ASX Announcement

24 MAY 2021

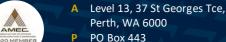
Multiple Anomalous Gold Zones Defined at the Coolaloo Project

HIGHLIGHTS

- AC drilling results from multiple targets host strong geochemical anomalism indicating potential for deeper, fresh rock gold mineralisation
- Preliminary analysis of drill results highlights prospective structures for follow-up exploration
- Westar to undertake target definition and ranking for deeper RC drilling to penetrate below the depleted saprolitic zone and test fresh-rock mineralisation potential

Westar Resources Limited (ASX:WSR) ("Westar" or the "Company") is pleased to announce the preliminary assessment of the geological and geochemical interpretation of the recently completed air core (AC) drilling program at its 100% owned Coolaloo Project, 25km south of Mt Magnet.

The Company tested 10 targets hosting coincident auger geochemical anomalies and priority geophysical targets with first pass blade refusal AC drilling. The gold and multi-element assay results are consistent with the known complex regolith environment of Mt Magnet. Six of the drill targets host coincident multi-element and low-level gold anomalism associated with structural trends while an additional target hosts prospective geology. Westar will further refine the geological, structural and geochemical interpretation of the AC drill results and its extensive database of historic soil sampling to define the potential for follow-up, deeper reverse circulation (RC) drill targets.


Westar Managing Director Karl Jupp commented:

"The Mt Magnet region is well understood to host a complex regolith with common saprolitic gold depletion and Coolaloo appears to be no exception. The assay results together with the pathfinder geochemistry supports the current structural interpretations and the prospectivity of the Coolaloo tenement package."

Registered Address

Westar Resources Limited ACN 635 895 082 ABN 66 635 895 082

P PO Box 443 Hillarys, WA 6923

Board Members

Karl Jupp - Managing Director & CEO Simon Eley – Non-Executive Chairman Nathan Cammerman – Non-Executive Director

+61 <u>08 6188 7675</u>

E admin@westar.net.au

www.westar.net.au

Gold Projects

Sandstone (100% Owned) Mt Magnet (100% Owned) Nullagine (100% Owned) Southern Cross (RMS JV)

ASX Code

WSR

Coolaloo AC Drilling Assay Results

Coolaloo is considered prospective for hosting multiple styles of mineralisation including:

- BIF hosted mineralisation (analogous to the +2Moz Hill 50 mineralisation)
- Shear hosted gold mineralisation within granite greenstone contacts
- Porphyries in granodiorite on granite contacts (Eradinus style of mineralisation)

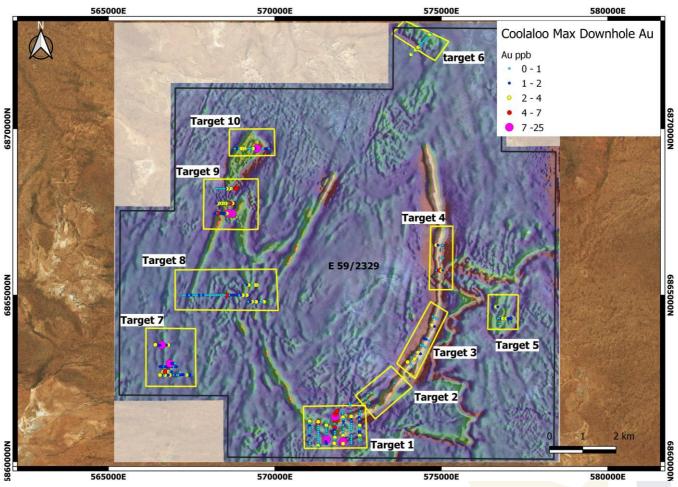


Figure 1: Coolaloo AC Drilling Max Downhole Au

Hole ID	Depth from	Depth to	Au ppb	Northing	Easting
COAC037	34	35	25	6860604	572050
COAC069	36	40	12	6860662	571551
COAC178	20	23	12	6869404	569465
COAC130	48	52	11	6867456	568603
COAC047	56	60	10	6861350	571810
COAC379	20	24	10	6862944	566850
COAC127	40	44	9	6867455	568724
COAC227	20	22	8	6863501	566604
COAC001	0	4	7	6861200	571804
COAC129	15	16	7	6867455	568642
COAC147	4	8	7	6868200	568838
COAC317	0	4	7	6865744	574958
COAC014	0	5	6	6861144	571300
COAC050	44	48	6	6861509	571863
COAC101	4	5	6	6865000	568550
COAC126	20	24	6	6867452	568771
COAC126	28	32	6	6867452	568771
COAC138	2	3	6	6867758	568652
COAC377	12	16	6	6862698	566700
COAC004	12	16	5	6861021	571800
COAC013	4	5	5	6861200	571296
COAC048	84	86	5	6861415	571821
COAC129	12	16	5	6867455	568642
COAC165	32	36	5	6867456	568284

Table 1: Coolaloo Air Core Drilling Gold Results greater than 5ppb

Westar's technical consultants, PGN Geoscience, were engaged to undertake a rapid, high-level assessment of the drill assay results including the multi-element bottom of hole geochemistry using multiple geochemical indices. Geochemical indices are an established and proven geochemical analysis tool for indicating vectors to mineralisation in areas of depleted regolith, such as seen at Coolaloo. These geochemical indices (detailed below), in conjunction with the drilling gold assay grades and the historic soil anomalies have highlighted multiple targets for follow-up exploration.

CHI = $100(Bi-1) + 2(PB-10) + 2.2(Zn-30)^{1}$ CHI3 = Cu + $3(Pb) + 5(Zn) + 3(As) + 5(Sb) + 10(Bi+Cd) + 30(Mo) + 100(Ag)^{2}$ CHI6 = As + $3.56(Sb) + 10(Bi) + 3(Mo) + 30(Ag) + 10(W) + 3.5(Se)^{3}$

Geochemical Interpretation

With respect to gold assay results (Figure 1):

- There is a distinct population of samples (purple diamonds) that are enriched relative to average crustal rocks (1.6-2.4x more Au than average)
- Target 1 hosts numerous minor to moderately enriched assays as well as a significant anomalous Au assay that is 5 times above average crustal rock
- Multiple enriched assay occur within Targets 7 & 9
- The most anomalous Au values generally occur deeper in the regolith profile between 20m and 60m depth at the saprolite-saprock interface (beginning of the fresh rock profile)

With respect to geochemical indices anomalism is detected in targets 1, 6, 7, 8, 9 and 10 and is typically associated with NE-SW or NNE-SSW trending structures interpreted from geophysics (Figure 2).

Targets 1, 5, 7, 8, 9, and 10 host anomalous bottom of hole geochemistry, co-incident anomalous gold assay values and prospective geology including quartz veining, altered BIF's and mafic host rocks. Additionally, targets 7 and 5 were identified during drilling by Westar Geologists as being prospective due to the presence of multiple quartz veins within highly altered mafic and ultramafic rock units.

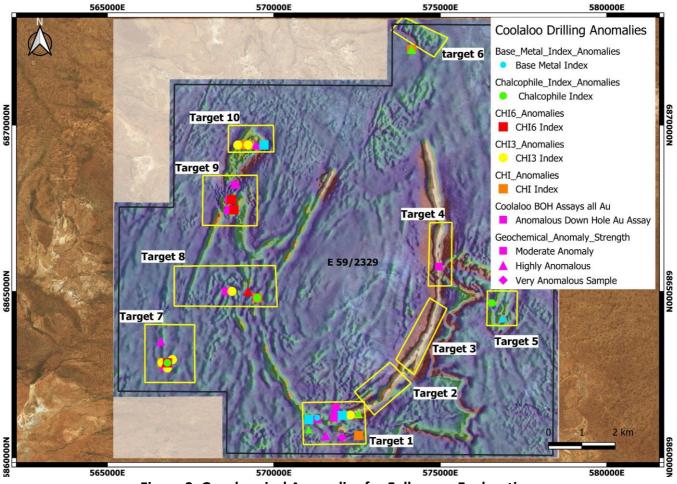
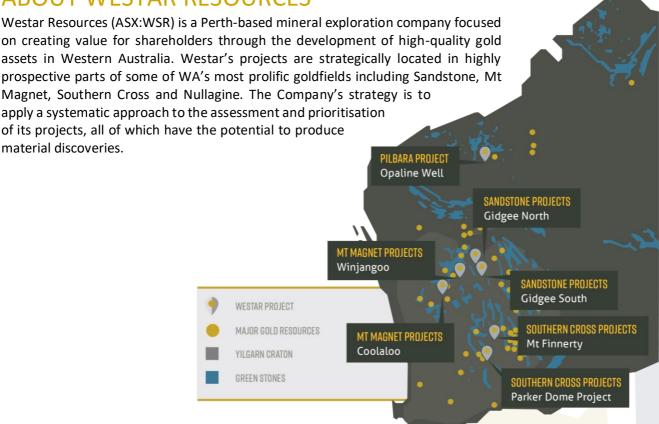


Figure 2: Geochemical Anomalies for Follow-up Exploration

Ongoing Exploration

The recent drilling and bottom of hole multi-element geochemistry has highlighted the importance of structural relationships between NE-SW trending interpreted faults and shears and elevated gold assay grades. Westar intends to continue exploration the Coolaloo Gold Project including:

- A hyperspectral study on selected bottom of hole samples to confirm the presence of hydrothermal alteration minerals and providing vectors to mineralisation
- A detailed structural interpretation incorporating the new geochemical data and in the context
 of regional and known mineralisation models to provide an increasingly robust targeting model
- Target definition and ranking for deeper RC drilling to penetrate below the depleted saprolitic zone and test fresh-rock mineralisation potential


- 1. Ref: Robertson et al., (2004) E.g., Quasar Shear-hosted Au Deposit, Mt. Magnet, WA
- 2. Ref: modified from Smith & Perdix. (1983) E.g., Gossan Hill VHMS, Golden Grove District, WA.
- 3. Ref: modified from Cornelius et al., (2008) E.g., Mount Gibson orogenic Au, Yilgarn, WA

For the purpose of Listing Rule 15.5, this announcement has been authorised by the board of Westar Resources Ltd.

ENQUIRIES

Karl Jupp, Managing Director & CEO +61 8 6188 7675 kjupp@westar.net.au

ABOUT WESTAR RESOURCES

COMPETENT PERSON STATEMENT

The information in this announcement that relates to exploration results is based on and fairly represents information compiled by Kelvin Fox, a competent person who is a member of the AusIMM. Kelvin Fox is employed by Westar Resources Limited. Kelvin Fox has sufficient experience that is relevant to the style of mineralisation and type of deposits under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves. Kelvin Fox consents to the inclusion in this announcement of the matters based on his work in the form and context in which it appears.

Appendix 1

Drill results table showing maximum downhole gold assay values.

Hole ID	DepthFrom	DepthTo	Au ppb	Hole_Depth	Dip	Azimuth	RL	Easting	Northing
COAC001	0	4	7	71	-60	360	390	571804	6861200
COAC002	60	62	1	62	-60	360	387	571802	6861139
COAC003	36	40	1	42	-60	360	389	571800	6861081
COAC004	12	16	5	47	-60	360	390	571800	6861021
COAC005	56	59	2	59	-60	360	383	571797	6860958
COAC006	60	65	1	65	-60	360	394	571808	6860900
COAC007	32	36	1	64	-60	360	386	571804	6860837
COAC008	40	44	1	63	-60	360	384	571801	6860777
COAC009	28	32	4	54	-60	360	397	571803	6860721
COAC010	8	12	1	30	-60	360	398	571799	6860662
COAC011	16	18	0.5	18	-60	360	398	571799	6860602
COAC012	20	21	3	21	-60	360	376	571785	6860549
COAC014	4	5	6	5	-60	360	387	571300	6861144
COAC015	48	49	3	49	-60	360	386	571302	6861083
COAC016	19	20	2	20	-60	360	400	571301	6861020
COAC017	17	18	1	18	-60	360	385	571299	6860966
COAC018	23	24	1	24	-60	360	389	571305	6860901
COAC019	4	5	1	5	-60	360	384	571306	6860841
COAC020	4	5	1	5	-60	360	390	571303	6860780
COAC021	0	4	1	8	-60	360	389	571297	6860721
COAC022	4	5	2	5	-60	360	387	571301	6860665
COAC023	4	7	1	7	-60	360	384	571301	6860604
COAC024	4	8	1	15	-60	360	379	571302	6860544
COAC025	0	4	3	59	-60	360	393	571303	6861198
COAC027	0	4	2	15	-60	360	398	572062	6861209
COAC028	0	1	1	1	-60	360	403	572063	6861151
COAC029	4	8	1	10	-60	360	400	572059	6 <mark>8</mark> 61095
COAC030	9	10	1	1	-60	360	409	572068	68 <mark>61031</mark>
COAC031	0	4	1	12	-60	360	420	572067	<mark>68</mark> 60975
COAC032	20	24	1	27	-60	360	386	572057	6860899
COAC033	4	7	0.5	7	-60	360	390	572049	6860840
COAC034	0	4	3	37	-60	360	390	572049	6860779
COAC035	36	40	1	58	-60	360	392	572048	6860720
COAC036	44	46	1	46	-60	360	388	572048	6860663

COAC037	34	35	25	35	-60	360	393	572050	6860604
COAC038	12	15	3	15	-60	360	366	572050	6860539
COAC039	28	32	1	32	-60	360	400	572040	6861304
COAC040	20	24	1	33	-60	360	402	572049	6861264
COAC041	0	6	0.5	6	-60	360	407	572052	6861368
COAC042	8	10	1	10	-60	360	386	572039	6861439
COAC043	0	3	1	3	-60	360	411	572049	6861489
COAC044	32	35	1	35	-60	360	402	572127	6861290
COAC045	56	61	1	61	-60	360	394	571816	6861262
COAC046	60	64	1	64	-60	360	407	571820	6861308
COAC047	56	60	10	82	-60	360	398	571810	6861350
COAC048	84	86	5	86	-60	360	387	571821	6861415
COAC049	0	4	2	74	-60	360	399	571852	6861476
COAC050	44	48	6	50	-60	360	390	571863	6861509
COAC051	4	8	3	56	-60	360	378	571049	6861207
COAC052	28	32	1	58	-60	360	387	571052	6861145
COAC053	4	8	2	51	-60	360	400	571051	6861080
COAC054	0	4	2	17	-60	360	400	572307	6861192
COAC055	20	24	1	35	-60	360	400	572294	6861238
COAC056	36	40	2	48	-60	360	401	572294	6861280
COAC057	12	16	1	28	-60	360	387	571050	6861020
COAC058	0	4	1	8	-60	360	391	571049	6860963
COAC059	8	9	0.5	9	-60	360	392	571051	6860900
COAC060	8	12	1	16	-60	360	390	571052	6860842
COAC061	4	7	2	7	-60	360	388	571050	6860780
COAC063	0	1	<0.5	1	-60	360	388	571050	6860658
COAC064	0	3	1	4	-60	360	390	571050	6860599
COAC065	0	4	1	4	-60	360	389	571050	6860544
COAC066	40	44	1	69	-60	360	394	571551	6860840
COAC067	56	59	1	59	-60	360	392	571552	6860783
COAC068	44	48	2	53	-60	360	386	571552	6860720
COAC069	36	40	12	43	-60	360	387	571551	68 <mark>60662</mark>
COAC070	24	28	2	41	-60	360	390	571533	<mark>68</mark> 60602
COAC071	4	8	2	29	-60	360	390	571555	<mark>68</mark> 60540
COAC072	4	8	4	13	-60	360	399	571299	68 <mark>60474</mark>
COAC073	12	14	1	14	-60	360	388	571298	6860435
COAC074	8	12	3	32	-60	360	387	569462	6865303
COAC075	8	12	3	14	-60	360	388	569405	6865304
COAC076	20	25	1	25	-60	360	386	569347	6865304
COAC076	24	25	<0.5	25	-60	360	386	569347	6865304

COAC077	4	8	1	28	-60	360	388	569275	6865302
COAC078	12	16	1	32	-60	360	390	569219	6865304
COAC079	12	16	3	32	-60	90	386	569220	6865304
COAC080	4	8	2	10	-60	90	399	569159	6865310
COAC081	4	8	3	21	-60	90	389	569679	6864800
COAC082	20	23	1	23	-60	90	383	569621	6864789
COAC083	20	22	1	22	-60	90	385	569560	6864800
COAC084	0	4	2	43	-60	90	386	569501	6864801
COAC085	4	8	3	33	-60	90	386	569441	6864800
COAC086	20	22	1	22	-60	90	390	569378	6864801
COAC087	19	20	3	20	-60	90	384	569320	6864801
COAC088	20	22	1	22	-60	90	390	569204	6864800
COAC089	40	41	2	41	-60	90	385	569225	6865004
COAC090	4	8	2	24	-60	90	383	569268	6864801
COAC091	28	32	3	48	-60	90	387	569162	6865000
COAC092	31	32	1	32	-60	90	386	569098	6865003
COAC093	4	8	3	21	-60	90	386	569042	6864999
COAC094	4	7	2	7	-60	90	384	568981	6865002
COAC095	0	5	1	5	-60	90	380	568924	6864998
COAC096	4	7	2	7	-60	90	387	568863	6864998
COAC097	12	16	2	16	-60	90	387	568798	6865000
COAC098	15	16	5	16	-60	90	387	568740	6865001
COAC099	0	5	2	5	-60	90	386	568677	6865001
COAC100	0	2	1	2	-60	90	388	568624	6864999
COAC101	4	5	6	5	-60	90	385	568550	6865000
COAC102	4	5	2	5	-60	90	388	568497	6865003
COAC103	0	2	0.5	2	-60	90	385	568443	6865004
COAC104	28	31	1	31	-60	90	385	568321	6865005
COAC105	28	32	1	38	-60	90	385	568260	6865000
COAC106	28	30	1	31	-60	90	385	568198	6865002
COAC107	6	7	5	7	-60	90	394	568139	6865001
COAC108	0	2	1	2	-60	90	392	568079	6864995
COAC109	0	2	1	2	-60	90	392	568025	<mark>68</mark> 65002
COAC110	8	10	1	10	-60	90	394	567961	68 <mark>65003</mark>
COAC111	40	44	1	47	-60	90	396	567903	68 <mark>65002</mark>
COAC112	12	16	2	36	-60	90	396	567839	6864997
COAC113	40	42	1	42	-60	90	396	567782	6865002
COAC114	36	40	2	40	-60	90	404	567721	6865002
COAC115	28	32	1	32	-60	90	399	567657	6864997
COAC116	20	24	1	39	-60	90	394	567597	6864999

COAC117	4	8	1	21	-60	90	402	567539	6865001
COAC118	4	8	2	49	-60	90	397	567482	6865003
COAC119	44	48	1	48	-60	90	396	567423	6865000
COAC120	28	33	2	33	-60	90	396	567361	6865002
COAC121	40	42	1	42	-60	90	390	567300	6865002
COAC122	36	40	1	61	-60	90	396	567246	6864992
COAC123	12	13	1	13	-60	90	393	568368	6865006
COAC124	4	6	1	6	-60	90	391	569098	6865304
COAC125	28	32	4	38	-60	90	391	568801	6867454
COAC126	28	32	6	53	-60	90	393	568771	6867452
COAC127	40	44	9	59	-60	90	393	568724	6867455
COAC128	40	44	4	54	-60	90	395	568681	6867454
COAC129	41	42	7	42	-60	90	396	568642	6867455
COAC130	48	52	11	58	-60	90	397	568603	6867456
COAC131	20	24	3	31	-60	90	395	568562	6867455
COAC132	8	12	1	35	-60	90	395	568526	6867456
COAC133	8	12	2	41	-60	90	398	568487	6867455
COAC134	4	8	2	61	-60	90	403	568448	6867454
COAC135	8	9	1	9	-60	90	397	568772	6867752
COAC136	0	4	4	4	-60	90	403	568730	6867758
COAC137	4	6	2	6	-60	90	398	568688	6867756
COAC138	2	3	6	3	-60	90	397	568652	6867758
COAC139	0	3	0.5	3	-60	90	395	568613	6867758
COAC140	20	24	0.5	24	-60	90	400	568573	6867762
COAC141	27	28	4	28	-60	90	398	568530	6867753
COAC142	10	11	1	11	-60	90	403	568488	6867752
COAC143	48	52	3	52	-60	90	403	568452	6867761
COAC144	20	24	3	37	-60	90	400	568405	6867757
COAC145	20	23	2	23	-60	90	391	568364	6867754
COAC146	0	4	3	37	-60	90	398	568332	6867755
COAC147	4	8	7	8	-60	90	398	568838	6868200
COAC148	0	2	2	2	-60	90	395	568804	6868193
COAC149	0	1	1	1	-60	90	397	568774	6868202
COAC150	0	3	1	3	-60	90	401	568716	68 <mark>68203</mark>
COAC151	0	5	3	5	-60	90	400	568679	6868201
COAC152	8	11	3	11	-60	90	400	568642	6868198
COAC153	4	7	2	7	-60	90	411	568601	6868206
COAC154	8	12	4	16	-60	90	401	568561	6868199
COAC155	0	4	2	4	-60	90	404	568518	6868200
COAC156	4	9	1	9	-60	90	406	568486	6868200

COAC157 0 3 COAC158 12 17	1	3	-60	90	406	568445	6868203
		17	-60	90	408	568397	6868202
COAC159 20 24	1	26	-60	90	404	568365	6868201
COAC160 28 32	1	44	-60	90	414	568322	6868201
COAC161 36 41	1	41	-60	90	408	568282	6868199
COAC162 4 8	2	61	-60	90	399	568406	6867452
COAC163 8 12	2	57	-60	90	395	568368	6867461
COAC164 4 8	2	56	-60	270	396	568321	6867452
COAC165 32 36	5	56	-60	270	392	568284	6867456
COAC166 48 52	1	63	-60	270	400	568247	6867459
COAC167 56 60	2	66	-60	270	394	568204	6867455
COAC168 4 8	3	33	-60	90	412	568281	6867745
COAC169 0 4	2	26	-60	270	400	568247	6867757
COAC170 29 30	1	30	-60	90	411	568236	6868198
COAC171 8 9	1	2	-60	90	403	568204	6868192
COAC172 4 9	1	9	-60	90	409	569823	6869401
COAC173 0 4	2	6	-60	90	407	569762	6869397
COAC174 0 4	2	8	-60	90	413	569705	6869400
COAC175 4 7	1	7	-60	90	412	569642	6869399
COAC176 12 15	1	15	-60	90	401	569583	6869402
COAC177 4 8	2	8	-60	90	407	569523	6869403
COAC178 20 23	12	23	-60	90	410	569465	6869404
COAC179 0 4	2	11	-60	90	408	569402	6869402
COAC180 0 4	3	12	-60	90	410	569347	6869403
COAC181 12 17	1	17	-60	90	415	569284	6869405
COAC182 8 12	1	17	-60	90	416	569225	6869403
COAC183 20 24	1	27	-60	90	417	569161	6869403
COAC184 4 8	3	30	-60	90	412	569098	6869404
COAC185 12 16	3	29	-60	90	417	569042	6869399
COAC186 28 32	3	35	-60	90	417	568979	6869404
COAC187 32 35	1	35	-60	90	411	568916	6869401
COAC188 20 24	2	24	-60	90	414	568860	6869404
COAC189 8 12	1	16	-60	90	411	568799	6869400
COAC190 28 32	1	49	-60	90	395	567503	6862597
COAC191 28 32	2	46	-60	90	390	567459	6862600
COAC192 40 44	2	52	-60	90	385	567405	6862596
COAC193 48 51	3	51	-60	90	391	567351	6862602
COAC194 0 4	1	39	-60	90	394	567302	6862604
COAC195 44 48	2	53	-60	90	392	567252	6862612
COAC196 24 28	2	53	-60	90	397	567206	6862612

COAC197	20	24	2	51	-60	90	380	567152	6862600
COAC198	40	44	1	47	-60	90	385	567100	6862600
COAC199	28	32	1	44	-60	90	395	567050	6862600
COAC200	20	24	2	37	-60	90	391	566999	6862599
COAC201	48	51	1	51	-60	90	391	566953	6862601
COAC202	12	16	2	60	-60	90	393	566900	6862600
COAC203	20	24	4	63	-60	90	392	566847	6862600
COAC204	20	24	2	51	-60	90	393	566801	6862602
COAC205	16	20	2	50	-60	90	393	566753	6862600
COAC206	16	20	3	34	-60	90	395	566702	6862597
COAC207	20	24	1	28	-60	90	397	566654	6862600
COAC208	38	39	2	39	-60	90	390	566603	6862603
COAC209	16	20	4	48	-60	90	394	566551	6862601
COAC210	12	16	2	65	-60	90	389	567052	6862850
COAC211	12	16	2	67	-60	90	389	567001	6862853
COAC212	64	66	1	66	-60	90	391	566953	6862853
COAC213	16	20	2	53	-60	90	394	566902	6862859
COAC214	68	73	1	73	-60	90	393	566851	6862848
COAC215	24	28	2	73	-60	90	398	566803	6862851
COAC216	20	24	2	45	-60	90	393	566752	6862850
COAC217	20	24	2	46	-60	90	393	566702	6862852
COAC218	20	24	1	31	-60	90	373	566641	6862857
COAC219	16	20	2	22	-60	90	391	566605	6862852
COAC220	16	20	2	35	-60	90	389	566551	6862852
COAC221	44	48	1	53	-60	90	390	566901	6863502
COAC222	28	32	2	47	-60	90	394	566855	6863505
COAC223	38	39	3	39	-60	90	389	566805	6863503
COAC224	32	36	2	42	-60	90	395	566746	6863498
COAC225	56	58	2	58	-60	90	397	566706	6863501
COAC226	48	52	2	61	-60	90	391	566648	6863501
COAC227	20	22	8	49	-60	90	400	566604	6863501
COAC228	12	16	2	37	-60	90	392	566551	<mark>68</mark> 63496
COAC229	8	12	2	46	-60	90	394	566504	6863496
COAC230	12	16	2	56	-60	90	395	566453	<mark>68</mark> 63504
COAC231	12	16	3	39	-60	90	396	566411	6863510
COAC232	64	69	1	69	-60	120	390	566856	6862846
COAC233	20	22	0.5	22	-60	360	380	572308	6861141
COAC234	10	11	1	11	-60	360	392	572302	6861084
COAC235	0	4	1	10	-60	360	390	572298	6861022
COAC236	0	4	1	7	-60	360	389	572301	6860965

COAC237	0	2	<0.5	2	-60	360	390	572301	6860904
COAC238	0	2	<0.5	2	-60	360	391	572301	6860843
COAC239	0	3	0.5	3	-60	360	390	572306	6860785
COAC240	4	8	0.5	8	-60	360	390	572299	6860724
COAC241	8	11	0.5	11	-60	360	391	572296	6860664
COAC242	12	16	0.5	16	-60	360	387	572298	6860602
COAC243	8	12	1	17	-60	360	393	572300	6860548
COAC244	16	20	2	33	-60	360	387	572549	6861203
COAC245	24	28	2	42	-60	360	387	572546	6861143
COAC246	23	24	3	24	-60	360	387	572550	6861087
COAC247	4	8	1	18	-60	360	386	572547	6861020
COAC248	0	4	1	18	-60	360	388	572550	6860961
COAC249	16	18	2	18	-60	360	388	572546	6860900
COAC250	8	10	2	10	-60	360	390	572548	6860841
COAC251	8	12	3	24	-60	360	388	572549	6860782
COAC252	0	4	1	26	-60	360	390	572550	6860724
COAC253	0	4	3	16	-60	360	393	572549	6860666
COAC254	4	6	1	6	-60	360	392	572545	6860600
COAC255	0	2	1	2	-60	360	392	572545	6860544
COAC256	40	44	1	44	-60	360	396	571551	6861205
COAC257	4	8	1	46	-60	360	389	571549	6861142
COAC258	52	55	3	55	-60	360	391	571547	6861087
COAC259	40	44	1	58	-60	360	389	571545	6861018
COAC260	60	64	1	67	-60	360	389	571546	6860962
COAC261	72	74	0.5	74	-60	360	388	571552	6860914
COAC262	0	4	1	4	-60	360	389	572570	6861516
COAC263	4	8	1	4	-60	360	392	572550	6861447
COAC264	36	38	1	38	-60	360	387	572536	6861389
COAC265	24	28	2	53	-60	360	390	572535	6861326
COAC266	40	45	0.5	45	-60	360	390	572547	6861275
COAC267	8	12	1	15	-60	360	388	572553	6860673
COAC268	4	8	1	8	-60	360	391	572549	6860658
COAC269	0	4	0.5	4	-60	360	393	572241	<mark>68</mark> 61758
COAC270	0	3	0.5	3	-60	360	386	572255	6861702
COAC271	0	2	1	2	-60	360	390	572263	6861651
COAC272	0	2	<0.5	2	-60	360	387	572264	6861592
COAC273	4	8	0.5	8	-60	360	388	572269	6861529
COAC274	0	1	1	1	-60	360	390	572275	6861471
COAC275	1	2	1	2	-60	360	390	572288	6861404
COAC276	9	10	3	10	-60	360	389	572294	6861359

COAC277	4	9	0.5	9	-60	360	396	572026	6861501
COAC278	4	6	0.5	6	-60	360	392	572035	6861450
COAC279	4	6	0.5	6	-60	360	398	572044	6861385
COAC280	0	4	3	6	-60	360	392	572047	6861329
COAC281	8	11	0.5	11	-60	360	406	572056	6861269
COAC282	8	10	0.5	10	-60	320	386	572734	6861896
COAC283	0	4	0.5	13	-60	320	386	572790	6861813
COAC284	8	10	0.5	10	-60	320	392	572840	6861744
COAC285	17	18	1	18	-60	320	386	572927	6861659
COAC286	44	45	<0.5	45	-60	320	391	572993	6861580
COAC287	35	36	<0.5	36	-60	320	387	573053	6861524
COAC288	12	16	1	61	-60	320	385	573590	6862349
COAC289	54	55	<0.5	55	-60	320	383	573632	6862294
COAC290	84	85	<0.5	85	-60	320	381	573712	6862229
COAC291	31	32	<0.5	32	-60	320	385	573888	6862878
COAC292	39	40	1	40	-60	320	381	573970	6862809
COAC293	48	49	<0.5	49	-60	320	391	574047	6862770
COAC294	16	20	3	30	-60	270	380	573991	6862990
COAC295	28	31	1	31	-60	270	385	574075	6862928
COAC296	40	45	1	45	-60	270	384	574158	6862869
COAC297	20	23	1	23	-60	270	386	574097	6863133
COAC298	0	4	4	45	-60	270	386	574201	6863075
COAC299	20	24	1	68	-60	270	382	574262	6863026
COAC300	12	17	0.5	17	-60	270	385	574246	6863292
COAC315	4	5	1	5	-60	270	390	574856	6865748
COAC316	4	5	2	5	-60	270	387	574904	6865745
COAC317	0	4	7	6	-60	270	387	574958	6865744
COAC318	3	4	4	4	-60	270	387	575006	6865742
COAC319	0	4	1	7	-60	270	387	575054	6865745
COAC320	0	2	2	2	-60	270	387	574813	6866114
COAC321	0	1	1	1	-60	270	387	574856	6866112
COAC322	0	2	3	2	-60	270	387	574912	68 <mark>66116</mark>
COAC323	0	2	2	2	-60	270	389	574959	68 <mark>6611</mark> 7
COAC324	0	4	1	6	-60	270	390	575003	68 <mark>66114</mark>
COAC325	4	9	0.5	9	-60	270	388	575058	68 <mark>66116</mark>
COAC326	0	4	1	13	-60	270	386	574809	6866493
COAC327	0	5	4	5	-60	270	384	574850	6866501
COAC328	4	7	2	7	-60	270	386	574900	6866499
COAC329	0	1	<0.5	1	-60	270	385	574956	6866500
COAC330	0	4	1	14	-60	270	385	575000	6866500

1	0	4	1	40	-60	270	384	575044	6866497
COAC332	6	49	1	49	-60	320	379	574146	6862695
COAC333	77	78	<0.5	78	-60	320	388	573189	6861898
COAC334	83	84	<0.5	84	-60	320	386	573249	6861834
COAC335	70	71	<0.5	71	-60	320	381	573313	6861778
COAC336	74	75	<0.5	75	-60	320	387	573108	6861979
COAC337	11	12	<0.5	12	-60	270	385	576860	6864152
COAC338	38	39	<0.5	39	-60	270	392	576919	6864147
COAC339	34	35	<0.5	35	-60	270	391	576983	6864150
COAC340	25	26	<0.5	26	-60	270	389	577039	6864149
COAC341	12	13	<0.5	13	-60	270	386	577097	6864151
COAC342	38	39	<0.5	39	-60	270	382	576504	6864152
COAC343	47	48	<0.5	48	-60	270	386	576563	6864151
COAC344	57	58	2	58	-60	270	385	576620	6864151
COAC345	38	39	1	39	-60	270	382	576678	6864149
COAC346	16	21	1	21	-60	270	384	576738	6864149
COAC347	28	32	1	39	-60	270	386	576793	6864152
COAC348	24	26	1	26	-60	270	386	576700	6864300
COAC349	12	16	1	18	-60	270	391	576745	6864300
COAC350	12	16	2	29	-60	270	388	576795	6864301
COAC351	36	37	4	37	-60	270	387	576850	6864298
COAC352	9	10	2	10	-60	270	382	576898	6864300
COAC353	0	4	3	8	-60	270	376	576951	6864298
COAC354	0	4	2	12	-60	270	378	576997	6864298
COAC355	0	4	2	9	-60	270	386	577051	6864299
COAC356	32	36	3	43	-60	270	391	574095	6872233
COAC357	32	36	1	41	-60	270	389	574138	6872276
COAC358	4	8	1	21	-60	270	390	574176	6872319
COAC359	8	12	4	16	-60	270	392	574225	6872370
COAC360	4	6	1	6	-60	270	390	574267	6872409
COAC361	0	5	3	5	-60	270	389	574303	6872448
COAC362	0	5	1	5	-60	270	390	574343	<mark>68</mark> 72494
COAC363	0	5	1	5	-60	270	391	574386	<mark>68</mark> 72539
COAC364	0	4	1	4	-60	270	391	574422	<mark>68</mark> 72579
COAC365	0	4	1	4	-60	270	387	574467	68 <mark>72626</mark>
COAC366	4	6	1	6	-60	270	390	574510	6872670
COAC367	0	4	1	4	-60	270	389	574542	6872713
COAC368	3	4	2	4	-60	270	392	574583	6872751
COAC369	29	30	2	30	-60	270	389	574623	6872790
COAC370	28	32	4	48	-60	270	386	574657	6872838

COAC371	48	52	1	52	-60	270	390	574694	6872880
COAC372	20	24	2	39	-60	270	396	566758	6862701
COAC373	0	4	4	52	-60	270	389	566800	6862700
COAC374	24	28	1	42	-60	270	400	566850	6862698
COAC375	28	32	2	57	-60	270	389	566902	6862697
COAC376	23	24	4	24	-60	270	399	566642	6862699
COAC377	12	16	6	24	-60	270	397	566700	6862698
COAC378	44	47	1	47	-60	270	402	566802	6862946
COAC379	20	24	10	53	-60	270	395	566850	6862944
COAC380	20	24	2	56	-60	270	393	566900	6862946
COAC381	16	20	2	56	-60	270	398	566953	6862948
COAC382	56	60	1	66	-60	270	398	567001	6862954
COAC383	4	6	2	6	-60	270	380	577100	6864301
COAC384	8	12	2	38	-60	270	379	576547	6864650
COAC385	44	49	1	49	-60	270	383	576599	6864649
COAC386	55	56	4	56	-60	270	389	576648	6864651
COAC387	44	48	2	48	-60	270	391	576697	6864650

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanatio	n Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Samples were delivered from the cyclone of the air core rig via buckets with samples piles being placed on the ground. Composite 4m scoop samples were collected for assay for every hole and submitted for gold only analysis and a single 1m scoop sample was collected from the last metre of every hole and assayed for gold and a suite of 35 elements. The same sized scoop was used for the collection of all assay samples and for all piles of drill sample, thus ensuring that each individual metre of drilling was adequately and evenly represented in the composite assay sample. Abundant QAQC samples were collected as part of the assay stream. No portable analytical tools, or down hole tools, were employed on this drill program.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 85mm air core blade drilling was used to fresh rock interface and on occasion a face sampling air core hammer was used to hammer into fresh rock or quartz veins.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 An estimate of the recovery of each pile of sample and the sample quality in terms of degree of wetness of the sample was recorded routinely by the field geologist. The cyclone was regularly cleaned to ensure sample quality.
	 Whether a relationship exists between sample recovery and grade and whether 	 A relationship between recovery and grade has not been established for the air core

Criteria	JORC Code explanation	on Commentary
	sample bias may have occurred due to preferential loss/gain of fine/coarse material.	drilling.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All Chip piles were representatively sieved, washed, stored, and logged by a suitably qualified and experienced geologist. Logging was qualitative with quantitative estimates made of relevant features such as percentage of quartz veining in each interval. All the chips from an individual hole were stored in a core tray during logging and the core tray photographed at the end of the hole. 100% of all of the samples were geologically logged.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The air core chips were collected using a scoop from the sample piles on the ground and sent to the lab in individually numbered sample bags with accurate digital records kept by the field geologist of the sample details. The sample piles were generally dry, with very few wet samples collected. Equal amounts of all piles were scooped into the composite sample to ensure representative volumes of all samples were assayed.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) 	 The samples were assayed at ALS laboratory labs in Perth, an accredited laboratory for the type of analysis undertaken. Assay method AuTL43, a low detection gold assay analysis method was used for samples requiring gold only analysis and method AuTL44 was used for samples requiring 35 element analysis. The assay technique is a near complete digestion, with only the most resistive minerals such as zircon only being partially dissolved. No geophysical tools were used in the

Criteria	JORC Code explanation	on Commentary
	and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 assessment or analyzing of the samples. A complete set of duplicates, commercial standards and commercial blanks were inserted into the assay stream every 20th sample. High level first pass analysis of the QAQC data suggests no bias in the data however detailed analysis of the data has not been undertaken.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The assay data has been assessed by a number of qualified geologists working directly for Westar including the Exploration Manager, Md and database geologist and Westar's consultants PGN Geoscience has made a preliminary assessment of the assay results. No twinned holes were used in the air core program. The geological, sample and metadata was logged using "Ocris" software by the field geologists and then validated and uploaded to an Ocris database. No adjustments were made to the database or assay results as an outcome of the data assessment.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill holes were located using a hand help GPS. No down hole surveying was undertaken on the short air core holes. The gid used was MGA94_Z50. The area of drilling is essentially flat, hence topographic control is not an issue when interpreting the drill results.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The air core holes were drilled at a nominal spacing on 50m on lines spaced nominally 250m apart. The drill hole spacing is sufficient to adequately first-pass test the prospective geology. 4m composite samples were collected as described above.
Orientation of data in relation to	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key 	 The drill lines and hole orientation have been designed to provide a good first pass test of the known geology and geological structures. There appears to be no bias introduced into the reported assay grades as a result of the

Criteria	JORC Code explanatio	n Commentary
geological structure	mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	drill orientation or sample spacing.
Sample security	The measures taken to ensure sample security.	 The samples were collected by Westar staff and contractors on site and transported to the secure sample yard in Mt Magnet for loading into secured bulka bags for road transport to the laboratory by a recognized transport company.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Technical assessment of the assay and geological results is ongoing, however assessment of the QAQC samples shows no discrepancies in assay techniques chosen for the analysis.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria JO	OR	C Code explanation	Coı	mmentary
Mineral tenement and land tenure status	•	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	•	Exploration was conducted on E59/2329, which is 100% owned by Rouge Resources which is a 100% owned subsidiary of Westar Resources. E59/2329 is located approximately 25km south of Mt Magnet via Yowergabbie Station. There are no encumbrances on E59/2329. Westar Resources has met all of its obligations under the act and there are no known impediments to ongoing exploration.
Exploration done by other parties	•	Acknowledgment and appraisal of exploration by other parties.	•	E59/2329 has experienced historic exploration including Multiple rounds of MMI sampling Conventional soil sampling Very limited historic drilling A very small and focused ground EM survey, from which no conductor was identified.
				The historic soil assay results are currently undergoing reassessment with respect to the drill results. This study is
				being undertaken by PGN Geoscience.

Criteria	JORG	Code explanation	Co	mmentary
Geology	•	Deposit type, geological setting and style of mineralisation.	•	Shear hosted gold, gold in granite greenstone contacts and gold in granite-granite contacts were the style of mineralization being tested for by this drill program, ie typical Archaean gold deposit styles.
Drill hole Information	•	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth o hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	•	See appendix 1 of this announcement.
Data aggregation methods	•	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	•	No cut-offs, weightings, or aggregation methods were applied to the analysis of the data and no metal equivalence was used in any interpretation or analysis of the assay results.
Relationship between mineralisati on widths and	•	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole	•	As this was a first pass geochemical program, with assay results reported in the ppb range, there is no relationship between reported intercept widths and mineralized width.

Criteria	JORC Code explanation	Commentary
intercept lengths	lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 N/A due to the first pass nature of the drill results and also the low grade of the samples being reported.
Balanced	Where comprehensive reporting of all Exploration Results is not practicable,	 The max downhole assay grade for each hole is reported above.
reporting	representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other substantive exploration data or results to support these drill results.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Future exploration programs for E59/2329 are yet to be designed, but will be designed after further interpretation and contextualization of these drill assay results.