

ASX Announcement 29 October 2019

OncoSil AGM CEO Presentation

Sydney, Australia – 29 October 2019: OncoSil Medical Ltd (ASX: OSL) (**OncoSil** or the **Company**), a medical device company focused on localised treatments for patients with pancreatic and liver cancer, has released its CEO presentation for the Annual General Meeting of OncoSil shareholders to be held at 11:00am AEDT today.

-ENDS-

Company	Media	
Mr Daniel Kenny	Arthur Chan	
CEO & Managing Director	WE Buchan	
E: daniel.kenny@oncosil.com.au	E: arthurc@we-buchan.com	
T: +61 2 9223 3344	M: 0404 369 388	

About OncoSil

OncoSil Medical is a medical device company seeking to advance radiation for cancer patients. OncoSil Medical's lead product, OncoSil[™] is a targeted radioactive isotope (Phosphorus-32), implanted directly into a patient's pancreatic tumours via an endoscopic ultrasound.

Treatment with the OncoSil[™] is intended to deliver more concentrated and localised beta radiation compared to external beam radiation. OncoSil Medical has conducted four clinical studies with encouraging results on tolerability, safety and efficacy. A CE Mark application to commercially sell OncoSil[™] in the European Union (EU) is under review.

The U.S Food and Drug Administration granted an Investigational Device Exemption (IDE) in July 2016 with approval to conduct a clinical study of the OncoSil[™] device. The aim of the study will be to collect safety and effectiveness data required to support a Premarket Approval (PMA) application.

An Investigational Device Exemption (IDE) has been granted by the United States Food and Drug Administration (FDA) to conduct a clinical study of the OncoSil[™] device aimed at supporting a PMA approval. Pancreatic cancer is typically diagnosed at a later stage, when there is a poor prognosis for long-term survival. The World Cancer Research Fund estimated that in 2012, 338,000 people globally were diagnosed with pancreatic cancer. The prognosis for patients diagnosed with pancreatic cancer, regardless of stage, is generally poor; the relative five-year survival rate for all stages combined is approximately 5%. The estimated world- wide market opportunity for OncoSil[™] in pancreatic cancer

exceeds \$1b.

Hepatocellular carcinoma (HCC) or liver cancer, is the 6th most common cancer in the world with 782,000 new cases diagnosed in 2012. While hepatocellular carcinoma can be treated by surgery or transplantation, the majority of patients with HCC have disease which is too advanced for surgery and their survival ranges from a few months to two or more years. The value of the hepatocellular cancer market is expected to triple in size to \$1.4b by 2019.

Forward Looking Statements

This document contains certain forward-looking statements, relating to OncoSil's business, which can be identified by the use of forward-looking terminology such as "promising", "plans", "anticipated", "will", "project", "believe", "forecast", "expected", "estimated", "targeting", "aiming", "set to", "potential", "seeking to", "goal", "could provide", "intends", "is being developed", "could be", "on track", or similar expressions, or by express or implied discussions regarding potential filings or marketing approvals, or potential future sales of product candidates. Such forward-looking statements involve known and unknown risks, uncertainties and other factors that may cause actual results to be materially different from any future results, performance or achievements expressed or implied by such statements. There can be no assurance that any existing or future regulatory filings will satisfy the FDA and other authorities' requirements regarding any one or more product candidates nor can there be any assurance that such product candidates will be approved by any authorities for sale in any market or that they will reach any particular level of sales. In particular, management's expectations regarding the approval and commercialisation of the product candidates could be affected by, among other things, unexpected trial results, including additional analysis of existing data, and new data; unexpected regulatory actions or delays, or government regulation generally; our ability to obtain or maintain patent or other proprietary intellectual property protection; competition in general; government, industry, and general public pricing pressures; and additional factors that involve significant risks and uncertainties about our products, product candidates, financial results and business prospects. Should one or more of these risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary materially from those described herein as anticipated, believed, estimated or expected. OncoSil Medical is providing this information as of the date of this document and does not assume any obligation to update any forward-looking statements contained in this document as a result of new information, future events or developments or otherwise.

Advancing Pancreatic cancer treatment – changing the prognosis CEO AGM Presentation

29 October 2019

-	Clear mission	Commercialising a breakthrough implantable radiotherapy treatment for solid tumours
2	Sound science	 Current and previous clinical studies demonstrate: Excellent Local Disease Control Prolonged Overall Survival Encouraging resection rates Superior outcomes to comparators Excellent safety and tolerability profile
	Clear strategic path	 \$2bn market opportunity to improve standard of care in pancreatic cancer Targeting EU CE Mark for unresectable locally advanced pancreatic cancer US Humanitarian Use Designation (HUD) for bile duct cancer granted Targeting US Humanitarian Device Exemption (HDE) for bile duct cancer Highly experienced management team; strong clinical and commercial pedigree Manufacturing and logistics optimised for supply of commercial quantities At a potential value inflection point with multiple paths to commercialisation

Significant opportunity for OncoSil in pancreatic cancer

Current available treatment for pancreatic cancer

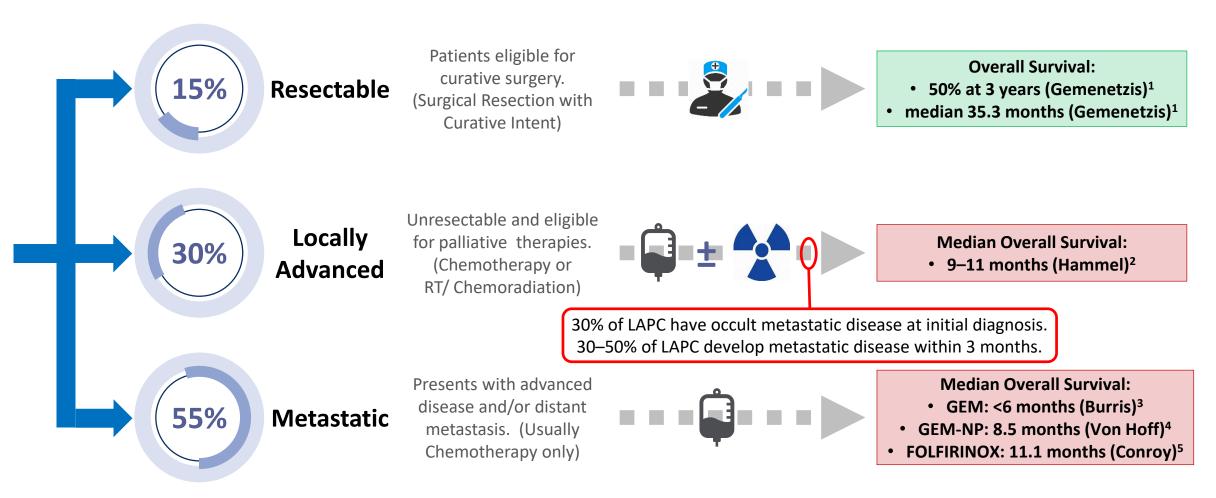
- Surgery (resection), if diagnosed early enough
- Chemotherapy (Gemcitabine & Abraxane, FOLFIRINOX)

Abraxane" nanoparticle albumin bound paclitaxel

External radiation therapy

Issues with current standard of care

- Symptoms often unnoticed until cancer has metastasised; poor prognosis even with therapy:
 - Median survival ~8 months
 - 5 year survival less than 5%
- Surgery not feasible in 85% of patients
- Chemotherapeutic treatments limited effectiveness and are very toxic
- Radiation therapy is toxic to the patient's GI tract


The Oncosil Opportunity

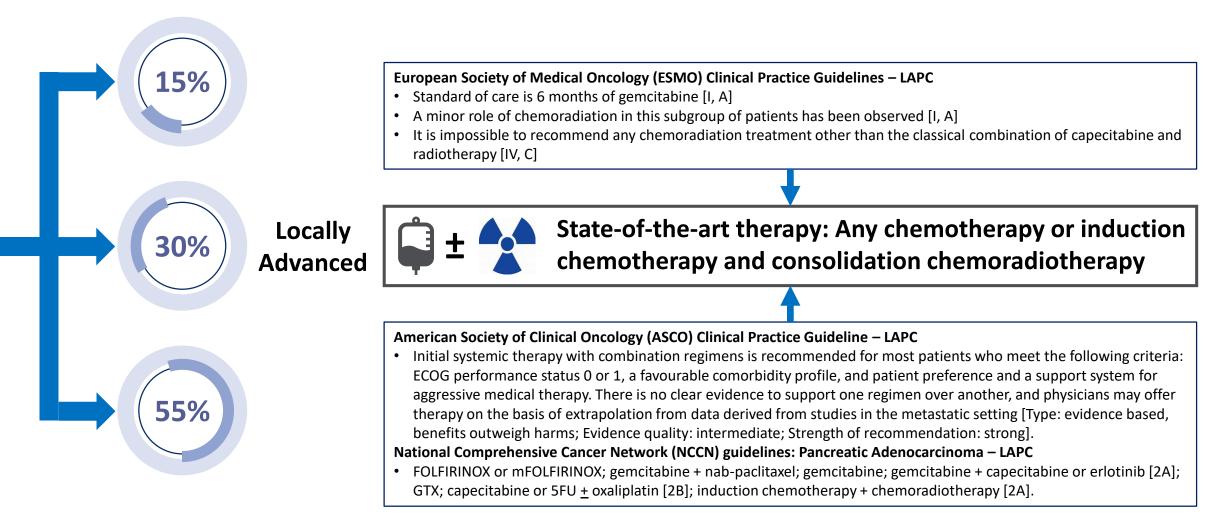
Only two drugs to have made significant improvements in pancreatic cancer in over 20 years:

- Gemcitabine approved over 21 years ago and Abraxane approved in 2013
- Median overall survival has increased by only 2 months (to 8.5 months) over the past 20 years

Significant opportunity for OncoSil to become standard of care in combination with Chemotherapy

Disease Prognosis & Treatment Options

¹ Gemenetzis, George et al. Survival in Locally Advanced Pancreatic Cancer After Neoadjuvant Therapy and Surgical Resection. Annals of Surgery 2019; 270: 340-347.

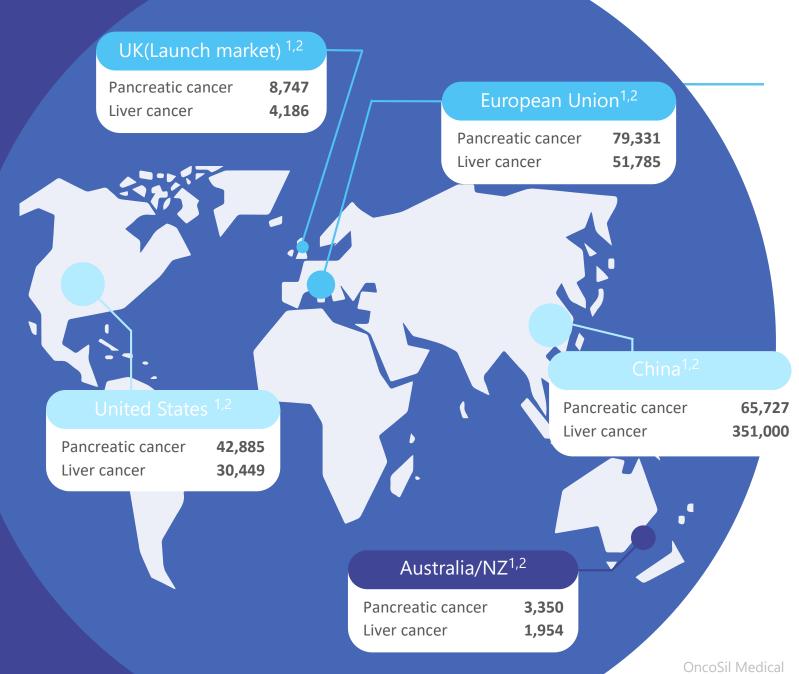

² Hammel, Pascal et al. Effect Of Chemoradiotherapy Vs Chemotherapy On Survival In Patients With Locally Advanced Pancreatic Cancer Controlled After 4 Months Of Gemcitabine With Or Without Erlotinib. JAMA 315.17 (2016): 1844.

³ Burris, Howard, A et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. Journal Clinical Oncology. 1997 Jun;15(6):2403-13

⁴ Von Hoff, Daniel D. et al. Increased Survival In Pancreatic Cancer With Nab-Paclitaxel Plus Gemcitabine. New England Journal of Medicine 369.18 (2013): 1691-1703.

⁵ Conroy, Thierry et al. FOLFIRINOX Versus Gemcitabine For Metastatic Pancreatic Cancer. New England Journal of Medicine 364.19 (2011): 1817-1825.

Disease Prognosis & Treatment Options



Ducreux M et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 2015 Sep;26 Suppl 5:v56-68Balaban EP et al. Locally Advanced, Unresectable Pancreatic Cancer: American Society of Clinical Oncology Clinical Practice Guideline. Journal of Clinical Oncology 2016 Aug 1;34(22):2654-68. National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology: Pancreatic Adenocarcinoma. Version 2.2019.

Target markets Annual incidence

Global opportunity

Pancreatic cancer	US>\$2.0bn
Liver cancer	US\$1.4bn

 GLOBOCAN 2012: Estimated Cancer Incidence Worldwide in 2012 (IARC/WHO). Accessed 22 Apr 2016, from http://globocan.iarc.fr/Pages/fact_sheets_population.aspx

- 2. Datamonitor Healthcare 2013
- 3. OncoSil dose pricing, \$USD 25,000

Classification of Cholangiocarcinoma (bile duct cancer)

CCA can be classified as intrahepatic (ICC), perihilar (pCCA) or distal (dCCA). pCCA and dCCA can be grouped as extrahepatic cholangiocarcinoma (ECC)

Morphological classification^{1,2}

			Intrahepatic
Morphology	Description		(5-10%) ³⁻⁹
Mass-forming	 Homogeneous mass with irregular but well- defined margins 	Mass-forming	
	Majority of ICC are mass-forming	Periductal infiltrating	Perihilar 🐺
Periductal infiltrating	 Elongated or branch-like growth invading dilated, diffusely narrowed/obliterated bile 		(50-70%) ^{3-9*}
-	ducts	Intraductal	Distal 🛛
	 No mass formation Majority of pCCA are periductal infiltrating Unlikely to be suitable for OncoSil[™] 	8	(10-40%) ³⁻⁹
Intraductal	 Small, sessile or polypoid papillary adenocarcinomas spread superficially along mucosa of dilated bile duct 	Adapted from European Network for the Study of Cholangioc: information/the-disease-of-cholangiocarcinoma/ [Accessed Ju	

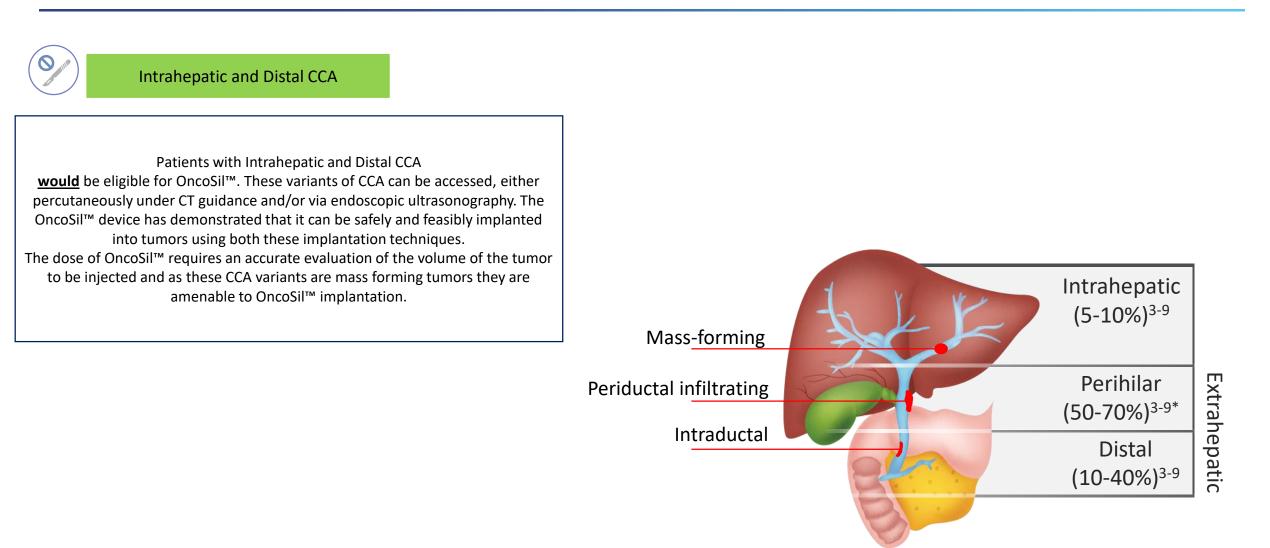
* Clinical expert opinion confirms pCCA comprises 50% of all ECC tumours

1. Chung YE et al (2009) Radiographics 29: 683-700

- 2. Lim JH (2003) AJR AM J Roentgenol 181:819-829
- 3. Razumilava N et al (2014) Lancet 383(9935): 2168-2179

