ABN: 31 008 402 391 Level 11, 52 Phillips Street Sydney NSW 2000 GPO Box 225 Sydney NSW 2001 Tel: 61 2 8316 3998 Fax: 61 2 8316 3999 Website: www.gatewaymining.com.au

ASX Announcement: 29th January 2020

SIGNIFICANT NEW DRILLING RESULTS SUBSTANTIALLY EXPAND WHISTLER GOLD DEPOSIT FOOTPRINT

Recent RC drilling demonstrates important new growth opportunities along strike both to the north and south of the current 120koz resource

HIGHLIGHTS

- Successful reverse circulation drilling prior to Christmas demonstrates a significant opportunity to extend the Whistler Gold Deposit system over at least a 900m strike length.
- The Whistler South zone has been defined in shallow drilling over a strike length of at least 500m and remains totally untested at depth. Key results that currently define this gold mineralised trend are:
 - GRC482:
- 13 metres @ 1.6g/t Au from 58 metres
- GRC480:
- 5 metres @ 1.0g/t Au from 23 metres
- 86MORC41:C87RB103:

6 metres @ 1.9g/t Au from 28 metres (Bottom of hole)* 6 metres @ 1.7g/t Au from 12 metres (Bottom of hole)*

- (*Previously reported)
- Drilling at Whistler North has successfully intersected the mineralised structure north of the current Whistler Inferred Resource (1.7Mt at 2.23g/t for 120,000oz). The trend remains untested to the north and highlights the potential for high-grade mineralised domains down-dip.
- In addition, the drilling has confirmed a series of mafic-hosted shear zones in the hanging wall of the main Whistler trend. Significant results include:
 - GRC398: 7 metres @ 1.0g/t Au from 53 metres
 - GRC397: 2 metres @ 3.6g/t Au from 62 metres
 - GRC400: 10 metres @ 1.0g/t Au from 43 metres
 - GRC454: 5 metres @ 2.1g/t Au from 25 metres
 - GRC402: 6 metres @ 1.5g/t Au from 43 metres
 - 88MRD24: 12.5 metres @ 2.2g/t Au from 128 metres*
 - GRC378: 5 metres @ 2.8g/t Au from 138 metres*
 - (*Previously reported)
- A program of first-pass RC drilling at the Armada Prospect, 500m north-west of Whistler, has confirmed the presence of primary structures beneath a zone of near-surface supergene mineralisation.

Gateway Mining Limited (ASX: GML) (**Gateway** or **Company**) is pleased to report significant new results from the recently completed reverse circulation (RC) drilling program around the Whistler Gold Deposit, within the Company's flagship 100%-owned **Gidgee Gold Project** in Western Australia (Figure 1).

This drilling program was designed to undertake a first-pass assessment along strike to the north and south of the Whistler Gold Deposit to understand the potential to significantly grow the current resource (Inferred Resource of **1.7Mt at 2.23g/t Au for 120,000oz of contained gold**: see ASX release dated 3 October 2019). The drilling targeted both the main granodiorite-hosted gold mineralisation and the hanging wall mafic-hosted lode system.

The drilling at Whistler formed part of a large 11,000m RC drilling campaign undertaken over several targets at Gidgee, which included both the recent discovery of an extensive zone of shallow oxide gold at Achilles and the expansion of the Montague Gold Deposit, as detailed in the Company's ASX releases of 12 December 2019 and 20 December 2019.

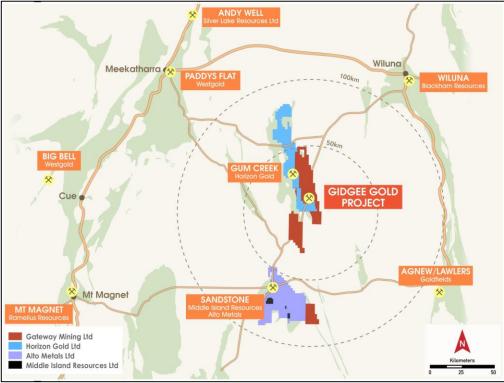


Figure (1): Gidgee Gold Project Location Plan

KEY POINTS Whistler South

- A total of 18 holes for 2,110m of reverse circulation (RC) drilling were completed to test for continuity of gold mineralisation south of the current Whistler Resource and to provide key information on the broader structural and stratigraphic controls in the area to assist with the ongoing exploration targeting process (Figure 2).
- The South Whistler trend has now been defined in shallow positions over a strike length of at least 500m and is hosted on or near the margin of the Montague Granodiorite intrusion, which is the same setting as the Whistler Gold Deposit (Figure 3).
- The South Whistler trend is a distinctly separate gold mineralised structure and is offset approximately 100m to the east of the Whistler main structure. It is worth noting that the main Whistler structure has to date, not been closed off. Key results that currently define this gold mineralised trend are (see Table 1 and Appendix 1 for full details):
 - GRC482: •

