attached* with this ASX announcement and available through the LBT and CCS websites, is titled: "Intelligent automation - The first US use of the APAS® Independence delivering artificial intelligence for clinical microbiology automation". This study of 720 urine cultures, run in a routine clinical setting, demonstrated the clinical utility of the APAS® Independence to reliably screen Sheep Blood Agar plates used in the diagnosis of human urinary tract infections and to reduce the time to report, allowing for technician and microbiologist time to be reprioritised. Sheep blood agar is a common medium used in microbiology laboratories in the U.S. The key findings from this study are: - APAS was able to report and finalise negative urine cultures in 13 seconds - The sensitivity of screening positive urine cultures or significant growth was 100% and APAS® detected all the common pathogens routinely expected in the microbiology laboratory - Correlation of the APAS® result in conjunction with the routine laboratory reporting mechanisms resulted in a Negative Predictive Value (NPV) of 100% - Removing negative and non-significant cultures from the work flow reduces hands-on time Dr Hansen commented on the study: "The results of the study demonstrate the speed and reliability of the APAS® Independence to facilitate and hasten the decision making process for the diagnosis for UTIs, which represent a large percent of samples encountered in the microbiology laboratory. The ability to detect all routine pathogens, combined with a high NPV, confirms the APAS® Independence is a safe and effective device to use within the laboratory." Brent Barnes CEO and Managing Director said: "On the back of our recent FDA clearance it is very important to have U.S. clinical data presented by a highly credentialled U.S. clinician at the largest industry meeting in the U.S. The findings from Dr Hansen reaffirm that the APAS® Independence instrument is safe and effective to use in a routine environment, and will deliver clear clinical utility and improved time to report. I'd like to thank Dr Hansen and his team for their support in conducting this evaluation with a view to implementing the APAS® Independence as quickly as possible for routine clinical use." #### **About ASM Microbe** The American Society of Microbiology meeting is the largest clinical microbiology and infectious diseases conference in the United States, held annually and bringing together a large number of industry experts, scientists and health professionals. This year's conference is taking place in San Francisco from 20 – 24 June 2019. ### **About LBT Innovations** LBT Innovations (LBT) improves patient outcomes by making healthcare more efficient. Based in Adelaide, South Australia, the Company has a history of developing world leading products in microbiology automation. Its first product, MicroStreak®, was a global first in the automation of the culture plate streaking process. The Company's second product, the Automated Plate Assessment System (APAS®) is being commercialised through LBT's 50% owned joint venture company Clever Culture Systems AG (CCS) with Hettich Holding Beteiligungs- und Verwaltungs-GmbH. The APAS® instrument is based upon LBT's intelligent imaging and machine learning software and remains the only US FDA-cleared artificial intelligence technology for automated imaging, analysis and interpretation of culture plates following incubation. ### CONTACTS | LBT Innovations | Investor Enquiries | |---|----------------------------------| | Brent Barnes | David Allen / John Granger | | Chief Executive Officer & Managing Director | Hawkesbury Partners | | Tel: +61 8 8227 1555 | Tel: +61 2 9103 9494 | | E: info@lbtinnovations.com | E: dallen@hawkesburypartners.com | # Intelligent Automation -the First US Use of the APAS Independence Delivering Artificial Intelligence for Clinical Microbiology Automation G. Hansen, E. Wesenberg, K. Hanson, A. Bujold, A. Cox Hennepin County Medical Center, Minneapolis, MN University of Minnesota, Pathology & Laboratory Medicine, Minneapolis, MN Driven to Discover™ Hennepin County Medical Center # Abstract (revisited) **Background:** Clinical Microbiology relies on technically skilled laboratorians to process, and interpret cultures from clinical specimens. Laboratory automation provides improved accuracy, decreased turn-around times, improves efficiency and reduces reliance on maintaining, acquiring and training qualified workforce. However, the impact of automation remains unfulfilled, in part, because robotics fails to incorporate interpretive processes needed to fully prioritize microbiology work needed to maximize efficiencies and impact reporting. The