4. Yazici C et al (2014) Expert Rev Gastroenterol Hepatol 8(1): 63-82

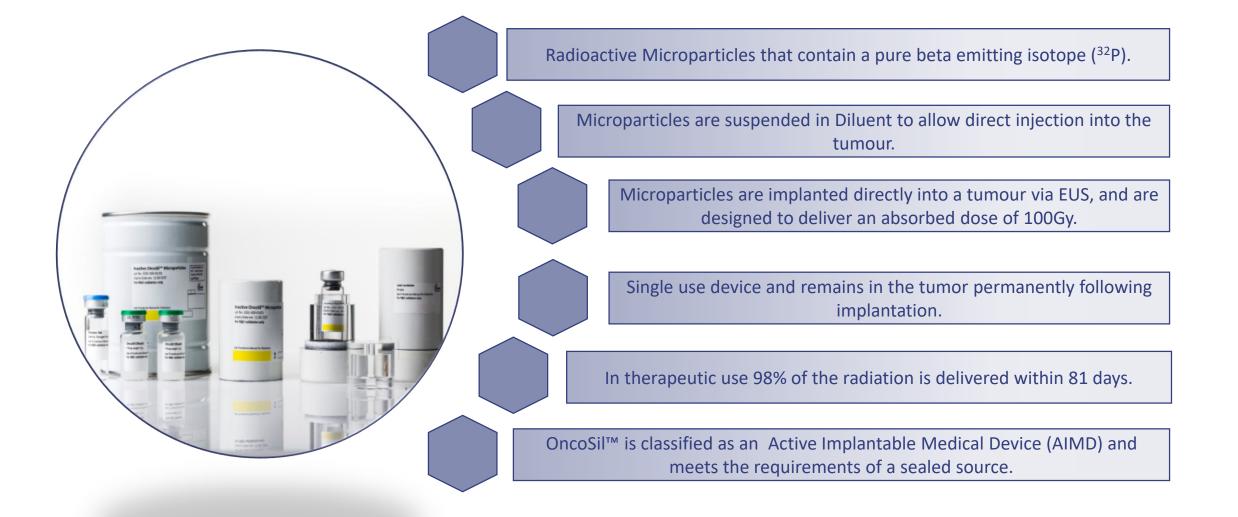
5. DeOliveira ML et al (2007) Annals Surg 245(5): 755-762


6. Zhang W and Yan LN (2014) World J Gastrointest Pathophysiol 5(3): 344-354

7. Rizvi S and Gores GJ (2014) Digestion 89(3): 216-224

8. Nakeeb A et al (1996) Annals Surg 224(4): 463-473

9. Hong JC et al (2011) Arch Surg 146(6): 683-689


OncoSil[™] In Cholangiocarcinoma

Adapted from European Network for the Study of Cholangiocarcinoma <u>http://conf2016.enscca.org/scientific-information/the-disease-of-cholangiocarcinoma/</u> [Accessed July 2018] * Clinical expert opinion confirms pCCA comprises 50% of all ECC tumours

The OncoSil™ Device

Device Overview

Device Procedure

OncoSil[™] Microparticles are suspended in a rheological Diluent

The \$201-500-05/05

Endoscope guided (ultrasound) into the upper intestine Using ultrasound imaging the needle is guided into the target lesion OncoSil[™] injected directly into the tumor. Implanted Microparticle localization shown on Bremsstrahlung imaging

Manufacturing & Supply Chain

. Manufacturing capacity Logistics of Supply chain in Management **Dangerous Goods** place and validated Expertise to meet needs **Ultra Pure Base Material** DG handling & been verified. distribution by partner, supply secured In-house expertise

- over 20 years with nuclear medicine products

ISO certified process using outsourced GMP manufacturers

Intermediate products can be stored for lengthy periods

Current Inventory is sufficient to meet clinical study commencement and early commercial needs

Eckert & Ziegler (Germany)

100 doses shipped for clinical studies over an 18 month period

4 x Nuclear Reactors verified for OncoSil[™] (including OPAL)

Logistics for all radioactive goods shipments have

Commercial quantities can be shipped

All major markets: USA, UK, Australia, EU and parts of Asia

OncoSil[™] System is shipped in a **registered** Type A package

PanCO Study Results & Naïve Indirect Treatment Analysis

PanCO Study Design and Objective

- 8 weekly CT RECIST 1.1 and tumour volume (independent central reader analysis)
- SPECT-CT Bremsstrahlung imaging Days 1 and 7
- Blood and urine P-32 analysis
- FDG-PET Baseline and Week 12
- CA 19-9 tumour marker serial analysis
- Chemotherapy by physician choice
- The primary objective of PanCO was to assess the <u>safety</u> of the device and determine <u>the</u> <u>feasibility of the administration</u> approach in the setting of advanced, unresectable pancreatic cancer.
 - Primary efficacy measure was LDCR 16 weeks

PanCO Patient Population And Study Criteria

Key eligibility criteria	 Histologically or cytologically proven adenocarcinoma of the pancreas Unresectable locally advanced pancreatic carcinoma Target tumour diameter 2–6 cm ECOG Performance Status 0 to 1 No distant metastases No prior radiotherapy or chemotherapy for pancreatic cancer
Primary endpoint	Safety and tolerability
Secondary endpoints: Efficacy	 Local Disease Control Rate (LDCR) at 16 weeks Overall Survival (OS) Local Progression-Free Survival (LPFS), within the pancreas Progression-Free Survival (PFS), all sites
Exploratory Assessment	 Target Tumour Volumetric (TV) Change Target Tumour FDG-PET Response

- LDCR_{16 weeks} Local Disease Control Rates at 16 weeks (LDCR_{16 weeks}) of 82% in the Intention-to-Treat (ITT) (p=0.0001) cohort of enrolled patients and 90.5% in the Per Protocol (PP) (p<0.0001) population that received OncoSil[™] plus CT, demonstrates that the PanCO study convincingly met its *a priori* primary performance endpoint. This convincingly demonstrates that OncoSil[™] plus CT is better than CT alone.
- Prolonged Prolonged median overall survival of 15.5 months in the ITT cohort and 16.0 months in the PP population, with one-year survival rates of 63.4% and 64.0%, respectively. In the naïve indirect treatment comparison, these were significantly longer (p<0.001) than CT-only and ICT + CCRT regimens, representing a clinically relevant 20% reduction in the risk of death compared to CT-only and ICT + CCRT studies.
- Encouraging Encouraging rate of surgical resection with curative intent in nearly one-in-four PanCO patients (23.8%) that received OncoSil™ plus CT, translating to 20.0% in the ITT cohort, which were significantly greater than rates reported in the CT-only and ICT + CCRT studies (p<0.001). Notably, the R0 (Tumour Free) margin status rate in PanCO was 80%. Surgical resection of pancreatic cancer, particularly in patients previously determined to be unresectable, profoundly improves patients' prognosis from a five-year survival rate of 5% to greater than 20%.
- Prolonged Progression-free survival (PFS) was also prolonged (9.3 months in both ITT and PP cohorts), and was significantly greater than the "state-of-the-art" CT–only and ICT + CCRT studies (p<0.001)
- Higher DCR
 Disease control and overall response rates in the PanCO study 95.7% and 29.8%, respectively, in the ITT group; 100%
 and 31.0% in the PP population underline the response following OncoSil[™] administration and were again significantly greater than the CT-only and ICT + CCRT studies in the naïve indirect treatment comparison.

PanCO Study: Results and Comparator Analysis (2/2)

- Low chemo These encouraging results were achieved despite relatively low chemotherapy intensity due to poor tolerability to the chemotherapy agents, and consequently dose delays ≥one week, dose reductions and/or termination of CT were seen in patients prior to OncoSil[™] administration, as well as in a similar proportion of the patients who did not receive OncoSil[™].
- Superior The naïve indirect treatment comparison confirms that the PanCO study results were consistently and statistically significantly better than the results from CT-only and ICT + CCRT studies, and clearly demonstrates that OncoSil[™] plus CT provides clinically relevant benefits for patients with unresectable LAPC that are superior to those reported with CT alone.
- Safety
 Analysis
 Satisfactory safety profile with no evidence of significant safety concerns or unexpected/serious toxicities associated with the OncoSil[™] device. No evidence to suggest any significant additional risk associated with OncoSil[™] treatment over that expected with CT alone.

