

VANGO ON TRACK FOR SIGNIFICANT RESOURCE UPGRADE

Resource extension drilling produces high-grade intersections for follow-up

Highlights

- Initial results from the Trident Extension zone includes the following high-grade intersections, that indicate potential to double the strike length of the Trident deposit to over 2km:
 - o 2m @ 7.34 g/t Au incl. 1m @ 11.62 g/t Au from 191m, and,

2m @ 12.18 g/t Au incl. 1m @ 22.9 g/t Au from 221m in VTRRC0059

- Significant intersections in the Mine Mafic at Mareast extends high-grade shoot and includes:
 - 10m @ 3.40 g/t Au incl. 4m @ 4.09 g/t au from 94m in VMERC0030, down-plunge from previous intersection 10m @ 22.6 g/t Au incl. 6m @ 33.3 g/t Au in VMERC0025¹
- Final-results from PHB Corridor Mine-Mafic hosted lodes indicates potential for substantial open-pit resource and deeper high-grade underground connection across a 3km corridor:
 - Previously reported 4.0m @ 6.56 g/t Au incl. 1.0m @ 12.5 g/t Au from 87m², Main Lode, and, 18m @ 1.58 g/t Au incl. 8m @ 2.29 g/t Au from 290m, West Lode, in VHBRCD0008
- Wide zone of highly anomalous gold in co-funded diamond hole VNTRCD0001 extends Trident structure to over 3km northeast from Trident Resource and fine-tunes Mine Mafic target zone
- Resource extension and definition drilling is now being planned for new zones identified in the PHB Corridor and Trident Corridor, to be fine-tuned as results are received, targeting a significant upgrade to the highgrade resource base at Marymia Gold Project during H1 2021
- Following examination of mining and processing options, Scoping to Feasibility studies will be advanced during H1 2021 in parallel with the planned resource upgrade

Vango Mining Limited (Vango, ASX:VAN) is on track for a significant resource upgrade following receipt of highgrade drilling results from the Trident Corridor and further results from the PHB Corridor at the Company's 100% owned Marymia Gold Project (Figure 7).

Vango Executive Chairman Bruce McInnes commented:

"We have now produced significant intersections from all four of the resource extensions targets tested during the current drilling program to date, with further results to come over the coming weeks.

"We are now planning follow up resource extension and definition drilling for all of these areas, in order to define and significantly upgrade the high-grade gold resource base at the Marymia Gold Project during H1 next year.

"Mining studies and examination of processing options are being run in parallel with the resource building program, so that the Company can rapidly transition to completion of Feasibility studies and development of a major highgrade gold project."

Vango Mining Ltd ABN: 68 108 737 711 ASX: VAN Issued Capital

993.6M Shares 131.5M Option

Australian Registered Office

Suite 3542, Level 35, Tower 1 Barangaroo International Towers 100 Barangaroo Avenue Sydney NSW 2000 AUSTRALIA

Directors

BRUCE MCINNES – Executive Chairman ANDREW STOCKS – Managing Director SEAN ZHOU – Non-Executive Director Dr CAROL ZHANG – Non-Executive Director HUNTER GUO – Non-Executive Director MATTHEW KEEGAN – Non-Executive Director

Trident Extension results show potential to double Trident strike length to 2km:

Initial results have been received from the Mars Extended and Trident Extension drilling program that comprised 17 RC for 3,855m and is designed to extend Mars deposit to the southwest and Trident deposit to the northeast, projecting to a potential link and adding 1km to double the strike length of the Trident Deposit to 2km (see plan projection, Figure 1).

Results from Mars Extension, where drilling is targeting an extension to the Mars discovery (previous intersections including **9m @ 12.7 g/t Au incl. 3m @ 30.6 g/t Au** from 56m in VMWRC0002³) included mineralisation in all 7 holes and intersections including:

- 3m @ 2.82 g/t Au incl. 1m @ 6.13 g/t Au from 176m in VMWRC0029

Results to date from the first 8 of 10 holes at Trident Extension include the significant intersections below:

- 2m @ 7.34 g/t Au incl. 1m @ 11.62 g/t Au from 191m, and,

2m @ 12.18 g/t Au incl. 1m @ 22.9 g/t Au from 221m in VTRRC0059

Additional drilling, in progress, at Trident Extension is designed to define resources and extend the high-grade zone to the northeast, ultimately targeting a link across the 2km zone from Trident to the Mars and Marwest deposits (Figure 1).

Three deeper diamond drillholes have also tested the Trident Lower target, testing for a repeat of the entire Trident high-grade zone.

These programs offer significant potential to expand high-grade resources at relatively shallow depth.

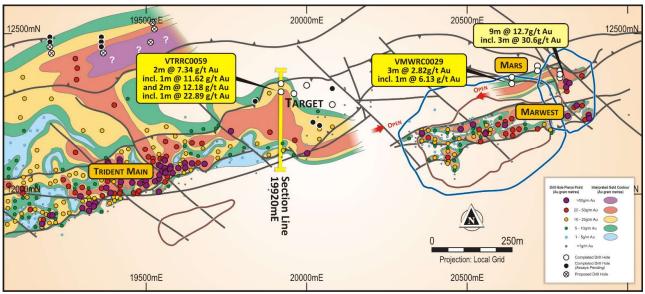


Figure 1: Trident Corridor, Trident – Marwest Zone, with key extension targets and recent drilling

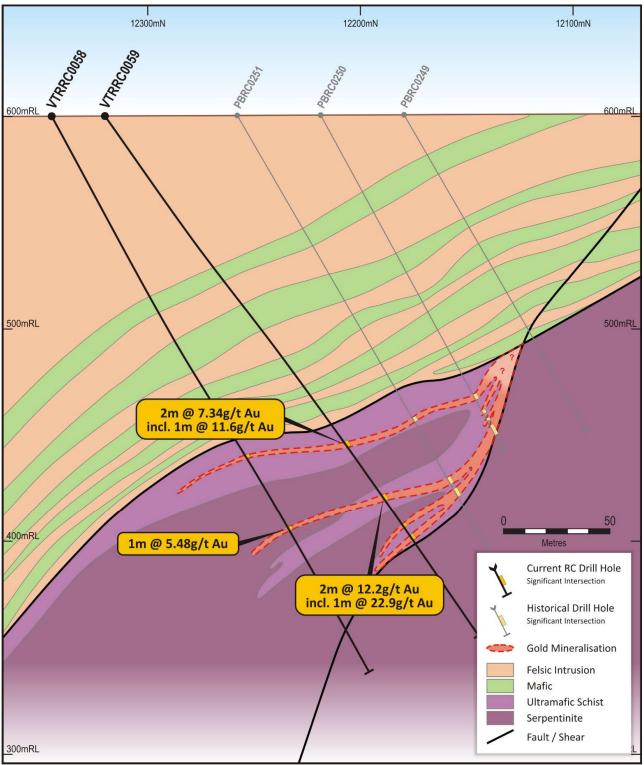


Figure 2: Trident Extension, cross section 19,920mE with recent high-grade intersections

New Intersections extend Mareast high-grade shoot:

Significant new intersections have been produced that confirm and extend the high-grade shoot at the northeastern end of the Trident Corridor at Mareast prospect, including:

10m @ 3.40 g/t Au incl. 4m @ 4.09 g/t au from 94m in VMERC0030, down-plunge from recent intersection 10m @ 22.6 g/t Au incl. 6m @ 33.3 g/t Au in VMERC0025¹

These new intersections are hosted by the Mine-Mafic unit, the host of the >5.5Moz Plutonic Deposit⁴, that is projected to continue for over 3km under the Trident Corridor to the Trident Resource.

Follow up drilling has been planned to further extend the high-grade shoot at Mareast and continue to build the high-grade gold resource base in this area (see longitudinal projection, Figure 3, below).

