

31 May 2021

DRILLING RESULTS - ILLAARA Au-Cu-IRON ORE PROJECT

HIGHLIGHTS

- Encouraging results from first pass drilling along Lawrence's Corridor with significant results including:
 - LWRC030: 3m @ 3.6 g/t Au from 30m
- LWRC026: 1m @ 3.7 g/t Au from 5m
- LWRC005: 18m @ 0.2 g/t Au from 30m
- Interpretation of Lawrence's Corridor incorporating new detailed magnetics data indicates that several north-south trending mineralised shears control the higher-grade intercepts and gold in soil anomalies.
- Furthering drilling within the Lawrence's Corridor will target these structural intersections.

Dreadnought Resources Limited ("**Dreadnought**") is pleased to announce the results from RC drilling at Lawrence's Corridor, Metzke's Find and Black Oak, all part of the Illaara Au-Cu-Iron Ore Project ("**Illaara**").

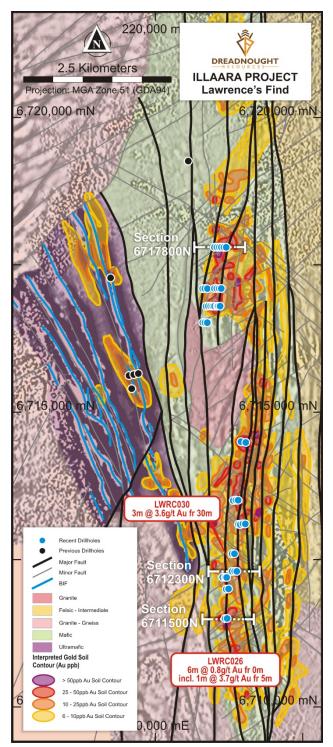
At Lawrence's Corridor, the first pass fence line drilling program was designed to identify mineralised structures under 14 gold in soil geochemical anomalies. In addition, 5 holes for 965m were drilled to test the continuation of Metzke's Find at depth.

Drilling has confirmed at least 3 mineralised north-south trending shears running the length of the ~10km long Lawrence's Corridor. Higher grade intercepts are controlled by proximity to cross cutting structures as identified in the recently flown detailed magnetics survey. Follow up drilling and further targeting within the Lawrence's Corridor will focus on these structural intersections.

Drilling at Metzke's Find intersected the mineralised structure at depth, however no significant intercepts were returned. Metzke's Find is a shallow high-grade deposit potentially amenable to open cut mining. A Mineral Resource estimate for Metzke's Find will be released in the September 2021 quarter.

At Black Oak, the first batch of 1m splits produced higher grade intercepts within the broad zones of oxide mineralisation further supporting the potential of the ~3km long Black Oak prospect to host significant mineralisation.

Lithium-Caesium-Tantalum ("LCT") results from the Peggy Sue LCT pegmatite prospect remain outstanding and will be reported in June 2021.


Dreadnought Managing Director, Dean Tuck, commented: "We are pleased with intersecting significant mineralisation at three areas in such an early stage within the Lawrence's Corridor. The program has also successfully identified the structures controlling gold mineralisation. These results, combined with the recently flown detailed magnetics survey, will allow for detailed targeting of high-grade lodes within the Lawrence's Corridor. In addition, Resource estimation work will be undertaken at Metzke's Find. Pleasingly, results from 1m splits confirmed the potential of Black Oak.

We are now shifting our attention to the Kimberley with drilling to commence in June 2021."

Drilling at Lawrence's Corridor (E30/476: 100%, E30/485: Option to acquire 100%)

Lawrence's Corridor was defined by the previous owner (Newmont) over a ~10km long camp scale anomaly situated over a major structural corridor at the southern end of the Illaara Greenstone Belt. Lawrence's Corridor derives its name from Lawrence's Find, a historical digging on a sugary quartz sulphide vein within sheared and biotite altered mafic amphibolites. Outside of these historical workings, the Lawrence's Corridor has received no significant exploration, nor effective historical drilling.

The recent program consisted of 45 RC holes for 3,864m to test 14 lithostructuralgeochemical anomalies within the Lawrence's Corridor. First pass, fence line drilling is designed to identify the mineralised structure responsible for the gold in soil anomalism for follow up drilling.

Drilling within the Lawrence's Corridor intersected fine grained foliated mafic amphibolites crosscut by numerous felsic intrusions. The amphibolite package has undergone pervasive silicification and potassic alteration. Several holes intersected quartzsulphide veins with associated pyrite-biotite alteration or intensely sheared, veined and altered porphyritic felsic intrusions.