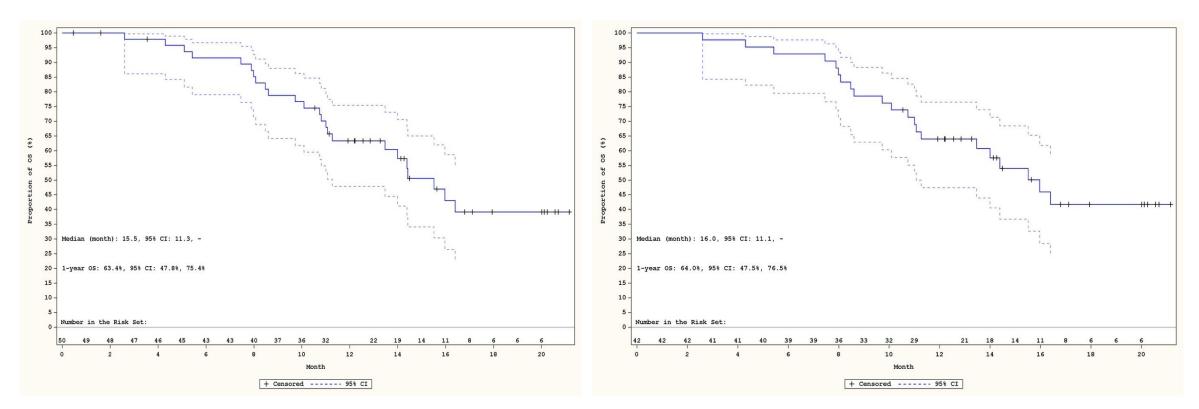
Median Overall Survival Results: PanCO vs. Naïve Indirect Treatment Comparison

Median overall survival

OS remains the gold-standard outcome for benchmarking the clinical benefit in patients with pancreatic cancer, as it does for many other cancers

PanCO Overall Survival (OS)

at a Median Follow-Up of 16.1 Months



PanCO ITT cohort

- Median OS: 15.5 months (95% CI: 11.3, nc)
- 1-year survival: 63.4% (95% CI: 47.8%, 75.4%)

PanCO PP cohort

- Median OS: 16.0 months (95% CI: 11.1, nc)
- 1-year survival: 64.0% (95% CI: 47.5%, 76.5%)

Systematic Literature Review: **Overall Survival Analyses** (All Identified Treatment Arms)

Author, Year	Patients (N)	CT (months-ICT only)	CRT (Gy)		Median [95%
Hazel, 1981	15	5FU + methyl-CCNU	na		7.8 [NR, 1
<laasen, 1985<="" td=""><td>44</td><td>5FÚ</td><td>na</td><td>•</td><td>8.2 [NR, N</td></laasen,>	44	5FÚ	na	•	8.2 [NR, N
GITSG, 1988	21	5FU + steptozocin + MMC	na		7.4 [NR, N
Wagener, 1989	19	5FU + ADM + cis (2)	5FU/40Gy		14.0 [NR, N
Vagener, 1996	53	Epirubicin + cis + 5FU (2)	Gem/50.4Gy		10.8 [NR, N
odd, 1998	38	5FU/LV + MMC + Dip	na		15.5 [NR, N
pelbaum, 2002	20	Gem (2)	Gem/50.4Gy		8.0 [NR, N
Al-Sukhun, 2003	20	PACE (1.5)	5FU/47.6Gy	·	13.4 [7.1, 19
Conroy, 2005	11	FOLFIRINOX	na		15.7 [8.9, 43
/lishra, 2005			1144		
	20	IrinoGem (1.5)	Gem/50.4Gy	-+-	8.8 [6.4, 10
Kurt, 2006	24	5FU + Gem (2)	Gem/50.4-54Gy	_ 	11.0 [8.2, 13
sacoff, 2007	50	5FU/LV + MMC	na	_	13.8 [9.8, 16
ko, 2007	25	Gem + cis (6)	Cap/50.4Gy		13.5 [10.9, 20
Goldstein, 2007	41	Gem (1)	5FU/54Gy		11.7 [9.7, 13
Chauffert, 2008	60	Gem	na	e	13.0 [8.7, 18
loureau-Zabotto, 2008	59	GemOx (2)	5FUOx/55Gy	•	12.2 [NR, N
shii, 2010	50	Gem	na	_ _	15.0 [12.7, 19
lakachi, 2010	20	Gem + S-1 (3)	Gem/30Gy	_	14.4 [8.7, 20
oehrer, 2011	37	Gem	na	-	9.2 (7.9, 11
Ailandri, 2011	33	GemOx (2)	Nil/25Gy	- <u>-</u>	14.0 [12.0, 18
Sindler, 2011	73	Gem	na		10.6 [9.9, 1
ündler, 2011	73	Gem + axitinib	na		9.5 [7.4, 1
lakai, 2012					11.0 [5.8, 23
	13	Gem	na		
lakai, 2012	15	Gem + S-1	na	•_	23.9 [13.5, 26
zaka, 2012	18	Gem	na	_	8.7 [5.0, 20
Dzaka, 2012	13	Gem + S-1	na		14.8 [9.5, 23
leno, 2012	66	Gem	na	_ 	12.7 [9.7, 14
leno, 2012	68	S-1	na	•	13.8 [NR N
leno, 2012	68	Gem + S-1	na	- _	15.9 [13.0, 20
Soldstein, 2012	48	GemOx (1)	5FU/54Gy		15.7 [13.1, 18
Kim, 2012	37	Gem + cis (2)	Cap/54Gy		16.8 [12.9, 20
leinemann, 2013	31	Gem	na	_ + _	9.9 [7.4, 12
leinemann, 2013	31	Gem + upa	na		9.7 [8.4, 17
leinemann, 2013	33	Gem + upa	na		12.5 [8.2, 18
eone, 2013	24	GemOx (1)	Gem/50.4Gy	· ·	13.3 [NR, N
Esnaola, 2014	24	cetGemOx (1.5)	Cap/54Gy		9.3 [8.6, 13
(e, 2014			TS1/50.4Gy		15.2 [NR, N
	32	Gem + S-1 (1.5)			
lerman, 2015	49	Gem (1)	Nil/33Gy	•	13.9 [NR, N
Borad, 2015	15	Gem	na	•	15.0 [NR , N
orad, 2015	35	Gem + TH-302	na	•	13.1 [NR, N
eplanque, 2015	24	Gem	na	_	13.8 [8.6, 18
ammel, 2016	223	Gem	na		13.6 [12.3, 15
lammel, 2016	219	Gem + erlo	na		11.9 [10.4, 13
algleish, 2016	7	GemOx	na		9.2 [3.5, 15
lurt, 2017	114	GemCap (4)	Gem/50.4Gy or Cap/54Gy		12.6 [11.3, 14
vans, 2017	102	Gem	na	-	12.9 [11.7, 15
vans, 2017	100	Gem + dastanib	na	_	12.3 [10.2, 15
liddleton, 2017	20	Gem	na ·		10.9 [0.2, 20
liddleton, 2017	20	Gem + vandetanib	na		12.1 [10.0, 1
udo, 2017	30		S-1/50.4Gy		21.3 [14.3, 2
		Gem + S-1 (1.5)			
oshida, 2017	10	mFOLFIRINOX	na		16.7 [3.6, 26
uan, 2018	16	Gem + Cap (3)	Nil/36Gy	- _	14.3 [10.8, 16
aito, 2018	19	S-1/LV/Gem	na		26.1 [18.3, 1
kahori, 2019	15	SOXIRI	na	•	22.6 [NR, N
/leta-analysis of medians					12.7 [12.2, 13
PanCo (ITT)	50	Gem + Abr or FOLFIRINOX	OncoSil™	•	15.5 [11.3, 1
anCo (PP)	42	Gem + Abr or FOLFIRINOX	OncoSil™		16.0 [11.1,1
			сс Г		

Median overall survival (months)

Abbreviations: 5FU, Fluorouracil; ADM, Adriamycin (doxorubicin); Abr, abraxane (nab-paclitaxel); Cap, capecitabine; CCRT, induction chemotherapy with consolidation chemoradiotherapy; cet, cetuximab; C.I., confidence interval; cis, cisplatin; CRT, chemoradiotherapy; CT, chemotherapy; Dip, docetaxel/ifosfamide/cisplatin; erlo, erlotinib; FOLFIRINOX, leucovorin/fluorouracil/irinotecan/oxaliplatin; Gem, gemcitabine; ICT, induction chemotherapy;

oncos

irino, irinotecan; ITT, intention-to-treat; LV, leucovorin; MMC, mitomycin C; na, not applicable; NC, not calculable (for PanCO study upper bound C.I. not yet reached); NR, not reported; Ox, oxaliplatin; PACE, cisplatin/doxorubicin/cyclophosphamide/etoposide; PP, per protocol; SOXIRI, S-1/oxaliplatin/irinotecan; upa, urokinase type plasminogen activator

Summary of Analysis

Regimen	Median OS	(95% CI)
CT-only and ICT + CCRT	12.7 months	(12.2, 13.6)
PanCO (ITT)	15.5 months	(11.3, NC)
PanCO (PP)	16.0 months	(11.1, NC)

Abbreviations: C.I., confidence interval; ITT, intention-to-treat (enrolled participants); nc, non-calculable; PP, per protocol (enrolled and implanted participants); OS, overall survival.