13 metres @ 1.6g/t Au from 58 metres

- GRC480:
- 86MORC41:
- 5 metres @ 1.0q/t Au from 23 metres
- C87RB103: (*Previously reported)
- 6 metres @ 1.9q/t Au from 28 metres (Bottom of hole)* 6 metres @ 1.7g/t Au from 12 metres (Bottom of hole)*
- The shallow gold mineralisation remains open down-dip and along strike to the north and south, and as seen at Whistler, there is considerable scope for high-grade domains to be delineated within this broader mineralised domain.
- It should be noted that mineralised intersections such as that returned in hole GRC482 (13m @ 1.6g/t Au) are common within the current Whistler Resource and can occur in close proximity to substantially higher grade zones.
- The position of the Whistler South mineralisation is in close proximity to the edge of the current optimised Whistler open pit shell and any future expansion of the resource would be easily captured.

Whistler North

- The 14-hole (1,975m) RC drilling program at Whistler North was designed to:
 - Test the immediate northern strike extension to the current Whistler Resource (Figures 2 and 3);
 - Provide key information regarding the orientation of the plunging nose of the Montague Granodiorite and confirm the geological analogy to the 3.1Moz King of the Hills deposit (owned by Red 5); and
 - Provide a further test to delineate and understand the controls on the multiple hanging wall lode structures hosted within the mafic volcanic rocks.
- Significant intersections include (see Table 1 and Appendix 1 for full details):
 - GRC398: 7 metres @ 1.0g/t Au from 53 metres
 - GRC397: 2 metres @ 3.6g/t Au from 62 metres
 - GRC400: 10 metres @ 1.0g/t Au from 43 metres
 - GRC454: 5 metres @ 2.1g/t Au from 25 metres
 - GRC402: 6 metres @ 1.5g/t Au from 43 metres
 - 88MRD24: 12.5 metres @ 2.2g/t Au from 128 metres*
 - GRC378: 5 metres @ 2.8g/t Au from 138 metres*
 - (*Previously reported)
- Drill holes GRC3978 (7m @ 1.0g/t Au) and GRC397 (2m @ 3.6g/t Au) successfully intersected the mineralised structure north of the current Whistler resource. These holes are interpreted to have intersected the top of the northern plunging high-grade domain (Figure 3). This significant zone of high-grade mineralisation remains open down-plunge to the north.
- Drill hole GRC454 (5m @ 2.1g/t Au) intersected the Whistler structure within the mafic volcanic rock stratigraphy above the granodiorite contact. The intersection of the structure with the contact of the granodiorite remains untested and is considered to be a highly prospective target (Figure 3).
- The recent drilling results from the Whistler area continue to demonstrate the emergence of a large-scale gold system within a structural corridor on or close to the margin of the Montague Granodiorite. Significant mineralisation has now been intersected over a strike length of at least 900m.
- In addition, the information gained from the drilling program continues to provide invaluable structural and stratigraphic data that is critical for ongoing exploration and resource delineation in the area.

Armada Prospect

- The Armada Prospect is located approximately 500m to the north-west of the Whistler Resource area (Figure 2). Historical drilling has intersected zones of relatively shallow, oxide gold mineralisation along what is interpreted to be the contact of the Montague Granodiorite.
- The target position is analogous with the setting of the Montague Gold Deposit, located approximately 1.6km to the south.
- The recent RC drilling program (6 holes for 605m) was undertaken to provide a first-pass test beneath the supergene gold mineralisation for primary shear zones within the mafic volcanic rock stratigraphy. Significant drilling results include (see Table 1 and Appendix 1 for full details):
 - GRC412: 2 metres @ 3.4g/t Au from 68 metres and: 3 metres @ 1.3g/t Au from 78 metres
 - GRC413: 2 metres @ 1.1g/t Au from 69 metres
 - GRC414: 2 metres @ 2.9q/t Au from 83 metres
- The results have confirmed the presence of bedrock shear zones within the mafic volcanic rocks on the margin
 of the granodiorite. This information will be integrated with geophysical datasets and follow-up exploration will
 be planned accordingly.