Significant intercepts include:

- LWRC030: 3m @ 3.6 g/t Au from 30m
- LWRC026: 1m @ 3.7 g/t Au from 5m
- LWRC005: 18m @ 0.2 g/t Au from 30m

The program successfully confirmed 3 mineralised structures with significant intercepts controlled by cross cutting secondary structures as seen in new high resolution magnetics imagery. Follow up drilling will be targeted on these controlling structural intersections.

1m splits will be collected from all of the recent mineralised intercepts.

Figure 1: Plan view of the ~10km long Lawrence's Corridor showing drilling in relation to gold-in-soil anomalism and lithostructural interpretation over new detailed magnetics image.

Dreadnought Resources Limited Suite 6, 16 Nicholson Road, Subiaco WA 6008 PO Box 1240, West Perth WA 6872

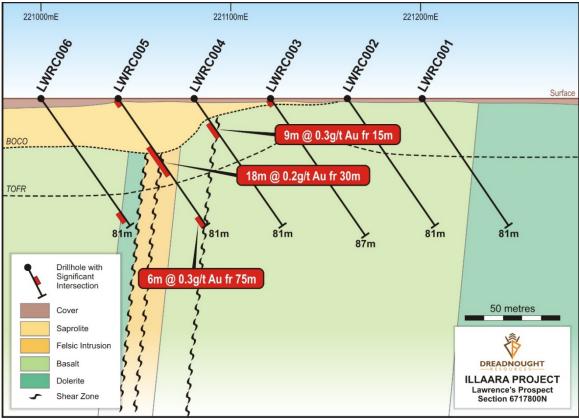


Figure 2: Cross section 6717800N showing thick mineralisation along a sheared porphyry-mafic contact.

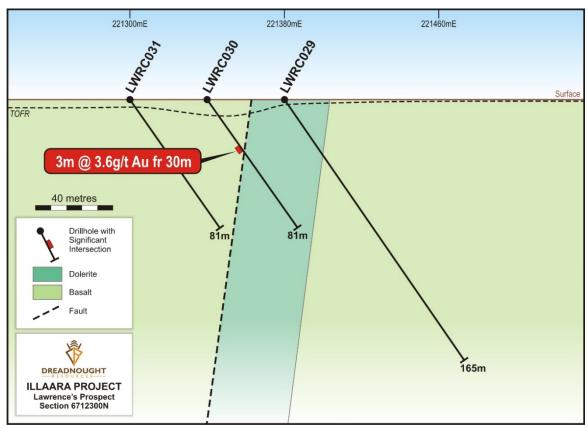


Figure 3: Cross section 6712300N showing shallow high-grade mineralisation along a faulted contact between fine grained mafics and coarser grained dolerite.

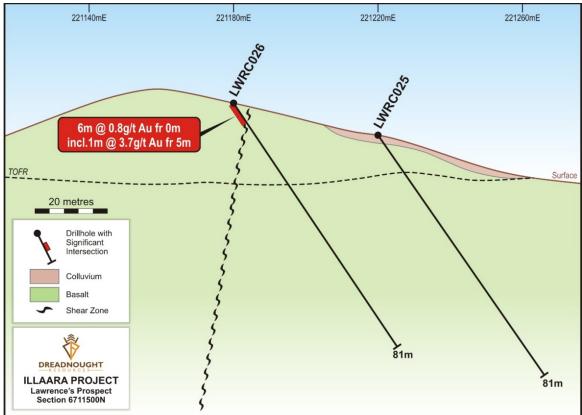


Figure 4: Cross Section 6711500N, located ~100m along strike of the Lawrence's Find workings showing shallow high-grade mineralisation along a mineralised shear.

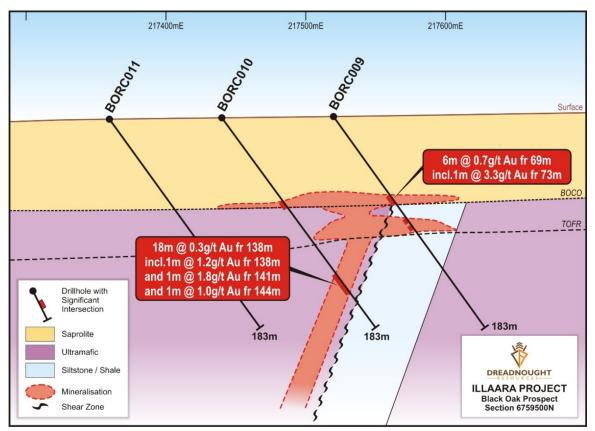


Figure 5: Cross section from Black Oak showing the results of 1m splits producing higher grades.