APAS independence (APAS) is an in-vitro diagnostic device incorporating machine learning algorithms with digital image capture. We report the first US experience of the APAS using urine cultures plated to sheep blood agar (SBA). Methods: Total of 369 urine cultures, (REMEL automated-SBA), were incubated at 35°C CO₂ for 18-24hrs and placed in the APAS for review and reporting allocation. Reports were recorded based on the ability of the APAS to correctly identify bacterial growth and clear negative cultures from the workflow. Reporting was organized over 4 respective workflows: i) growth detected, ii) no growth, iii) additional microbiological review required, and iv) errors. Errors included category error (i-ii) /or system error code. Results: Percent-postive agreement between growth detected by the APAS system and manual culture review was 100% (153/153). No growth identified 56.7%(88/166) of true negative (no growth) cases and 67/166 negative cases were triaged for microbiological review. Combining negative reporting with negative cases requiring review, correctly captured 100% (155/155) of negative growth. An additional 17/369 cases selected for review, identified pinpoint/hazy growth patterns, and in all cases, prior to routine bench-based culture workup. Errors occurred in 9%(33/369) of cases. Error codes produced by the APAS occurred in 9%(33/369) of cases, which were primarily attributable to defects in SBA media such as gouges. Bacterial species and colony count did not affect APAS reporting. Conclusions: The APAS was able to report and finalize negative SBA urine cultures in 13 seconds. The system correctly identified growth form SBA in 100% of the cases and correctly screened negative cases, including those requiring review with 100% NPV. The APAS incorporates machine learning/artificial intelligence into routine microbiology workflow, applying decision making processes capable of prioritizing postive cases, screening negative growth, and reducing time-to-report. ## Introduction Automation within the field of clinical microbiology has historically lagged behind other areas of the laboratory, in part, because interpretive and workflow relative to microbiology laboratories remains highly manual. Given the impact that microbiology laboratory services have on treatment of infectious disease, control of hospital infections, and impact on antimicrobial stewardship it's not surprising that microbiology services it's not surprising the microbiology workloads continue to increase. Increasing workload as a result of health system growth, ever-increasing screening protocols targeted multi-drug resistant organisms and diagnosis aimed at reducing hospital-acquired infections and safely facilitate quicker discharge of hospitalized patietns are now contemporary laboratory metrics (1). Patient outcomes are now measured by hours to appropriate response (2) pacing increased emphasis on "on-demand" microbiology testing which is quickly outracing the pace with which microbiology staffing levels can accommodate. Current microbiology workforce is predicted to decline by 20% over the next 5 years (3), and as reimbursement rates for microbiology testing steadily decline, consolidation of laboratory testing requires automation in order to keep pace. Recent advances in microbiology automation have facilitated liquid handling and automated platers (4) as well as digital image capture (5). However, current technologies fall short of providing us with decision-making tools capable of active decision making processes in the lab further defining the differences between robotics versus active artificial intelligence systems. The <u>A</u>utomated <u>P</u>lating <u>A</u>ssessment <u>S</u>ystem (APAS) Independence (Clever Culture Systems) represents an automated plate reading system capable of screening urine cultures for significant growth directing targeted laboratory work-up and screening negative urine cultures within 16 seconds, actively removing them from laboratory workflow (5). However clinical validation of the system is lacking. The present study represents some of the first US-laboratory testing of the APAS independence in routine clinical practice. Figure 1. Incorporating the APAS Independence into Routine Laboratory Workflow ## Methods Total of 720 urine cultures, (REMEL automated-SBA), were incubated at 35oC CO2 for 18-24hrs and placed in the APAS for review and reporting allocation. iv) errors Reports were recorded based on the ability of the APAS to correctly identify bacterial growth and clear negative cultures from the workflow. Reporting was organized over 4 respective workflows: i) growth detected, ii) no growth, iii) additional microbiological review required, and 720 Urine cultures examined Figure 2. Automated Plate Assessment System (APAS) # Results Table 1. Incorporating the APAS Independence into Routine Laboratory | rabio il modiporating the 7ti 7to maspenasiico into itoatine Laboratory | | | | | | | | | |---|--|----------------------|-----------------------------|-----------------------------|--------|--------------|-------|--| | | | | APAS Independence Reporting | | | | | | | | | | | Significant growth detected | Review | No