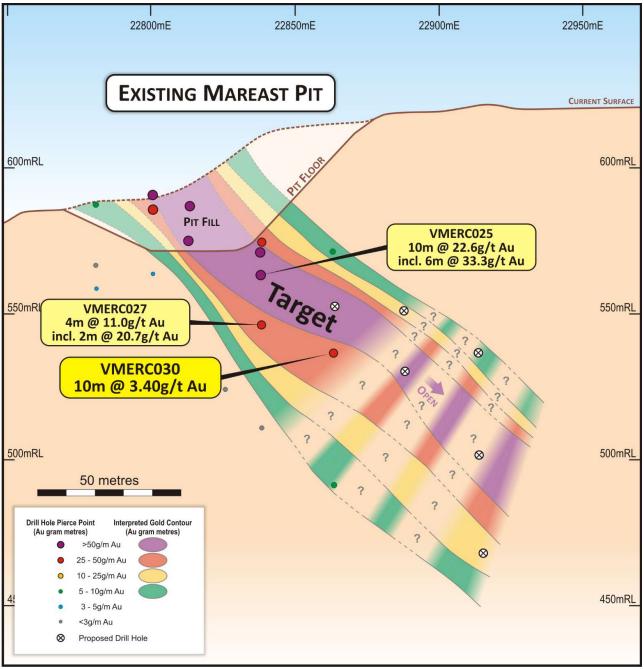


Figure 3: Mareast Prospect, longitudinal projection with high-grade shoot target and recent intersections

Larger scale target diamond drilling extends mineralised Trident Corridor to over 3km:

Initial results have been received from four RC and diamond drillholes for 1,920m that tested for extensions of both the Trident mineralised corridor and for the Plutonic 'Mine-Mafic' unit within the Trident structural corridor (see Figure 4 below).

Diamond drillhole VNTRRCD0001 intersected numerous porphyries with sulphides in the Trident ultramafic contact zone under previous high-grade mineralisation. Results are anomalous across a very wide zone, including **69m @ 0.05 g/t Au from 156m including 3m @ 0.32 g/t Au and 2m @ 0.30 g/t Au**. This zone is clearly the extension of the Trident lower corridor (Figure 5) and extends this corridor to over 3km strike length, and 1km dip length, presenting a very large area for further high-grade resource targeting.

Results from the interpreted Mine-mafic in the two deeper holes, VNTRCD0001 and VNTRCD0003 are awaited, although the Mine Mafic has been intersected outside the structural / porphyry intrusion zone that projects to intersect the Mine-Mafic at depth – to be modelled for further targeting.

The Company has received the majority of the co-funding from the WA government of 50% of the drilling cost of these holes, under its Exploration Incentive Scheme (EIS).

A further EIS grant has been approved by the WA government to co-fund drilling of a second "Plutonic analogue" target across the Triple-P Corridor during calendar year 2021. This drilling is currently being planned and will include up to 4 pre-collared diamond drillholes across the 3km zone from the Triple-P deposit to Albatross-Flamingo (recent results **4m @ 50.6 g/t Au from 81m, incl. 2m @ 99.1 g/t Au** and **3m @ 38.0 g/t Au from 97m, incl. 2m @ 56.1 g/t Au** in VAFRC0001⁶) and the Exocet deposit.

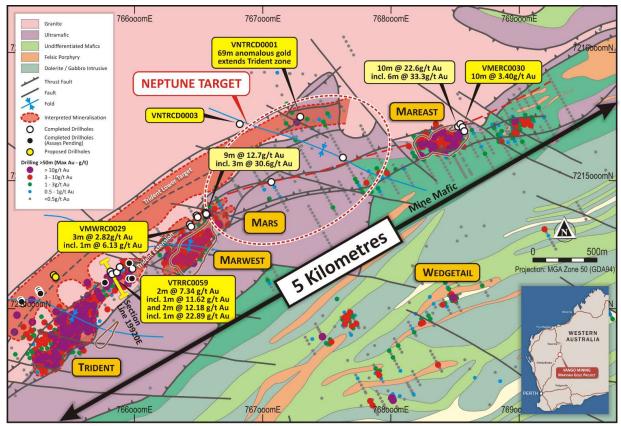


Figure 4: Trident Corridor with 'Neptune' Trident zone and Mine-Mafic target with drilling in progress

Intersections at PHB-1 indicate larger open pit resource potential and underground link:

Results from the final Stage 1 diamond-drillhole in the PHB Corridor include the following intersections:

- **18.0m @ 1.58g/t Au incl. 8.0m @ 2.29g/t Au (incl. 1m @ 7.16g/t Au and 1m @ 7.56g/t Au)** from 290m in VHBRCD0008, from down plunge extensions of West Lode.

This is in addition to previously reported intersection on Main Lode of: **4.0m @ 6.56 g/t Au incl. 1m @ 12.5 g/t Au from 88m**² from the reverse circulation (RC) pre-collar part of VHBRCD0008.

The intersection of extensions to the high-grade Main Lode (and Central Lode) structures and the thick intersections on West Lode indicates potential for a larger open-pit resource upgrade, incorporating the PHB-1, the K2 underground resource and the new intersections on all three lode structures (see cross section 16,925mN, Figure 5).

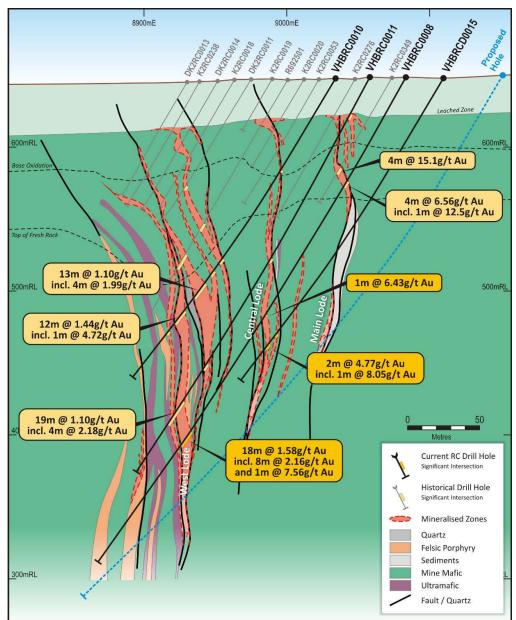


Figure 5: PHB Corridor, Cross section 16,925mN showing recent intersections on Main and West Lode

Further drilling has been planned to test for down-plunge extensions of the K2 Main Lode and the recently discovered K1 Main and footwall lodes (recent results including **6m @ 8.66g/t Au incl. 2m @ 23.8g/t Au⁵** and **4m @ 10.9 g/t Au incl. 2m @ 20.1g/t Au⁶**), as shown on the PHB-Corridor plan and longitudinal projection below, Figure 6).

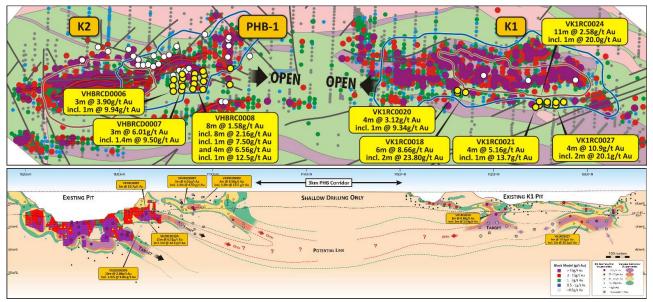


Figure 6: PHB Corridor Plan and Longitudinal Projection with recent Vango intersections and proposed drilling

Next Steps:

RC and diamond drilling continues in the Trident Corridor with the following programs to be completed prior to Christmas:

- Three pre-collared diamond drillholes testing the Trident Lower target (Figure 4), following up previous Vango results that included 3.5m @ 10.9 g/t Au from 349m incl. 1.5m @ 22.1g/t Au in VTRRCD0028⁷ that indicate potential for a repeat of the entire Trident zone at depth.
- ii) A further 2 to 5 RC holes to infill and extend the Trident Ext. zone and potentially define further highgrade resource extensions in this zone and link to Mars Extended.
- iii) A further 1 to 6 RC holes at Mareast Ext. to define and extend the high-grade shoot identified, down plunge from previous high-grade intersections that include 10m @ 22.6 g/t Au incl. 6m @ 33.3 g/t Au in VMERC0025¹.

Planning will continue for the next stage of the drilling program (initially proposed additional 16,000m), to define and extend identified resource targets and build the high-grade resource base at PHB-1, K1, Mareast Extended and Trident – Mars Extended. This program will be refined once all results are received from the current program by January 2021.