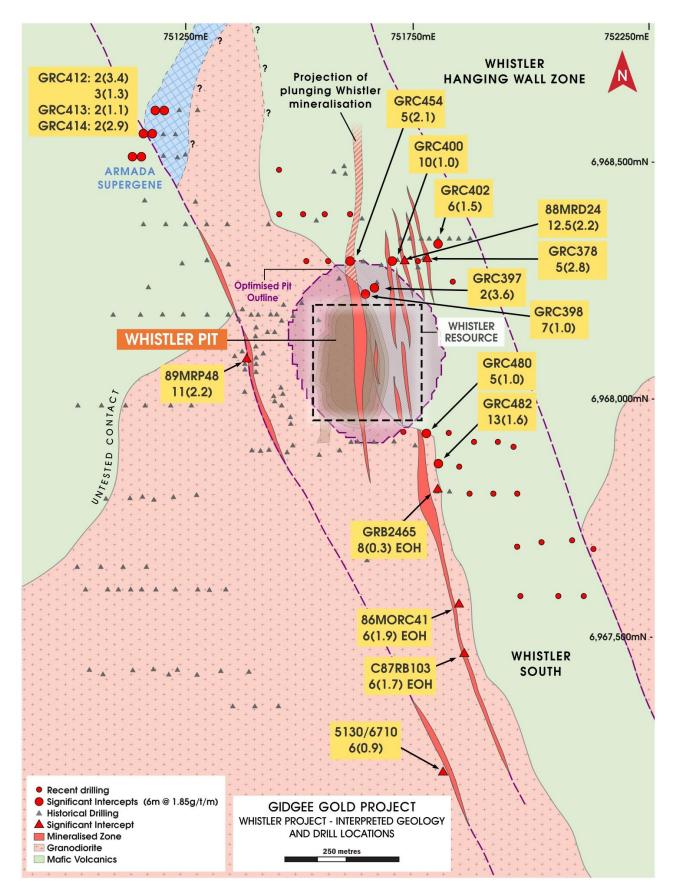


Figure (2): Whistler Gold Deposit Interpreted Geology and Drilling Locations

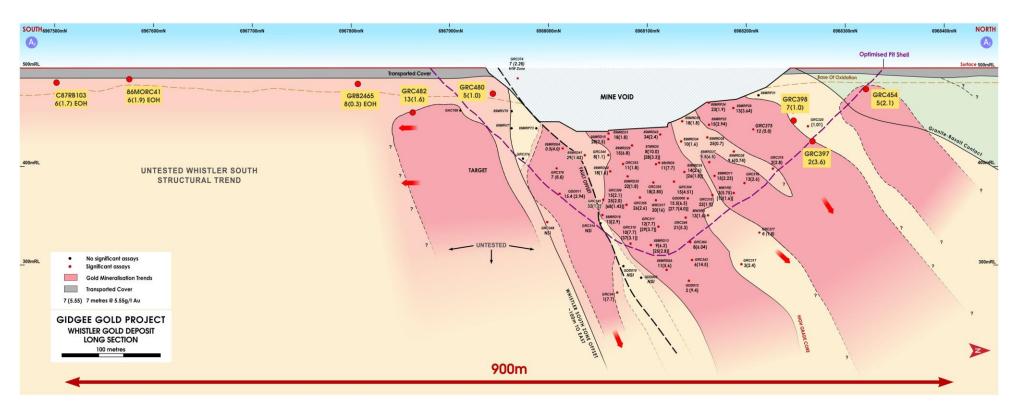


Figure (3): Whistler Gold Deposit Interpreted Long Section

MANAGEMENT COMMENT

Gateway's Managing Director, Mr Peter Langworthy, said the significant new results from wide-spaced reconnaissance drilling both to the north and south of the 120,000oz Whistler Resource provided further strong evidence of the potential for a large-scale gold system along the margin of the granodiorite.

"The new results, combined with some significant advances in our geological thinking over the Christmas/New Year period, amount to a really exciting breakthrough at Whistler, demonstrating that it has excellent potential to grow substantially, both to the north and south.

"We have confirmed the presence of the new Whistler South mineralised structure over a strike length of 500m, and it remains totally untested at depth. Meanwhile, to the north of the Whistler Resource we have now located the strike extension of the structure that can now be targeted with the next phase of drilling – more than doubling the overall scale of the system to at least 900 metres.

"In addition to the granodiorite-hosted mineralisation, we are also now delineating and understanding the significance of the multiple mafic-hosted hanging wall lodes. We are confident that these will develop into a significant zone of mineralisation that is strongly complementary to the main Whistler Resource.

"It is worth noting that all these positions are in close proximity to the current Whistler optimised pit shell, and any expansion of this would easily incorporate these new areas of mineralisation.

"Looking ahead, we will finalise the reporting of the remaining results from the drilling programs completed in December, including the air-core drilling program that comprised first-pass testing of a number of completely new areas.

"We will then prioritise and plan our next exploration steps, taking into the account the significant advances we have made recently in terms of expanding the potential at Whistler and Montague, defining a significant new zone of shallow oxide mineralisation at Achilles and improving our understanding of a number of other emerging prospects.