Overall Survival Summary of the Evidence on Clinical Benefit Meta-Analysis of Medians: PanCO Against 'State-of-the-Art' Therapies

	Median OS (months; 95% C.I.)			
PanCO (ITT)	15.5 (11.3 <i>,</i> NC)			
PanCO (PP)	16.0 (11.1 <i>,</i> NC)			
All Treatments	12.7 (12.2, 13.6)			
CT Only	12.7 (11.9, 13.6)			
CCRT Only	12.6 (12.2, 14.0)			

Abbreviations: CCRT, induction chemotherapy with consolidation chemoradiotherapy; C.I., confidence interval; CT, chemotherapy; ITT, intention-to-treat; NC, not calculable (for PanCO study upper bound C.I. not yet reached); LPFS, local progression-free survival; PFS, progression-free survival; OS, overall survival; PP, per protocol.

Overall Survival: Statistical Comparison of Median OS, from PanCO Against 'State-of-the-Art' Therapies

Parameter of Interest	СТ Туре	ITT/PP	PanCO Median	N Trials	n>PanCO	<i>p-</i> value
	CT + ICT + CCRT	ITT	15.5	54	10	<0.001
06	CT + ICT + CCRT	PP	16.0	54	6	<0.001
OS	CT only	ITT	15.5	34	7	< 0.001
	CT only	PP	16.0	34	4	< 0.001
	ICT + CCRT	ITT	15.5	20	3	0.001
	ICT + CCRT	PP	16.0	20	2	< 0.001

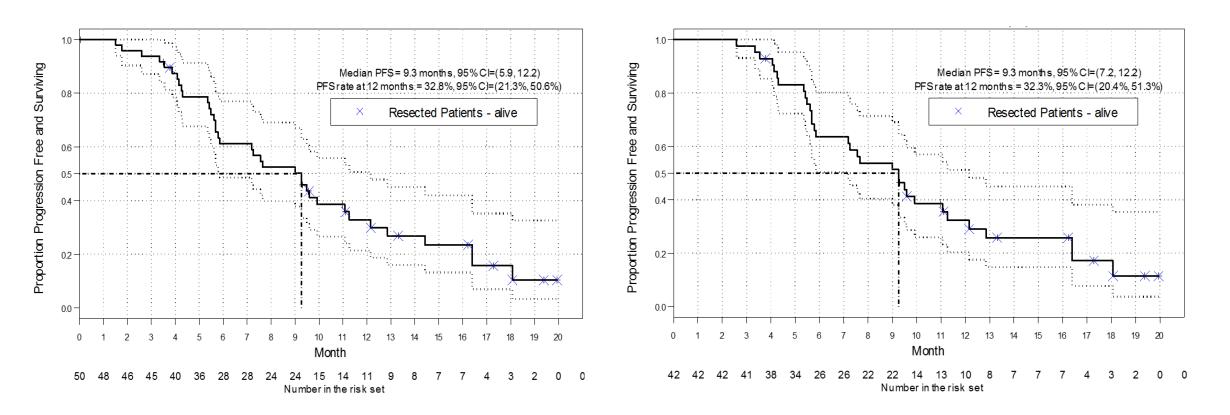
Abbreviations: CCRT, consolidation chemoradiotherapy; CT, chemotherapy; ICT, induction chemotherapy; ITT, intention-to-treat; OS, overall survival; PFS, progression-free survival; PP, per protocol

Secondary Outcome Results: PanCO vs. Naïve Indirect Treatment Comparison

Median PFS, LPFS (PanCO only), one-year survival, LDCR (PanCO only), DCR, ORR and resection rate

PanCO Progression-Free Survival (PFS)

at a Median Follow-Up of 16.1 Months



PanCO ITT cohort

- Median PFS: 9.3 months (95% CI: 5.9, 12.2)
- 1-year survival: 32.8% (95% CI: 21.3%, 50.6%)

PanCO PP cohort

- Median PFS: 9.3 months (95% CI: 7.2, 12.2)
- 1-year survival: 32.3% (95% CI: 20.4%, 51.3%)

Abbreviations: C.I., confidence interval; ITT, intention-to-treat (enrolled participants); nc, non-calculable; PP, per protocol (enrolled and implanted participants); PFS, progression-free survival.

Systematic Literature Review: Progression-Free Survival

Analyses (All Identified Treatment Arms)

Author, Year	Patlents (N)	CT (months-ICT only)	CRT (Gy)		Median [95% Ci
Klaasen, 1985	15	5FU + methyl-CCNU	na		4.2 [NR, NR]
Todd, 1998	44	5FU	na	•	8.0 [NR, NR]
Conroy, 2005	21	5FU + steptozocin + MMC	na		7.6 [NR, NR]
Isacoff, 2007	38	5FU/LV + MMC + Dip	na		7.3 [NR, NR]
Chauffert, 2008	11	FOLFIRINOX	na	-	6.2 [NR, NR]
Ishii, 2010	50	5FU/LV + MCC	na		6.0 [5.3, 9.3]
Loehrer, 2011	60	Gem	na	•	6.7 [NR, NR]
Nakai, 2012	50	Gem	na	_	8.1 [2.2, 13.0]
Nakai, 2012	37	Gem	na	_	12.6 [3.4, 16.5]
Ozaka, 2012	13	Gem	na	_	4.1 [2.0, 6.6]
Ozaka, 2012	15	Gem + S-1	na	•	12.0 [3.8, 15.2]
Heinemann, 2013	18	Gem	na	_	8.2 [5.6, 11.2]
Heinemann, 2013	13	Gem + S-1	na		5.6 [4.1, 7.6]
Heinemann, 2013	31	Gem	na	—• —	8.3 [6.5, 11.3]
Ueno, 2012	31	Gem + upa	na	_ _ 	6.2 [4.5, 8.1]
Ueno, 2012	33	Gem + upa	na		10.7 [7.7, 12.9]
Hammel, 2016	66	Gem	na		7.8 [NR, NR]
Hammel, 2016	68	S-1	na		6.6 [NR, NR]
Wagener, 1989	68	Gem + S-1	na		11.0 [NR, NR]
Wagener, 1996	223	Gem	na		8.9 [NR, NR]
Mishra, 2005	219	Gem + erlo	na	_ _	5.1 [3.2, 6.7]
Kurt, 2006	19	5FU + ADM + cis (2)	5FU/40Gv		6.0 [3.6, 8.4]
Ko, 2007	53	Epirubicin + cis + 5FU (2)	Gem/50.4Gy		10.5 [3.8, 11.8]
Goldstein, 2007	20	Gem (2)	Gem/50.4Gy	•	7.1 [6.3, 9.2]
Moureau-Zabotto, 2008	20	PACE (1.5)	5FU/47.6Gy		7.6 [7.6, 7.6]
Nakachi, 2010	20	IrinoGem (1.5)	Gem/50.4Gy		8.1 [5.5, 10.8]
Milandri, 2011	20	5FU + Gem (2)	Gem/50.4-54Gy		
Goldstein, 2012	25	Gem + cis (6)	Cap/50.4Gy		11.0 [8.0, 13.0] 11.0 [8.4, 13.0]
Kim, 2012	41	Gem (1)	5FU/54Gv		
Leone, 2013	59	GemOx (2)	5FUOx/55Gy	· · ·	7.2 [4.4, 10.0]
Hurt, 2017	20	Gem + S-1 (3)	Gem/30Gy	-	9.1 [9.1, 9.1]
Ke, 2014	33	GemOx (2)	Nil/25Gy		9.2 [7.7, 10.3]
Herman, 2015	48	GemOx (1)	5FU/54Gy		9.3 [NR, NR]
Borad, 2015	40 37	Gem + cis (2)	Cap/54Gy	_	7.8 [NR, NR]
Borad, 2015 Borad, 2015	24	GemOx (1)	Gem/50.4Gy		6.2 [NR, NR]
Kindler, 2011	114	GemCap (4)	Gem/50.4Gy or Cap/54Gy		9.0 [NR, NR] 9.1 [5.8, 10.6]
Kindler, 2011	24	cetGemOx (1.5)	Cap/54Gy	_	5.9 [4.2, 7.3]
Dalgleish, 2016	32	Gem + S-1 (1.5)	TS1/50.4Gy		
Evans, 2017	49	Gem (1)	Nil/33Gy		5.3[1.9, 6.7]
Evans, 2017 Evans, 2017	49 15	Gem	na		5.5 [5.2, 6.5]
Sudo, 2017	35	Gem + TH-302	na		5.5 [3.7, 7.0]
Yoshida, 2017	24	Gem + TH=302	na		12.7 [9.6, 15.5]
Saito, 2018	73	Gem			9.6 [1.8, 17.7]
Salto, 2016	73	Gem	na	-	12.7 [8.0, 24.0
Meta-analysis of medians				4	7.6 [6.6, 7.8]
PanCo (ITT)	50	Gem + Abr or FOLFIRINOX	OncoSil™	— —	9.3 [5.9, 12.2]
PanCo (PP)	42	Gem + Abr or FOLFIRINOX	OncoSil™		9.3 [7.2, 12.2]

