

27 August 2021

BONANZA GRADE Cu-Ag-Sb-Bi MINERALISATION AT ROUGH TRIANGLE - TARRAJI-YAMPI

HIGHLIGHTS

- Follow up rock chip sampling from Rough Triangle and initial rock chips from several historically mapped outcropping lodes have returned bonanza grades of Cu, Ag, Sb and Bi associated with Au and Co. Significant results include:
 - 83.7% Cu, 142g/t Ag 45.6% Cu, 75g/t Ag, 0.1 g/t Au
 - 13.2% Cu, 197g/t Ag, 14.5% Sb, 1.6% Bi 21.3% Cu, 291g/t Ag, 15.0% Sb, 3.1% Bi
 - 2.4% Cu, 1.4 g/t Au, 0.2% Co, 5.0% Bi 17.9% Cu, 272g/t Ag, 8.8% Sb, 1.9% Bi
- Six major lode systems sampled to date, being less than half of the known outcropping lodes.
- Surface sampling, combined with recent drill results from Orion, Fuso and Grant's Find indicate a related, large scale, Cu-Au-Ag-Bi-Sb-Co system at Tarraji-Yampi.

Dreadnought Resources Limited ("**Dreadnought**") is pleased to announce results of recent rock chip sampling and mapping across several outcropping lodes, including Rough Triangle, part of the Tarraji-Yampi Project located on Dambimangari Land in the West Kimberley region of Western Australia.

Follow up sampling was undertaken along the 1.2 km long Rough Triangle lode and initial rock chip sampling was undertaken at several historical prospects including Ironclad and Wilson's Reward. The historical prospects were identified either through mapping in the 1950's by Western Mining Corporation ("**WMC**") or from historical tenement maps going back to the early 1900's. There are no records of any sampling results from these prospects, and more than half of the known outcropping lodes remain to be sampled.

These prospects were sampled by Dreadnought as part of a project wide reconnaissance program assessing historically mapped mineralisation and more recently generated anomalies. The results of this sampling have confirmed high tenor polymetallic mineralisation, including critical minerals Antinomy (Sb) and Bismuth (Bi), in addition to Copper (Cu), Gold (Au) and Silver (Ag) across multiple prospects.

Systematic sampling and mapping of the outcropping lodes will continue in September 2021 with assays expected in December 2021.

Dreadnought's Managing Director, Dean Tuck, commented: "With less than half of the known lodes sampled to date, we are continuing to identify high tenor Cu-Au-Ag-Bi-Sb-Co mineralisation across Tarraji-Yampi. As we continue to sample these systems, a geochemical pattern is developing which may allow us to vector in towards larger, undercover mineralisation like we have recently seen at Orion. We will continue to assess additional targets while undertaking our drilling programs at Orion, Fuso and Grant's Find."

Figure 1: Massive cuprite (Cu₂O) with minor tenorite (CuO) and a rind of mixed blue green copper carbonates and silicates grading 83.7% Cu and 142 g/t Ag from Rough Triangle.

Dreadnought Resources Limited Suite 6, 16 Nicholson Road, Subiaco WA 6008 PO Box 1240, West Perth WA 6872

Rough Triangle (E04/2315: 80%)

The Rough Triangle lode was identified and mapped by WMC in 1958. Described as a major line of lode hosted within intensely bleached and silicified sediments. The lode was mapped continuously over 1,280m and ranged in thickness from 1m to 5m with copper mineralisation evident throughout the lode. In addition to the main lode, parallel lodes were observed running >300m in length before going under cover. The Rough Triangle lode was never sampled by WMC.

Systematic sampling over the entire length of the lode has defined ~600m of high-grade Cu-Ag-Sb-Bi core with associated Au and Co. (Table 1). Significant results include:

• 83.7% Cu, 142g/t Ag

- 45.6% Cu, 75g/t Ag, 0.1 g/t Au
- 13.2% Cu, 197g/t Ag, 14.5% Sb, 1.6% Bi

• 17.0% Cu, 118g/t Ag, 4.3% Sb, 0.9% Bi

• 21.3% Cu, 291g/t Ag, 15.0% Sb, 3.1% Bi
• 11.8% Cu, 154g/t Ag, 10.6% Sb, 0.9% Bi

Environmental surveys have been completed and heritage surveys are planned for later in 2021 with Rough Triangle to be drilled early in the 2022 field season.

