

ASX/Media Release

14 January 2021

Large Mineralised Gold System Confirmed at Gigante Grande

- Additional high-grade interval encountered in 20EMRC034 with 4m @ 4.92g/t from 96m, including a peak assay of 1m@16g/t Au from 97m
- 70 percent of recent drilling at Gigante Grande has intersected +gram level gold mineralisation
- Over 70 significant intersections of gold mineralisation to date
- Clear gold mineralisation associated with the Moriarty Shear established
- So far, Gigante Grande's strike-length is 1.2km long over 150m wide with consistent mineralisation found from depths of 25m with results to 200m depth
- REZ holds over 8km of the Moriarty Shear zone and will continue to expand its exploration plan- including in fill and extensions to the north and south
- Third drill program has commenced at Gigante Grande on 6 January 2021.

Resources & Energy Group Limited (ASX: REZ or the Company) is pleased to advise that it has now received all drill results from the successful drill program undertaken in November last year. The results confirm that Gigante Grande prospect, on the eastern side of the East Menzies Gold field project, is a significant and large gold mineralised system. REZ will continue exploration with a view to expand the prospect and advance towards resource generation.

Following receipt of the remaining results, the November program has delivered significant down-hole gold mineralisation including:

20EMRC016	2m@ 2.06g/t Au from 129m
	1m@ 1.83g/t Au from 164m
	8m@ 2.14g/t Au from 186m (incl 3m@ 3.62g/t Au from 186m)
20EMRC033	4m@ 0.93g/t Au from 20m
	3m@ 1.01g/t Au from 46m
	2m@ 2.73g/t Au from 90m
	2m@ 1.98g/t Au from 147m
20EMRC034	2m@ 0.96g/t Au from 24m
	2m@ 3.49g/t Au from 39m
	4m@ 4.92g/t Au from 96m (incl 1m@16g/t Au from 97m)
20EMRC037	2m@ 1.22g/t Au from 45m
	1m@ 4.78g/t Au from 61m
20EMRC039	5m@ 3.59g/t Au from 199m (incl 2m@7.55gt/Au from 199m)

The final 300 Photon Assays, from the original submission of 1200 samples, have recently been received. These were primarily associated with boreholes 20EMRC034, 20EMRC037 and 20EMRC039, which were partially reported in December 2020⁽¹⁾.

Additional down the hole intervals of gold mineralisation within 20EMRC034 have been reported, with a peak assay of **4m@4.92gt/au from 96m**, including **1m@16gt/Au from 96m** down the hole. These results bring the total mineralisation in 20EMRC034 to 16m, distributed over a 104m interval from 24 to 128m down the hole. An additional 13m of lower tenor mineralisation was also intersected in two deeper zones with **6m@0.69gt/au from 158m** and **7m @ 0.44gt/au from 168m**, refer table 1.

(1) ASX Release 23-12-2020

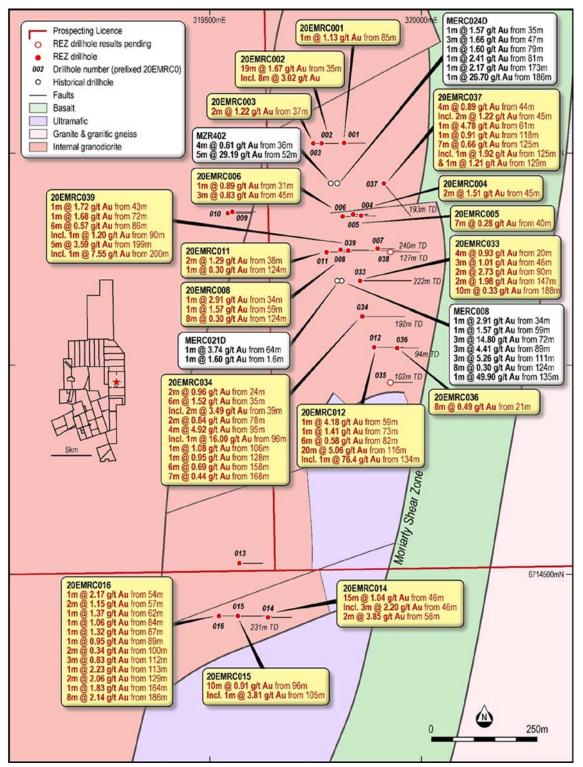


Figure 1 Borehole Location Plan Showing Significant Intervals of Gold Mineralisation

REZ is continuing exploration of Gigante Grande in pursuit of its aim of finding a tier one asset within the East Menzies Goldfield.

A summary of significant recent results and historical exploration is presented in table 1 and Figure 1. Table 1 is illustrative of the large number of relatively shallow mineralised intervals which have been encountered at the prospect to date. It is also noteworthy that 70% of recent drilling completed at Gigante Grande has intersected gram level gold mineralisation.

Deferre	East	North	тр	RL AHD	Azimuth	Principa	interva	at COG 0	.2gt/Au		Inclu	uding					
Reference	MGA	MGA	10		- Linuti	From (m)	To (m)	Width	Au g/t	From (m)	To (m)	Width (m)	Au g/t				
						34	35	1	2.91			<u> </u>					
						59	60	1	1.57			<u> </u>					
MERC008	319812	6715198	148	400	60/090	72	75	3	14.8								
MERC008	319812	6112138	148	400	60/090	89	92	3	4.41	112		<u> </u>	12.2				
						111 124	114 132	3	5.26 0.3	112	113	1	13.3				
							136	1	49.9			+	+				
						135 64	65	1	3.74			+	+				
MERC021D	319802	6715198	200	400	60/090	106	107	1	1.6			+	+				
						35	36	1	1.57			+	+				
						47	50	3	1.66			+	+				
		6745430	272.5	400	co/000	79	80	1	1.6			<u> </u>					
MERC024D	319802	6715428	273.5	400	60/090	81	82	1	2.41								
						173	174	1	2.17								
						186	187	1	26.7								
MZR402	319787	6715428	57	400	60/090	36	40	4	0.61								
WZR402	319/8/	6713428	57	400	60/030	52	57	5	29.19	52	56	4	33.03				
20EMRC001	319814	6715524	100	399.204	60/090	85	86	1	1.13								
20EMRC002	319761	6715526	80	399.417	60/090	31	52	21	1.4	34	42	8	3.02				
20EMRC003	319740	6715526	90	399.415	60/090	37	39	2	1.22								
20EMRC004	319853	6715355	70	400.071	60/090	45	47	2	1.51								
						34	35	1	2.91			<u> </u>					
						38	39	1	0.93			<u> </u>					
20EMRC008	319806	6715275	132	2 400.618	60/090	58	60	2	0.94			<u> </u>					
						64	65	1	0.91			<u> </u>					
			<u> </u>			92	93	1	1.17								
20EMRC011	319774	6715272	120	400.719	60/090	20	21	1	0.91								
						36	41	5	0.58	38	40	2	1.26				
						54	60	6	0.8	59	60	1	4.18				
205140-0012	210007	6715044	120	8 401.37	401 37	co/000	73	74	1	1.41				+			
20EMRC012	319887	6715044	138		60/090	82	88	6	0.58								
						101	103 136	2	0.74	134	135	1	76.4				
						112	136	24	4.27		49	3	2.2				
20EMRC014	319636	6714407	120	406.061	60/090	46	61	15	1.04	46 58	61	3	2.2				
	20EMRC015 319560 6714410 1		120 400	405 202		24	25	1	0.66								
20EMRC015		120	406.203	60/090	47	48	1	0.59									
						96	106	10	0.91	105	106	1	3.85				
										54	55	1	2.17				
				405.754			54	66	12	0.61	57	59	2	1.15			
						84	85	1	1.06	62	63	1	1.37				
						87	88	1	1.32			+	+				
20EMRC016	319517	6714411	231		68/090	89	90	1	0.95			+	+				
2021010	51551/	0/1-1-1		405.754	00,000	113	114	1	2.23			+	+				
						115		13	0.5	129	121		+				
										129	142					2	2.06
			1			129 164	142 165			129	131	2	2.06				
						164	165	1	1.83	129	131	2	3.62				
20EMRC018	319168	6714398	120	404.777	60/090	164	165	1	1.83	186	189	3	3.62				
						164 186	165 194	1 8	1.83 2.14	186	189	3	3.62				
20EMRC018 20EMRC019			120 126	404.777 406.172		164 186 93	165 194 94	1 8 1	1.83 2.14 0.96	186	189	3	3.62				
						164 186 93 69	165 194 94 70	1 8 1 1	1.83 2.14 0.96 1.63	186	189	3	3.62				
20EMRC019	319221	6714167	126	406.172	60/090	164 186 93 69 90	165 194 94 70 92	1 8 1 1 2	1.83 2.14 0.96 1.63 1.48	186	189	3	3.62				
	319221					164 186 93 69 90 20	165 194 94 70 92 24	1 8 1 1 2 4	1.83 2.14 0.96 1.63 1.48 0.93	186	189	3	3.62				
20EMRC019	319221	6714167	126	406.172	60/090	164 186 93 69 90 20 46	165 194 94 70 92 24 49	1 8 1 2 4 3	1.83 2.14 0.96 1.63 1.48 0.93 1.01	186 193	189 194	3 1	3.62				
20EMRC019	319221	6714167	126	406.172	60/090	164 186 93 69 90 20 46 90	165 194 94 70 92 24 49 92	1 8 1 2 4 3 2	1.83 2.14 0.96 1.63 1.48 0.93 1.01 2.73	186 193	189 194	3 1	3.62				
20EMRC019	319221	6714167	126	406.172	60/090	164 186 93 69 90 20 46 90 147	165 194 94 70 92 24 49 92 149	1 8 1 2 4 3 2 2	1.83 2.14 0.96 1.63 1.48 0.93 1.01 2.73 1.98	186 193	189 194	3 1	3.62				
20EMRC019	319221	6714167	126	406.172	60/090	154 186 93 69 90 20 46 90 147 24	165 194 94 70 92 24 49 92 149 26 41 80	1 8 1 2 4 3 2 2 2 2	1.83 2.14 0.96 1.63 1.48 0.93 1.01 2.73 1.98 0.96 1.52 0.84	<u>186</u> 193 90	189 194 91	3 1 1 1 1 1	3.62 4.4 5.20				
20EMRC019 20EMRC033	319221 319847	6714167 6715201	126 222	406.172	60/090	164 186 93 69 90 20 46 90 147 24 35 78 95	165 194 94 70 92 24 49 92 149 26 41 80 99	1 8 1 2 4 3 2 2 2 2 6 6 2 4	1.83 2.14 0.96 1.63 1.48 0.93 1.01 2.73 1.98 0.96 1.52 0.84 4.92	<u>186</u> 193 90	189 194 91	3 1 1 1 1 1	3.62 4.4 5.20				
20EMRC019	319221 319847	6714167	126 222	406.172	60/090	164 186 93 69 90 20 46 90 147 24 35 78 95 106	165 194 94 70 92 24 49 92 149 26 41 80 99 107	1 8 1 2 4 3 2 2 2 6 6 2 2 4 1	1.83 2.14 0.96 1.63 1.48 0.93 1.01 2.73 1.98 0.96 1.52 0.84 4.92 1.08	186 193 90 39	189 194 91 41	3 1 1 1 2	3.62 4.4 5.20 3.49				
20EMRC019 20EMRC033	319221 319847	6714167 6715201	126 222	406.172	60/090	164 185 93 69 90 20 46 90 147 24 35 78 95 106 128	165 194 94 70 92 24 49 92 149 26 41 80 99 107 129	1 8 1 2 4 3 2 2 2 2 6 2 2 4 1 1	1.83 2.14 0.96 1.63 1.48 0.93 1.01 2.73 1.98 0.96 1.52 0.84 4.92 1.08 0.95	186 193 90 39	189 194 91 41	3 1 1 1 2	3.62 4.4 5.20 3.49				
20EMRC019 20EMRC033	319221 319847	6714167 6715201	126 222	406.172	60/090	164 185 93 69 90 20 46 90 147 24 35 78 95 105 128 158	165 194 94 70 92 24 49 92 149 26 41 80 99 107 129	1 8 1 2 4 3 2 2 2 2 6 6 2 4 1 1 6	1.83 2.14 0.96 1.63 1.48 0.93 1.01 2.73 1.98 0.96 1.52 0.84 4.92 1.08 0.95 0.69	186 193 90 39	189 194 91 41	3 1 1 1 2	3.62 4.4 5.20 3.49				
20EMRC019 20EMRC033	319221 319847	6714167 6715201	126 222	406.172	60/090	164 185 93 69 90 20 46 90 147 24 35 78 95 106 128 158 168	165 194 94 70 92 24 49 92 149 92 26 41 80 99 107 129 164	1 8 1 2 4 3 2 2 2 2 6 2 4 1 1 6 7	1.83 2.14 0.96 1.63 1.48 0.93 1.01 2.73 1.98 0.96 1.52 0.84 4.92 1.08 0.95 0.69 0.44	186 193 90 39	189 194 91 41	3 1 1 1 2	3.62 4.4 5.20 3.49				
20EMRC019 20EMRC033	319221 319847	6714167 6715201	126 222	406.172	60/090	164 186 93 69 90 20 46 90 147 24 35 78 95 106 128 158 168 21	165 194 94 70 92 24 49 92 149 26 41 80 99 107 129 164 175 29	1 8 1 2 4 3 2 2 2 6 6 2 4 1 1 6 7 8	1.83 2.14 0.96 1.63 1.48 0.93 1.01 2.73 1.98 0.96 1.52 0.84 4.92 1.08 0.95 0.69 0.44	186 193 90 39	189 194 91 41	3 1 1 1 2	3.62 4.4 5.20 3.49				
20EMRC019 20EMRC033 20EMRC034	319221 319847 319854	6714167 6715201 6715121	126 222 192	406.172 401.06 401.159	60/090 60/090 60/090	164 186 93 69 90 20 46 90 147 24 35 78 95 106 128 158 168 21 71	165 194 94 70 92 24 49 92 149 26 41 80 99 107 129 164 175 29 72	1 8 1 2 4 3 2 2 2 6 2 2 6 2 2 4 1 1 6 7 8 8	1.83 2.14 0.96 1.63 1.48 0.93 1.01 2.73 1.98 0.96 1.52 0.84 4.92 1.08 0.95 0.69 0.44 0.49 1.22	186 193 90 39 96	189 194 91 41 97		3.62 4.4 5.20 3.49 16.00				
20EMRC019 20EMRC033 20EMRC034	319221 319847 319854	6714167 6715201 6715121	126 222 192	406.172 401.06 401.159	60/090 60/090 60/090	164 185 93 69 90 20 46 90 147 24 35 78 95 106 128 158 168 21 71 44	165 194 94 70 92 24 49 92 149 26 41 80 99 107 129 164 175 29 72 48	1 8 1 2 4 3 2 2 2 2 2 6 6 2 2 4 1 1 1 6 7 8 1 1 4	1.83 2.14 0.96 1.63 1.48 0.93 1.01 2.73 1.98 0.96 1.52 0.84 4.92 1.08 0.95 0.69 0.44 0.49 1.22 0.89	186 193 90 39	189 194 91 41	3 1 1 1 2	3.62 4.4 5.20 3.49				
20EMRC019 20EMRC033 20EMRC034 20EMRC036	319221 319847 319854 319934	6714167 6715201 6715121 6715046	126 222 192 94	406.172 401.06 401.159 401.165	60/090 60/090 60/090 60/090	164 185 93 69 90 20 46 90 147 24 35 78 95 106 128 158 168 21 71 44 61	165 194 94 70 92 24 49 92 149 26 41 80 99 107 129 164 175 29 72 48 62	1 8 1 2 4 3 2 2 2 2 6 6 2 2 4 1 1 1 6 7 7 8 1 4 4	1.83 2.14 0.96 1.63 1.48 0.93 1.01 2.73 1.98 0.96 1.52 0.84 4.92 1.08 0.95 0.69 0.44 0.49 1.22 0.89 4.78	186 193 90 39 96	189 194 91 41 97		3.62 4.4 5.20 3.49 16.00				
20EMRC019 20EMRC033 20EMRC034	319221 319847 319854	6714167 6715201 6715121	126 222 192	406.172 401.06 401.159	60/090 60/090 60/090 60/090	164 185 93 69 90 20 46 90 147 24 35 78 95 106 128 158 168 21 71 44	165 194 94 70 92 24 49 92 149 26 41 80 99 107 129 164 175 29 72 48	1 8 1 2 4 3 2 2 2 2 2 6 6 2 2 4 1 1 1 6 7 8 1 1 4	1.83 2.14 0.96 1.63 1.48 0.93 1.01 2.73 1.98 0.96 1.52 0.84 4.92 1.08 0.95 0.69 0.44 0.49 1.22 0.89	186 193 90 39 96 45	189 194 91 41 97 47		3.62 4.4 5.20 3.49 16.00				
20EMRC019 20EMRC033 20EMRC034 20EMRC036	319221 319847 319854 319934	6714167 6715201 6715121 6715046	126 222 192 94	406.172 401.06 401.159 401.165	60/090 60/090 60/090 60/090	164 185 93 69 90 20 46 90 147 24 35 78 95 106 128 158 168 21 71 44 61	165 194 94 70 92 24 49 92 149 26 41 80 99 107 129 164 175 29 72 48 62	1 8 1 2 4 3 2 2 2 2 6 6 2 2 4 1 1 1 6 7 7 8 1 4 4	1.83 2.14 0.96 1.63 1.48 0.93 1.01 2.73 1.98 0.96 1.52 0.84 4.92 1.08 0.95 0.69 0.44 0.49 1.22 0.89 4.78	186 193 90 39 96 45 125	189 194 91 41 97 47 47		3.62 4.4 5.20 3.49 16.00 1.22 1.92				
20EMRC019 20EMRC033 20EMRC034 20EMRC036	319221 319847 319854 319934	6714167 6715201 6715121 6715046	126 222 192 94	406.172 401.06 401.159 401.165	60/090 60/090 60/090 60/090	164 186 93 69 90 20 46 90 147 24 35 78 95 106 128 158 168 21 71 44 61 118 125	165 194 94 70 92 24 49 92 149 26 41 80 99 107 129 164 175 29 72 48 62 119 132	1 8 1 2 4 3 2 2 2 6 6 2 2 4 1 1 6 7 7 8 1 1 4 1 1 7	1.83 2.14 0.96 1.63 1.48 0.93 1.01 2.73 1.98 0.96 1.52 0.84 4.92 1.08 0.95 0.69 0.44 0.49 1.22 0.89 4.78 0.91 0.91 0.66	186 193 90 39 96 45	189 194 91 41 97 47		3.62 4.4 5.20 3.49 16.00				
20EMRC019 20EMRC033 20EMRC034 20EMRC036	319221 319847 319854 319934	6714167 6715201 6715121 6715046	126 222 192 94	406.172 401.06 401.159 401.165	60/090 60/090 60/090 60/090	164 185 93 69 90 20 46 90 147 24 35 78 95 106 128 158 168 21 71 44 61 118 125 43	165 194 94 70 92 24 49 92 149 26 41 80 99 107 129 164 175 29 72 48 62 119 132 44	1 8 1 2 2 2 2 2 2 6 2 2 4 1 1 1 6 7 8 1 1 4 1 1 7 7 1	1.83 2.14 0.96 1.63 1.48 0.93 1.01 2.73 1.98 0.96 1.52 0.84 4.92 1.08 0.95 0.69 0.44 0.49 1.22 0.89 4.78 0.91 0.66 1.72	186 193 90 39 96 45 125	189 194 91 41 97 47 47		3.62 4.4 5.20 3.49 16.00 1.22 1.92				
20EMRC019 20EMRC033 20EMRC034 20EMRC036	319221 319847 319854 319934 319904	6714167 6715201 6715121 6715046	126 222 192 94	406.172 401.06 401.159 401.165	60/090 60/090 60/090 60/090 60/140	164 186 93 69 90 20 46 90 147 24 35 78 95 106 128 158 168 21 71 44 61 118 125	165 194 94 70 92 24 49 92 149 26 41 80 99 107 129 164 175 29 72 48 62 119 132	1 8 1 2 4 3 2 2 2 6 6 2 2 4 1 1 6 7 7 8 1 1 4 1 1 7	1.83 2.14 0.96 1.63 1.48 0.93 1.01 2.73 1.98 0.96 1.52 0.84 4.92 1.08 0.95 0.69 0.44 0.49 1.22 0.89 4.78 0.91 0.91 0.66	186 193 90 39 96 45 125	189 194 91 41 97 47 47		3.62 4.4 5.20 3.49 16.00 1.22 1.92				

Table 1 Gigante Grande Significant Results

Complete results for the remaining assays, together with collar details and supporting JORC 2012 checklist, are presented in Appendix 1.

The Company is also pleased to announce that the third round of drilling investigations has now commenced, with drilling operations setting up on PHRC068, refer figure 2.

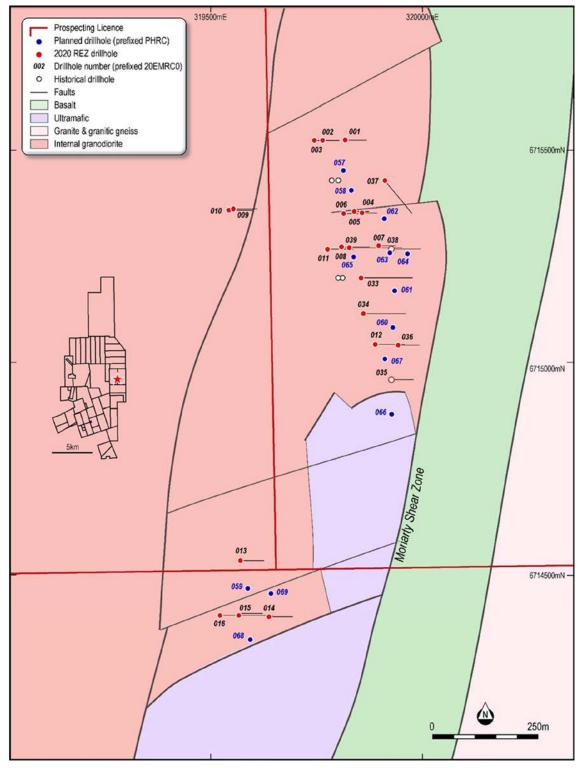
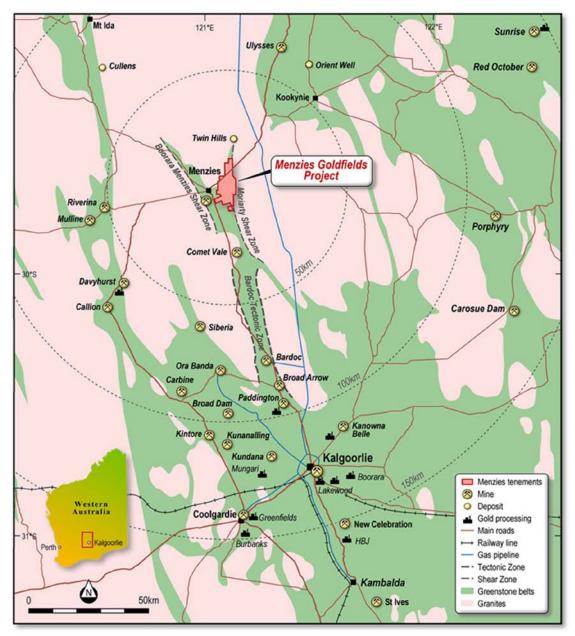


Figure 2 Drillhole Location Plan



A total of 14 holes are planned for the January 2021 program to infill and further drill test gold mineralisation within the prospect.

The drilling program will focus on a combination of shallow and deeper holes which have been planned to test the orientation of mineralised structures within the contact between the Moriarty Shear Zone and the Gigante Granodiorite.

About Resources and Energy

Resources and Energy Group Limited (ASX: REZ) is an independent, ASX-listed mineral resources explorer, with projects located in premier mining jurisdictions in Western Australia and Queensland. In Western Australia, the company's flagship is the East Menzies Gold Field project (EMG), situated 130km north of Kalgoorlie. The EMG represents a +100km2 package of contiguous mining, exploration, and prospecting licenses, which are located within a significant orogenic lode gold province figures 3 and 4

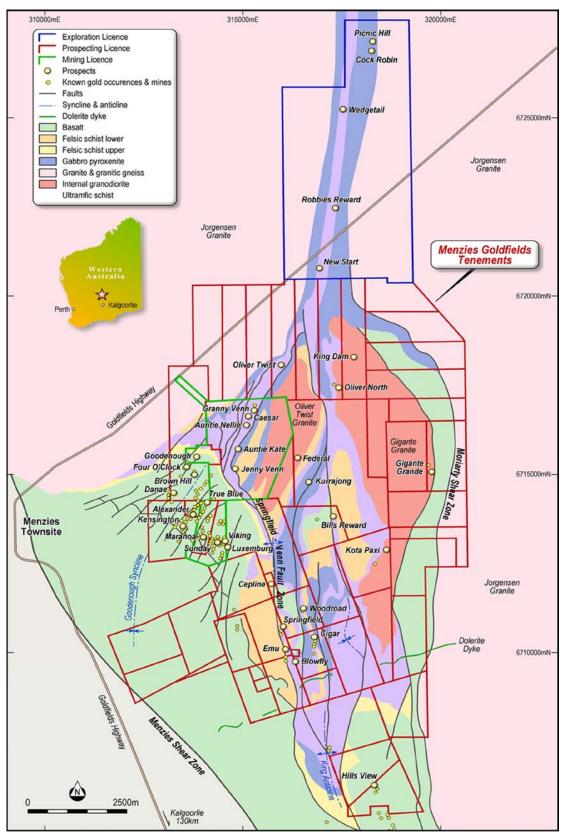


Figure 4 East Menzies Gold Project-Tenement Location Plan

For resource growth, the company's focus is presently exploring the eastern side of the project area. On the western side of the project area scoping and pit optimisation studies to investigate opportunities for renewed mining operations in M29/181, M29/141, and M29/427 have commenced. As part of this program the company recently upgraded the JORC 2012 MRE for M29/141-Goodneough which now stands at 37.5k oz indicated and 5.2k oz inferred for a total Indicated and Inferred Mineral Resource Estimate of 42.7k oz of Gold. Resource work on Granny Venn has also commenced.

In Queensland, the company has a 12km2 Mineral Development Licence over the Mount Mackenzie Mineral Resource and retains a further 15km2 as an Exploration Permit. These Development and Exploration Licences are in the Connors-Auburn Arc and are prospective for high, intermediate, and low sulphidation gold and base metals mineralisation. The current resource has been estimated at 3.42Mt @ 1.18g/t gold and 9g/t silver for a total of 129,000 oz gold and 862k oz silver.

Further information:

Richard Poole Executive Director E: communications@rezgroup.com.au P: +61 2 9227 8900

Approved for Release by the REZ Board

Competent Persons Statement and Consent

The information in this release that relates to Exploration Results is based on and fairly represents information compiled by Mr. Michael Johnstone Principal Consultant for Minerva Geological Services (MGS), and Mr Danilo Carvalho, Senior Geologist for BM Geological Services (BMGS). Mr Johnstone is a member of the Australasian Institute of Mining and Metallurgy and has sufficient experience that is relevant to the reporting of Exploration Results to qualify as a Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Johnstone consents to the inclusion in this release of the matters based on their information in the form and context in which it appears.

Appendix 1 Drilling Details and Assays

Hole Ref	TD (m)	Easting Mga Z51	Northing MgA Z51	RL	Azimuth (Mn)	Dip	From (m)	To (m)	Length (m)	Au (ppm)
					()		20	21	1	0.09
							21	22	1	0.19
							22	23	1	0.41
							23	24	1	0.17
							24	25	1	1.25
				25	26	1	0.68			
						26	27	1	0	
							27	28	1	0.38
							28	29	1	0
							29	30	1	0.11
							30	31	1	0.12
							31	32	1	0.18
							32	33	1	0.08
							33	34	1	0
							34	35	1	0
							35	36	1	0.54
							36	37	1	0.37
							37	38	1	0.85
							38	39	1	0.39
							39	40	1	3.27
							40	41	1	3.71
							41	52	11	NSR
							60	61	1	0.88
							61	62	1	0.09
20EMRC034	192	319853.64	6715121	401.16	90	-60	62	78	16	NSR
202101112034	152	515055.04	0713121	401.10	50	-00	78	79	1	1.38
							79	80	1	0.31
							80	81	1	0
							81	82	1	0.12
							82	83	1	0
							83	84	1	0.13
							84	85	1	0.25
							85	95	10	NSR
							95	96	1	2.7
							96	97	1	16
							97	98	1	0.79
							98	99	1	0.19
							99	105	6	NSR
							105	106	1	0.16
							106	107	1	1.08
							107	108	1	0.14
							108	109	1	0
							109	110	1	0.68
							110	111	1	0.19
							111	112	1	0
							112	113	1	0.12
							113	114	1	0.11
					114	115	1	0.05		
							115	116	1	0.07
							116	117	1	0.06

Hole Ref	TD (m)	Easting	Northing	RL	Azimuth	Dip	From	To (m)	Length	Au (mmm)
		Mga Z51	MgA Z51		(Mn)		(m)	(m)	(m)	(ppm)
							118	119	1	0.3
							119	120	1	0.15
							120	121	1	0.08
							121	122	1	0.06
							122	123	1	0
							123	124	1	0.35
							124	125	1	0.27
							125	126	1	0.14
							126	127	1	0
							127	128	1	0
							128	129	1	0.95
							129	130	1	0.28
							130	131	1	0
							131	132	1	0
							132	133	1	0.22
							133	134	1	0
							134	135	1	0.1
							135	136	1	0.27
							136	137	1	0.12
							137	142	5	NSR
							142	143	1	0.17
							143	144	1	0.37
							144	147	3	NSR
							147	148	1	0.11
							148	149	1	0
20EMRC034							149	150	1	0.27
							150	151	1	0.27
							150	156	5	NSR
							151	157	1	0.11
							150	158		0.08
							157	158	1	0.72
									1	0.39
							159 160	160 161	1	1.49
							161	162	1	1.09
							162	163		0
							163	164		0.47
										0.47
							164	165		
							165	166		0
							166	167	1	0
							167	168		0.18
							168	169	1	0.5
							169	170	1	0.82
							170	171	1	0.13
							171	172	1	0.45
							172	173		0.51
							173	174	1	0.4
							174	175	1	0.29
							175	176	1	0.09
							176	177	1	0.09
							177	178	1	0.06

Hole Ref	TD (m)	Easting Mga Z51	Northing MgA Z51	RL	Azimuth (Mn)	Dip	From (m)	To (m)	Length (m)	Au (ppm)	
20EMRC035	102	319919.2	6714968	401.75	90	60	20	56	36	NSR	
							87	103	16	NSR	
							103	104	1	0.63	
							104	105	1	0	
							105	106	1	0.15	
							106	107	1	0.16	
							107	108	1	0.11	
							108	109	1	0.1	
							109	110	1	0	
							110	111	1	0.09	
							111	112	1	0.52	
							112	113	1	0.06	
							113	114	1	0	
							114	115	1	0	
20EMRC037	193	319904.38	6715429	399.78	140	60	115	116	1	0.06	
2011/1/2037	195	515504.58	0713423	335.70	140	00	116	117	1	0	
							117	118	1	0.09	
							118	119	1	0.91	
							119	120	1	0	
							120	121	1	0	
							121	122	1	0.08	
							122	123	1	0.11	
							123	124	1	0	
								124	125	1	0
								125	126	1	1.92
							126	127	1	0.07	
							127	128	1	0.86	
							128	129	1	0.1	
							175	193	18	NSR	
							20	30	10	NSR	
							30	31	1	0.38	
							31	35	4	NSR	
							35	36	1	0.13	
							36	37	1	0.19	
							37	38	1	0.39	
							38	39	1	0.24	
							39	42	3	NSR	
							42	121	79	PR	
20EMRC038	127	319923.23	6715273	400.32	90	60	121	127	6	NSR	

Hole Ref	TD (m)	Easting Mga Z51	Northing MgA Z51	RL	Azimuth (Mn)	Dip	From (m)	To (m)	Length (m)	Au (ppm)		
					()		178	192	14	NSR		
					ĺ		0	20	20	NS		
							20	28		NSR		
							28	29	1	0.44		
							29	43		NSR		
							43	44	1	1.72		
							44	45	1	0.07		
							45	46	1	0.16		
							46	47	1	0.1		
							47	48	1	0.07		
							48	49	1	0.08		
							49	50	1	0.07		
							50	51	1	0.07		
							51	52	1	0.09		
							52	55	3	NSR		
							55	56	1	0.06		
							56	57	1	0.21		
							57	58	1	0.2		
							58	59	1	0.34		
							59	60	1	0.06 <0.05		
							60 61	61 62	1	0.14		
							62	63	1	0.14		
							63	64	1	0.12		
							64	69	5	NSR		
20EMRC039	240	319823.89	40 319823.89 6715279	240 319823.89 6715279 400.57 90 -60	-60	69	70	1	0.13			
	210					6/152/9				70	71	1
							71	72	1	0.11		
							72	73	1	1.68		
							73	74	1	0.26		
							74	75	1	0.06		
							75	76	1	0.14		
							76	77	1	0.16		
							77	78	1	0.06		
							78	79	1	0.41		
							79	83	4	NSR		
							83	84	1	0.21		
							84	85	1	<0.04		
							85	86	1	< 0.05		
							86	87	1	0.67		
							87	88	1	0.11		
							88	89	1	0.75		
							89 90	90 91	1	0.36		
							90	91	1	0.37		
							91	92	4	NSR		
							92	90	4	0.09		
							97	98	1	0.31		
							98	99	1	0.1		
							99	117	18	NSR		

Hole Ref	TD (m)	Easting	Northing	RL	Azimuth	Dip	From	То	Length	Au
Hole Kei	10 (11)	Mga Z51	MgA Z51	INL.	(Mn)	Dib	(m)	(m)	(m)	(ppm)
							117	118	1	0.21
							118	129	11	NSR
							129	130	1	0.61
							130	131	1	0.07
							131	136	5	NSR
							136	137	1	0.07
							137	138	1	0.24
							138	144	6	NSR
							144	145	1	0.11
							145	146	1	<0.05
							146	147	1	0.23
							147	148	- 1	0.06
							148	149	- 1	<0.04
							149	150	1	<0.04
							145	150	1	0.16
							150	151	1	<0.04
									1	<0.04
							152	153		0.38
							153	154	1	<0.05
20EMRC039							154	155	1	
							155	156	1	0.05
							156	157	1	0.08
							157	158	1	0.42
							158	159	1	0.19
							159	160	1	0.07
							160	168	8	NSR
							168	199	31	NSR
							199	200	1	2.35
							200	201	1	12.76
							201	202	1	0.98
							202	203	1	0.97
							203	204	1	0.91
							204	208	4	NSR
							208	209	1	0.09
							209	210	1	0.15
							210	211	1	0
							211	212	1	0
							212	213	1	0.14
							213	240	27	NSR
		1								
NS	Not Sampled									
NSR	No Significan									
P	Assay pendin									
LNR	Insufficient Sa									
	insumerent Se									

Appendix 2 JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	• Nature and quality of sampling (eg cut channels, random chips, or specif- ic specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as lim- iting the broad meaning of sampling.	The results are based on samples recovered from a reverse circulation drillingprogram.
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of min- eralisation that are Material to the 	 The RC samples were collected for every 1 meter drilled using a cone splitter. A 1m primary sample was collected from the splitter, with a second field duplicate sample generally collected every 20th metre. Samples were reported dry and free flowing. The report includes RC drilling results only.
	 Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circula- tion drilling was used to obtain 1 m samples from which 3 kg was pulver- ised to produce a 30 g charge for fire assay'). In other cases more explana- tion may be required, such as where there is coarse gold that has inherent 	The sampling method are industry standard.

Criteria	JORC Code explanation	Commentary
	sampling problems. Unusual com- modities or mineralisation types (eg submarine nodules) may warrant dis- closure of detailed information.	
Drilling tech- niques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 The exploration results are based on Reverse Circulation drilling using a face sampling percussion hammer. The RC bit used was 141mm.
Drill sample recovery	• Method of recording and assessing core and chip sample recoveries and results assessed.	 Recoveries for RC samples were visually assessed in the field and weighed and recorded at the la- boratory. Results are uploaded into the database and sample weights were analysed as part of QAQC protocols.
	• Measures taken to maximise sample recovery and ensure representative nature of the samples.	• Field procedures included checking the splitter every sample to ensure no residue remained from the previously drilled interval. The cyclone and housing are also checked regularly and cleaned with compressed air. Checks on splitter level are made using a spirit level. Each calico sample collected weighed on average 3kg.
	Whether a relationship exists be- tween sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No relationship has been identified at this stage.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estima-	• RC samples have been geologically logged with alteration, colour, weathering, texture, mineralisa- tion and main lithology reported.

Criteria	JORC Code explanation	Commentary
	tion, mining studies and metallurgical studies.	
	• Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	• Logging is qualitative and descriptive using look up tables. Chip trays for recent drilling are labelled and photographed and have been retained and stored for future reference.
	• The total length and percentage of the relevant intersections logged.	• 100% of the historical drilling has been logged and has lithological information present.
Sub-sampling techniques and sample	 If core, whether cut or sawn and whether quarter, half or all core tak- en. 	Not applicable.
preparation	• If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	• For RC samples, a cone splitter was used to obtain 1m sub samples with a weight of approximately 3kg. In the majority cases the sample has been classified dry. No overly wet sample intervals were encountered that would compromise the quality of the sample.
	• For all sample types, the nature, qual- ity and appropriateness of the sample preparation technique.	• The field procedures adopted for RC drilling are industry standard, adequate and appropriate. After initial collection in the field all subsequent sample preparation is carried out in a laboratory, under controlled conditions and specified by the relevant standards.
	• Quality control procedures adopted for all sub-sampling stages to maxim-ise representivity of samples.	• The programme QAQC involved inserting Certified Reference Materials, blanks and collecting field duplicates samples per 20 metres drilled. The field duplicates were collected from the 2 nd chute of the cone splitter. CRM's were typically inserted in zones of interest.
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field dupli- cate/second-half sampling. 	 Pre-numbered continuous Primary and Duplicate calico samples were collected every metre drilled. Blanks and CRMs were inserted every 20 metres, with multiple grade ranges of appropriate matrix material selected for the CRMs. Laboratory procedures also include the use of certified reference samples and blanks for internal QA/QC assurance.
	• Whether sample sizes are appropriate to the grain size of the material being	• Sample sizes for the RC sampling were typically 3kg which is considered appropriate given nature of

Criteria	JORC Code explanation	Commentary
	sampled.	the material being sampled
Quality of assay data and labora- tory tests	• The nature, quality and appropriate- ness of the assaying and laboratory procedures used and whether the technique is considered partial or to- tal.	• The primary assay technique used was PA500 by MinAnalytical Laboratory in Kalgoorlie, which given the high-grade / coarse gold nature of Menzies-Style mineralisation is considered an appropriate assay technique. Photon Assay is highly accurate, chemical-free, and completely non- destructive of the sample. The 500g single-use jars allow for bulk analysis with no chance of cross contamination between sample. The Photon Assay technique uses x-ray bombardment to "see" gold even if it is not liberated from the ore, providing accurate results on crushed but non- pulverised samples. MinAnalytical has National Association of Testing Authorities (NATA) accredita- tion for the technology, in accordance with ISO/IEC-17025 testing requirements.
	• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibra- tions factors applied and their deriva- tion, etc.	Not applicable, the results are not based on these instruments.
	• Nature of quality control procedures adopted (eg standards, blanks, dupli- cates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 Datasets have been analysed, with no significant issues related to bias. PA500 has precision issues at approximately 0.1ppm which does not impact detecting Menzies style of mineralisation. Sub 1ppm CRM material has been included in the sample streams, results to date have indicated none of the gold mineralisation encountered in drilling has been masked by the PA500technique.
Verification of sampling and assaying	• The verification of significant intersec- tions by either independent or alter- native company personnel.	• All drilling intersections are verified by the Field Geologist, who has been present on site during the complete drilling process. The sampled intersections are also checked by the Supervising Geologist by reference to hole number, drilling depths, sample numbers, blanks and standards introduced into the sampling stream.

Page 4

Criteria	JORC Code explanation	Commentary
	• The use of twinned holes.	No twin holes have been undertaken.
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	• The primary data was collected at the drill site as drilling progressed by the Field Geologist and Field Technician. The Field Geologist recorded all lithological logging data directly into digital format via a rugged computer. The sample data, including allocation of sample number to interval, sample quality/recovery data, and insertion of QA/QC samples was recorded on a field sheet by the Field Technician and reviewed by the Field Geologist in the field. This data was later validated against assay files and checked by the Supervising Geologist. For recent drilling field sheets are kept on file and digital data backed up. The project data is stored in a MS access database on a cloud server.
	• Discuss any adjustment to assay data.	No adjustments have been made to the assay data.
Location of data points	• Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine work- ings and other locations used in Min- eral Resource estimation.	• All EMGP drill collars were initially located in the field by hand-held GPS, a final relocation survey will be carried out using a dGPS by a qualified surveyor. Down-the hole surveys were completed us- ing a north seeking Axis Champ Gyro which sits behind the overshot taking surveys every 30m dur- ing drilling operations to monitor deviation, and a continuous survey at the completion of each hole.
	• Specification of the grid system used.	• The grid_system used is MGA94_51s.
	• Quality and adequacy of topographic control.	• Topographic controls have not been undertaken, and are not relevant to the results being reported.
Data spacing and distribu-	• Data spacing for reporting of Explora- tion Results.	• The RC holes are close spaced and typically less than 50m on lines which are 200-500m apart
tion	• Whether the data spacing and distri- bution is sufficient to establish the degree of geological and grade conti- nuity appropriate for the Mineral Re- source and Ore Reserve estimation procedure(s) and classifications ap- plied	• This is not applicable as a Mineral Resource or Ore Reserve is not being determined.

Criteria	JORC Code explanation	Commentary
	Whether sample compositing has been applied	Drill holes have not been composited.
Orientation of data in relation to geological structure	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	 Based on present understanding, the drill holes have been orientated 60/090. This orientation is reasonably perpendicular to interpreted structures which are believed to be mineralised.
	• If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	• The selected orientation has minimized potential for introducing sampling bias.
Sample secu- rity	The measures taken to ensure sample security.	• A chain of custody procedure was put in place. Samples were checked against the sample record sheet in the field prior to collection into sequentially numbered plastic bags. The plastic bags were sealed with cable ties before being secured along with sample submission sheets. The sample batches were loaded by the field team and transported directly to the Laboratory. Sample security measures for earlier drilling are not known. The sample batches were loaded by the field team and transported directly. The receiving laboratory verified sample numbers against the sample submission sheet/manifest and confirmed receipt. After re- ceipt, the samples were bar coded and tracked through the entire analytical process.
Audits or re- views	• The results of any audits or reviews of sampling techniques and data.	No audits have been undertaken.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral ten- ement and land tenure status	• Type, reference name/number, loca- tion and ownership including agree- ments or material issues with third parties such as joint ventures, part- nerships, overriding royalties, native title interests, historical sites, wilder- ness or national park and environ- mental settings.	The results have been obtained from 4 prospecting licenses (P29/2461, P29/242460, P29/2270 and P29/2457). These tenements are wholly owned by Resources and Energy Group through a purchase agreement completed in December 2018. The land, from which the Exploration Results have been derived, and does not encompass Strategic cropping lands, wilderness, or protected landscapes
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 At the time of writing, the tenements are in good standing. There are no known impediments which would prohibit operations in accordance with the license conditions.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• Exploration over the tenements has been completed over a number of campaigns and years with significant contributions by Paddington Gold who completed 170 auger holes in 1996-1997. This was followed up by exploration drilling by Goldfields Exploration in 1997-1998. During this time the company completed approximately 4400m of combined RAB and RC drilling, and <u>405m</u> of Diamond Core. The following table details the work undertaken. In 2012 Dr D Gee completed a review and data compilation of the area on behalf of Resource Assets Pty Ltd. In 2014 Stratum Metals commis- sioned a HeliTem survey by Fugro Pty Ltd over the greater East Menzies Goldfield and an interpreta- tion of results by Core Geophysics Pty Ltd. In 2015-2016 Menzies Goldfield Pty Ltd completed 2 pro- grams of MMI sampling over the prospect area.
Geology	• Deposit type, geological setting and style of mineralisation.	• The Gigante Grande prospect occurs within an Archaean Geological Terrane, which is part of the Wiluna-Norseman Greenstone Belt-a significant Orogenic lode gold province. At a prospect scale the project consists mainly of granite (the Gigante Granite) and mafic schists. The Gigante Grande

		and Kota Paxi prospects represent structurally controlled gold mineralisation. The exploration model envisages mineralisation associated with quartz filled brittle-fracture shearing which origi- nated from the Moriarty Shear Zone into mafic schists and carried into the adjoining Gigante gran- ite.
Drill hole In- formation	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	 Co-ordinate locations, elevation, depth, dip, and azimuth of all drillholes is provided in the accompanying documentation. Downhole length, interception depths and assay results have been furnished in Appendix 1- of the accompanying documentation.
	 If the exclusion of this information is justified on the basis that the infor- mation is not Material and this ex- clusion does not detract from the understanding of the report, the Competent Person should clearly ex- plain why this is the case. 	• All RC drilling results which are available to the company have been included in the accompanying documentation.
Data aggre- gation meth- ods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usual- ly Material and should be stated. 	• The appendix 1 shows all the holes that have been drilled within the prospect area, whether or not they have significant intercepts. No grades have been changed or truncated. The mineralisation tabulated within the Appendix 1.1 are only the grades that are >0.1ppm. Holes with NSR indicated No Significant Results encountered i.e. no results >0.1ppmAu.
	Where aggregate intercepts incorpo- rate short lengths of high grade re-	• The broad nature of the mineralisation interpretation means in some instances shorter intervals of higher grade may be present within an individual drill hole. Where this is the case the higher-grade

	 sults and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should 	 interval has been reported separately as well, however most of the intervals at 1m in length. Metal equivalents have not been used.
Relationship between min- eralisation widths and intercept lengths	 be clearly stated. These relationships are particularly important in the reporting of Explo- ration Results. 	
	• If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	• The drillholes are believed to be perpendicular to mineralisation.
	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	All sample intervals have been reported as down hole lengths.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 The accompanying documentation includes plans showing specific areas of interest within the pro- ject area.
Balanced re- porting	 Where comprehensive reporting of all Exploration Results is not practi- cable, representative reporting of both low and high grades and/or widths should be practiced to avoid 	Comprehensive reporting of all material data has been adopted.

	misleading reporting of Exploration Results.	
Other sub- stantive ex- ploration da- ta	 Other exploration data, if meaning- ful and material, should be reported including (but not limited to): geo- logical observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwa- ter, geotechnical and rock character- istics; potential deleterious or con- taminating substances. 	• A high resolution HeliTEM survey which highlights prospective structures and conductor anomalies within and adjacent to the project area has been completed by the previous operator. An output from this survey has been used in this information release, and has been used for exploration plan- ning.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or largescale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided 	 Recommendations for future work are contained within the announcement and accompanying maps. Maps that shows possible extensions to mineralisation have been included in the main body of the release
	this information is not commercially sensitive.	