Mining studies and assessment of processing options will be carried out in parallel with the high-grade resource drilling, so that the Company can rapidly accelerate drilling and development studies from Q1 21.

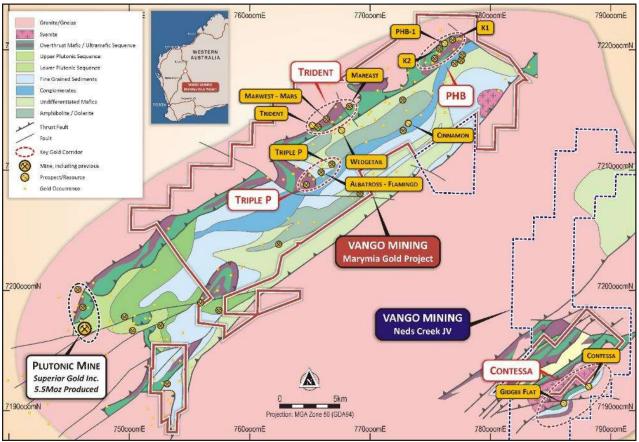


Figure 7: Marymia Gold Project, Mineral Resource projects and key target corridors

Significant intersections are summarised in Table 1, drillhole locations and details are summarised in Table 2 and significant gold assays are shown in Appendix 1.

Table 1: Significant intersections this release:

Prospect	Hole ID	Depth	Section	From	То	m	g/t Au	Cut-off
		1	PHB-1					
PHB-1	VHBRCD0008	180	16,925	87	91	4.0	6.56	1.0 g/t
	incl.			88	91	3.0	8.07	3.0 g/t
	incl.			88	89	1.0	12.46	5.0 g/t
PHB-1	VHBRCD0008	380	16,925	193	194	1.0	6.43	3.0 g/t
				290	308	18.0	1.58	1.0 g/t
	incl.			294	302	8.0	2.29	2.0 g/t
	incl.			294	295	1.0	7.16	3.0 g/t
	incl.			301	302	1.0	7.56	3.0 g/1
	1		REAST EXT	ENSION				1
Mareast	VMERC0028	151	22,837.5	77	81	4	1.01	0.5 g/
	incl.			77	78	1	2.63	2.0 g/
				190	192	2	1.32	1.0 g/1
Mareast	VMERC0030	145	22,862.5	91	105	14	2.60	0.5 g/
	incl.			94	104	10	3.40	1.0 g/1
	incl.			100	104	4	4.09	3.0 g/1
Mareast	VMERC0031	175	22,862.5	88	89	1	3.17	1.0 g/1
				151	153	2	2.90	0.5 g/
	incl.			151	152	1	5.27	3.0 g/
	1	MA	RWEST EXT	ENSION	î			-
Marwest	VMWRC0025	199	20,790	101	102	1	3.16	3.0 g/t
Marwest	VMWRC0026	181	20,790	92	93	1	2.35	2.0 g/t
Marwest	VMWRC0027	211	20,720	142	145	3	1.44	0.5 g/t
	incl.			143	144	1	2.75	1.0 g/t
Marwest	VMWRC0028	193	20,720	131	132	1	3.31	3.0 g/t
				145	147	2	0.94	0.5 g/t
	incl.			145	146	1	1.24	1.0 g/t
Marwest	VMWRC0029	211	20,640	176	192	16	1.01	N/A
	incl.			176	179	3	2.82	0.5 g/1
	incl.			176	178	2	3.81	1.0 g/
	incl.			177	178	1	6.13	3.0 g/1
				190	192	2	3.49	1.0 g/t
Marwest	VMWRC0030	156	20,640	199	205	6	1.01	0.5 g/t
	incl.			199	202	3	1.49	1.0 g/t
			IDENT EXT	ENSION				
Trident Ext.	VTRRC0055	187	20,040	137	139	2	2.40	0.5 g/1
	incl.			137	138	1	4.12	3.0 g/t
Trident Ext.	VTRRC0056	301	20,000	256	257	1	1.86	1.0 g/i
Trident Ext.	VTRRC0058	283	19,920	183	185	2	1.14	0.5 g/t
				223	224	1	5.48	3.0 g/t
Trident Ext.	VTRRC0059	301	19,920	191	193	2	7.34	3.0 g/1
	incl.			192	193	1	11.62	3.0 g/1
				221	223	2	12.18	1.0 g/t
	incl.			221	222	1	22.89	3.0 g/t
Trident Ext.	VTRRC0060	205	19,840	211	215	4	1.95	0.5 g/t
	incl.			212	215	3	2.33	1.0 g/t

Table 2: Drillhole locations and details in this release:

Ducouset		Drill		MGA	MGA	Grid	Grid	Depth	Collar	Collar
Prospect	Hole ID	Туре	MGA East	North	RL	East	North	(m)	Dip°	Azi°
PHB1	VHBRCD0008	RCD	775788.0	7219870.0	651.0	9085.0	16930.0	402.4	-60	323
Mareast	VMERC0028	RC	768523.4	7215421.4	617.2	22837.3	12014.2	151	-53	151
Mareast	VMERC0029	RC	768572.0	7215385.5	615.6	22862.6	11959.4	127	-60	151
Mareast	VMERC0030	RC	768557.7	7215416.4	617.4	22864.9	11993.2	145	-56	151
Mareast	VMERC0031	RC	768541.4	7215440.6	617.6	22862.8	12021.5	175	-57	151
Marwest	VMWRC0024	RC	766553.6	7214748.6	616.0	20789.9	12385.1	235	-83	151
Marwest	VMWRC0025	RC	766559.0	7214739.0	616.0	20789.9	12374.1	199	-74	151
Marwest	VMWRC0026	RC	766564.3	7214729.4	616.0	20789.9	12363.1	181	-66	151
Marwest	VMWRC0027	RC	766485.1	7214727.7	616.0	20719.9	12400.1	211	-90	151
Marwest	VMWRC0028	RC	766492.4	7214714.6	616.0	20719.9	12385.1	193	-80	151
Marwest	VMWRC0029	RC	766442.0	7214640.7	616.0	20639.9	12345.1	211	-53	151
Marwest	VMWRC0030	RC	766432.2	7214658.1	616.0	20639.9	12365.1	247	-55	151
Trident Ext	VTRRC0053	RC	765959.8	7214355.1	602.1	20079.9	12330.1	130	-60	151
Trident Ext	VTRRC0054	RC	765984.1	7214311.4	602.7	20079.9	12280.1	253	-60	151
Trident Ext	VTRRC0055	RC	765980.8	7214235.1	601.1	20039.9	12215.1	187	-60	151
Trident Ext	VTRRC0056	RC	765885.0	7214324.9	601.2	19999.9	12340.1	301	-60	151
Trident Ext	VTRRC0057	RC	765862.7	7214282.7	600.3	19959.9	12314.1	283	-63	151
Trident Ext	VTRRC0058	RC	765812.6	7214290.3	600.0	19919.9	12345.1	301	-60	151
Trident Ext	VTRRC0059	RC	765824.8	7214268.5	600.1	19919.9	12320.1	301	-55	151
Trident Ext	VTRRC0060	RC	765769.4	7214203.3	600.3	19839.9	12290.1	283	-59	151
Trident Ext	VTRRC0066	RC	765958.5	7214234.0	600.0	20020.0	12225.0	204	-54	151
Trident Ext	VTRRC0067	RC	765769.4	7214203.3	600.0	19839.7	12289.8	304	-78	151
Trident Lwr	VTRRCD0061	RCD	765112.7	7214066.8	600.0	19200.0	12490.0	400.1	-82	151
Trident Lwr	VTRRCD0062	RCD	765120.0	7214053.7	600.0	19200.0	12475.0	240	-76	151
Trident Lwr	VTRRCD0063	RCD	765252.5	7214144.6	600.0	19360.0	12490.0	150	-82	151
Trident Lwr	VTRRCD0064	RCD	765259.8	7214131.5	600.0	19360.0	12475.0	399	-75	151
Trident Lwr	VTRRCD0065	RCD	765267.1	7214118.4	600.0	19360.0	12460.0	399.9	-67	151
Neptune	VNTRCD0001	RCD	767292.6	7215497.0	612.6	21799.2	12679.5	534.6	-60.76	150.4
Neptune	VNTRCD0002	RCD	767066.1	7214986.7	614.3	21353.3	12343.9	285.9	-57.42	150.9
Neptune	VNTRCD0003	RCD	766819.7	7215439.9	608.2	21358.4	12859.5	504.9	-60.08	151
Neptune	VNTRC0004	RCD	767625.1	7215178.9	614.0	21935.0	12240.0	250	-57.91	151.3