Abbreviations: 5FU, Fluorouracil; ADM, Adriamycin (doxorubicin); Abr, abraxane (nab-paclitaxel); Cap, capecitabine; CCRT, induction chemotherapy with consolidation chemoradiotherapy; cet, cetuximab; C.I., confidence interval; cis, cisplatin; CT, chemotherapy; Dip, docetaxel/ifosfamide/cisplatin; erlo, erlotinib; FOLFIRINOX, leucovorin/fluorouracil/irinotecan/oxaliplatin; Gem, gemcitabine; ICT, induction chemotherapy; irino, irinotecan; ITT, intention-to-treat; LV, leucovorin; MMC, mitomycin C; na, not applicable; NR, not reported; Ox, oxaliplatin; PACE, cisplatin/doxorubicin/cyclophosphamide/etoposide; PFS, progression-free survival; PP, per protocol; SOXIRI, S-1/oxaliplatin/irinotecan

oncos

Summary of Analysis

Regimen	Median PFS	(95% CI)
CT-only and ICT + CCRT	7.6 months	(6.6, 7.8)
PanCO (ITT)	9.3 months	(5.9, 12.2)
PanCO (PP)	9.3 months	(7.2, 12.2)

Abbreviations: C.I., confidence interval; ITT, intention-to-treat (enrolled participants); PP, per protocol (enrolled and implanted participants); PFS, progression-free survival.

25 30

Systematic Literature Review: Progression-Free Survival

Analyses (CT Treatment Arms Only)

Author, Year	Patients (N)	СТ	CRT (Gy)		Median [95% CI]
Klaasen, 1985	15	5FU + methyl-CCNU	na	•	4.2 [NR, NR]
Todd, 1998	44	5FU	na	•	8.0 [NR, NR]
Conroy, 2005	21	5FU + steptozocin + MMC	na		7.6 [NR, NR]
Isacoff, 2007	38	5FU/LV + MMC + Dip	na		7.3 [5.3, 8.7]
Chauffert, 2008	11	FOLFIRINOX	na	-	6.2 [NR, NR]
shii, 2010	50	5FU/LV + MCC	na	-	6.0 [5.3, 9.3]
Loehrer, 2011	60	Gem	na	•	6.7 [NR, NR]
Nakai, 2012	50	Gem	na	-	8.1 [2.2, 13.0]
Nakai, 2012	37	Gem	na	e	12.6 [3.4, 16.5]
Dzaka, 2012	13	Gem	na	_ 	4.1 [2.0, 6.6]
Dzaka, 2012	15	Gem + S-1	na	-	12.0 [3.8, 15.2]
Heinemann, 2013	18	Gem	na	_	8.2 [5.6, 11.2]
leinemann, 2013	13	Gem + S-1	na		5.6 [4.1, 7.6]
leinemann, 2013	31	Gem	na	_	8.3 [6.5, 11.3]
Jeno, 2012	31	Gem + upa	na	-	6.2 [4.5, 8.1]
Jeno, 2012	33	Gem + upa	na		10.7 [7.7, 12.9]
lammel, 2016	66	Gem	na	•	7.8 [NR, NR]
Hammel, 2016	68	5-1	na	•	6.6 [NR, NR]
3orad, 2015	68	Gem + S-1	na	•	6.2 [NR, NR]
Borad, 2015	223	Gem	na	•	9.0 [NR, NR]
Kindler, 2011	219	Gem + erlo	na	_ _	9.1 [NR, NR]
Kindler, 2011	15	Gem	na		5.9 [4.2, 7.3]
Dalgleish, 2016	35	Gem + TH-302	na	_ _	5.3 [1.9, 6.7]
Evans, 2017	24	Gem	na	•	5.5 [5.2, 6.5]
Evans, 2017	73	Gem	na		5.5 [3.7, 7.0]
oshida, 2017	77	Gem + axitinib	na	-	9.6 [1.8, 17.7]
Saito, 2018	7	GemOx	na	-	12.7 [8.0, 24.0]
Meta-analysis of medians				•	6.6 [6.2, 7.8]
PanCo [ITT]	50	Gem + Abr or FOLFIRINOX	OncoSil™	-	9.3 [5.9, 12.2]
PanCo (PP)	42	Gem + Abr or FOLFIRINOX	OncoSil™		9.3 [7.2, 12.2]

10 15 20

Median PFS (months)

25 30

Abbreviations: 5FU, Fluorouracil; ADM, Adriamycin (doxorubicin); Abr, abraxane (nab-paclitaxel); Cap, capecitabine; CCRT, induction chemotherapy with consolidation chemoradiotherapy; cet, cetuximab; C.I., confidence interval; cis, cisplatin; CT, chemotherapy; Dip, docetaxel/ifosfamide/cisplatin; erlo, erlotinib; FOLFIRINOX, leucovorin/fluorouracil/irinotecan/oxaliplatin; Gem, gemcitabine; ICT, induction chemotherapy; irino, irinotecan; ITT, intention-to-treat; LV, leucovorin; MMC, mitomycin C; na, not applicable; NC, not calculable (for PanCO study upper bound C.I. not yet reached); NR, not reported; Ox, oxaliplatin; PACE, cisplatin/doxorubicin/cyclophosphamide/etoposide; PFS, progression-free survival; PP, per protocol; SOXIRI, S-1/oxaliplatin/irinotecan

oncos

Summary of Analysis

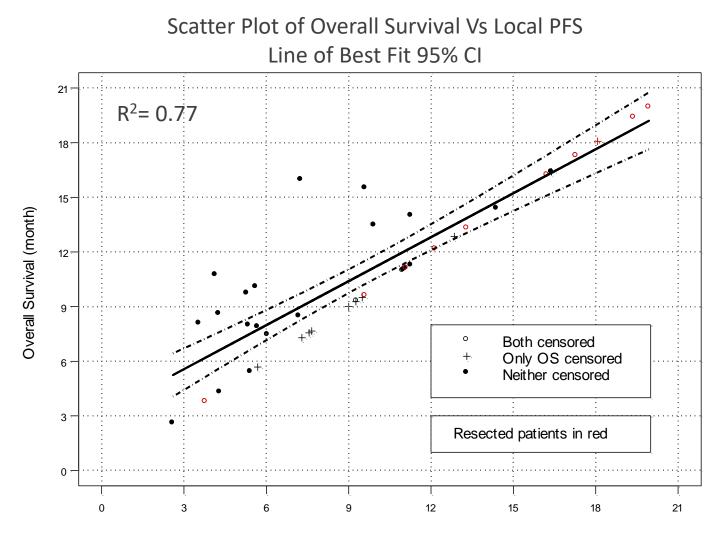
Regimen	Median PFS	(95% CI)
CT-only	6.6 months	(6.2, 7.8)
PanCO (ITT)	9.3 months	(5.9, 12.2)
PanCO (PP)	9.3 months	(7.2, 12.2)

Abbreviations: C.I., confidence interval; ITT, intention-to-treat (enrolled participants); PP, per protocol (enrolled and implanted participants); PFS, progression-free survival.

PanCO Local Disease Control Rate at 16 weeks (LCDR_{16 weeks}) per RECIST 1.1

	ITT (N=50)	PP (N=42)
Number of study participants with local disease control at Week 16	41	38
LCDR _{16 weeks} (95% CI)	82.0% (68.6% ,91.4%)	90.5% (77.4%, 97.3%)
<i>p</i> -value	0.0013	<=0.0001

Maintenance of local tumour control: Week 24 LCDR

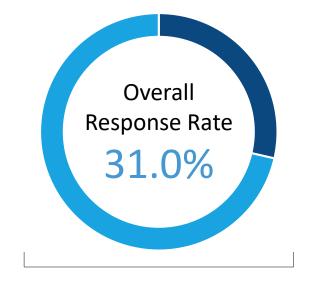


30/42 implanted study participants had SD, PR or had undergone surgical resection with curative intent at Week 24:

LDCR_{24 weeks} = 71.4% (95% CI: 55.4%, 84.3%)

PanCO Local Progression Free Survival and Overall Survival Correlation – Line of Best Fit 95% CI

LPFS (month)



- 13 implanted study participants (31.0%; 95% CI: 17.6%, 47.1%) achieved a Best Response of Partial Response (PR) based on RECIST 1.1 assessment.
 - Defined as a ≥30% decrease in the longest diameter of the local target tumour (compared to baseline), without the appearance of one or more new lesions.

