ABN: 31 008 402 391 Level 11, 52 Phillips Street Sydney NSW 2000 GPO Box 225 Sydney NSW 2001 Tel: 61 2 8316 3998 Fax: 61 2 8316 3999 Website: www.gatewaymining.com.au

ASX Announcement: 12 December 2019

STRONG ZONES OF SHALLOW OXIDE GOLD AT ACHILLES PROSPECT

RC drilling defines significant near-surface mineralisation, confirming strong exploration upside at the Gidgee Gold Project

HIGHLIGHTS

- Reverse Circulation (RC) drilling at the recently defined Achilles Prospect has highlighted significant, near-surface mineralisation over a +400m corridor immediately north of the historically mined Rosie Castle open pit. Significant results include:
 - GRC446: 21 metres @ 2.1g/t Au from 32 metres (including 7 metres @ 5.2g/t Au)
 - GRC447: 13 metres @ 3.4g/t Au from 5 metres (including 3 metres @ 12.5g/t Au)
 - GRC430: 11 metres @ 3.0g/t Au from 32 metres
 - GRC432: 7 metres @ 2.2g/t Au from 60 metres
 - GRC435: 6 metres @ 3.8g/t Au from 17 metres
 - GRC437: 10 metres @ 3.8g/t Au from 31 metres
 - GRC443: 6 metres @ 2.1g/t Au from 22 metres
 - GRC426: 19 metres @ 1.3g/t Au from 29 metres
- Significant zones of stockwork mineralisation have also been intersected wholly within the granodiorite.
- The Achilles mineralised corridor remains untested for approximately 600m north towards the historically mined NE Caledonian open pit.
- Additionally, drilling remains limited south of the Rosie Castle open pit for approximately 4km.
- Drilling completed to date is shallow, with the majority of the intersections either oxide or transitional (partially oxidized) in nature.
- Expanded 11,000m RC drilling program now complete, with a substantial number of assay results expected over the coming weeks.

Gateway Mining Limited (ASX: GML) (**Gateway** or **Company**) is pleased to advise that it has defined a significant zone of shallow oxide gold mineralisation over a strike length of at least 400m at the Achilles Prospect, part of its 100%-owned **Gidgee Gold Project**, Western Australia (Figure 1).

The Company has received significant Reverse Circulation (**RC**) drilling results from the Achilles Prospect which are reported in this announcement, marking a strong start to its recently completed 11,000m RC drilling program.

A substantial number of assay results are outstanding from the program, and are expected to be progressively received and reported over the coming weeks.

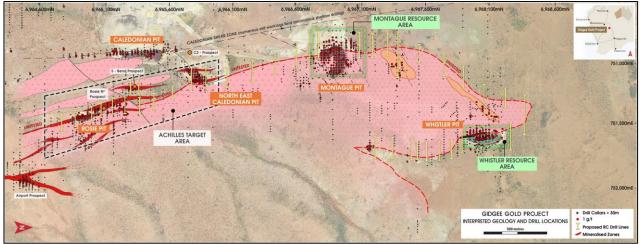


Figure (1): Gidgee Gold Project Location Plan

KEY POINTS

- A total of 33 RC holes for 3,039m were completed over a strike length of approximately 400m (Figure 2) at the Achilles Target.
- Drilling at Achilles was designed to test the granodiorite-mafic contact area over a broad strike length extending north from the historically mined open pit at Rosie Castle, which was centered on this style of mineralisation. Previous exploration targeting the continuation of this structure was relatively limited in scope. Additionally, geological interpretation by Gateway has highlighted a series of potential thrust repeats of this contact in the area, which forms the basis of the Achilles Prospect. No systematic exploration has previously been carried out at the Achilles Prospect to test this, but there are indications of other mineralised surfaces in existing historical data (e.g. at S-Bend).
- With the exception of three holes, all of the holes drilled by Gateway as part of the current program intersected significant gold mineralised structures. The results both confirmed and extended the zones of mineralisation intersected previously in historical RC drilling.
- Significant new drilling results at Achilles include (see Table 1 and Appendix 1 for full details):
 - GRC446: 21 metres @ 2.1g/t Au from 32 metres (includes 7 metres @ 5.2g/t Au)
 - GRC447: 13 metres @ 3.4g/t Au from 5 metres (includes 3 metres @ 12.5g/t Au)
 - GRC430: 11 metres @ 3.0g/t Au from 32 metres
 - GRC432: 7 metres @ 2.2g/t Au from 60 metres
 - GRC435: 6 metres @ 3.8g/t Au from 17 metres
 - GRC437: 10 metres @ 3.8g/t Au from 31 metres
 - GRC443: 6 metres @ 2.1g/t Au from 22 metres
 - GRC426: 19 metres @ 1.3g/t Au from 29 metres
- Previously reported historical Achilles intersections include (see Table 2 and Appendix 1 for full details):
 - GRC085: 2 metres @ 14.1g/t Au from 68 metres
 - GRC104: 2 metres @ 12.8g/t Au from 82 metres
 - GRC107: 10 metres @ 2.0g/t Au from 26 metres
 - GRC108: 4 metres @ 5.6g/t Au from 45 metres
 - GRC109: 3 metres @ 4.3g/t Au from 65 metres
 - GRC111: 6 metres @ 2.2g/t Au from 22 metres
 - GRC114: 10 metres @ 2.5g/t Au from 17 metres
 - GRC116: 17 metres @ 1.7g/t Au from 20 metres