Previous ASX releases referenced in this ASX release:

¹VAN ASX 08/11/2019 Further Exceptional High-Grade Gold Intersections at Mareast

² VAN ASX 01/09/20 Drilling Extends Mineralised Zones at PHB

³ VAN ASX: 19/06/2019 Very High-Grade Gold Intersections Extend Trident – Marwest Corridor

⁴ Superior Gold Inc., TSX-V:SGI, Corporate Website

⁵ VAN ASX 24/09/20 High-Grade Lode Discovery in PHB Corridor at Marymia

⁶ VAN ASX 20/10/20 Significant Intersections Extend High-Grade Lode Discovery

⁷VAN ASX 15/08/18 High-Grade Intersections Extend Trident to 500m West of Main Drilling Area

⁸VAN ASX: 18/04/19 New Trident High-Grade Resource Upgrade

⁹ VAN ASX 19/05/2020 Marymia Mineral Resource Increases to One Million Ounces

Authorised for release by the Board of Vango Mining Limited.

-ENDS-

For further information, contact:

Bruce McInnes
Executive Chairman
info@vangomining.com
+61 418 183 466

James Moses Investor Relations james@mandatecorporate.com.au +61 420 991 574

About Vango Mining

Vango Mining Limited (ASX:VAN) is an exploration mining company with ambitions of becoming a high-grade WA gold miner by developing the 100% owned Marymia Gold Project (**Marymia**) located in the mid-west region of Western Australia, consisting of 45 granted mining leases over 300km².

Marymia has an established high-grade resource of 1Moz @ 3 g/t Au⁹, underpinned by Trident - 410koz @ 8 g/t Au⁸, with immediate extensions open at depth/along strike.

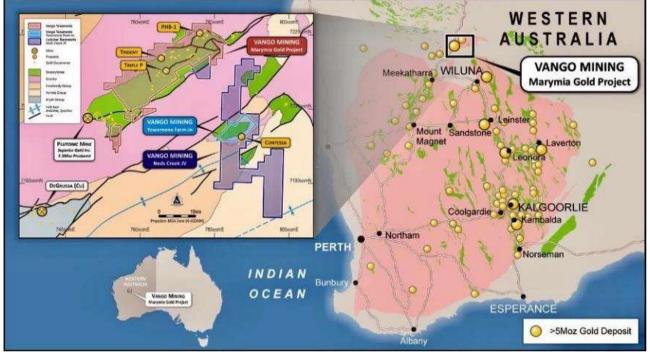


Figure 6: Location of Marymia Gold Project in the Yilgarn block of Western Australia.

The Marymia Gold Project has the potential to become one of Australia's largest high-grade production gold mines. The Greenstone Belt at the Marymia region includes six major gold corridors - all on granted mining leases, that remain largely un-tested beyond 100m depth, supported with an extensive drilling and geophysical database. Historical mining between 1992-2001, produced 580,000 ounces of gold almost entirely from open-pits. The geology is primarily formed of volcanic rocks, dominated by basalt, with minor sedimentary rocks inter-leaving the volcanic formations.

The Company is progressing a deliberate strategy focussed on growing its high-grade gold endowment to support its ambitions of becoming a significant high-grade, gold producer. To this end, the Company is currently focused on a multi stage 36,000 metre drilling program testing high-grade extensions and deeper 'Plutonic' targets, with stage one 20,000 metre program underway at PHB and Trident corridors, including over 7,000 metres of diamond drilling.

In parallel with the high-grade resource extension and definition program, the Company is also testing several much larger scale targets, looking for repeats of the Plutonic-style mineralisation. The Plutonic gold mine sits along strike to the southwest of Vango's ground (Figure 5) and has produced over 5.5Moz⁴ from a geological sequence known as the Mine-Mafic. This same geological sequence is interpreted from geophysical imagery to continue for 40km in Vango's Marymia tenements, however the majority of the Mine-mafic sequence in Vango's ground remains un-tested.

Dual success, through the company's resource growth program, in combination with large-scale 'Plutonic analogue' targets drilling program, has the potential to lead to a material change to the scale of Vango's planned high-grade gold mining operations at Marymia.

JORC compliant Mineral Resource Estimate (ASX Announcement dated 20 May 2020*)⁹

MARYMIA GOLD PROJECT JORC 2012 MINERAL RESOURCE ESTIMATE – MAY 2020

Deposit	Cut-off	Indicated			Inferred			Total		
Mineral Resource	Au g/t	Кt	g/t	K oz	Кt	g/t	Oz	Kt	g/t	K oz
Open Pits	0.5	5,300	1.8	311	2,950	1.6	150	8,250	1.7	461
Underground	3.0	1,142	9.6	352	992	5.9	189	2,134	7.9	541
Total		6,442	3.2	663	3,942	2.7	339	10,384	3.0	1,002

* VAN confirms all material assumptions and technical parameters underpinning the Resource Estimate and Reserve continue to apply, and have not materially changed as per Listing Rule 5.23.2

Competent Persons Statements

Mineral Resources reported in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (Joint Ore Reserves Committee Code – JORC 2012 Edition).

Open pit resources reported within optimised conceptual pit shells at A\$2,500/oz gold price above a 0.5 g/t Au cut off and include oxide, transition and fresh material, see breakdown Appendix 2.

Trident underground resources are retained as first reported 18 April 2019¹ above a 3.0 g/t Au cut-off grade, and modelled at a gold price of A\$2,000/oz, on the basis that the information has not materially changed since last reported. Other underground resources reported above a 3.0 g/t Au cut off (with minor 2.5 g/t Au cut-off material included for continuity purposes) and includes fresh material only.

Totals may differ due to rounding, Mineral Resources reported on a dry in-situ basis.

The Statement of Mineral Resource Estimates has been compiled by Dr. Spero Carras who is a full-time employee of Carras Mining Pty Ltd and a Fellow of the Australian Institute of Mining and Metallurgy ("FAusIMM"). Dr. Carras has sufficient experience, including over 40 years' experience in gold mine evaluation, relevant to the style of mineralisation and type of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee ("JORC") Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Dr. Carras consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

The information in this report that relates to exploration results has been reviewed, compiled and fairly represented by Mr Jonathon Dugdale, a Fellow of the Australian Institute of Mining and Metallurgy ('FAusIMM') and a full time employee of Discover Resource Services Pty Ltd. Mr Dugdale has sufficient experience, including over 34 years' experience in exploration, resource evaluation, mine geology and finance, relevant to the style of mineralisation and type of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee ('JORC') Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves. Mr Dugdale consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

Forward Looking Statements

This announcement contains 'forward-looking information' that is based on the Company's expectations, estimates and projections as of the date on which the statements were made. This forward-looking information includes, among other things, statements with respect to the Company's business strategy, plans, development, objectives, performance, outlook, growth, cash flow, projections, targets and expectations, mineral reserves and resources, results of exploration and related expenses. Generally, this forward-looking information can be identified by the use of forward-looking terminology such as 'outlook', 'anticipate', 'project', 'target', 'potential', 'likely', 'believe', 'estimate', 'expect', 'intend', 'may', 'would', 'could', 'should', 'scheduled', 'will', 'plan', 'forecast', 'evolve' and similar expressions. Persons reading this announcement are cautioned that such statements are only predictions, and that the Company's actual future results or performance may be materially different. Forward-looking information is subject to known and unknown risks, uncertainties and other factors that may cause the Company's actual results, level of activity, performance or achievements to be materially different from those expressed or implied by such forward-looking information.