"Recent drilling has once again reinforced the very large and prospective nature of the Gidgee Gold Project. Our focus this year will be to find the quickest and most cost-effective way of unlocking substantial new discoveries while at the same time rapidly building our resource inventory from the strong base we have already established."

Peter Langworthy Managing Director

For and on behalf of GATEWAY MINING LIMITED

Competent Person Statement

The information in this report that relates to Exploration Results or Mineral Resources is based on information compiled or reviewed by Mr Peter Langworthy who is a full-time employee of Gateway Mining Ltd and is a current Member of the Australian Institute of Mining and Metallurgy. Mr Peter Langworthy has sufficient experience, which is relevant to the style of mineralisation and types of deposit under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Langworthy consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

Investors Peter Langworthy Managing Director T: 02 8316 3998 or Kar Chua Company Secretary T: 02 8316 3998 <u>Media</u> Nicholas Read Read Corporate T: 08 9388 1474

TABLE (1): WHISTLER 2019 RC DRILLING INTERCEPT TABLE

Prospect	Hole ID	Hole Type	MGA_E	MGA_N	RL	Dip	Azi	EOH (m)	From (m)	To (m)	Width (m)	Au (g/t)	Summary
Armada	GRC411	RC	751194	6968651	500	-60	90	90	40	41	1	0.7	1 metre @ 0.7g/t Au from 40 metres
Armada	GRC412	RC	751181	6968650	500	-80	90	100	68	70	2	3.4	2 metres @ 3.4g/t Au from 68 metres
Armada	GRC412	ΝC	/51161	0908050	500	-80	90	100	78	81	3	1.3	3 metres @ 1.3g/t Au from 78 metres
Armada	GRC413	RC	751166	6968600	500	-60	90	115	69	71	2	1.1	2 metres @ 1.1g/t Au from 69 metres
Annaua	GRC413	NC.	/51100	0908000	500	-00	30	115	98	99	1	0.7	1 metre @ 0.7g/t Au from 98 metres
Armada	GRC414	RC	751155	6968600	500	-80	90	95	71	72	1	0.5	1 metre @ 0.5g/t Au from 71 metres
Aimada	0110111	ne	/51155	0300000	500	00	50	55	83	85	2	2.9	2 metres @ 2.9g/t Au from 83 metres
Armada	GRC415	RC	751142	6968551	500	-60	90	90	-	-	-	-	NSR
Armada	GRC416	RC	751130	6968552	500	-80	90	115	90	91	1	1	1 metre @ 1g/t Au from 90 metres
Whistler North	GRC459	RC	751452	6968516	500	-60	270	170	-	-	-	-	NSR
Whistler North	GRC458	RC	751452	6968416	500	-60	270	160	-	-	-	-	NSR
Whistler North	GRC457	RC	751502	6968414	500	-60	270	150	13	14	1	0.6	1 metre @ 0.6g/t Au from 13 metres
Whistler North	GRC455	RC	751546	6968417	500	-60	270	110	84	85	1	0.7	1 metre @ 0.7g/t Au from 84 metres
Whistler	GRC456	RC	751607	6968416	500	-60	270	180	34	35	1	1.8	1 metre @ 1.8g/t Au from 34 metres
North	GRC430	NC.	/5100/	0908410	200	-00	270	180	38	39	1	0.6	1 metre @ 0.6g/t Au from 38 metres
Whistler North	GRC402	RC	751800	6968347	500	-60	270	195	43	49	6	1.5	6 metres @ 1.5g/t Au from 43 metres
Whistler North	GRC452	RC	751509	6968312	500	-60	270	70	-	-	-	-	NSR
Whistler	GRC453	RC	751550	6968316	500	-60	270	160	49	50	1	0.8	1 metre @ 0.8g/t Au from 49 metres
North	01(0433	ne	751550	0500510	500	00	270	100	82	83	1	0.8	1 metre @ 0.8g/t Au from 82 metres
Whistler	GRC454	RC	751600	6968315	500	-60	270	100	25	30	5	2.1	5 metres @ 2.1g/t Au from 25 metres
North	Gitterior	he	/51000	0000010	500	00	270	100	34	36	2	0.6	2 metres @ 0.6g/t Au from 34 metres
Whistler North	GRC400	RC	751691	6968308	500	-60	270	160	43	53	10	1.0	10 metres @ 1.0g/t Au from 43 metres
									84	87	3	0.6	3 metres @ 0.6g/t Au from 84 metres
Whistler	GRC399	RC	751756	6968308	500	-60	270	165	104	105	1	0.5	1 metre @ 0.5g/t Au from 104 metres
North									107	108	1	1.2	1 metre @ 1.2g/t Au from 107 metres
									146	148	2	1.1	2 metres @ 1.1g/t Au from 146 metres
									31	35	4	0.5	4 metres @ 0.5g/t Au from 31 metres
Whistler	GRC401	RC	751827	6968263	500	-60	270	205	64	66	2	0.7	2 metres @ 0.7g/t Au from 64 metres
North									167	170	2	0.8	2 metres @ 0.8g/t Au from 168 metres
									194	195	1	1	1 metre @ 1g/t Au from 194 metres
									39	40	1	2.4	1 metre @ 2.4g/t Au from 39 metres
Whistler	GRC397	RC	751656	6968254	500	-60	270	150	62	64	2	3.6	2 metres @ 3.6g/t Au from 62 metres
									75	76	1	0.6	1 metre @ 0.6g/t Au from 75 metres
Whistler									85	87	2	0.7	2 metres @ 0.7g/t Au from 85 metres
South	GRC477	RC	751718	6967937	500	-60	270	100	-	-	-	-	NSR
Whistler	GRC398	RC	751635	6968249	500	-60	250	120	53	60	7	1.0	7 metres @ 1.0g/t Au from 53 metres
Whistler South	GRC480	RC	751770	6967935	500	-60	270	120	23	28	5	1.0	5 metres @ 1.0g/t Au from 23 metres
Whistler	GRC481	RC	751819	6967934	500	-60	270	100	4	6	2	0.7	2 metres @ 0.7g/t Au from 4 metres
South					200			100	80	81	1	0.5	1 metre @ 0.5g/t Au from 80 metres