Growth | Error | | | | | | | | | 42 | | | | Lab Interpretation Reporting | Significant growth reported (n=168) | | 168 | 92 | | | | | | | Mixed
bacterial
Flora
(n=178) | <100 – 1000 cfu | 56 | | 216 | | | | | | | < 10,000 cfu | 96 | | | | | | | | | 50,000 – 100,000 cfu | 26 | | | | | | | | No Growth Reported (n=374) | | 374 | | | 370 | | | A total of 720 urine cultures submitted to the clinical were evaluated by the APAS. • The APAS categorized cases based on one of four reporting categories (Significant growth/cases marked for review/No growth/Errors). The APAS successfully identified all 374 cases reported as "no growth" by the clinical laboratory. Of the 720 cases analyzed, 216/720 (30%) cases were marked for review by the laboratory. cases analyzed, 216/720 (30%) cases were marked for review by the laboratory. Combining cases where significant growth patterns were detected with cases marked for review, successfully identified all significant cases reported by the laboratory. However, 30 cases marked for review by the APAS, identified pinpoint/hazy growth patterns that were identified prior to routine bench-based culture workup. A total of 4 cases, reported by the clinical laboratory as "no growth" were not identified by the APAS but instead reported as "error". Error reports were overwhelming caused by defects in the media such as obvious gouges or scrapes. Table 2. Sensitivity of The APAS in Screening Positive Urine Cultures (significant growth) by UTI Pathogen | (significant growth) by UTI Pathogen | | | | | | | |--------------------------------------|-------------|-----------------|--|--|--|--| | Organism | Sensitivity | Number of cases | | | | | | Total n= 166 | 100 | | | | | | | Escherichia coli | 100 | 51 | | | | | | Klebsiella pneumoniae | 100 | 17 | | | | | | Enterococcus faecalis | 100 | 9 | | | | | | Pseudomonas aeruginosa (| 100 | 8 | | | | | | Proteus mirabilis | 100 | 9 | | | | | | Coag. Neg Staphylococcus | 100 | 13 | | | | | | Staphylococcus aureus | 100 | 19 | | | | | | Enterobacter cloacae complex | 100 | 7 | | | | | | Citrobacter freundii | 100 | 6 | | | | | | Staphylococcus saprophyticus | 100 | 6 | | | | | | Aerococcus spp. | 100 | 3 | | | | | | Enterobacter aerogenes | 100 | 5 | | | | | | Citrobacter koseri | 100 | 4 | | | | | | Morganella morganii | 100 | 1 | | | | | | Streptococcus (GBS, S. anginousus) | 100 | 3 | | | | | | Candida albicans | 100 | 7 | | | | | ## Conclusions - 1. The APAS correctly detected 98% (370/374) of all negative urine cultures tested - 2. Negative urine cultures could be actively reviewed and removed from the conventional microbiology at 16 seconds/case. Removing negative and non-significant urine cultures from the workflow reduces laboratory hands-on time - 3. The combination of significant growth plus cases marked for review by the APAS correctly identified 100% of all postive urine cultures. - 4. Errors signals reported on the APAS were attributed to defects in the plated media - 5. Further time studies are needed to further assess the impact of additional plated media and time studies to assess the potential impact of the APAS on routine laboratory workflow # Bibliography - 1. Davies, J., et al. "Impact of results of a rapid Staphylococcus aureus diagnostic test on prescribing of antibiotics for patients with clustered gram-positive cocci in blood cultures.J. Clin Microl. 50.6 (2012): 2056-58. - 2. Dellinger, R. P., et al. "Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012." Care Med. 41.2 (2013): 580-637 - Care Med. 41.2 (2013): 580-637. 3. Garcia E et al. The American Society for Clinical Pathology's 2016-2017 vacancy Survey of medical laboratories in the United States. Am J - Clin Pathol. 2018;149:387-400. 4. Iversen J et al. Comparative Evaluation of the Inoculation of Urine Samples with the Copan WASP and BD Kiestra Inoquia Instruments. J.. - Clinical Micro 2016 Feb;54(2):328-32 5. Mutters NT et al. Performance of the Kiestra total laboratory automation combined with MS in clincial microbiology practice. Ann Lab Med. 2014 Mar;34(2):111-7 - 6. Evaluation of an image analysis device (APAS) for screening Urine Cultures. Glasson J et al. J Clin Microbiol. 2016 Feb;54(2):300-4.