Hole ID	Sample	From	То	Drill type	Data Type	Au	Au1
VHBRCD0008	5169194	85	86	RC	INT	0.118	
VHBRCD0008	5169195	86	87	RC	INT	0.338	
VHBRCD0008	5169196	87	88	RC	INT	2.053	
VHBRCD0008	5169197	88	89	RC	INT	12.237	12.684
VHBRCD0008	5169198	89	90	RC	INT	3.041	
VHBRCD0008	5169199	90	91	RC	INT	8.313	9.086
VHBRCD0008	5169201	90	91	RC	DUP	5.354	4.821
VHBRCD0008	5169203	91	92	RC	INT	0.307	
VHBRCD0008	5169204	92	93	RC	INT	0.351	
VHBRCD0008	5169264	143	144	RC	INT	0.043	
VHBRCD0008	5169265	144	145	RC	INT	0.216	
VHBRCD0008	5169266	145	146	RC	INT	0.55	
VHBRCD0008	5169267	146	147	RC	INT	0.019	
VHBRCD0008	5169268	147	148	RC	INT	0.007	
VHBRCD0008	5159381	191	192	DD	INT	0.015	
VHBRCD0008	5159383	192	193	DD	INT	0.027	
VHBRCD0008	5159384	193	194	DD	INT	6.9	5.962
VHBRCD0008	5159385	194	195	DD	INT	0.023	
VHBRCD0008	5159386	195	196	DD	INT	0.143	
VHBRCD0008	5159387	196	197	DD	INT	0.538	
VHBRCD0008	5159388	197	198	DD	INT	0.157	
VHBRCD0008	5159389	198	199	DD	INT	0.797	
VHBRCD0008	5159390	199	200	DD	INT	0.06	
VHBRCD0008	5159391	200	201	DD	INT	0.013	
VHBRCD0008	5159395	204	205	DD	INT	0.06	
VHBRCD0008	5159396	205	206	DD	INT	0.344	
VHBRCD0008	5159397	206	207	DD	INT	0.921	
VHBRCD0008	5159398	207	208	DD	INT	0.031	
VHBRCD0008	5159399	208	209	DD	INT	0.095	
VHBRCD0008	5159449	249	250	DD	INT	0.022	
VHBRCD0008	5159450	250	251	DD	INT	0.257	
VHBRCD0008	5159451	251	252	DD	INT	0.521	
VHBRCD0008	5159452	252	253	DD	INT	0.033	
VHBRCD0008	5159453	253	254	DD	INT	0.259	
VHBRCD0008	5159487	281	282	DD	INT	0.103	
VHBRCD0008	5159488	282	283	DD	INT	0.067	
VHBRCD0008	5159489	283	284	DD	INT	5.722	5.215
VHBRCD0008	5159490	284	285	DD	INT	0.726	
VHBRCD0008	5159491	285	286	DD	INT	0.483	
VHBRCD0008	5159492	286	287	DD	INT	0.18	
VHBRCD0008	5159494	288	288.75	DD	INT	0.081	
VHBRCD0008	5159495	288.75	290	DD	INT	0.239	

Hole ID	Sample	From	То	Drill type	Data Type	Au	Au1
VHBRCD0008	5159496	290	291	DD	INT	1.467	
VHBRCD0008	5159497	291	292	DD	INT	1.265	
VHBRCD0008	5159498	292	293	DD	INT	0.261	
VHBRCD0008	5159499	293	294	DD	INT	0.771	
VHBRCD0008	5159501	293	294	DD	INT	0.695	
VHBRCD0008	5159503	294	295	DD	INT	6.983	7.341
VHBRCD0008	5159504	295	296	DD	INT	0.757	
VHBRCD0008	5159505	296	297	DD	INT	0.786	
VHBRCD0008	5159506	297	298	DD	INT	0.94	
VHBRCD0008	5159507	298	299	DD	INT	0.171	
VHBRCD0008	5159508	299	300	DD	INT	0.425	
VHBRCD0008	5159509	300	301	DD	INT	0.489	
VHBRCD0008	5159510	301	302	DD	INT	7.666	7.446
VHBRCD0008	5159511	301	303	DD	INT	0.08	7.110
VHBRCD0008	5159512	303	303	DD	INT	0.165	
VHBRCD0008	5159512	303	305.27	DD	INT	0.322	
VHBRCD0008	5159513	305.27	306.27	DD	INT	1.015	
VHBRCD0008	5159515	306.27	306.78	DD		3.994	
VHBRCD0008	5159516	306.78	308	DD	INT	1.692	
VHBRCD0008	5159517	308	308	DD	INT	0.164	
VHBRCD0008	5159518	309	310	DD	INT	0.035	
VMERC0028	5153686	67	68	RC	INT	0.033	
VMERC0028	5153687	68	69	RC	INT	0.173	
VMERC0028	5153688	69	70	RC		0.28	
VMERC0028	5153689	70	70	RC	INT	0.06	
VMERC0028	5153690	70	71	RC		0.035	
VMERC0028	5153694	71	72	RC	INT	0.232	
VMERC0028	5153695	75	70	RC	INT	0.232	
VMERC0028	5153696	70	78	RC	INT	2.496	2.767
VMERC0028	5153697	78	78	RC	INT	0.679	0.756
VMERC0028	5153698	78	80	RC		0.073	0.750
VMERC0028	5153699	80	80	RC	INT	0.592	
VMERC0028	5153701	80	81	RC	DUP	0.592	
VMERC0028	5153703	80	81	RC	INT	0.32	
VMERC0028	5153703	81	83	RC	INT	0.303	
VMERC0028	5153704	85	85	RC	INT	0.088	
VMERC0028	5153708	85	80	RC		0.088	
VMERC0028	5153708	87	88	RC		0.535	
VMERC0028	5153709	88	89	RC		0.333	
VMERC0028	5153710	89	90	RC		0.227	
VMERC0028	5153761	131	132	RC	DUP	0.085	
						0.02	
VMERC0028	5153763	132	133	RC			0.60
VMERC0028	5153764	133	134	RC		0.718	0.69
VMERC0028	5153765	134	135	RC	INT	0.066	

Hole ID	Sample	From	То	Drill	Data Type	Au	Au1
VMERC0028	5153766	135	136	type RC	INT	0.062	
VMERC0029	5153787	8	130	RC	INT	0.225	
VMERC0029	5153787	12	12	RC	INT	0.382	
VMERC0029	5153789	12	20	RC	INT	0.582	
VMERC0029	5153789	20	20	RC	INT	0.048	
VMERC0029	5153790	20	24	RC	INT	0.134	
VMERC0020	5153959	90	91	RC	INT	0.037	
VMERC0030	5153961	90	91	RC	DUP	0.037	
VMERC0030	5153963	91	92	RC	INT	1.61	
VMERC0030	5153964	92	93	RC	INT	0.134	
VMERC0030	5153965	93	93	RC	INT	0.134	
VMERC0030	5153966	93	95	RC	INT	4.571	5.417
VMERC0030	5153966	94	95	RC		0.868	J.+1/
VMERC0030	5153968	95	90	RC	INT	2.902	
VMERC0030	5153969	90	97	RC	INT	0.68	
VMERC0030	5153970	98	98	RC	INT	4.435	
VMERC0030	5153970	98	100	RC	INT	1.432	
VMERC0030	5153971	100	100	RC	INT	3.461	
VMERC0030	5153972	100	101	RC	INT	6.034	5.675
VMERC0030	5153973	101	102	RC	INT	2.528	5.075
VMERC0030	5153974	102	103	RC	INT	4.517	
VMERC0030	5153975	103	104	RC	INT	0.56	
VMERC0030	5153970	104	105	RC	INT	0.398	
VMERC0030	5153978	105	100	RC	INT	0.398	
VMERC0030	5154073	86	87	RC	INT	0.187	
VMERC0031	5154073	80	88	RC	INT	0.014	
VMERC0031	5154074	88	89	RC	INT	2.966	3.371
VMERC0031	5154075	89	90	RC	INT	0.225	5.571
VMERC0031	5154077	90	90	RC	INT	0.223	
VMERC0031	5154148	149	150	RC	INT	0.007	
VMERC0031	5154149	149	150	RC		0.007	
VMERC0031	5154149	150	151	RC	INT	4.247	6.299
VMERC0031	5154151	151	152	RC	INT	0.528	0.299
VMERC0031	5154152	152	153	RC		0.328	
VMERC0031	5154152	153	154	RC	INT	0.212	
VMWRC0024	5154515	134	150	RC	INT	-0.005	
VMWRC0024	5154516	149	150	RC		0.007	
	5154517	150	151	RC	INT	0.539	0.497
VMWRC0024 VMWRC0024	5154517	151	152	RC		0.339	0.487
VMWRC0024	5154518	152	155	RC		0.320	
VMWRC0024	5154519	79	80	RC	INT	0.332	
VMWRC0025	5154666	80	80	RC	INT	0.008	
VMWRC0025	5154667	80	81	RC	INT	1.317	
	5154668	81	83	RC			
VMWRC0025	5154008	٥۷	55	πu	INT	0.168	