Prospect	Hole ID	Hole Type	MGA_E	MGA_N	RL	Dip	Azi	EOH (m)	From (m)	To (m)	Width (m)	Au (g/t)	Summary
Whistler South	GRC406	RC	751874	6967912	500	-60	270	60	-	-	-	-	NSR
Whistler South	GRC407	RC	751923	6967909	500	-60	270	55	-	-	-	-	NSR
Whistler South	GRC408	RC	751952	6967901	500	-60	270	160	-	-	-	-	NSR
Whistler South	GRC482	RC	751792	6967863	500	-60	270	95	58	71	13	1.6	13 metres @ 1.6g/t Au from 58 metres (including 4 metres @ 2.3g/t Au from 58 metres and 4 metres @ 2.9g/t Au from 67 metres)
									86	90	4	0.9	4 metres @ 0.9g/t Au from 86 metres
Whistler South	GRC483	RC	751839	6967857	500	-60	270	100	-	-	-	-	NSR
Whistler South	GRC403	RC	751861	6967800	500	-60	270	50	-	-	-	-	NSR
Whistler South	GRC404	RC	751910	6967802	500	-60	270	65	-	-	-	-	NSR
Whistler South	GRC405	RC	751958	6967802	500	-60	270	150	-	-	-	-	NSR
Whistler South	GRC409	RC	751960	6967690	500	-60	270	190	-	-	-	-	NSR
Whistler South	GRC474	RC	752007	6967696	500	-60	270	105	-	-	-	-	NSR
Whistler South	GRC475	RC	752078	6967699	500	-60	270	180	-	-	-	-	NSR
Whistler South	GRC476	RC	752115	6967683	500	-60	270	105	-	-	-	-	NSR
Whistler South	GRC410	RC	751962	6967581	500	-60	270	210	197	198	1	0.9	1 metre @ 0.9g/t Au from 197 metres
Whistler South	GRC478	RC	752038	6967582	500	-60	270	110	-	-	-	-	NSR
Whistler South	GRC479	RC	752090	6967580	500	-60	270	155	100	101	1	0.5	1 metre @ 0.5g/t Au from 100 metres

Notes:

- All coordinates located in MGA (GDA94) Zone 50. Azimuth is magnetic degrees ٠
- RL's are nominal
- Significant intersections are calculated as a minimum of 1m greater than 0.5g/t Au with a maximum of 2m of internal dilution Au assayed by 50g Fire Assay with AAS finish at ALS Laboratories Perth NSR means No Significant Result •
- ٠
- •

Hole ID	Hole Type	MGA_E	MGA_N	RL	Dip	Azi	EOH (m)	From (m)	To (m)	Width (m)	Au (g/t)
GRC378	RC	751695	6968310	509	-70	90	168	138	143	5	2.8
GRB2465	RAB	751792	6967802	513	-60	270	38	30	38	8	0.3
C87RB103	RAB	751819	6967512	513	-60	90	18	12	18	6	1.7
89MRP48	RC	751478	6968013	515	-60	270	43	32	43	11	2.2
88MRD24	DDH	751778	6968310	515	-60	270	195	128	140.5	12.5	2.2
86MORC41	RC	751803	6967580	513	-60	270	34	28	34	6	1.9

TABLE (2): WHISTLER HISTORIC DRILLING INTERCEPT TABLE

Notes:

All coordinates located in MGA (GDA94) Zone 50. Azimuth is magnetic degrees

RL's are nominal

• Significant intersections are calculated as a minimum of 1m greater than 0.5g/t Au with a maximum of 2m of internal dilution

APPENDIX (1): SIGNIFICANT DRILLING INTERSECTIONS JORC Code, 2012 Edition Table 1

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverized to produce a 30 g charge for fire assay). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Gateway RC drilling (GRC prefix) - 2kg - 3kg samples were split from dry 1m bulk samples. The sample was initially collected from the cyclone in an inline collection box with independent upper and lower shutters. Once the metre was completed, the drill bit was lifted off the bottom of the hole, to create a gap between samples, when the gap of air came into the collection box the top shutter was closed off. Once the top shutter was closed, the bottom shutter was opened, and the sample was dropped under gravity thorough a Metzke cone splitter. Once drilling reached fresh rock a fine spray of water was used to suppress dust and limit the loss of fines thorough the cyclone chimney. A second 2kg-3kg sample was collected at the same time the original sample. This sample has been stored on site. These duplicate samples have been retained for follow up analysis and test work. The bulk sample of the main ore zone was discharged from the cyclone directly into green bags. The bulk sample from the waste was collected in wheelbarrows and dumped into neat piles on the ground. During the sample collection process, the cone split, original and duplicate calico samples and the reject green bag samples were weighed to test for bias's and sample recoveries. The majority of the check work was undertaken through the main ore zones. Field duplicates were collected at a ratio of 1:20 through the mineralised zones and collected at the sample targes. Historic Gateway RAB drilling (GRB – prefix) was conducted by Bordec Drilling. All analysis was completed by Genalysis Laboratories, Perth. Submitted samples comprised 2kg speared parent samples which were subjected to total preparation. Au by B/ETA to 1ppb. Ag,As Co,Cu,Ni Sb and Zn by B/AS to 1ppm. <i>Historical Drilling: HQ3 and NQ core drilled in fresh rock. Core orientated and mineralised note and marked for cutting. Sample lengths sampled on 0.5 to 2m intervals and cut to half-core sub-sample collected.</i>

Criteria	JORC Code explanation	Commentary
		 Au re-assayed by Fire Assay. Assays >3g/t Au re-assayed by Screen Fire Assay. This methodology was applied to account for a recognized coarse gold component within the mineralised zones. RC Drilling: Samples were collected on 1m intervals, riffle split and 5m composite samples prepared for assay. Re-assays were undertaken on selected 1m samples. Samples were sent to Pilbara Laboratories and Australian Assay Laboratories for gold by fire assay on 50g charge.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 RC – Challenge Drilling drill rig was used. The rig consisted of a Schramm truck mounted RC rig with 1150cfm x 350psi on board compressor, an Airsearch 1800cfm x 900psi on board Booster, and a truck mounted Sullair 900cfm x 350psi auxiliary compressor. RAB Drilling – Bordec Drilling completed all of Gateway's historic RAB drilling programs Historical Drilling: All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital
		 databases. Diamond Drilling: RC percussion or HQ3 pre-collars were drilled to fresh rock. NQ core drilled for remainder of holes. No details available on drilling rig specifications. RC Drilling: RC percussion drilled as pre-collars to fresh rock. No details available on drilling rig specifications.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximize sample recovery and ensure representative nature of 	• During the RC sample collection process, the cone split, original and duplicate calico samples and the reject green bag samples were weighed to test for bias's and sample recoveries. The majority of the check work was undertaken through the
	the samples.	main ore zones. From this process showed that the majority of ore grade samples had recoveries greater than 80%
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Once drilling reached fresh rock a fine spray of water was used to suppress dust and limit the loss of fines thorough the cyclone chimney. At the end of each metre the bit was lifted off the bottom to separate each metre drilled. The majority of samples were of good quality with ground water having minimal effect on sample quality or recovery. From the collection of recovery data, no identifiable bias exists.
		 Historical Drilling: All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases. Diamond Drilling: Recoveries in fresh rock are recorded as being satisfactory and that no inherent bias has been introduced from drilling or sampling techniques. RC Drilling: There are no records available that capture information on drilling recoveries. Typically a minimum 3kg sample was provided to the laboratory for