Disease Control Rate (DCR)

- All 42 implanted study participants (100.0%; 95% CI: 91.6%, 100.0%) achieved a Best Response of Stable Disease (SD) or better based on RECIST 1.1 assessment.
 - Defined as a ≤20% increase in the longest diameter of the local target tumour (compared to baseline), without the appearance of one or more new lesions.

Disease Control Rate 100.0%

Systematic Literature Review: **Disease Control Rate** Analyses Subgroups Based On Treatment

		-						
Author, year	CT (months-ICT only)	CRT (Gy)	Cases	Total		Proportion	95% C.I.	
Treatment = CCRT								
Sudo, 2017	Gem + S-1 (1.5)	S-1/50.4Gy	29	30			[86.2; NC]	
Wagener, 1989	5FU + ADM + cis (2)	5FU/40Gy	19	19		100.0	[91.1; 100.0]	
Wagener, 1996	Epirubicin + cis + 5FU (2)	Gem/50.4Gy	44	53	-	83.0	[71.6; 92.1]	
Mishra, 2005	IrinoGem (1.5)	Gem/50.4Gy	13	20		65.0	[42.5; 84.7]	
Moureau-Zabotto, 2008	GemOx (2)	5FUOx/55Gy	50	59	-	84.7	[74.3; 92.9]	
Nakachi, 2010	Gem + S-1 (3)	Gem/30Gy	20	20	-	100.0	[91.6; NC]	
Milandri, 2011	GemOx (2)	Nil/25Gy	26	33		78.8	[63.0; 91.3]	
Goldstein, 2012	GemOx (1)	5FU/54Gy	41	46	÷ 🖬 -	89.1	[78.2; 96.8]	
Kim, 2012	Gem + cis (2)	Cap/54Gy	25	31	_ _	80.6	[64.6; 93.0]	
Random-effects model estimate DCR				1.1	-	88.5	[80.4; 94.9]	
Heterogeneity: $l^2 = 66\%$, $\tau^2 = 0.0186$, $\chi_8^2 = 23.79$	(<i>p</i> < 0.01)							
Treatment = CT								
Evans, 2017	Gem	na	83	102	÷	81.4	[73.2; 88.4]	
Evans, 2017	Gem + dastanib	na	79	100	-	79.0	[70.4; 86.5]	
Saito, 2018	S-1/LV/Gem	na	18	19	֥	94.7	[78.8; 100.0]	
Isacoff, 2007	5FU/LV + MMC	na	27	47			[43.0; 71.3]	Reg
Loehrer, 2011	Gem	na	15	36	—	41.7	[25.9; 58.3]	
Ozaka, 2012	Gem	na	8	18	—	44.4	[22.0; 68.1]	ст
Ozaka, 2012	Gem + S-1	na	8	13		61.5	[33.3; 86.5]	CT-
Heinemann, 2013	Gem	na	23	31	_	74.2	[57.1; 88.3]	
Heinemann, 2013	Gem + upa	na	23	31	i	74.2	[57.1; 88.3]	ст
Heinemann, 2013	Gem + upa	na	28	33		84.8	[70.3; 95.4]	CT-
Random-effects model estimate DCR					-	71.3	[61.4; 80.3]	
Heterogeneity: $l^2 = 78\%$, $\tau^2 = 0.0186$, $\chi_9^2 = 41.21$							• • •	ICT
Random-effects model estimate DCR					1	90.1	[73.6; 85.9]	
Heterogeneity: $l^2 = 79\%$, $\tau^2 = 0.0186$, $\chi^2_{18} = 85.94$	1 (n < 0.01)			•		00.1	[10.0, 00.0]	
Residual heterogeneity: $I^2 = 74\%$, $\chi^2_{17} = 65.01$ (p								Par
PanCo (ITT)	Gem + Abr or FOLFIRINO	X OncoSil™	45	47	-•	95.7	[85. 5 , 99. 5]	Dor
PanCo (PP)	Gem + Abr or FOLFIRINO	X OncoSil™	42	42		100.0	[91.6 ; 100.0]	Par

Abbreviations: 5FU, Fluorouracil; ADM, Adriamycin (doxorubicin); Abr, abraxane (nab-paclitaxel); Cap, capecitabine; CRT, consolidation chemoradiotherapy; C.l., confidence interval; cis, cisplatin; CT, chemotherapy; DCR, disease control rate; FOLFIRINOX,

leucovorin/fluorouracil/irinotecan/oxaliplatin; Gem, gemcitabine; ICT, induction chemotherapy; irino, irinotecan; ITT, intention-to-treat; LV, leucovorin;

MMC, mitomycin C; na, not applicable; NC, not calculable

(for PanCO study upper bound C.I. not yet reached); Ox, oxaliplatin; PP, per protocol

Summary of Analysis

Regimen	DCR	(95% CI)	
CT-only and ICT + CCRT	80.1%	(72.9, 86.4)	
CT-only	71.3%	(73.6, 85.9)	
ICT + CCRT	88.5%	(80.4, 94.9)	
PanCO (ITT)	95.7%	(85.5 <i>,</i> 99.5)	
PanCO (PP)	100.0%	(91.6, 100)	

Abbreviations: C.I., confidence interval; ITT, intention-to-treat (enrolled participants); PP, per protocol (enrolled and implanted participants); DCR, disease control rate.

0 20 40 60 80 100 120

Disease control rate (%)

Systematic Literature Review: Resection Rate Analyses **Subgroups Based On Treatment**

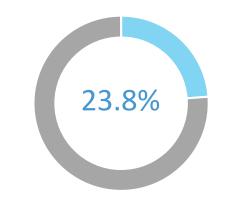
Author,year	CT (months-ICT only)	CRT (Gy)	Cases 1	Fotal	1	Resection rate (%)	95% C.I.
treatment = CCRT							
Epelbaum, 2002	Gem (2)	Gem/50.4Gy	3	20		15.0	[2.1; 34.6]
Al-Sukhun, 2003	PACE (1.5)	5FU/47.6Gy	3	20		15.0	[2.1; 34.6]
Nakachi, 2010	Gem + S-1 (3)	Gem/30Gy	3	20		15.0	[2.1; 34.6]
Milandri, 2011	GemOx (2)	Nil/25Gy	6	33	֥	18.2	[6.6; 33.4]
Leone, 2013	GemOx (1)	Gem/50.4Gy	2	24	→	8.3	[0.2; 23.5]
Esnaola, 2014	cetGemOx (1.5)	Cap/54Gy	2	24	→	8.3	[0.2; 23.5]
Herman, 2015	Gem (1)	Nil/33Gy	4	49	∔	8.2	[1.8; 17.8]
Sudo, 2017	Gem + S-1 (1.5)	S-1/50.4Gy	3	30	· ∔ −	10.0	[1.3; 23.8]
Quan, 2018	Gem + Cap (3)	Nil/36Gy	2	16		12.5	[0.3; 34.1]
Random-effects model estimate Resection ra	te				.	11.5	[7.4; 16.2]
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi_8^2 = 2.98$ (p = 0.94)							
treatment = CT							
Todd, 1998	5FU/LV + MMC + Dip	na	6	38		15.8	[5.6; 29.3]
Isacoff, 2007	5FU/LV + MCC	na	6	50	_ ∔ _	12.0	[4.2; 22.7]
Yoshida, 2017	mFOLFIRINOX	na	2	10		20.0	[0.5; 51.3]
Reni, 2018	PAXG	na	0	16	-	0.0	[0.0; 10.5]
Reni, 2018	Gem/Abraxane	na	0	13	•÷	0.0	[0.0; 12.8]
Saito,2018	S-1/LV/Gem	na	2	19	→ −	10.5	[0.2; 29.2]
Saito, 2018	S-1/LV/Gem	na	0	3	•	0.0	[0.0; 50.0]
Random-effects model estimate Resection ra	te				•	7.7	[3.1; 13.5]
Heterogeneity: $l^2 = 21\%$, $\tau^2 = 0$, $\chi_6^2 = 7.63$ ($p = 0.27$)							
Random-effects model estimate Resection ra	te				•	9.9	[6.7; 13.5]
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $\chi^2_{15} = 10.94$ (p = 0.76)							
Residual heterogeneity: /2 = 0%, χ^2_{14} = 10.60 (p = 0.72)							
PanCo (ITT)	Gem + Abr or FOLFIRINOX	OncoSil™	10	50	—	20.0 [1	0.0, 33.7]
PanCo (PP)	Gem + Abr or FOLFIRINOX	OncoSil™	10	42	⊢ –	23.8 [1	2.1, 39.5]
					· ·		