Hole ID	Sample	From	То	Drill type	Data Type	Au	Au1
VMWRC0025	5154669	83	84	RC	INT	0.018	
VMWRC0025	5154688	99	100	RC	INT	0.055	
VMWRC0025	5154689	100	101	RC	INT	0.215	
VMWRC0025	5154690	101	102	RC	INT	3.117	3.211
VMWRC0025	5154691	102	103	RC	INT	0.073	
VMWRC0025	5154692	103	104	RC	INT	0.023	
VMWRC0025	5154699	110	111	RC	INT	0.008	
VMWRC0025	5154701	110	111	RC	DUP	0.022	
VMWRC0025	5154703	111	112	RC	INT	0.532	
VMWRC0025	5154704	112	113	RC	INT	0.016	
VMWRC0025	5154705	113	114	RC	INT	-0.005	
VMWRC0026	5154841	90	91	RC	DUP	0.017	
VMWRC0026	5154843	91	92	RC	INT	0.411	
VMWRC0026	5154844	92	93	RC	INT	2.346	2.266
VMWRC0026	5154845	93	94	RC	INT	0.243	
VMWRC0026	5154846	94	95	RC	INT	0.023	
VMWRC0027	5155010	107	108	RC	INT	0.038	
VMWRC0027	5155011	108	109	RC	INT	0.072	
VMWRC0027	5155012	109	110	RC	INT	0.936	
VMWRC0027	5155013	110	111	RC	INT	0.285	
VMWRC0027	5155014	111	112	RC	INT	0.272	
VMWRC0027	5155021	116	117	RC	DUP	0.352	
VMWRC0027	5155023	117	118	RC	INT	0.136	
VMWRC0027	5155024	118	119	RC	INT	0.535	
VMWRC0027	5155025	119	120	RC	INT	0.217	
VMWRC0027	5155026	120	121	RC	INT	0.123	
VMWRC0027	5155049	140	141	RC	INT	0.032	
VMWRC0027	5155050	141	142	RC	INT	0.018	
VMWRC0027	5155051	142	143	RC	INT	0.982	
VMWRC0027	5155052	143	144	RC	INT	2.776	2.72
VMWRC0027	5155053	144	145	RC	INT	0.601	
VMWRC0027	5155054	145	146	RC	INT	0.126	
VMWRC0027	5155055	146	147	RC	INT	0.243	
VMWRC0027	5155073	161	162	RC	INT	0.018	
VMWRC0027	5155074	162	163	RC	INT	0.119	
VMWRC0027	5155075	163	164	RC	INT	0.637	
VMWRC0027	5155076	164	165	RC	INT	0.444	
VMWRC0027	5155077	165	166	RC	INT	0.249	
VMWRC0027	5155078	166	167	RC	INT	0.52	
VMWRC0027	5155079	167	168	RC	INT	0.552	
VMWRC0027	5155081	167	168	RC	DUP	0.933	
VMWRC0027	5155083	168	169	RC	INT	0.479	
VMWRC0027	5155084	169	170	RC	INT	0.246	
VMWRC0027	5155087	172	173	RC	INT	0.029	

Hole ID	Sample	From	То	Drill type	Data Type	Au	Au1
VMWRC0027	5155088	173	174	RC	INT	0.036	
VMWRC0027	5155089	174	175	RC	INT	0.641	
VMWRC0027	5155090	175	176	RC	INT	0.099	
VMWRC0027	5155091	176	170	RC	INT	0.07	
VMWRC0028	5155166	109	110	RC	INT	0.049	
VMWRC0028	5155167	100	111	RC	INT	0.353	
VMWRC0028	5155168	111	112	RC	INT	3.156	3.513
VMWRC0028	5155169	112	112	RC	INT	0.205	5.515
VMWRC0028	5155170	113	113	RC	INT	0.42	
VMWRC0028	5155189	129	130	RC	INT	0.024	
VMWRC0028	5155190	130	131	RC	INT	0.071	
VMWRC0028	5155191	131	132	RC	INT	3.311	
VMWRC0028	5155192	132	133	RC	INT	0.401	
VMWRC0028	5155193	133	134	RC	INT	0.054	
VMWRC0028	5155206	143	144	RC	INT	0.027	
VMWRC0028	5155207	144	145	RC	INT	0.042	
VMWRC0028	5155208	145	146	RC	INT	1.231	1.239
VMWRC0028	5155209	146	147	RC	INT	0.638	1.200
VMWRC0028	5155210	147	148	RC	INT	0.066	
VMWRC0028	5155211	148	149	RC	INT	0.025	
VMWRC0029	5155406	174	175	RC	INT	0.042	
VMWRC0029	5155407	175	176	RC	INT	0.088	
VMWRC0029	5155408	176	177	RC	INT	1.206	1.78
VMWRC0029	5155409	177	178	RC	INT	6.122	6.139
VMWRC0029	5155410	178	179	RC	INT	0.838	0.815
VMWRC0029	5155411	179	180	RC	INT	0.135	0.010
VMWRC0029	5155412	180	181	RC	INT	0.076	
VMWRC0029	5155423	188	189	RC	INT	0.106	
VMWRC0029	5155424	189	190	RC	INT	0.031	
VMWRC0029	5155425	190	191	RC	INT	3.949	4.061
VMWRC0029	5155426	191	192	RC	INT	2.969	
VMWRC0029	5155427	192	193	RC	INT	0.112	
VMWRC0029	5155428	193	194	RC	INT	0.017	
VMWRC0030	5155625	197	198	RC	INT	0.466	
VMWRC0030	5155626	198	199	RC	INT	0.23	
VMWRC0030	5155627	199	200	RC	INT	1.275	1.301
VMWRC0030	5155628	200	201	RC	INT	1.453	1.529
VMWRC0030	5155629	201	202	RC	INT	1.728	1.663
VMWRC0030	5155630	202	203	RC	INT	0.722	
VMWRC0030	5155631	203	204	RC	INT	0.28	
VMWRC0030	5155632	204	205	RC	INT	0.581	
VMWRC0030	5155633	205	206	RC	INT	0.333	
VMWRC0030	5155634	206	207	RC	INT	0.068	
VNTRC0004	5154177	0	4	RC	INT	0.006	