- GRC117: 6 metres @ 2.9g/t Au from 50 metres
- GRC118: 15 metres @ 2.9g/t Au from 43 metres
- GRC127: 2 metres @ 12.4g/t Au from 119 metres
- GRC177: 3 metres @ 9.3g/t Au from 87 metres
- WRC011: 2 metres @ 6.0g/t Au from 88 metres
- GRB1551: 8 metres @ 7.0g/t Au from 25 metres
- GRB1450: 10 metres @ 9.9g/t Au from 15 metres
- Drilling to date remains relatively shallow and, as such, the majority of intersections are either oxide or transitional (partially oxidized) in nature.
- The mineralisation is interpreted to be best developed where multiple, sub-vertical structures within the mafic volcanic rocks intersect the flat-lying thrust contact on the margin of the granodiorite intrusion (Figure 3). Down-dip of these intersection positions, the mafic-hosted structures are typically narrower and more discrete, with a strong component of high-grade gold.
- In addition to these main zones of mineralisation, widespread zones of stockwork mineralisation have also been intersected wholly within the granodiorite.
- These observations are consistent with the geological model developed by Gateway.
- This program of RC drilling has demonstrated the unreliability of historical RAB drilling in evaluating the
 presence and tenor of mineralisation present in the bedrock. As a result, it is considered that wide areas of
 prospective host rocks have not been effectively tested by previous exploration.
- Ongoing assessment of the greater Achilles area confirms the emerging potential of the wider target (Figure 4). Specific areas that require ongoing assessment include:
 - The corridor north of the current drilling, which remains untested for approximately 600m towards the historically mined NE Caledonian open pit. The continuation of the host structure is easily visible in geophysical data (see Figure 4).
 - The sub-parallel S-Bend trend, as defined in magnetic data, is present over a strike length of at least 800m.
 - An interpreted thrust repeat, that sees the same structure and stratigraphy replicated to the west. Limited shallow drilling demonstrates this to be prospective but untested over a strike length of 3.6km.
 - South of the Rosie Castle open pit, where the interpreted continuation of the host structure remains only sporadically tested for approximately 4km.

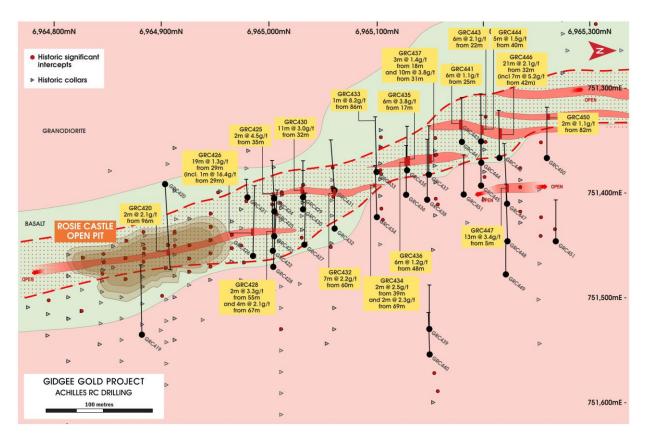


Figure (2): Achilles Prospect RC Drill Location Plan

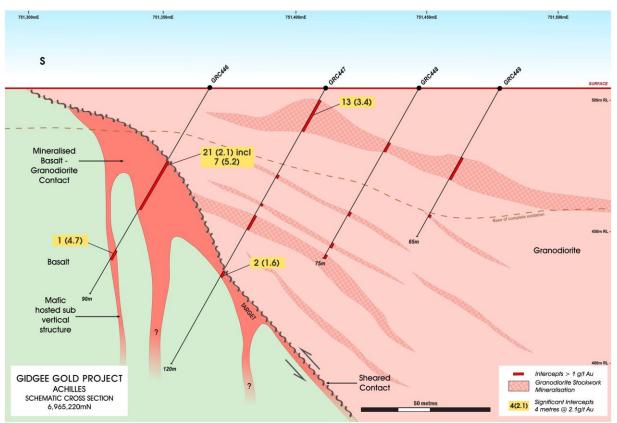


Figure (3): Achilles Prospect Schematic Cross-Section

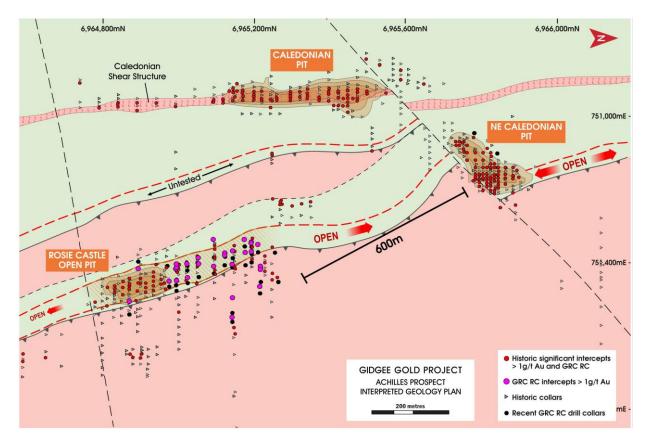


Figure (4): Achilles Prospect Interpreted Plan

NEXT STEPS

Gateway continues to receive assay results from the recently completed RC program. These results will be compiled and interpreted in line with the existing database, and utilised to assess the potential for extensions to existing Mineral Resources at the Whistler and Montague Deposits, as well as areas for further drilling to outline the potential for additional Mineral Resources.