Figure 2: Map showing the results of rock chips over the mapped Rough Triangle lode (red line).

Regional Sampling of Lodes (E04/2315: 80%)

The outcropping lodes at Tarraji-Yampi were discovered and mined on a small scale during 1906-1909. The only other work was undertaken by WMC during 1956-1959 before the ground became a Defence Reserve in 1978. As a result, there is only limited historical assay data from Grant's Find, Wilson's Reward, Ironclad and Monarch, three of the dozens of known and mapped outcropping lodes.

Given the success of initial sampling at Rough Triangle, a regional sampling program has commenced over the remaining outcropping lodes. Recent sampling has systematically covered off on Rough Triangle and undertaken first pass sampling at a number of other lodes including Wilson's Reward, Ironclad and Monarch. To date, still less than half of the outcropping lodes have been sampled with significant results already returned from Ironclad.

Figure 3: Map showing the location of rock chips and known outcropping lodes highlighting new prospects.

Ironclad (E04/2315: 80%)

During 1907-1909, the Oobagooma Copper Syndicate explored Ironclad for copper. No further exploration has been undertaken at Ironclad in over 100 years.

Recent mapping and sampling at Ironclad identified a major N-S lode structure with high grade mineralisation and several splays displaying weaker mineralisation. The main N-S lode at Ironclad is ~1m wide, where outcropping, with significant sections going undercover. The lode likely continues undercover to the north and south beyond the current sampling. Significant results from Ironclad include:

- 2.4% Cu, 5.0% Bi, 1.4 g/t Au, 0.2% Co
- 28.3% Cu, 15.3g/t Ag, 0.7 g/t Au • 17.9% Cu, 4.3g/t Ag, 0.4 g/t Au

• 14.1% Cu, 0.1% Sb, 1.1g/t Au, 0.1% Co

Further work will consist of mapping and sampling along the main N-S trend to have drill targets ready for the 2022 field season.

Figure 4: Map showing the location of rock chips, mapped lode (red line) and possible lode extensions (dashed red line) at Ironclad.

Ongoing and Upcoming Work Programs at Tarraji-Yampi:

Completed: Diamond drilling at Texas.

Completed: Target definition work across Tarraji and Yampi.

Completed: RC Drilling at Chianti-Rufina, Fuso, Paul's Find, Grant's Find and Orion.

Completed: Additional FLEM surveys at northern portion of Orion followed by down hole EM surveys.

Completed: Detailed airborne magnetic survey over Yampi and Wombarella.

Commenced: Interpretation of airborne magnetic surveys at Yampi and Wombarella.

Mid-Late September: Recommencement of RC Drilling at Orion, Fuso and Grant's Find.

Figure 5: Plan view of Tarraji-Yampi showing the location of prospects in relation to solid geology.

Background on Tarraji-Yampi

Tarraji-Yampi is located entirely within the Yampi Sound Training Area ("**YSTA**"), a Commonwealth owned Defence Reserve in the West Kimberley, ~80kms from the port of Derby. The YSTA is the second largest defence reserve in Australia after Woomera in South Australia and was off limits to mineral exploration from 1978 to 2013.

In 1906, Mr J.H. Grant, a mining engineer from Ballarat working with local prospector Mr. G.J. Poulton, reported the discovery of copper lodes in the Mt Nellie district and took out several mining leases for the Oobagooma Copper Syndicate. Small scale shafts were developed at Grant's Find, Wilson's Reward, Ironclad and Monarch.

Since the Oobagooma Copper Syndicate, the only significant exploration undertaken was by WMC in 1958 and Australian Consolidated Minerals in 1972, with both parties exploring for copper. Since opening for exploration in 2013, Dreadnought has secured the largest ground holding within the YSTA and developed strong working relationships with both the Department of Defence and the Dambimangari People.