Criteria	JORC Code explanation	Commentary
		assay. Samples considered fit for purpose.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. 	 RC chips were washed and stored in chip trays in 1m intervals for the entire length of each hole. Chips were visually inspected and logged to record lithology, weathering, alteration, mineralisation, veining and structure. Data on rock type, deformation, colour, structure, alteration, veining, mineralisation and oxidation state were recorded. Logging is both qualitative and quantitative or semi quantitative in nature.
	The total length and percentage of the relevant intersections logged.	 Historical Drilling: All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases. RC, Aircore and RAB chips were washed and stored in chip trays in 1m intervals for the entire length of each hole. Chips were visually inspected and logged to record lithology, weathering, alteration, mineralisation, veining and structure. Records of samples being wet or dry were taken. Diamond core was presented and stored in industry standard core boxes. The core was orientated and core loss noted. Data on rocktype, deformation, colour, structure, alteration, veining, mineralisation and oxidation state were recorded. RQD, magnetic susceptibility and core recoveries were recorded. Logging is considered both qualitative and quantitative or semi-quantitative in nature. The logging information is considered to be fit for purpose.
Sub-sampling Techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Samples were split from dry, 1m bulk sample via a cone splitter directly from the cyclone. The QC procedure adopted through the process includes: Weighing both calicos and reject sample to determine sample recovery and check for sampling bias. Field duplicates were collected at a rate of 1:25, these were collected during RC drilling at the same time as the primary sample. OREAS certified material (CRM) was inserted at a rate of 1:25, the grade ranges of the CRM's were selected based on grade populations. 2-3kgs of sample was submitted to the laboratory. Samples oven dried then pulverized in LM5 mills to 85% passing 75micron. All samples were analysed for Au using the Au-AA26 technique which is a 50g lead collection fire assay. Quality control for maximising representivity of samples included sample weights, insertion of field duplicates and laboratory duplicates.
		Historical Drilling: All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital

	JORC Code explanation	Commentary
Quality of assay data and Laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 databases. RC samples were split using a riffle splitter. 1m samples were collected and 5m composites prepared for assay. Re-assays were undertaken on selected 1m samples. Typically 3kg samples were submitted to the assay laboratory. Only minor numbers of samples are recorded as being wet. QA/QC data is not currently available. Sampling processes are considered fit for purpose. Diamond core was presented and stored in industry standard core boxes. The core was orientated and core loss noted. Once logged the core was marked up for sampling ranging from 0.5m to 2.0m largely matching geological contacts. Half core samples were collected and submitted to the assay laboratory. Samples were collected and submitted to the assay laboratory. Samples were collected and submitted to the assay laboratory. Samples were analysed for Au by AAS technique with results greater than 0.5ppm Au re-assayed by Fire Assay. Assays >3g/t Au re-assayed by Screen Fire Assay. This methodology was applied to account for a recognized coarse gold component within the mineralised zones. Drill samples were submitted to ALS (Perth). All samples were analysed by a 50g fire assay (AAS finish) which is a total assay. Field duplicates were collected at a rate of 1:25 with CRM's inserted at a rate of 1:25 also. The grade ranges of the CRM's were selected based on grade populations. Historical Drilling: All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases. All samples were analysed for Au by AAS technique with results greater than 0.5ppm Au re-assayed by Fire Assay. Assays >3g/t Au re-assayed by Screen Fire Assay. This methodology was applied to account for a recognized coarse gold component within the mineralised zones.
sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	 (OMNI GeoX Pty Ltd.) Data is recorded digitally at the project within standard industry software, assay results received digitally also.
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All data is stored within a suitable database. Historical Drilling: All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital

Criteria	JORC Code explanation	Commentary
		 Logging and sampling were recorded directly into a Stratalog T500 digital logging unit. All drilling information is currently stored in a Gateway Access database. All information has been plotted on section and in plan to match against neighbouring holes and determine likely validity of the data QA/QC data is not currently available. Sampling and assay data are considered fit for purpose.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Refer to tables within text for data spacing. Holes drilled within this program in combination with the historical holes and their related samples are deemed to be appropriate for resource estimation.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	structure. Inclined RC holes (-60°) are perpendicular to the dip of the mineralised structure creating minimal sampling bias. The vertical RC holes are around 20-30° off being perpendicular to the dip in the mineralised structure creating a minimal