In addition, Gateway is embarking on a significant program of integrating all its available datasets – drilling and surface geochemistry, structural interpretation, as well as aeromagnetic, ground gravity and sub-audio magnetic (SAM) geophysics in order to assess the project-wide prospectivity.

The continued improvements in the geological understanding of the Gidgee Project being developed by Gateway has highlighted the Project's excellent potential to host a significant gold discovery. The abundance of mineralisation identified to date from limited work and historical mining activities, with gold developed in a multitude of geological and structural settings, appears to support this.

This ongoing work is aimed at not only assisting in further improving the understanding of existing mineralised areas, but also in developing new targets for significant gold mineralisation, in order to unlock the Project's true potential.

MANAGEMENT COMMENT

Gateway's Managing Director, Mr Peter Langworthy, said the early success of the recently completed 11,000m drilling program in defining a significant zone of shallow oxide gold mineralization at Achilles provided further evidence of the substantial long-term growth potential at the Gidgee Gold Project.

"This program of RC drilling is a great starting point for our evaluation of the Achilles Prospect. We have already defined a significant zone of near-surface mineralisation over a strike length of at least 400m, including a large

component of oxide and transitional mineralisation, and we have significantly improved our understanding of the key controls on the mineralisation which can be applied in a wider context," he said.

"Ultimately though we see the Achilles area as part of a major gold system that requires ongoing systematic programs of exploration. Our growing understanding of the controls on the gold mineralisation, combined with the quality of our datasets we now have available to us, means that we are now moving a lot closer towards unlocking the broader potential of this hugely prospective but remarkably under-explored project.

"All of the evidence we are accumulating is pointing towards the potential for a very large gold system on these tenements, and we feel that we are now getting a lot closer to pin-pointing its overall dimensions and identifying the areas of significant economic interest."

Peter Langworthy Managing Director

For and on behalf of GATEWAY MINING LIMITED

Competent Person Statement

The information in this report that relates to Exploration Results or Mineral Resources is based on information compiled or reviewed by Mr Peter Langworthy who is a full-time employee of Gateway Mining Ltd and is a current Member of the Australian Institute of Mining and Metallurgy. Mr Peter Langworthy has sufficient experience, which is relevant to the style of mineralisation and types of deposit under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Langworthy consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

Investors Peter Langworthy Managing Director T: 02 8316 3998 or Kar Chua Company Secretary T: 02 8316 3998