Figure 6: Dreadnought's Nick Chapman sampling and mapping an outcropping copper lode at Ironclad, the first work undertaken at Ironclad since 1909.

Acknowledgements:

Dreadnought would like to acknowledge the continued support of the Dambimangari People, Department of Defence, Frontier Helicopters, Southern Geoscience Consultants, Hagstrom Drilling, Ausdrill, Golden Connection, Onshore Environmental and Derby Stock Supplies.

For further information please refer to previous ASX announcements:

• 6 July 2021 High-grade Cu-Ag-Sb-Bi Mineralisation at Rough Triangle – Tarraji-Yampi

UPCOMING NEWSFLOW

August/September: Results of REE floatation test work at Yin – Mangaroon

September: Results of drilling at Tarraji-Yampi (Texas, Orion Ni-Cu-PGE, Grant's Find, Fuso and Paul's Find Cu-Au and Chianti-Rufina VMS targets).

September: Results of DHEM and FLEM surveys from Orion and Chianti

September: Commencement of ground EM survey along the Money Intrusion at Mangaroon

9 September: Presenting at the New World Metals Conference in Perth

September: Commencement of detailed airborne magnetic and radiometric survey over Mangaroon

September: Results from additional mapping and surface sampling of REE targets at Mangaroon

September: Recommencement of RC drilling at Orion, Grant's Find and Fuso – Tarraji-Yampi

~Ends~

For further information please contact: **Dean Tuck** Managing Director Dreadnought Resources Limited E:dtuck@dreadnoughtresources.com.au

Jessamyn Lyons Company Secretary Dreadnought Resources Limited E:jlyons@dreadnoughtresources.com.au

This announcement is authorised for release to the ASX by the Board of Dreadnought.

Competent Person's Statement

The information in this announcement that relates to geology and exploration results and planning was compiled by Mr. Dean Tuck, who is a Member of the AIG, Managing Director, and shareholder of the Company. Mr. Tuck has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Tuck consents to the inclusion in the report of the matters based on the information in the form and context in which it appears. The Company confirms that it is not aware of any new information or data that materially affects the information in the original reports, and that the forma and context in which the Competent Person's findings are presented have not been materially modified from the original reports.

INVESTMENT HIGHLIGHTS

Kimberley Ni-Cu-Au Projects

Dreadnought controls the second largest land holding in the highly prospective West Kimberley region of WA. The main project area, Tarraji-Yampi, is located only 85kms from Derby and has been locked up as a Defence Reserve since 1978.

Tarraji-Yampi presents a rare first mover opportunity with known outcropping mineralisation and historic workings from the early 1900's which have seen no modern exploration.

Results to date indicate that there may be a related, large scale, Proterozoic Cu-Au-Ag-Bi-Sb-Co system at Tarraji-Yampi, similar to Cloncurry / Mt Isa in Queensland and Tennant Creek in the Northern Territory.

Illaara Gold, Base Metals, Critical Minerals & Iron Ore Project

Illaara is located 190km northwest of Kalgoorlie in the Yilgarn Craton and covers 75kms of strike along the Illaara Greenstone Belt. Illaara is prospective for typical Archean mesothermal lode gold deposits, VMS base metals and critical metals including Lithium-Caesium-Tantalum.

Dreadnought has consolidated the Illaara Greenstone Belt mainly through an acquisition from Newmont. Prior to Newmont, the Illaara Greenstone Belt was predominantly held by iron ore explorers and remains highly prospective for iron ore.

Mangaroon Ni-Cu-PGE, REE & Au Project

Mangaroon is a first mover opportunity covering ~4,500sq kms of tenure located 250kms south-east of Exmouth in the Gascoyne Region of WA. During the region's early history, there was limited government support for exploration resulting in the region being vastly underexplored.

Since acquiring the project in late 2020, Dreadnought has located: outcropping high-grade gold bearing quartz veins along the Edmund and Minga Bar Faults; outcropping high tenor Ni-Cu-PGE blebby sulphides in the recently defined Money Intrusion; and outcropping high-grade REE ironstones, similar to those under development at the Yangibana REE Project.