Criteria	JORC Code explanation	Commentary
		• The orientation of the drilling is suitable for the mineralisation style and orientation of the mineralisation at the Whistler, Montague and Caledonian Targets.
Sample security	• The measures taken to ensure sample security.	• Calico samples are sealed into green/poly weave bags and cable tied. These are then sealed in bulka bags and transported to the laboratory in Perth by company staff or trusted contractors or established freight companies.
		 Historical Drilling: All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases. No information.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Drilling results are cross checked by company geologists and consulting geologists (OMNI GeoX Pty Ltd.) Historical Drilling: All information referred in this report not collected in this current program has been accessed through verifying historical company reports and/or available digital databases.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 M57/48 and M57/99. Both mining tenements are held under Gateway Mining Ltd 100%. No Native Title claims are lodged over the tenements
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• Gold was discovered in the district during the gold rush era, first records of gold won from small-scale, high-grade workings include the Montague Mining Centre (1904-13). Renewed interest in the late 1960's included base metal exploration carried out within exposed stratigraphy of the Montague Ranges (Bungarra Ranges), exploration interest that broadened with the release of the Sandstone 1:250,000 aeromagnetic sheet in 1970 resulting in the staking of favourable magnetic anomalies by exploration companies.
		• Early explorers in the Montague Ranges included Anaconda Australia Inc. (1966- 67), followed by International Nickel Australia (1971-75) evaluating a Gabbro - banded differentiated basic complex believed prospective for copper and/or nickel such as the Dulith Gabbro, USA. Strong geophysical and mineralised anomalism was encountered, however, copper-zinc enrichment was also encountered in adjacent felsic stratigraphy at Ed's Bore prospect, which was followed-up by CRA Exploration (1983-1990) to intersect polymetallic VMS enrichments at Bevan prospect (not substantively pursued).
		 At Montague, Western Mining Corporation (1976) conducted investigations for copper and gold including soil sampling and IP surveying, which was followed by CRA Exploration (1984-89) working concurrently with AMOCO Minerals Australia Company (1984) and Clackline Refractories Ltd (from 1985 - to later become Herald Resources) assessing/purchasing historic mine areas from Mr W.J. Griffiths of Sandstone. RAB drilling penetrating transported cover resulted in the virgin discoveries of NE Pit by AMOCO and Whistler deposit by CRA. Later noted explorers included Dalrymple Resources NL (1987-1990) intersecting gold at the Armada (Twister) prospect, and Arimco Mining (1990-98) intersecting gold at Lyle prospect, Victory West prospect, and copper at The Cup prospect (not substantively pursued).
		• The Montague Mining Centre produced approximately 150,000oz of gold commencing in 1986 at Caledonian and NE Pits (Clackline), and continued at Montague Boulder from 1988 (Herald), and was to close in 1993 after completion of the Rosie Castle open cut (Herald). Whistler open cut was mined from November 1990 (Polaris Pacific NL) and ore toll treated through the Herald mill. Little attention was paid to mineralisation other than gold. Gateway Mining in joint

Criteria	JORC Code explanation	Commentary
		venture with Herald Resources continued exploration of the Montague Mining Centre, Gateway also targeting poly-metallic intrusion related - VMS models in the district from 2006.
		• Airport, Airport Sth, S Bend, Rosie Nth, Rosie Sth mineralisation was discovered by Gateway Mining between 2007 and 2011 in RAB drilling and later defined by RC drilling.
Geology	• Deposit type, geological setting and style of mineralisation.	• Gateways's Gidgee Project is located in the Gidgee district in the Archean Yilgarn Craton of Western Australia approximately 630km NE of Perth and 70km north from the township of Sandstone on the eastern central portion of the Gum Creek Greenstone Belt, of the Southern Cross Province. Metamorphic grade of the Gum Creek Greenstone Belt is estimated to be low-grade greenschist facies.
		Project lithology includes basalt/ash tuff/dolerite/gabbro, the Montague Granodiorite sub-volcanic intrusion (calc-alkaline - FI), dacite volcanic flow/s (FI), volcaniclastic sequences of felsic composition and epiclastic conglomerates, ultramafic intrusives and external orogenic granite plutons. Key regional characteristics of a Volcanic Arc Extensional Basin include calc-alkaline bimodal volcanic sequences associated with extensive iron formations. Later ENE-WSW orogenic compression event is characterised by NNW regional scale faults/unconformities, NNW shearing and folding, slaty cleavage has developed within sediments near a tight syncline fold closure within the NE area of the project.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar 	Table 1 of this release. Historic intersections reported in Table 2 have been previously released by Gateway in various ASX releases, which can be accessed on
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	the Gateway Mining Ltd website.
	\circ dip and azimuth of the hole	
	\circ down hole length and interception depth	
	◦ hole length.	
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	• In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	 Significant intersections are calculated as a minimum of 1m greater than 0.5g/t Au with a maximum of 2m of internal dilution No high-grade cut-off has been applied
	• Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in	

Criteria	JORC Code explanation	Commentary
	 detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	 Drill lines were orientated perpendicular to the perceived strike of the mineralised structure. Inclined RC holes (-60°) are perpendicular to the dip of the mineralised structure creating minimal sampling bias. The vertical RC holes are around 20-30° off being perpendicular to the dip in the mineralised structure creating a minimal sampling bias.
	• If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate maps are included in the announcement
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• The accompanying document is considered to be a balanced report with a suitable cautionary note.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	• 3D gravity and airborne magnetic data is currently being modelled with subsequent RC and aircore drilling being used to test new regional exploration targets
Further work	• The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	• Step-out RC drilling down dip and along strike of high grade gold intercepts. Regional RC drilling to test along the interpreted contact position
	• Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	