<u>Media</u> Nicholas Read Read Corporate T: 08 9388 1474

TABLE (1): CURRENT DRILL INTERCEPT TABLE

Hole ID	Hole Type	MGA_E	MGA_N	RL	Dip	Azi	EOH (m)	From (m)	To (m)	Width (m)	Au (g/t)	Summary
GRC419	RC	751,535	6,964,879	500	-50	270	95	53	54	1	1.1	1 metre @ 1.1g/t Au from 53 metres
								14	15	1	2.0	1 metre @ 2.0g/t Au from 14 metres
GRC420	RC	751,392	6,964,902	500	-50	90	120	28	30	2	2.3	2 metres @ 2.3g/t Au from 28 metres
								96	98	2	2.1	2 metres @ 2.1g/t Au from 96 metres
GRC421	RC	751,404	6,964,978	500	-80	270	85	-	-	-	-	NSR
GRC422	RC	751,456	6,965,001	500	-60	270	95	80	84	4	1.2	4 metres @ 1.2g/t Au from 80 metres
GRC423	RC	751,441	6,965,002	500	-60	270	75	28	29	1	1.0	1 metre @ 1.0g/t Au from 28 metres
GRC425		751,441	0,905,002	500	-00	270	75	62	63	1	6.3	1 metre @ 6.3g/t Au from 62 metres
GRC424	RC	751,405	6,965,002	500	-60	270	65	-	-	-	-	NSR
GRC425	RC	751,417	6,965,003	500	-60	270	80	25	27	2	1.1	2 metres @ 1.1g/t Au from 25 metres
GRC425	ΝC	/51,41/	0,905,005	500	-00	270	80	35	37	2	4.5	2 metres @ 4.5g/t Au from 35 metres
GRC426	RC	751,460	6,964,983	500	-60	270	125	29	48	19	1.3	19 metres @ 1.3g/t Au from 29 metres
GRC420		751,400	0,904,985	500	-00	270	125	29	40	19	1.5	(including 1 metre @ 16.4g/t au from 29m)
GRC427	RC	751,450	6,965,031	500	-60	270	100	29	30	1	1.1	1 metre @ 1.1g/t Au from 29 metres
								22	23	1	2.5	1 metre @ 2.5g/t Au from 22 metres
GRC428	RC	751 471	6.065.000	500	-60	270	150	31	33	2	1.1	2 metres @ 1.1g/t Au from 31 metres
GRC428	RC	751,471	6,965,002	500	-60	270	150	55	57	2	3.3	2 metres @ 3.3g/t Au from 55 metres
								67	71	4	2.1	4 metres @ 2.1g/t Au from 67 metres
GRC429	RC	751,404	6,965,030	500	-60	270	70	-	-	-	-	NSR
								15	16	1	1.2	1 metre @ 1.2g/t Au from 15 metres
GRC430	RC	751,416	6,965,030	500	-60	270	75	20	22	2	1.1	2 metres @ 1.1g/t Au from 20 metres
								32	43	11	3.0	11 metres @ 3.0g/t Au from 32 metres
CDC421	DC	751 200	C 0.05 0.00	500	60	270	00	4	5	1	2.7	1 metre @ 2.7g/t Au from 4 metres
GRC431	RC	751,398	6,965,060	500	-60	270	90	29	32	3	2.7	3 metres @ 2.7g/t Au from 29 metres
606433	D.C.	754 424	6.065.060	500	60	270	05	45	46	1	1.1	1 metre @ 1.1g/t Au from 45 metres
GRC432	RC	751,434	6,965,060	500	-60	270	85	60	67	7	2.2	7 metres @ 2.2g/t Au from 60 metres
GRC433	RC	751,381	6,965,100	500	-60	270	95	86	87	1	8.2	1 metre @ 8.2g/t Au from 86 metres
								39	41	2	2.5	2 metres @ 2.5g/t Au from 39 metres
GRC434	RC	751,424	6,965,100	500	-60	270	100	50	51	1	1.1	1 metre @ 1.1g/t Au from 50 metres
								69	71	2	2.3	2 metres @ 2.3g/t Au from 69 metres
GRC435	RC	751,379	6,965,129	500	-60	270	75	17	23	6	3.8	6 metres @ 3.8g/t Au from 17 metres
CDC426	RC	751 402	6.065.128	500	-60	270	90	48	54	6	1.2	6 metres @ 1.2g/t Au from 48 metres
GRC436	RC	751,402	6,965,128	500	-00	270	90	48	54	0	1.2	(including 2 metres @ 3.0g/t Au from 52 metres)
CDC427	DC	751 202	C 005 140	500	-60	270	85	18	21	3	1.4	3 metres @ 1.4g/t Au from 18 metres
GRC437	RC	751,383	6,965,149	500	-60	270	85	31	41	10	3.8	10 metres @ 3.8g/t Au from 31 metres
								17	23	6	1.4	6 metres @ 1.4g/t Au from 17 metres
GRC438	RC	751,408	6,965,148	500	-60	270	120	50	52	2	1.2	2 metres @ 1.2g/t Au from 50 metres
								62	63	1	1.1	1 metre @ 1.1g/t Au from 62 metres
606430	D.C.	754 534	C 0.05 4 40	500	60	270	05	41	42	1	1.1	1 metre @ 1.1g/t Au from 41 metres
GRC439	RC	751,531	6,965,148	500	-60	270	85	82	83	1	1.5	1 metre @ 1.5g/t Au from 82 metres
		754 555	C 0.05 1 10				0.5	24	26	2	1.1	2 metres @ 1.1g/t Au from 24 metres
GRC440	RC	751,555	6,965,148	500	-60	270	85	62	63	1	1.1	1 metre @ 1.1g/t Au from 62 metres
								20	23	3	1.0	3 metres @ 1.0g/t Au from 20 metres
CDCAAA		754 254	C 005 400	500	60	270	0.5	25	31	6	1.1	6 metres @ 1.1g/t Au from 25 metres
GRC441	RC	751,351	6,965,180	500	-60	270	85	37	39	2	2.0	2 metres @ 2.0g/t Au from 37 metres
								45	46	1	1.5	1 metre @ 1.5g/t Au from 45 metres
GRC442	RC	751,402	6,965,182	500	-60	270	80	71	72	1	9.0	1 metre @ 9.0g/t Au from 71 metres
CDC 1 12		754 050	C 0.05 100	500		270		22	20	6	2.1	6 metres @ 2.1g/t Au from 22 metres
GRC443	RC	751,352	6,965,198	500	-60	270	90	22	28	6	2.1	(including 1 metre @ 9.8g/t Au from 25 metres)
								40	45	5	1.5	5 metres @ 1.5g/t Au from 40 metres
GRC444	RC	751,371	6,965,198	500	-60	270	89	50	51	1	1.3	1 metre @ 1.3g/t Au from 50 metres
	_		,			-		58	59	1	3.0	1 metre @ 3.0g/t Au from 58 metres