60 80 20 40 100 Resection rate (%)

Abbreviations: 5FU, Fluorouracil; Abr, abraxane (nab-paclitaxel); Cap, capecitabine; CRT, consolidation chemoradiotherapy; C.I., confidence interval; CT, chemotherapy; Dip, docetaxel/ifosfamide/cisplatin; FOLFIRINOX, leucovorin/fluorouracil/irinotecan/oxaliplatin; Gem, gemcitabine; ICT, induction chemotherapy; ITT, intention-to-treat; LV, leucovorin; MMC, mitomycin C; na, not applicable; Ox, oxaliplatin; PACE, cisplatin/doxorubicin/cyclophosphamide/etoposide; PAXG, nabpaclitaxel/gemcitabine/capecitabine/cisplatin; PP, per protocol

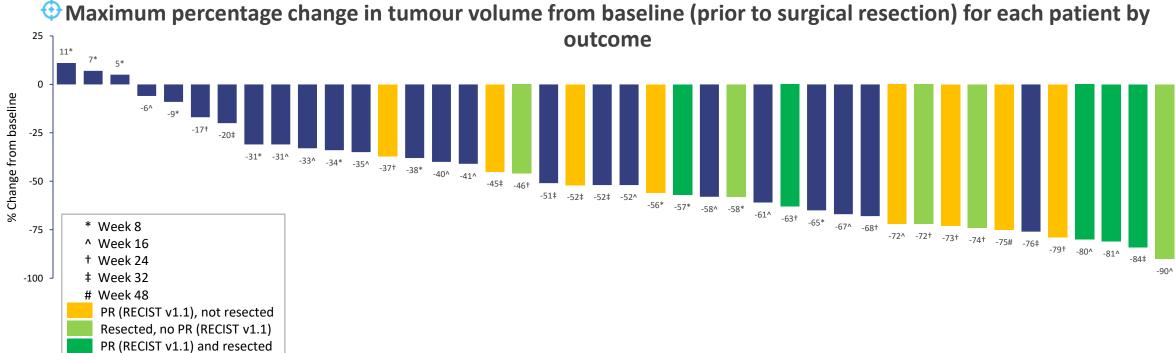
Summary of Analysis

Regimen	Resection Rate	(95% CI)
CT-only and ICT + CCRT	9.9%	(6.7, 13.5)
CT-only	7.7%	(3.1, 13.5)
ICT + CCRT	11.5%	(7.4, 16.2)
PanCO (ITT)	20.0%	(10.0, 33.7)
PanCO (PP)	23.8%	(12.1, 39.5)


Abbreviations: C.I., confidence interval; ITT, intention-to-treat (enrolled participants); PP, per protocol (enrolled and implanted participants); RR, resection rate.

PanCO Surgical Resection with Curative Intent

- 10 implanted study participants were restaged and subsequently had surgical resection with curative intent (PP: 23.8%; 95% CI: 12.1%, 39.5%; ITT: 20.0%; 95% CI: 10.0%, 33.7%).
- 9 8 of these had R0 (microscopically negative) surgical margins.
- Ode of action of OncoSil™ may play a critical role in sterilising surgical margins.
- A further three study participants were sufficiently down-staged to be considered for surgical resection but could not proceed due to concomitant co-morbidities, advanced age etc.
- OncoSil™ treatment was associated with a reduction in size as well as a reduction in the fibrosis of tumours along blood vessels this finding is not seen in study participants undergoing chemo-only regimens.
- PanCO study participants undergoing surgery had favourable tissue planes, which was a surprising finding. In study participants who have EBRT (short or long course), tissue planes often become oedematous or significantly more fibrotic, depending on the time between treatment and surgery, which can make surgery more difficult/problematic. This issue is not seen in study participants treated with OncoSil[™].
- From a surgical perspective, the use of OncoSil™ is therefore a more attractive proposition than EBRT.
- ⁽¹⁾ Surgical resection in LAPC is critical, improving the 5-year survival rate from ~5% to >20%.



- Retrospective analysis of 415 patients with unresectable LAPC presenting to Johns Hopkins Hospital pancreatic multidisciplinary clinic between Jan 2013 and Sept 2017.
- 116 (28.0% of the LAPC cohort) deemed eligible for surgical exploration either due to response by RECIST 1.1 or progression free after 4 months neoadjuvant therapy.
- 984/116 resected (20.0% of the LAPC cohort) after median 5 months of neoadjuvant therapy.
- 75/84 (89.0%) had R0 margin status.
- Significantly greater use of FOLFIRINOX (63.0%), FOLFIRINOX-gemcitabine (17.0%) and radiotherapy (80.0% SBRT; 17.0% IBRT/EBRT) in resected vs. non-resected patients.
- Patients undergoing surgical resection had significantly better survival than patients who did not: median OS: 35.3 vs. 16.3 months and 3-year survival rate: 50.0% vs. 11.0% (p<0.001).
- Survival significantly improved in R0 vs. R1 resections (29.3 vs. 8.1 months; p=0.032).

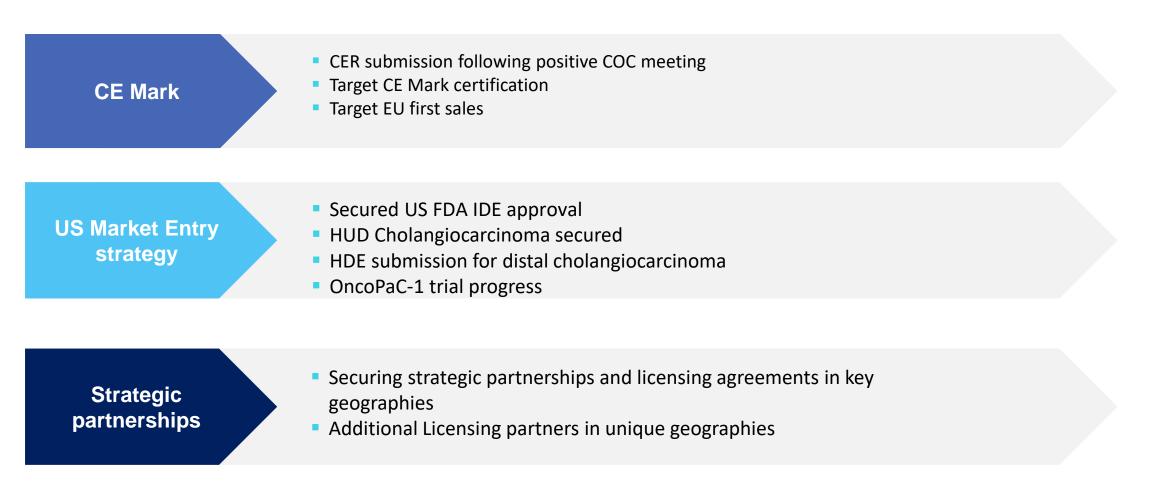
PanCO Tumour Volumetric Assessment

Time point	Number of patients (N*/N)	Median volumetric reduction	Mean volumetric reduction (%)	Range of volumetric change (%)	<i>p</i> -value
Week 16	41*/42 implanted [PP]	38.0%	30.8%	+89.0% to -90.0%	<0.0001

N* = number of assessments available for Week 16 timepoint; p-value for paired T-testing of change in tumour volume from baseline to week 16.

Tumour volume calculated using Longest Diameter in axial dimension, Greatest Perpendicular Diameter in axial dimension and Longest Orthogonal Diameter in craniocaudal dimension.

ONCO


Performance (efficacy) data for the 42 study participants implanted with the OncoSil[™] device demonstrate clinically relevant benefits for patients with unresectable locally advanced pancreatic cancer (LAPC).

Median OS: 16 months	LDCR _{16 weeks} 90.5%	Median PFS: 9.3 months	Median LPFS: 9.6 months	ORR: 31% DCR: 100%
Surgical Resection with Curative Intent: 23.8% R0 margin rate: 80.0%	Median tumour volumetric change: -38.0%	Median FDG-PET TLG change: -65.2%	Median CA 19-9 reduction: -77.8%	Median reduction EORTC-QLQ PAN26 Pain Scale Score at week 12: -20

1 Conclusion

OncoSil at a potential value inflection point

The Company is well positioned to realise value of OncoSil[™] device