Table 1: Significant Rock Chips (>1% Cu, Bi, Sb or > 1g/t Au or >0.1% Co) (location in GDA94 MGAz51)

			,					, ,	· ·
Sample ID	Easting	Northing	Cu	Ag	Sb	Bi	Au	Co	Prospect
			(%)	(g/t)	(%)	(%)	(g/t)	(%)	•
KMRK0001	8169631	625334	5.1	13.8	0.9	0.2	-	-	
KINIRK0002	8169630	625334	17.3	118.0	4.3	0.9	0.1	-	
KMRK0003	8169621	625331	0.8	24.4	2.6	0.5	-	-	
KMRK0004	8169624	625333	11.5	72.5	4.3	0.9	-	-	-
KIVIRK0005	8169617	625329	9.3	56.9	3.8	0.5	-	-	-
KMRK0006	8169613	625331	12.1	120.0	7.3	0.8	0.1	-	-
KMRK0007	8169608	625330	13.2	197.0	14.5	1.6	0.1	-	-
KMRK0008	8169601	625327	2.5	5.9	0.2	1.2	-	-	-
KMRK0009	8169606	625327	3.5	25.9	1.8	0.6	-	-	
KMRK0010	8169591	625323	21.3	291.0	14.9	3.1	0.2	-	-
KMRK0011	8169588	625325	17.9	272.0	8.8	1.9	0.1	-	-
KMRK0012	8169587	625317	10.4	27.4	1.9	0.3	-	-	-
KMRK0013	8169583	625316	6.6	14.2	0.2	0.0	-	-	-
KMRK0018	8169509	625300	11.4	32.0	3.4	0.4	-	0.1	
KMRK0019	8169506	625302	1.0	33.2	2.0	0.3	-	-	
KMRK0020	8169503	625301	8.4	86.9	7.5	0.4	-	-	
KMRK0021	8169501	625299	11.8	154.0	10.6	0.8	-	-	
KMRK0022	8169503	625293	9.8	51.2	3.4	0.2	-	-	
KMRK0024	8169499	625304	5.8	50.3	3.4	0.8	-	-	
KMRK0025	8169473	625294	16.5	95.4	5.7	0.7	0.1	-	
KMRK0026	8169483	625294	8.2	48.9	4.4	0.2	-	-	
KMRK0027	8169461	625298	8.7	53.0	3.0	0.3	0.1	-	
KMRK0029	8169417	625313	6.6	14.9	0.8	1.2	-	-	
KMRK0035	8169310	625343	1.9	1.6	-	0.1	-	-	
KMRK0036	8169309	625339	45.6	75.0	0.1	0.0	0.1	-	Rough Triangle
KMRK0037	8169300	625346	4.1	3.0	0.1	0.4	-	-	
KMRK0042	8169223	625362	0.3	0.1	0.1	0.0	-	0.2	
KMRK0043	8169202	625368	7.8	3.7	0.1	0.8	0.2	0.1	
KMRK0046	8169153	625376	13.5	3.4	-	0.5	-	0.1	
KMRK0048	8169273	625350	4.5	11.0	0.4	0.2	-	-	
KMRK0055	8169111	625390	1.8	0.8	-	0.1	0.1	-	
KMRK0056	8169131	625386	0.8	2.8	0.1	1.0	0.1	-	
KMRK0067	8168944	625420	0.9	0.1	0.1	0.1	0.4	0.1	
KMRK0075	8169011	625464	6.4	1.2	-	2.5	0.1	-	
KMRK0077	8168732	625496	11.5	2.3	-	0.0	0.1	-	
KMRK0078	8168734	625496	18.8	3.8	-	0.0	0.1	-	
KMRK0080	8168646	625505	0.1	0.2	-	1.1	-	-	
KMRK0081	8168617	625486	3.8	0.4	-	0.0	0.1	-	
KMRK0085	8168954	625415	2.0	0.4	-	0.0	0.3	0.1	
KMRK0094	8168930	625406	1.5	0.2	-	0.1	-	-	
KMRK0098	8168668	625488	-	0.5	-	1.4	-	-	
KMRK0100	8168602	625484	1.3	0.4	-	0.7	0.1	0.1	
KMRK0102	8168597	625484	1.8	1.2	0.1	3.6	0.2	0.1	
KMRK0105	8168623	625486	14.4	2.7	-	0.2	0.1	0.1	
RT01	8169295	625346	3.9	2.6	0.1	1.8	0.1	-	
RT02	8169295	625346	16.3	12.5	0.1	0.0	0.1	0.1	
RT03	8169327	625339	3.1	1.2	-	0.5	-	-	
RT06	8169351	625329	3.8	4.2	0.1	0.7	0.1	-	
RT07	8169471	625292	20.4	101.0	4.6	0.9	0.1	-	
RT08	8169510	625299	8.1	44.5	2.2	0.3	-	-	

Table 1 cont.: Significant Rock Chips (>1% Cu, Bi, Sb or > 1g/t Au or >0.1% Co) (location in GDA94 MGAz51)									
Sample ID	Easting	Northing	Cu (%)	Ag (g/t)	Sb (%)	Bi (%)	Au (g/t)	Co (%)	Prospect
RT09	8169609	625324	18.9	196.0	14.1	1.6	0.1	-	
RT10	8169608	625332	3.3	58.2	3.5	0.6	-	-	
RT12	8169584	625310	18.5	291.0	10.8	1.9	0.1	-	
RT13	8169151	625377	16.1	15.5	0.3	0.1	0.1	0.1	Rough Triangle
RT16	8169105	625384	11.6	8.0	0.2	0.2	0.3	0.2	
RTC 01	8169309	625343	83.7	142.0	-	-	0.1	0.0	
KMRK0121	8167161	626909	17.9	4.3	-	-	0.4	0.1	
KMRK0122	8167245	626905	22	0.9	-	-	0.1	-	
KMRK0124	8167324	626922	7.4	2.3	-	-	1.3	0.0	
KMRK0125	8167331	626921	6.9	0.7	0.1	-	0.9	0.1	
KMRK0136	8167161	626907	8.5	8.5	-	-	0.4	0.1	
KMRK0138	8167195	626900	0.9	10.9	0.2	2.1	0.4	0.1	
KMRK0139	816721/	626904	3.2	3.8	0.2	2.1	0.4	0.1	
	0167214	626007	1.2	1.6	0.1	2.5	0.4	0.1	
	0167252	626000	1.2	1.0	-	0.4	0.1	-	
	010/252	626909	1.0	1.5 C.0	-	0.4	1.1	-	
KIVIRKU145	8167206	626921	0.6	0.9	- 0.1	0.1	0.5	0.0	
	8167222	626923	6.8	1.6	0.1	<u> </u>	0.5	0.1	Ironclad
	0107333	626057	20.0	15.2	-	-	0.8	0.1	lionciau
	0107333	626957	1.6	15.5	-	-	0.7	0.1	
	810/132	626901	1.0	0.7	-	-	0.1	-	
KIVIRK0149	816/363	626930	7.4	1.3	-	-	0.3	0.1	
KIMIRK0150	816/410	626965	8.1	0.8	-	-	1.1	-	
KMRK0156	8167347	626802	2.4	4.3	0.1	5.3	1.4	0.2	
KMRK0164	8166409	627923	2.5	2.0	-	-	0.1	-	
KMRK0171	8166411	627927	11.9	9.1	-	-	0.3	-	
KMRK0194	8167422	626841	0.4	1.0	-	-	1.5	-	
KMRK0199	8166881	626660	7.8	1.6	-	-	0.4	-	
RTS01	8166874	626600	6.2	8.6	-	-	0.7	-	
RTS02	8166878	626661	4.2	1.8	-	-	0.4	-	
KMRK0109	8158273	629955	12.4	6.4	-	-	0.6	-	
KMRK0110	8158280	629963	6.1	1.5	-	0.1	0.4	-	
KMRK0113	8158275	629960	10.5	6.2	-	-	0.4	-	
KMRK0129	8158288	629976	21.3	7.5	-	-	1.1	-	
MON01	8157421	629888	2.4	2.3	-	-	0.1	-	
MON03	8157649	629850	9.7	2.7	-	-	0.2	-	
MON04	8157649	629850	4.4	0.8	-	-	-	-	Monarch
MON08	8158281	629964	14.5	7.8	-	-	0.9	-	Wonarch
MON09	8158281	629964	15.0	6.7	-	0.1	0.6	-	
MON11	8158005	630283	4.8	4.4	-	-	0.4	-	
MON12	8158005	630283	9.3	10.0	-	-	0.6	0.1	
MON13	8158005	630283	4.3	3.5	-	-	0.4	-	
MON14	8157950	630264	19.3	23.7	-	-	0.6	-	
MON15	8157950	630264	7.6	14.6	-	-	0.3	-	
KMRK0134	8164678	629689	3.0	0.5	-	-	-	-	Torroll
TARR301	8164411	628821	14.4	3.5	-	-	0.7	-	Tarraji
DM-22	8162598	629243	12.5	9.7	-	-	0.5	-	Tarraji South
TR03	8166409	627925	14.7	40.4	-	-	0.3	0.2	
TR04	8166409	627925	5.6	2.9	-	-	0.3	0.1	Tarraji West
TR05	8166409	627925	2.8	0.9	-	-	0.1	0.1	
Table 1 cont.	: Significant	Rock Chips	(>1% Cu	ı, Bi, Sb c	or > 1g/	't Au o	r >0.1%	Co) (lo	cation in GDA94 MGAz51)