Hole ID	Hole Type	MGA_E	MGA_N	RL	Dip	Azi	EOH (m)	From (m)	To (m)	Width (m)	Au (g/t)	Summary
								23	24	1	1.1	1 metre @ 1.1g/t Au from 23 metres
GRC445	RC	751,394	6,965,198	500	-60	270	120	35	39	4	1.8	4 metres @ 1.8g/t Au from 35 metres
								60	61	1	4.4	1 metre @ 4.4g/t Au from 60 metres
GRC446	RC	751,367	6,965,215	500	-60	270	90	32	53	21	2.1	21 metres @ 2.1g/t Au from 32 metres
GKC440	NC.	/51,50/	0,903,213	500	-00	270	30	52		21	2.1	(including 7 metres @ 5.2g/t Au from 42 metres)
GRC447	RC	751,411	6,965,222	500	-60	270	120	5	18	13	3.4	13 metres @ 3.4g/t Au from 5 metres
GRC447	ΝC	751,411	0,905,222	500	-00	270	120	5	10	15	5.4	(including 3 metres @ 12.5g/t Au from 12 metres)
								23	24	1	1.1	1 metre @ 1.1g/t Au from 23 metres
								26	27	1	1.1	1 metre @ 1.1g/t Au from 26 metres
GRC448	RC	751,447	6,965,222	500	-60	270	75	54	55	1	1.1	1 metre @ 1.1g/t Au from 54 metres
								68	69	1	2.1	1 metre @ 2.1g/t Au from 68 metres
								73	74	1	1.2	1 metre @ 1.2g/t Au from 73 metres
GRC449	RC	751,478	6,965,220	500	-60	270	65	38	39	1	3.4	1 metre @ 3.4g/t Au from 38 metres
GRC449		/51,470	0,905,220	500	-00	270	05	55	56	1	1.0	1 metre @ 1.0g/t Au from 55 metres
GRC450	RC	751,368	6,965,259	500	-60	270	100	82	84	2	1.1	2 metres @ 1.1g/t Au from 82 metres
GRC451	RC	751,447	6,965,268	500	-60	270	80					Assays Pending

Notes:

All coordinates located in MGA (GDA94) Zone 50. Azimuth is magnetic degrees ٠

•

- RL's are nominal Au assayed by 50g Fire Assay with AAS finish at ALS Laboratories Perth NSR No Significant Result ٠
- ٠

TABLE (2): HISTORICAL DRILL INTERCEPT TABLE

Prospect	Hole ID	Hole Type	MGA_E	MGA_N	RL	Dip	Azi	EOH (m)	From (m)	To (m)	Width (m)	Au (g/t)
NE Caledonian	RCM162	RC	751,158	6,965,804	500	-70	90	28	22	28	6	8.9
NE Caledonian	RCM172	RC	751,138	6,965,834	500	-90	0	37	22	37	15	3.8
NE Caledonian	DDM005	DD	751,158	6,965,842	503	-90	0	33	20	32	12	18.6
NE Caledonian	DDM004	DD	751,148	6,965,845	503	-90	0	36	24	31	7	1.2
NE Caledonian	DDM006	DD	751138	6965842	503	-90	0	41.8	35	41	6	1.3
NE Caledonian	RCM144	RC	751148	6965862	500	-60	90	36	21	33	12	3.7
NE Caledonian	DDM003	DD	751139	6965863	503	-90	0	45.4	39	42	3	1.4
NE Caledonian	RCM146	RC	751158	6965882	500	-60	90	36	25	32	7	1.7
NE Caledonian	RCM178	RC	751148	6965882	500	-60	90	42	35	40	5	3.4
NE Caledonian	RCM33	RC	751133	6965887	500	-60	90	80	40	48	8	1.2
NE Caledonian	RCM18	RC	751153	6965892	500	-60	90	81	22	42	20	1.2
							270	55	30	45	15	1.2
S Bend	GRB1812	RAB	751242	6965252	503	-60				43	4	2.6
S Bend	GRC337	RC	751252	6965274	503	-60	270	77	43			
S Bend	GRC142	RC	751235	6965276	503	-60	270	60	17	29	12	1.5
S Bend	GRB1975	RAB	751242	6965277	503	-60	270	53	30	53	23	3.8
S Bend	GRC143	RC	751267	6965278	503	-60	270	100	59	67	8	3.4
S Bend	GRC144	RC	751273	6965304	503	-60	270	100	60	64	4	1.2
S Bend	GRC145	RC	751267	6965328	504	-60	270	96	62	63	1	1.2
S Bend	GRB1662	RAB	751217	6965352	504	-60	90	24	5	15	10	10.5
S Bend	GRB1778	RAB	751234	6965352	504	-60	270	39	18	23	5	6.9
S Bend	GRB1779	RAB	751247	6965352	504	-60	270	47	32	47	15	0.7
S Bend	GRC146	RC	751242	6965353	504	-60	270	78	23	25	2	1.0
Rosie North	GRC104	RC	751361	6964978	503	-60	90	90	82	84	2	12.8
Rosie North	GRC105	RC	751415	6965009	504	-60	270	40	20	23	3	1.9
Rosie North	GRC094	RC	751446	6965006	504	-60	270	80	71	73	2	2.4
Rosie North	GRB1551	RAB	751382	6965002	504	-60	90	33	25	33	8	7.0
Rosie North	GRB1450	RAB	751399	6965005	504	-60	90	41	15	25	10	9.9
Rosie North	GRC107	RC	751410	6965029	504	-60	270	40	26	36	10	2.0
Rosie North	GRC108	RC	751422	6965028	504	-60	270	55	45	49	4	5.6
Rosie North	GRC109	RC	751435	6965029	504	-60	270	80	65	68	3	4.3
Rosie North	GRB1770	RAB	751392	6965052	504	-60	270	31	25	31	6	1.1
			751408			-60	270	70	22	28	6	2.2
Rosie North	GRC111	RC		6965056	504							
Rosie North	GRC131	RC	751422	6965057	504	-60	270	85	49	51	2	2.4
Rosie North	GRC132	RC	751448	6965056	504	-60	270	115	87	89	2	6.2
Rosie North	GRC114	RC	751388	6965102	504	-60	270	70	17	27	10	2.5
Rosie North	GRB1824	RAB	751392	6965102	504	-60	270	38	28	38	10	1.1
Rosie North	GRC129	RC	751404	6965102	504	-60	270	75	38	47	9	0.5
Rosie North	GRC130	RC	751449	6965102	504	-60	270	132	95	98	3	2.6
Rosie North	GRC116	RC	751375	6965153	504	-60	270	55	20	37	17	1.7
Rosie North	GRC117	RC	751391	6965154	504	-60	270	80	50	56	6	2.9
Rosie North	GRB3062	RAB	751357	6965176	504	-60	270	50	20	50	30	0.8
Rosie North	GRC118	RC	751381	6965200	504	-60	270	70	43	58	15	2.9
Rosie North	WRC011	RC	751454	6965152	504	-60	270	150	76	91	15	1.3
Rosie North	WRC08	RC	751492	6965002	504	-60	270	156	143	144	1	6.0
Rosie North	GRC085	RC	751377	6965002	504	-60	90	70	68	70	2	14.1
Achilles Footwall	GRB3063	RAB	751377	6965177	504	-60	270	41	15	20	5	1.7
Achilles Footwall	WRC011	RC	751454	6965152	504	-60	270	150	88	90	2	6.0
Achilles Footwall	GRB2068	RAB	751367	6965212	504	-60	180	39	10	15	5	2.8
Achilles Footwall	GRC125	RC	751406	6965199	504	-60	270	110	41	43	2	1.3
Achilles Footwall	GRB2006	RAB	751392	6965202	504	-60	0	41	30	35	5	2.3
Achilles Footwall	HRC335	RC	751392	6965234	504	-60	270	41	22	24	2	1.8
Achilles Footwall	GRB3006		751392	6965211	504	-60	0	40	22	38	15	1.6
ACTIMES FOOLWall		RAB	751392	6965211	504	-60	270	46	87	90	3	9.3
Achilles Footwall	GRC177	RC										