Hole ID	Sample	From	То	Drill type	Data Type	Au	Au1
VNTRC0004	5154178	4	8	RC	INT	0.009	
VNTRC0004	5154179	8	12	RC	INT	0.113	
VNTRC0004	5154181	8	12	RC	DUP	0.105	
VNTRC0004	5154183	12	16	RC	INT	-0.005	
VNTRC0004	5154184	16	20	RC	INT	-0.005	
VNTRC0004	5154219	118	119	RC	INT	-0.005	
VNTRC0004	5154221	118	119	RC	DUP	0.01	
VNTRC0004	5154223	119	120	RC	INT	0.219	
VNTRC0004	5154224	120	121	RC	INT	0.067	
VNTRC0004	5154225	121	122	RC	INT	0.04	
VNTRC0004	5154248	141	142	RC	INT	0.016	
VNTRC0004	5154249	142	143	RC	INT	0.008	
VNTRC0004	5154250	143	144	RC	INT	0.103	
VNTRC0004	5154251	144	145	RC	INT	0.013	
VNTRC0004	5154252	145	146	RC	INT	0.023	
VNTRC0004	5154257	150	151	RC	INT	0.038	
VNTRC0004	5154258	151	152	RC	INT	0.064	
VNTRC0004	5154259	152	153	RC	INT	0.13	
VNTRC0004	5154261	152	153	RC	DUP	0.14	
VNTRC0004	5154263	153	154	RC	INT	0.205	
VNTRC0004	5154264	154	155	RC	INT	0.067	
VNTRC0004	5154265	155	156	RC	INT	0.105	
VNTRC0004	5154266	156	157	RC	INT	0.067	
VNTRC0004	5154267	157	158	RC	INT	0.127	
VNTRC0004	5154268	158	159	RC	INT	0.032	
VNTRC0004	5154269	159	160	RC	INT	0.071	
VNTRC0004	5154279	169	170	RC	INT	0.055	
VNTRC0004	5154281	169	170	RC	DUP	0.085	
VNTRC0004	5154283	170	171	RC	INT	0.127	
VNTRC0004	5154284	171	172	RC	INT	0.114	
VNTRC0004	5154285	172	173	RC	INT	0.047	
VNTRC0004	5154286	173	174	RC	INT	0.031	
VNTRCD0001	5153561	16	20	RC	DUP	0.016	
VNTRCD0001	5153563	20	24	RC	INT	-0.005	
VNTRCD0001	5153564	24	28	RC	INT	0.141	
VNTRCD0001	5153565	28	32	RC	INT	0.006	
VNTRCD0001	5153566	32	36	RC	INT	0.012	
VNTRCD0001	5206229	155	156	DD	HCORE	0.042	
VNTRCD0001	5206230	156	157	DD	HCORE	0.091	
VNTRCD0001	5206231	157	158	DD	HCORE	0.279	
VNTRCD0001	5206232	158	159	DD	HCORE	0.573	
VNTRCD0001	5206233	159	160	DD	HCORE	0.103	
VNTRCD0001	5206234	160	161	DD	HCORE	0.053	
VNTRCD0001	5206235	161	162	DD	HCORE	0.034	

Hole ID	Sample	From	То	Drill type	Data Type	Au	Au1
VNTRCD0001	5206246	169	170	DD	HCORE	0.019	
VNTRCD0001	5206247	170	170	DD	HCORE	0.044	
VNTRCD0001	5206248	171	172	DD	HCORE	0.145	
VNTRCD0001	5206249	172	173	DD	HCORE	0.038	
VNTRCD0001	5206219	172	173	DD	HCORE	0.035	
VNTRCD0001	5206292	207	207.5	DD	HCORE	0.032	
VNTRCD0001	5206252	207.5	207.5	DD	HCORE	0.063	
VNTRCD0001	5206293	207.5	200	DD	HCORE	0.147	
VNTRCD0001	5206295	200	209.5	DD	HCORE	0.273	
VNTRCD0001	5206295	209.5	205.5	DD	HCORE	0.023	
VNTRCD0001	5206297	205.5	210	DD	HCORE	0.029	
VNTRCD0001	5206257	210	222	DD	HCORE	0.033	
VNTRCD0001	5206312	221	222	DD	HCORE	0.013	
VNTRCD0001	5206312	222	223	DD	HCORE	0.328	
VNTRCD0001	5206313	223	224	DD	HCORE	0.263	
VNTRCD0001	5206315	224	225	DD	HCORE	0.203	
VNTRCD0001	5206315	225	220	DD	HCORE	0.038	
VNTRCD0001	5206310	320	321	DD	HCORE	0.038	
VNTRCD0001	5206428	320	321	DD	HCORE	0.013	
VNTRCD0001	5206430	321	322	DD	HCORE	0.007	
VNTRCD0001	5206430	322	323	DD	HCORE	0.13	
VNTRCD0001	5206432	323	324	DD	HCORE	0.009	
VNTRCD0001	5206433	324	325	DD	HCORE	0.003	
VNTRCD0001	5206466	352	353	DD	HCORE	0.069	
VNTRCD0001	5206467	353	353	DD	HCORE	0.005	
VNTRCD0001	5206468	353	355	DD	HCORE	0.275	
VNTRCD0001	5206469	355	355	DD	HCORE	0.091	
VNTRCD0001	5206400	355	350	DD	HCORE	0.051	
VNTRCD0001	5206470	350	358	DD	HCORE	0.075	
VNTRCD0001	5206471	358	359	DD	HCORE	0.338	
VNTRCD0001	5206472	359	360	DD	HCORE	0.05	
VNTRCD0001	5206474	360	361	DD	HCORE	0.03	
VNTRCD0001	5206623	484	485	DD	HCORE	0.016	
VNTRCD0001	5206624	485	486	DD	HCORE	0.010	
VNTRCD0001	5206625	485	480	DD	HCORE	0.18	
VNTRCD0001	5206626	480	487	DD	HCORE	0.012	
VNTRCD0001	5206627	487	489	DD	HCORE	-0.005	
VNTRCD0001	5159636	84	85	DD	HCORE	0.02	
VNTRCD0002	5159637	85	85	DD	HCORE	0.02	
VNTRCD0002	5159638	86	80	DD	HCORE	0.07	
VNTRCD0002	5159639	87	88	DD	QCORE	0.245	
VNTRCD0002	5159641	87	88	DD	DUP	0.243	
VNTRCD0002	5159643	88	89	DD	HCORE	0.023	
VNTRCD0002	5159644	89	90	DD	HCORE	0.025	
	5155044	09	50	00	HEORE	0.023	

Hole ID	Sample	From	То	Drill type	Data Type	Au	Au1
VNTRCD0002	5159757	186	187	DD	QCORE	0.005	
VNTRCD0002	5159758	187	188	DD	QCORE	0.006	
VNTRCD0002	5159759	188	189	DD	QCORE	0.117	0.112
VNTRCD0002	5159761	188	189	DD	DUP	0.063	
VNTRCD0002	5159763	189	190	DD	QCORE	0.088	
VNTRCD0002	5159776	202	203	DD	QCORE	0.013	
VNTRCD0002	5159777	203	204	DD	QCORE	0.006	
VNTRCD0002	5159778	204	205	DD	QCORE	0.168	0.168
VNTRCD0002	5159779	205	206	DD	QCORE	0.019	
VNTRCD0002	5159781	205	206	DD	DUP	0.007	
VTRRC0055	5155989	85	92	RC	INT	0.171	
VTRRC0055	5155990	85	93	RC	INT	1.386	
VTRRC0055	5155991	85	94	RC	INT	0.207	
VTRRC0055	5204612	136	137	RC	INT	0.042	
VTRRC0055	5204612	130	137	RC	INT	4.257	3.976
VTRRC0055	5204613	137	130	RC	INT	0.682	5.570
VTRRC0055	5204615	130	135	RC	INT	0.082	
VTRRC0055	5204013	255	256	RC	INT	0.023	
VTRRC0056	5204893	255	250	RC	INT	1.887	1.828
VTRRC0056	5204894	250	257	RC	INT	0.133	1.020
VTRRC0056	5204895	257	258	RC	INT	0.133	
		258	259	RC	INT		
VTRRC0056	5204897				INT	0.8	
VTRRC0056 VTRRC0057	5204898 5205090	260 256	261 257	RC RC	INT	0.103	
VTRRC0057	5205090	250	258	RC		-0.005	
VTRRC0057		257	258	RC			
	5205092					0.827	
VTRRC0057	5205093	259	260	RC		0.045	
VTRRC0057	5205094	260	261	RC		0.012	
VTRRC0058	5205179	182	183	RC		0.372	
VTRRC0058	5205181	182	183	RC	DUP	0.359	1 402
VTRRC0058	5205183	183	184	RC		1.408	1.402
VTRRC0058	5205184	184	185	RC		0.868	
VTRRC0058	5205185	185	186	RC		0.299	
VTRRC0058	5205186	186	187	RC		0.069	
VTRRC0058	5205227	221	222	RC	INT	-0.005	
VTRRC0058	5205228	222	223	RC	INT	0.006	
VTRRC0058	5205229	223	224	RC	INT	5.61	5.341
VTRRC0058	5205230	224	225	RC	INT	0.418	
VTRRC0058	5205231	225	226	RC	INT	0.086	
VTRRC0058	5205235	229	230	RC	INT	0.032	
VTRRC0058	5205236	230	231	RC	INT	0.11	
VTRRC0058	5205237	231	232	RC	INT	0.72	
VTRRC0058	5205238	232	233	RC	INT	0.084	
VTRRC0058	5205239	233	234	RC	INT	0.028	