Drilling at Metzke's Find (E29/1050: 100%)

Gold mineralisation at Metzke's Find has now been confirmed over 400m strike length and to a depth of over 100m. Mineralisation is contained within a 5-10m wide shear zone defined by biotite and sulphide alteration with high grades hosted in sugary quartz-sulphide veins within the shear. Previous intercepts include:

- MZRC030: 2m @ 10.8 g/t Au from 102m
- MZRC019: 2m @ 39.2 g/t Au from 45m
- MZRC021: 3m @ 13.8 g/t Au from 108m
 - MZRC022: 2m @ 20.7 g/t Au from 19m
- MZRC028: 1m @ 10.9 g/t Au from 89m
- MZRC015: 1m @ 24.8 g/t Au from 51m
- MZRC016: 3m @ 21.0 g/t Au from 85m
- MZRC017: 7m @ 7.5 g/t Au from 51m

Recent drilling at Metzke's Find consisted of 5 RC holes for 965m to test the plunge at depth. Low tenor mineralisation was intersected within the targeted shear zone confirming the continuation of the mineralised structure. However no high-grade mineralisation was intersected at depth.

Metzke's Find has proven to host shallow high-grade mineralisation potentially amenable to open pit mining. A Mineral Resource estimate for Metzke's Find will be released in the September 2021 quarter.

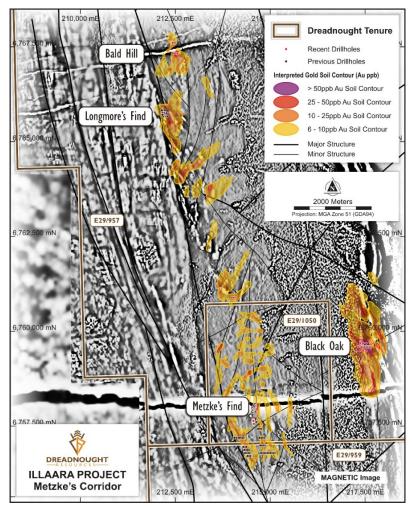
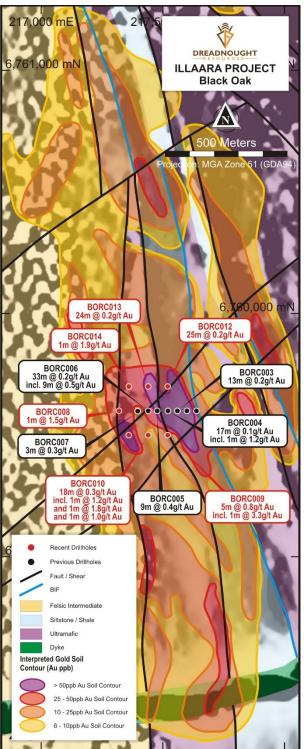



Figure 6: Plan view of the Metzke's Corridor showing recent drilling in relation to gold-in-soil anomalies and the latest detailed magnetics image.

Drilling at Black Oak (E29/957: 100%)

Black Oak is a large coherent and high tenor gold-in-soil anomaly over 3kms in strike and open to the south. The anomaly is situated to the east of Metzke's Find in a package of sheared sediments and ultramafic volcanics. First-pass drilling in 2020 confirmed thick, shallow oxide gold mineralisation within a deep weathering profile. The recent drill program was designed to test the extensions of oxide mineralisation as well as the sheared ultramafic-sediment contact which could potentially host fresh bedrock mineralisation.

Results of 1m splits from this recent program have been received for the holes which produced the higher grades from within the broad mineralised zones. Significant intercepts included:

• BORC009: 5m @ 0.8 g/t Au from 70m, including 1m @ 3.3 g/t Au from 73m

• BORC010: 18m @ 0.3 g/t Au from 138m, including 1m @ 1.8 g/t Au from 141m

Results of 1m splits from remaining holes are expected in June 2021.

A review of the detailed magnetics with the goldin-soil anomalies highlights multiple mineralised shears with anomalism peaking near bends and cross structures. Only one of these shears has been tested and then only over a limited strike extent.

Regolith mapping has also highlighted a strong control over gold-in-soil anomalism, with deeper weathering and cover to the west likely subduing gold-in-soil anomalism compared with the exposed saprolite targeted in recent drilling.

Work to date has highlighted a large mineralised system which has been inadequately tested by drilling. Future work programs at Black Oak will likely include wide spaced air core drilling to test for oxide mineralisation along the >3km strike length and to identify targets for RC drilling.

Figure 7: Plan view of Black Oak showing drilling in relation to gold-in-soil anomalism and lithostructural interpretation over new detailed magnetics image.

Dreadnought Resources Limited Suite 6, 16 Nicholson Road, Subiaco WA 6008 PO Box 1240, West Perth WA 6872

Upcoming Results from Illaara:

- 119°45'E **Dreadnought Tenure** \bigcirc Gold Prospects VMS Prospects 0 LCT Prospects Minor Road Fault / Shear Dykes BIF Granite / Gneiss **Bald Hill** Granite Intrusion Mafic Longmore's Find Felsic Intermediate Sediments Mafics and Metasediments 29°15'S Little Dove Ultramafic Black Oak Metzke's Find Quartzite Menzies Sandtone Road **CRA-Homestead** Defiance 29°30'S 29°30'S Central Illaara Spifire N 10 kilometres Projection: Longitude/Latitude (GDA94) Peggy Sue -Lawrence's Find DREADNOUGHT Nelson **ILLAARA PROJECT Overview Map** 0°00'E/ 120°15'E 29°45'S
- Rock Chip results from Peggy Sue LCT pegmatite swarm June 2021

Background on Illaara

Illaara is located 190 kms from Kalgoorlie and comprises seven tenements (~900 sq kms) covering over ~75km of strike along the entire Illaara Greenstone Belt. The Illaara Greenstone Belt has now been consolidated through an acquisition from Newmont and subsequently the purchase of Metzke's Find and an option to acquire 100% of E30/485 and E29/965.

Recent gold exploration within the Illaara Greenstone Belt was spurred on by a ~55km long Au-As-Sb anomaly generated from regional regolith sampling by the Geological Survey of Western Australia.

Prior to Newmont, the Illaara Greenstone Belt was held by Portman Iron and Cleveland Cliffs who were looking to extend their mining operations north as part of their Koolyanobbing Iron Ore Operation. Given the long history of iron ore mining in the region, Illaara is well situated in relation to existing road and rail infrastructure connecting it to a number of export ports.

Historically gold was discovered and worked at Metzke's Find and Lawrence's Find in the early 1900s. In addition to gold, outcropping VMS base metals mineralisation was identified and briefly tested in the 1980s with no subsequent exploration utilising modern techniques.

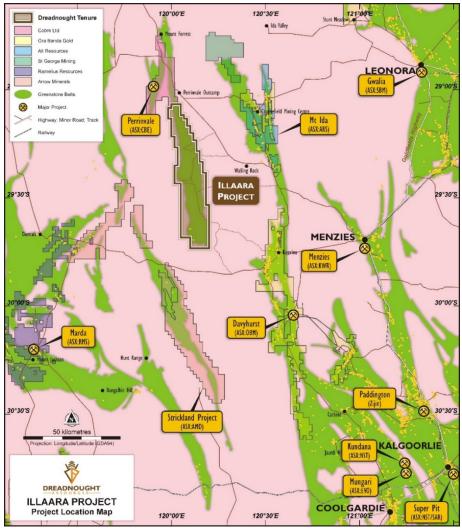


Figure 9: Location of Illaara in relation to regional players and gold operations.

For further information please refer to previous ASX announcements:

- 24 June 2019 75 km Long Illaara Greenstone Belt Acquired from Newmont
- 23 September 2019 Illaara Gold Project Update
- 6 December 2019 Consolidation of 75km Long Illaara Greenstone Belt
- 30 November 2020 Exploration Update Illaara Gold-VMS-Iron Ore Project
- 16 February 2021 Significant Soil Anomalies Along Lawrence's Corridor
- 1 March 2021 Drilling Commenced at Illaara Gold-VMS-Iron Ore Project
- 10 March 2021 Illaara Update and Planned Lawrence's Corridor Drilling
 - 11 May 2021 Drilling Results Metzke's Corridor

UPCOMING NEWSFLOW

June: Rock Chip results from Peggy Sue LCT pegmatite swarm at Illaara

June: Results from target definition and generation work at Mangaroon Ni-Cu-PGE & Au Project

June: Commencement of diamond drilling at Texas Ni-Cu-PGE target at Tarraji-Yampi

June: Commencement of RC drilling at Orion Ni-Cu-PGE, Fuso and Paul's Find Cu-Au and Chianti-Rufina VMS targets

June: Commencement of additional FLEM surveys at Orion Ni-Cu-PGE

July: Quarterly Activities and Cash flow Report

July/August: Results of drilling at Tarraji-Yampi (Texas and Orion Ni-Cu-PGE, Fuso and Paul's Find Cu-Au, and Chianti-Rufina VMS targets).

~Ends~

For further information please contact:	
Dean Tuck	Jessamyn Lyons
Managing Director	Company Secretary
Dreadnought Resources Limited	Dreadnought Resources Limited
E: <u>dtuck@dreadnoughtresources.com.au</u>	E:jlyons@dreadnoughtresources.com.au

This announcement is authorised for release to the ASX by the Board of Dreadnought.

Competent Person's Statement

The information in this announcement that relates to geology and exploration results and planning was compiled by Mr. Dean Tuck, who is a Member of the AIG, Managing Director, and shareholder of the Company. Mr. Tuck has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Tuck consents to the inclusion in the report of the matters based on the information in the form and context in which it appears. The Company confirms that it is not aware of any new information or data that materially affects the information in the original reports, and that the forma and context in which the Competent Person's findings are presented have not been materially modified from the original reports.

INVESTMENT HIGHLIGHTS

Kimberley Ni-Cu-Au Projects

Dreadnought controls the second largest land holding in the highly prospective West Kimberley region of WA. The main project area, Tarraji-Yampi, is located only 85kms from Derby and has been locked up as a Defence reserve since 1978.

Tarraji-Yampi presents a rare first mover opportunity with known outcropping mineralisation and historic workings from the early 1900s which have seen no modern exploration.

Three styles of mineralisation occur at Tarraji-Yampi including: volcanogenic massive sulphide ("VMS"); Proterozoic Cu-Au ("IOCG"); and magmatic sulphide Ni-Cu-PGE. Numerous high priority nickel, copper and gold drill targets have been identified from recent VTEM surveys, historical drilling and surface sampling of outcropping mineralisation.

Illaara Gold, VMS & Iron Ore Project

Illaara is located 190km northwest of Kalgoorlie in the Yilgarn Craton and covers 75kms of strike along the Illaara Greenstone Belt. Illaara is prospective for typical Archean mesothermal lode gold deposits and base metals VMS mineralisation.

Dreadnought has consolidated the Illaara Greenstone Belt mainly through an acquisition from Newmont. Newmont defined several camp-scale targets which were undrilled due to a change in corporate focus. Prior to Newmont, the Illaara Greenstone Belt was predominantly held by iron ore explorers and has seen minimal gold and base metal exploration since the 1990s.

Rocky Dam Gold & VMS Project

Rocky Dam is located 45kms east of Kalgoorlie in the Eastern Goldfields Superterrane of Western Australia. Rocky Dam is prospective for typical Archean mesothermal lode gold deposits and Cu-Zn VMS mineralisation. Rocky Dam has known gold and VMS occurrences with drill ready gold targets including the recently defined CRA-North Gold Prospect.

Mangaroon Ni-Cu-PGE & Au Project

Mangaroon is a first mover opportunity covering ~4,000sq kms of tenure located 250kms southeast of Exmouth in the Gascoyne Region of Western Australia. Mangaroon is prospective for magmatic Ni-Cu-PGE mineralisation and high grade gold with evidence of both outcropping within the project area and virtually unexplored for the past 40 years.

Table 1: Significant Results (>0.1 g/t Au and >1.0g/t Au)

Hole ID	From (m)	To (m)	Interval	Sample Type	Au (g/t)	Prospect
BORC008	177	178	1	1m split	1.5	
BORC009	70	75	5	1m split	0.8	
incl.	73	74	1	1m split	3.3	
and	90	91	1	1m split	0.2	
BORC010	74	75	1	1m split	0.3	
and	138	156	18	1m split	0.3	Black Oak
incl.	141	142	1	1m split	1.8	
BORC012	21	46	25	1m split / 3m comp	0.2	
BORC013	90	114	24	3m comp	0.2	
BORC014	140	141	1	1m split	1.9	
and	177	180	3	3m comp	0.2	
BHRC005	63	66	3	3m comp	0.1	Bald Hill
LMRC027	3	6	3	3m comp	0.1	Longmore's Find
MZRC045	147	153	6	6m comp	0.2	
and	159	162	3	3m comp	0.1	Metzke's Find
MZRC046	147	153	6	6m comp	0.2	
LWRC003	0	3	3	3m comp	0.1	
LWRC004	15	24	9	1m split / 3m comp	0.3	
LWRC005	0	3	3	3m comp	0.1	
and	30	48	18	1m split / 3m comp	0.2	
and	75	81	6	3m comp	0.3	
LWRC006	72	78	6	3m comp	0.1	
LWRC014	54	57	3	3m comp	0.1	
LWRC017	78	81	3	3m comp	0.2	
LWRC019	0	3	3	3m comp	0.1	
and	18	21	3	3m comp	0.1	Lawrence's
and	21	27	3	3m comp	0.1	Corridor
and	33	36	3	3m comp	0.2	
LWRC023	75	78	3	3m comp	0.1	
LWRC026	0	6	6	1m split / 3m comp	0.8	
incl.	5	6	1	1m split	3.7	
LWRC030	30	33	3	Зт сотр	3.6	
LWRC033	48	51	3	3m comp	0.1	
and	63	65	2	1m split	0.6	
LWRC035	45	48	3	3m comp	0.3	
and	71	72	1	1m split	0.9	

Table 2: Drill Collar Data (GDA94 MGAz51)

					ala (GDA94		-	
Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Туре	Prospect
LWRC001	221201	6717797	433	-55	90	81	RC	
LWRC002	221161	6717797	433	-55	90	81	RC	
LWRC003	221120	6717799	434	-55	90	87	RC	
LWRC004	221083	6717800	435	-55	90	81	RC	
LWRC005	221043	6717798	435	-55	90	81	RC	
LWRC006	221001	6717798	436	-55	90	81	RC	
LWRC007	221120	6717098	436	-55	90	81	RC	
LWRC008	221082	6717097	440	-55	90	81	RC	
LWRC009	221041	6717098	443	-55	90	81	RC	
LWRC010	221001	6717098	445	-55	90	87	RC	
LWRC011	220882	6717097	446	-55	90	81	RC	
LWRC012	220839	6717098	446	-55	90	81	RC	
LWRC013	220801	6717097	445	-55	90	81	RC	
LWRC014	221101	6716799	438	-55	90	81	RC	
LWRC015	221063	6716799	442	-55	90	81	RC	
LWRC016	221021	6716797	446	-55	90	60	RC	
LWRC017	220975	6716797	448	-55	90	81	RC	
LWRC018	220938	6716798	450	-55	90	81	RC	
LWRC019	220898	6716800	450	-55	90	81	RC	
LWRC020	221050	6716796	444	-55	90	27	RC	
LWRC021	220860	6716797	450	-55	90	81	RC	
LWRC022	220880	6716519	437	-55	90	81	RC	
LWRC023	220842	6716520	448	-55	90	81	RC	Lawrence's Corridor
LWRC024	220803	6716522	450	-55	90	81	RC	
LWRC025	221217	6711500	434	-55	90	81	RC	
LWRC026	221181	6711499	442	-55	90	87	RC	
LWRC027	221241	6712002	431	-55	90	81	RC	
LWRC028	221201	6711998	436	-55	90	87	RC	
LWRC029	221380	6712300	441	-55	90	165	RC	
LWRC030	221345	6712301	448	-55	90	81	RC	
LWRC031	221301	6712300	446	-55	90	81	RC	
LWRC032	221209	6712196	445	-55	90	93	RC	
LWRC033	221185	6712199	446	-55	90	81	RC	
LWRC034	221141	6712201	441	-55	90	81	RC	
LWRC035	221341	6712598	441	-55	90	87	RC	
LWRC036	221302	6712600	443	-55	90	81	RC	
LWRC037	221525	6713105	433	-55	90	81	RC	
LWRC038	221485	6713106	442	-55	90	81	RC	
LWRC039	221441	6713100	446	-55	90	81	RC	
LWRC040	221408	6713098	437	-55	90	81	RC	
LWRC041	221402	6713507	472	-55	90	81	RC	
LWRC042	221367	6713502	462	-55	90	81	RC	
LWRC043	221320	6713500	467	-55	90	81	RC	
LWRC044	221533	6714487	447	-55	90	165	RC	
LWRC045	221450	6714500	434	-55	90	165	RC	
								1

Table 2: Drill Collar Data (GDA94 MGAz51)

	Table 2: Drill Collar Data (GDA94 MGA251)							
Hole ID	Easting	Northing	RL	Dip	Azimuth	EOH	Туре	Prospect
BHRC001	212500	6767616	430	-55	90	81	RC	
BHRC002	212463	6767620	435	-55	90	81	RC	
BHRC003	212427	6767618	438	-55	90	81	RC	
BHRC004	212542	6767338	434	-55	90	81	RC	Bald Hill
BHRC005	212503	6767340	433	-55	90	81	RC	
BHRC006	212464	6767340	435	-55	90	81	RC	
BHRC007	212419	6767343	435	-55	90	81	RC	
LDRC001	214061	6760900	468	-55	90	81	RC	
LDRC002	214023	6760899	468	-55	90	81	RC	Little Dove
LDRC003	213986	6760900	463	-55	90	81	RC	
LMRC027	212215	6765787	447	-55	180	81	RC	Longmoro's Find
LMRC028	212212	6765771	449	-55	180	81	RC	Longmore's Find
BORC008	217319	6759600	468	-55	90	183	RC	
BORC009	217524	6759499	457	-55	90	183	RC	
BORC010	217443	6759499	460	-55	90	183	RC	
BORC011	217360	6759500	465	-55	90	183	RC	Black Oak
BORC012	217526	6759700	467	-55	90	183	RC	
BORC013	217444	6759699	462	-55	90	183	RC	
BORC014	217368	6759700	466	-55	90	183	RC	
MZRC044	214567	6757576	450	-55	90	207	RC	
MZRC045	214530	6757934	450	-55	90	201	RC	
MZRC046	214520	6758015	450	-55	90	189	RC	Metzke's Find
MZRC047	214552	6757653	450	-55	90	207	RC	
MZRC048	214541	6757734	450	-55	90	207	RC	

JORC Code, 2012 Edition – Table 1 report template Section 1 Sampling Techniques and Data

JORC TABLE 1

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has 	 Reverse Circulation (RC) drilling Original 1m Splits (All drilling) Every metre drilled a 2-3kg sample (split) was subsampled into a calico bag via a Metzke cone splitter. Target Zone Duplicate 1m Splits (Target Zone) When approaching the target zone, a duplicate 1m split was collected into a calico bag via the Metzke cone splitter for each metre of drilling. This results in two 1m split samples. Within the target zone, all remaining spoil from the sampling system was collected in green plastic bags and stored on site. When the main lode was intersected, duplicate 1m

Criteria	JORC Code explanation	Commentary
	been done this would be relatively simple	samples were submitted along with a blank.
	(e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was	3m and 6m Composites (Outside Target Zone)
	pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine	Outside the target zone, all remaining spoil from the sampling system was collected in buckets and neatly deposited in rows adjacent to the rig. An aluminium scoop was used to then sub-sample each spoil pile to create a 2-3kg 3m or 6m composite sample in a calico bag.
	nodules) may warrant disclosure of detailed information.	QAQC samples, in addition to the target lode duplicates and blanks, consisting of duplicates and CRM's (OREAS Standards) were inserted through the program at a rate of 1:50 samples.
		Samples were then submitted to the laboratory and pulverised to produce a 50g charge for Fire Assay at ALS Laboratories in Perth (Au-ICP22). Samples that were identified as pegmatites were submitted to the laboratory and pulverised to produce a 0.2g charge for sodium peroxide fusion with an ICP-AES and ICP-MS analysis at ALS Laboratories in Perth (MS91-PKG)
Drilling	Drill type (e.g. core, reverse circulation,	RC Drilling
techniques	open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Ausdrill undertook the program utilising a Drill Rigs Australia truck mounted Schramm T685WS drill rig with additional air from an auxiliary compressor and booster. Bit size was 5¾".
Drill sample	Method of recording and assessing core and	RC Drilling
recovery	 chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature 	Drilling was undertaken using a 'best practice' approach to achieve maximum sample recover and quality through the ore zones.
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Best practice sampling procedure included: suitable usage of dust suppression, suitable shroud, lifting off bottom between each metre, cleaning of sampling equipment, ensuring a dry sample and suitable supervision by the supervising geologist to ensure good sample quality.
		At this stage, no bias occurs between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative 	RC chips and diamond core were logged by a qualified geologist with sufficient experience in this geological terrane and relevant styles of mineralisation using an industry standard logging system which could eventually be utilised within a Mineral Resource Estimation.
	 in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	Lithology, mineralisation, alteration, veining, weathering and structure were all recorded digitally.
		Chips were washed each metre and stored in chip trays for preservation and future reference.
		Logging is qualitative, quantitative or semi- quantitative in nature.
Sub-sampling techniques and	 If core, whether cut or sawn and whether quarter, half or all core taken. 	RC Drilling Every metre drilled a 2-3kg sample (split) was sub-

Criteria	RESOURCE JORC Code explanation	Commentary
sample preparation	 rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 sampled into a calico bag via a Metzke cone splitter. QAQC in the form of duplicates and CRM's (OREAS Standards) were inserted through the ore zones at a rate of 1:50 samples. Additionally, within each ore zone, a duplicate sample was taken of the lode and a blank inserted directly after. 2-3kg samples were then submitted to ALS laboratories (Perth), oven dried to 105°C and pulverised to 85% passing 75um to produce a 50g charge for Fire Assay with ICP-AES finish (Au-ICP22). Samples that were identified as pegmatites were submitted to the laboratory and pulverised to produce a 0.2g charge for sodium peroxide fusion with an ICP-AES and ICP-MS analysis at ALS Laboratories in Perth (MS91-PKG) Standard laboratory QAQC is undertaken and monitored.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	Assay technique is Fire Assay which is a 'Total Technique'. Sodium peroxide fusion is the standard technique for analysing lithium bearing pegmatites. Standard laboratory QAQC is undertaken and monitored by the laboratory and by the company upon assay result receival. All QAQC is deemed to have passed internal DRE standards.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Logging and sampling were recorded directly into a digital logging system, verified and eventually stored in an offsite database. LMDD001 was drilled as a twin of LMRC005 approximately 1m north and did not confirm similar mineralisation. No adjustments to any assay data have been undertaken.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Collar position was recorded using a Emlid Reach RS2 RTK GPS system (+/- 0.2m x/y, +/-0.5m z). GDA94 Z51s is the grid format for all xyz data reported. Azimuth and dip of the drill hole was recorded after the completion of the hole using a Reflex EZ Gyro. A reading was undertaken every 30-40 th metre with an accuracy of +/- 1° azimuth and +/-0.3° dip.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	See drill table for hole positions. Data spacing at this stage is not suitable for Mineral Resource Estimation. www.dreadnoughtresources.com.co

Criteria	JORC Code explanation	Commentary
	Whether sample compositing has been applied.	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Drilling was undertaken at a sub-perpendicular angle to the interpreted strike and dip of any interpreted mineralised structures or lithologies. Lithologies generally are steeply dipping (~70-80°) and thus true widths of mineralisation will have to be extrapolated from any assay results.
Sample security	The measures taken to ensure sample security.	All samples from collection at rig through to submission at the laboratory have been under the supervision of Dreadnought personnel or sub- contractors associated with the company. All samples are sealed in polyweave bags and stored in bulka bags for storage and transport.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The program is continuously reviewed by senior company personnel.

Section 2 Reporting of Exploration Results (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Illaara Project consists of 7 granted Exploration Licenses (E30/471, E30/476, E29/957, E29/959, E29/1050, E29/965 and E30/485) Tenements E30/471, E30/476, E29/957 and E29/959 are 100% owned by Dreadnought Resources. These 4 tenements are subject to a 1% NSR retained by Newmont E29/1050 is 100% owned by Dreadnought Resources with a 1% NSR retained by Gianni, Peter Romeo. E29/965 and E30/485 are currently held by Dalla-Costa, Melville Raymond, is in good standing and is subject to an option to acquire 100% by Dreadnought Resources. There are currently no clear Native Title Claims over the Illaara Project Part of the Illaara Project is located on Walling Rock Station.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Newmont Exploration has undertaken exploration activities since 2016 which are mentioned in previous reports. Historical exploration of a sufficiently high standard was carried out by numerous parties which have been outlined and detailed in previous ASX announcements: Eastern Group 1988: WAMEX Report A22743

Criteria	JORC Code explanation	Commentary
		Anglo Australian 1995: WAMEX Report A45251
		Polaris 2006-2007: WAMEX Report A75477
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Illaara Project is located within the Illaara Greenstone Belt within the Southern Cross Domain of the Youanmi Terrane approximately 60kms west of the Ida Fault. The Illaara Project is prospective for orogenic gold, VMS and potentially komatiite hosted nickel mineralisation. Mineralisation at Metzke's is quartz vein hosted within sheared undifferentiated mafic rocks.
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	An overview of the drilling program is given within the text and tables within this document.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All results have been reported above 0.1g/t Au. No top cutting has been applied. All reported results have been length weighted (arithmetic length weighting). No metal equivalent values are reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Drilling is undertaken sub-perpendicular to the dip of the mineralisation. The true thickness of the mineralisation intersected in RC drill holes is currently unknown; however, thicknesses may be smaller than the reported intercepts within this report. The true thickness of mineralisation intersected in diamond drill holes is >80% of downhole thickness.
Diagrams	• Appropriate maps and sections (with	Refer to figures within this report.

Criteria	JORC Code explanation	Commentary
	scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 The accompanying document is a balanced report with a suitable cautionary note.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Suitable commentary of the geology encountered is given within the text of this document.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further exploration and infill drilling at Metzke's Find and any other project which returns significant results will be undertaken later in the year. An additional detailed airborne magnetics survey will be flown and infill soil sampling undertaken over anomalies generated in the regional soils survey.