APPENDIX (1): SIGNIFICANT DRILLING INTERSECTIONS JORC Code, 2012 Edition Table 1

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverized to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Gateway RC drilling (GRC pre-fix) - 2kg - 3kg samples were split from dry 1m bulk samples. The sample was initially collected from the cyclone in an inline collection box with independent upper and lower shutters. Once the metre was completed, the drill bit was lifted off the bottom of the hole, to create a gap between samples, when the gap of air came into the collection box the top shutter was closed off. Once the top shutter was closed, the bottom shutter was opened, and the sample was dropped under gravity thorough a Metzke cone splitter. Once drilling reached fresh rock a fine spray of water was used to suppress dust and limit the loss of fines thorough the cyclone chimney. A second 2kg-3kg sample was collected at the same time the original sample. This sample has been stored on site. These duplicate samples have been retained for follow up analysis and test work. The bulk sample of the main ore zone was discharged from the cyclone directly into green bags. The bulk sample from the waste was collected in wheelbarrows and dumped into neat piles on the ground. During the sample collection process, the cone split, original and duplicate calico samples and the reject green bag samples were weighed to test for bias's and sample recoveries. The majority of the check work was undertaken through the main ore zones. Field duplicates were collected at a ratio of 1:20 through the mineralised zones and collected at the same time as the original sample through the B chute of the cone splitter. OREAS certified reference material (CRM) was inserted at a ratio of 1:20 through the dineralised zone. The grade ranges. Historic Gateway RAB drilling (GRB – prefix) was conducted by Bordec Drilling. All analysis was completed by Genalysis Laboratories, Perth. Submitted samples comprised 2kg speared parent samples which were subjected to total preparation. Au by B/ETA to 1ppb. Ag,As Co,Cu,Ni Sb and Zn by B/AAS to 1ppm. <i>Historical Drilling: HQ3 and NQ c</i>

Criteria	JORC Code explanation	Commentary
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximize sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	samples and the reject green bag samples were weighed to test for bias's and sample recoveries. The majority of the check work was undertaken through the