Hole ID	Sample	From	То	Drill type	Data Type	Au	Au1
VTRRC0058	5205250	241	242	RC	INT	0.477	
VTRRC0058	5205251	242	243	RC	INT	0.13	
VTRRC0058	5205252	243	244	RC	INT	0.83	
VTRRC0058	5205253	244	245	RC	INT	0.283	
VTRRC0058	5205254	245	246	RC	INT	0.054	
VTRRC0059	5205385	189	190	RC	INT	0.041	
VTRRC0059	5205386	190	191	RC	INT	0.321	
VTRRC0059	5205387	191	192	RC	INT	11.246	11.996
VTRRC0059	5205388	192	193	RC	INT	3.052	
VTRRC0059	5205389	193	194	RC	INT	0.144	
VTRRC0059	5205390	194	195	RC	INT	0.054	
VTRRC0059	5205419	220	221	RC	INT	0.082	
VTRRC0059	5205421	220	221	RC	DUP	0.038	
VTRRC0059	5205423	221	222	RC	INT	22.231	23.54
VTRRC0059	5205424	222	223	RC	INT	1.484	
VTRRC0059	5205425	223	224	RC	INT	0.026	
VTRRC0059	5205426	224	225	RC	INT	0.016	
VTRRC0059	5205439	237	238	RC	INT	0.011	
VTRRC0059	5205441	237	238	RC	DUP	0.016	
VTRRC0059	5205443	238	239	RC	INT	2.496	
VTRRC0059	5205444	239	240	RC	INT	0.442	
VTRRC0059	5205445	240	241	RC	INT	0.068	
VTRRC0059	5205448	243	244	RC	INT	0.009	
VTRRC0059	5205449	244	245	RC	INT	0.149	
VTRRC0059	5205450	245	246	RC	INT	0.501	
VTRRC0059	5205451	246	247	RC	INT	0.717	
VTRRC0059	5205452	247	248	RC	INT	0.246	
VTRRC0059	5205453	248	249	RC	INT	0.603	
VTRRC0059	5205454	249	250	RC	INT	0.109	
VTRRC0059	5205455	250	251	RC	INT	0.091	
VTRRC0060	5205604	209	210	RC	INT	0.006	
VTRRC0060	5205605	210	211	RC	INT	0.066	
VTRRC0060	5205606	211	212	RC	INT	0.802	
VTRRC0060	5205607	212	213	RC	INT	1.997	
VTRRC0060	5205608	213	214	RC	INT	3.45	3.235
VTRRC0060	5205609	214	215	RC	INT	1.659	
VTRRC0060	5205610	215	216	RC	INT	0.481	
VTRRC0060	5205611	216	217	RC	INT	0.326	

 \mathbf{V}

JORC Code, 2012 Edition: Table 1 Section 1: Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	(Criteria in this section apply to all succeeding se	
Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 RC Drilling assays are from 1m samples split on the cyclone for the key intercepts. 4m composites from these 1m splits are taken in zones of lower prospectivity. Where the composite samples return > 0.5g/t Au, they are re-assayed on 1m intervals Reported Diamond Drilling assays are from half core, NQ diamond core. This is considered to be sufficient material for a representative sample Duplicates are taken of the second quarter of core every 20 samples to ensure the samples were representative.
Drilling techniques	 information. Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Face Sampling, Reverse Circulation hammer NQ Diamond
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC drilling was bagged on 1m intervals and an estimate of sample recovery has been made on the size of each sample. Recovery in diamond drilling based on measured core returned for each 3m
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Reverse Circulation holes are being logged on 1m intervals Diamond holes are logged in detail based on geological boundaries. Diamond holes are logged on 1m intervals for geotechnical data.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise samples representivity 	 Half Diamond Core - Diamond drilling, on selected intervals of between 0.25-1.5m length. Sampling using a diamond saw. Duplicates taken every 20 samples by sampling a second quarter of the NQ core, or from a second split directly

Criteria	JORC Code explanation	Commentary
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 from cyclone. Standards submitted every 20 samples of tenor similar to those expected in the sampling. Cone splitter on the cyclone was used to produce a 1m sub-sample on the RC rig. Blanks were inserted every 20 samples also In un-prospective lithologies these 1m samples were composited using a scoop over 4m intervals.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples analysed at Intertek Laboratories in Perth, WA, using a 50g Fire Assay method. Samples are dried, crushed and pulverised prior to analysis.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Intercepts have been calculated generally using a 1g/t cut off or as otherwise stated (see Table 1) and internal waste of up to 3m thickness with total intercepts greater than 1g/t. All repeats and duplicates have been included.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 DGPS has been used to locate the drillholes. REFLEX Gyro Tool used for downhole surveys on all holes
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	 Sample data down hole is at no more than 1m intervals Data spacing varies from <25m from previous intersections to >100m from previous intersections. Assessment as to whether sufficient data has been generated to establish the degree of geological and grade continuity appropriate for Mineral Resource and estimation procedure(s) is underway and, if necessary, additional drilling will be carried out to establish continuity.

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Intercepts given are downhole widths with the true widths not determined.
Sample security	• The measures taken to ensure sample security.	 Samples sealed in bulka bag with Security seal, unbroken when delivered to lab
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Review of standards, blanks and Duplicates indicate sampling and analysis has been effective

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Located in the Marymia - Plutonic Greenstone Belt ~218km northeast of Meekatharra in the Midwest mining district in WA
		 M52/183, M52/217 and M52/218 granted tenement in good standing.
		• The tenements predate Native title interests, but are covered by the Gingirana Native Title claim
		• The tenements are 100% owned by Vango Mining Limited and subsidiary Dampier Plutonic Pty Ltd.
		 Gold production will be subject to a 1-4% royalty dependent on gold price (Currently 2%) capped at \$2M across the entire project area.
		• Contingent production payments of up to \$4M across the entire project area.
		• M52/183 was the subject of a Terms Sheet Agreement that has since expired. The results announced in this release are from assaying that was completed post expiry.
Exploration done by other parties.	Acknowledgment and appraisal of exploration by other parties.	Extensive previous work by Resolute Mining, Homestake Gold and Dampier Gold
Geology	 Deposit type, geological setting and style of mineralisation. 	 Gold mineralisation at K2/PHB- 1/Mareast/Marwest and Trident is orogenic, hosted within sheared and faulted mafic and ultramafic rocks. High grade lodes of mineralisation are associated with steep dipping structures associated with lithological boundaries and/or narrow quartz veining.
Drill hole Information	• A summary of all information material to the understanding of the exploration results including a	Location of new drillholes based on surveyed sites, and DGPS, summarised in Table 2 and

Criteria	JORC Code explanation	Commentary
	 tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 shown on Figures 1 and 2. Location of previous Drillholes based on historical reports and data, originally located on surveyed sites, and DGPS. Northing and easting data generally within 0.1m accuracy RL data +-0.2m Down hole length =+- 0.1 m
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Intercepts have been calculated generally using a 1 g/t cut off or as otherwise stated (see Table 1) and internal waste of up to 3m thickness with total intercepts greater than 1g/t. All Duplicates and repeats are included No upper cut off has been applied to intersections.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Orientation of mineralised zones are still to be ascertained by follow up drilling.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 See Figure 1, regional geology; Figure 2; prospect geology and plan view of drillhole collar locations and Figures 3 and 4, appropriate cross-sectional and longitudinal view of the K2 deposit showing the different lodes. See Table 1, summary of drilling intersections and Table 2, drillhole locations and Appendix

	1, all significant assays, with
	repeats and duplicates.
 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 See Table 1, summary of drilling intersections and Table 2, drillhole locations and Appendix 1, all significant assays, low and high grade, with repeats and duplicates.
 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Geological interpretations are included on both plan views (Figures 1, 4, 6), sectional view (Figures 2, 5), and longitudinal view (Figure 3, 6). No new exploration data has been generated apart from the drilling information included in this report.
 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided 	 Extensive further drilling is planned for the project
	 Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological