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases. Diamond Drilling: Recoveries in fresh rock are recorded as being satisfactory and that no inherent bias has been introduced from drilling or sampling techniques. RC Drilling: There are no records available that capture information on drilling recoveries. Typically a minimum 3kg sample was provided to the laboratory for assay. Samples considered fit for purpose. RC chips were washed and stored in chip trays in 1m intervals for the entire length of each hole. Chips were visually inspected and logged to record lithology, weathering, alteration, mineralisation, veining and structure. Data on rock type, deformation, colour, structure, alteration, veining, mineralisation and oxidation state were recorded. Logging is both qualitative and quantitative or semi quantitative in nature. Historical Drilling: All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases. RC, Aircore and RAB chips were washed and stored in chip trays in 1m intervals for the entire length of each hole. Chips were visually inspected and logged to record lithology, weathering, alteration, mineralisation, veining and structure. Records of samples being wet or dry were taken. Diamond core was presented and stored in industry standard core boxes. The core was orientated and core loss noted. Data on rocktype, deformation, colour, structure, alteration, veining, mineralisation and oxidation state were recorded. RQD, magnetic susceptibility and core recoveries were recorded. Diamond core was presented and stored in industry standard core boxes. The core was orientated and core loss noted. Data on rocktype, deformation, colour, structure, alte
Sub-sampling Techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample 	 Samples were split from dry, 1m bulk sample via a cone splitter directly from the cyclone. The QC procedure adopted through the process includes:
	 preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	 check for sampling bias. Field duplicates were collected at a rate of 1:25, these were collected during RC drilling at the same time as the primary sample.

Criteria	JORC Code explanation	Commentary
	• Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	• OREAS certified material (CRM) was inserted at a rate of 1:25, the grade ranges of the CRM's were selected based on grade populations.
	• Whether sample sizes are appropriate to the grain size of the material being	• 2-3kgs of sample was submitted to the laboratory.
	sampled.	• Samples oven dried then pulverized in LM5 mills to 85% passing 75micron.
		• All samples were analysed for Au using the Au-AA26 technique which is a 50g lead collection fire assay.
		• Quality control for maximising representivity of samples included sample weights, insertion of field duplicates and laboratory duplicates.
		Historical Drilling: All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases.
		 RC samples were split using a riffle splitter. 1m samples were collected and 5m composites prepared for assay. Re-assays were undertaken on selected 1m samples.
		 Typically 3kg samples were submitted to the assay laboratory. Only minor numbers of samples are recorded as being wet.
		 QA/QC data is not currently available.
		Sampling processes are considered fit for purpose.
		 Diamond core was presented and stored in industry standard core boxes. The core was orientated and core loss noted. Once logged the core was marked up for sampling ranging from 0.5m to 2.0m largely matching geological contacts. Half core samples were collected and submitted to the assay laboratory.
		 Samples were analysed for Au by AAS technique with results greater than 0.5ppm Au re-assayed by Fire Assay. Assays >3g/t Au re-assayed by Screen Fire Assay. This methodology was applied to account for a recognized coarse gold component within the mineralised zones.
Quality of assay data and Laboratory tests	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	• Drill samples were submitted to ALS (Perth). All samples were analysed by a 50g fire assay (AAS finish) which is a total assay.
	• For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	• Field duplicates were collected at a rate of 1:25 with CRM's inserted at a rate of 1:25 also. The grade ranges of the CRM's were selected based on grade populations.
	• Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 Historical Drilling: All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases. All samples were assayed at either Analabs or ALS in Perth.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Samples were analysed for Au by AAS technique with results greater than 0.5ppm Au re-assayed by Fire Assay. Assays >3g/t Au re-assayed by Screen Fire Assay. This methodology was applied to account for a recognized coarse gold component within the mineralised zones. QA/QC data is not currently available. Sampling processes are considered fit for purpose. Drilling results are cross checked by company geologists and consulting geologists (OMNI GeoX Pty Ltd.) Data is recorded digitally at the project within standard industry software, assay results received digitally also. All data is stored within a suitable database. Historical Drilling: All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases. Logging and sampling were recorded directly into a Stratalog T500 digital logging unit. All drilling information is currently stored in a Gateway Access database. All information has been plotted on section and in plan to match against neighbouring holes and determine likely validity of the data QA/QC data is not currently available. Sampling and assay data are considered fit for purpose.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole location is initially recorded with a handheld Garmin GPS (+/- 3m) and will eventually be recorded by Digital GPs (+/-1cm). A Reflex EZ North Seeking Gyro is used to record the deviation of the drill holes (+/- 1deg) Historical Drilling: All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases. A truncated AMG grid was established across the project area and hole collars were measure from fixed survey pegs. These collar locations have been validated using detailed aerial photography. Downhole surveys were undertaken with an Eastman single shot camera on intervals ranging from 30 to 50m. Location data is considered fit for purpose.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore 	Refer to tables within text for data spacing.

Criteria	JORC Code explanation	Commentary
	 <i>Reserve estimation procedure(s) and classifications applied.</i> <i>Whether sample compositing has been applied.</i> 	Historical Drilling: All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases. • Please See Table 1 for Results.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill lines were orientated perpendicular to the perceived strike of the mineralized structure. Inclined RC holes (-60°) are perpendicular to the dip of the mineralized structure creating minimal sampling bias. The vertical RC holes are around 20-30° off being perpendicular to the dip in the mineralised structure creating a minimal
Sample security	The measures taken to ensure sample security.	 Calico samples are sealed into green/poly weave bags and cable tied. These are then sealed in bulka bags and transported to the laboratory in Perth by company staff or trusted contractors or established freight companies. Historical Drilling: All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases. No information.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Drilling results are cross checked by company geologists and consulting geologists (OMNI GeoX Pty Ltd.) Historical Drilling: All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 M57/48 and M57/99. Both mining tenements are held under Gateway Mining Ltd 100%. No Native Title claims are lodged over the tenements
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Gold was discovered in the district during the gold rush era, first records of gold won from small scale high grade workings include the Montague Mining Centre (1904-13). Renewed interest in the late 1960's included base metal exploration carried out within exposed stratigraphy of the Montague Ranges (Bungarra Ranges), exploration interest that broadened with the release of the Sandstone 1:250,000 aeromagnetic sheet in 1970 resulting in the staking of favourable magnetic anomalies by exploration companies.
		• Early explorers in the Montague Ranges included Anaconda Australia Inc. (1966- 67), followed by International Nickel Australia (1971-75) evaluating a Gabbro - banded differentiated basic complex believed prospective for copper and/or nickel such as the Dulith Gabbro, USA. Strong geophysical and mineralised anomalism was encountered, however, copper-zinc enrichment was also encountered in adjacent felsic stratigraphy at Ed's Bore prospect, which was followed-up by CRA Exploration (1983-1990) to intersect polymetallic VMS enrichments at Bevan prospect (not substantively pursued).
		 At Montague, Western Mining Corporation (1976) conducted investigations for copper and gold including soil sampling and IP surveying, which was followed by CRA Exploration (1984-89) working concurrently with AMOCO Minerals Australia Company (1984) and Clackline Refractories Ltd (from 1985 - to later become Herald Resources) assessing/purchasing historic mine areas from Mr W.J. Griffiths of Sandstone. RAB drilling penetrating transported cover resulted in the virgin discoveries of NE Pit by AMOCO and Whistler deposit by CRA. Later noted explorers included Dalrymple Resources NL (1987-1990) intersecting gold at the Armada (Twister) prospect, and Arimco Mining (1990-98) intersecting gold at Lyle prospect, Victory West prospect, and copper at The Cup prospect (not substantively pursued).
		• The Montague Mining Centre produced approximately 150,000oz of gold commencing in 1986 at Caledonian and NE Pits (Clackline), and continued at Montague Boulder from 1988 (Herald), and was to close in 1993 after completion of the Rosie Castle open cut (Herald). Whistler open cut was mined from November 1990 (Polaris Pacific NL) and ore toll treated through the Herald mill.

Criteria	JORC Code explanation	Commentary
		 Little attention was paid to mineralisation other than gold. Gateway Mining in joint venture with Herald Resources continued exploration of the Montague Mining Centre, Gateway also targeting poly-metallic intrusion related - VMS models in the district from 2006. Airport, Airport Sth, S Bend, Rosie Nth, Rosie Sth mineralisation was discovered by Gateway Mining between 2007 and 2011 in RAB drilling and later defined by RC drilling
Geology	Deposit type, geological setting and style of mineralisation.	 drilling. Gateways's Gidgee Project is located in the Gidgee district in the Archean Yilgarn Craton of Western Australia approximately 630km NE of Perth and 70km north from the township of Sandstone on the eastern central portion of the Gum Creek Greenstone Belt, of the Southern Cross Province. Metamorphic grade of the Gum Creek Greenstone Belt is estimated to be low-grade greenschist facies.
		Project lithology includes basalt/ash tuff/dolerite/gabbro, the Montague Granodiorite sub-volcanic intrusion (calc-alkaline - FI), dacite volcanic flow/s (FI), volcaniclastic sequences of felsic composition and epiclastic conglomerates, ultramafic intrusives and external orogenic granite plutons. Key regional characteristics of a Volcanic Arc Extensional Basin include calc-alkaline bimodal volcanic sequences associated with extensive iron formations. Later ENE-WSW orogenic compression event is characterised by NNW regional scale faults/unconformities, NNW shearing and folding, slaty cleavage has developed within sediments near a tight syncline fold closure within the NE area of the project.
Drill hole Information	• A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Historic Exploration drill results are contained with Table 1
	\circ easting and northing of the drill hole collar	
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	\circ dip and azimuth of the hole	
	\circ down hole length and interception depth	
	◦ hole length.	
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	• In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	• The lower grade cut-off is set at 0.1g/t. There is no maximum grade cut-off applied to these set of exploration results.

Criteria	JO	IRC Code explanation	Сс	ommentary
	•	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.		
Relationship between mineralisation widths and intercept lengths	•	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	•	Drill lines were orientated perpendicular to the perceived strike of the mineralized structure. Inclined RC holes (-60°) are perpendicular to the dip of the mineralized structure creating minimal sampling bias. The vertical RC holes are around 20-30° off being perpendicular to the dip in the mineralised structure creating a minimal sampling bias.
Diagrams	•	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	•	Appropriate maps and sections are included in the announcement
Balanced reporting	•	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	•	The accompanying document is considered to be a balanced report with a suitable cautionary note.
Other substantive exploration data	•	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	•	3D gravity and airborne magnetic data is currently being modelled with subsequent RC and aircore drilling being used to test new regional exploration targets
Further work	•	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	•	Step-out RC drilling down dip and along strike of high grade gold intercepts