Sample ID	Easting	Northing	Cu	Ag	Sb	Bi	Au	Со	Prospect
	8		(%)	(g/t)	(%)	(%)	(g/t)	(%)	
TR07	8166409	627925	42.4	17.4	-	-	0.3	0.2	
TR09	8166409	627925	2.6	3.1	-	-	0.1	-	
TR10	8166409	627925	4.1	3.0	-	-	0.1	-	Tarraji West
TR13	8166399	627913	2.8	1.0	-	-	0.6	0.2	
TR19	8166409	627925	14.8	5.3	-	-	0.7	0.2	
DM-26	8161736	629762	16.8	5.9	-	-	0.5	0.1	
DM-27	8161729	629771	2.6	0.9	-	-	0.2	-	
DM-28	8161726	629789	25.2	5.0	-	-	0.5	-	
WF01	8161414	629663	21.1	1.4	-	-	1.3	-	
WF02	8161414	629663	9.8	1.4	-	-	0.7	-	
WF03	8161410	629657	15.7	0.3	-	-	0.9	-	
WF04	8161410	629657	21.6	1.9	-	-	0.5	-	
WF05	8161387	629562	8.1	0.7	-	-	0.7	-	
WF10	8161823	629788	22.5	4.0	-	-	0.7	-	
WF13	8161705	629793	1.0	0.6	-	-	-	-	
WF25	8161685	629761	14.9	3.1	-	-	2.1	-	
WF27	8161693	629753	5.5	0.8	-	-	0.7	-	Wilsons
WF30	8161695	629749	12.2	0.8	-	-	0.2	-	
WF31	8161697	629756	3.0	1.5	-	-	0.2	-	
WF34	8161656	629771	15.1	7.7	-	-	1.0	-	
WF36	8161528	629779	14.4	1.9	-	-	0.9	-	
WF37	8161528	629779	15.5	2.1	-	-	0.5	-	
WF38	8161528	629779	11.1	4.3	-	-	0.4	-	
WF42	8161526	629787	4.3	1.1	-	-	0.2	-	
WF43	8161523	629784	15.3	8.0	-	-	1.4	-	
WF47	8161522	629780	13.1	5.1	-	-	1.1	-	
WF51	8161525	629748	5.5	0.5	-	-	0.6	-	
WFB04	8161380	629574	2.5	0.5	-	-	0.2	-	
DM-02	8160685	625818	4.8	3.5	-	-	0.1	0.1	Fuso

JORC Code, 2012 Edition – Table 1 report template Section 1 Sampling Techniques and Data

JORC TABLE 1

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement 	 Rock Chips Rock Chips were collected by Dreadnought staff and submitted for analysis. Rock chips are random, subject to bias and often unrepresentative for the typical widths required for economic consideration. They are by nature difficult to duplicate with any acceptable form of precision or accuracy. Rock chips have been collected by Dreadnought to assist in characterising different lithologies, alterations and

Criteria	JORC Code explanation	Commentary
	 tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 expressions of mineralisation. In many instances, several rock chips were collected from a single location to assist with characterising and understanding the different lithologies, alterations and expressions of mineralisation present at the locality. Rock chips were submitted to ALS Laboratories in Perth for determination of Au, Pt and Pd by PGM-ICP24 and multiple (48) elements by ME-MS61
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	No drilling undertaken
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No drilling undertaken
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	No drilling undertaken
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the 	Rock Chips Entire rock chips were submitted to the lab for sample prep and analysis.

Criteria	JORC Code explanation	Commentary		
	grain size of the material being sampled.			
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Rock Chips All samples were submitted to ALS Laboratories in Perth where 1-3kg rock chips samples were crushed so that >70% of material passes through -6mm, the sample is then pulverised to >85% passing 75 micron. A 50 gram aliquot was analysed for Au, Pt and Pd by Fire Assay and ICP-AES finish (ALS Code PGM-ICP24) Fire Assay is considered a total digest for Au, Pt and Pd A 0.25 grams aliquot was analysed for 48 elements by a four-acid digest and ICP-MS finish (ALS Code ME-MS61). Four-acid digest is considered a "near-total" digest for most elements. No standards, duplicates or blanks submitted with rock chips. 		
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Rock Chips Rock chip and geological information is written in field books and coordinates and track data saved from hand held GPSs used in the field. Dreadnought geologists have inspected and logged all rock chips. Field data is entered into excel spreadsheets to be loaded into a database. 		
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All sample locations were recorded with a Garmin handheld GPS which has an accuracy of +/- 5m. GDA94 MGAz51. 		
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Sample spacing and distribution is not sufficient to establish the degree of geological and grade continuity appropriate for a Mineral Resource. 		
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Rock chip sampling by its nature is highly biased. Samples are collected from the outcropping lodes which are striking ~N-S with a steep easterly dip with localised folding. No drilling undertaken. 		
Sample security	 The measures taken to ensure sample security. 	 All geochemical samples were collected, bagged, and sealed by Dreadnought staff and delivered to ALS Laboratories in Kalgoorlie. Samples were delivered directly to ALS 		

Criteria	JORC Code explanation	Commentary		
		Laboratories Perth by ALS.		
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	The program is continuously reviewed by senior company personnel.		

Section 2 Reporting of Exploration Results

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Tarraji-Yampi Project consists of 5 granted (E04/2315, E04/2508, E04/2572, E04/2557, E04/2608) exploration Licenses. The Tarraji tenement (E04/2315) is a 80/20 JV between IronRinger (Tarraji) Pty Ltd and Whitewater Resources Pty Ltd. The Yampi Tenements (E04/2508, E04/2572, E04/2557, E04/2608) are 100% owned by Dreadnought Exploration Pty Ltd Dreadnought Exploration Pty Ltd is a wholly owned subsidiary of Dreadnought Resources Ltd. E04/2315, E04/2508, E04/2572, E04/2557 are located within the Yampi Sound Training Area (YSTA) which is freehold land owned by the Commonwealth Government and administered by the Department of Defence. Being freehold Commonwealth Land, Native Title has been extinguished but falls within Dambimangari Land. E04/2608 is partly located within the YSTA and partly on Vacant Crown Land which has Native Title claim by the Warra Combined (NNTT Number 2901)
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Regional mapping, basic stream sediment, soil sampling and limited diamond drilling was completed by WMC in the 1950s. Shallow percussion and diamond drilling was undertaken by ACM at Chianti in the 1970s. The YSTA was off limits to exploration from 1978 until 2013.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Tarraji-Yampi Project is located within the Hooper Complex which is a Proterozoic Mobile Belt in the West Kimberley. The Hooper Complex has known occurrences of Cu-Zn-Pb-Ag VMS mineralisation within the Marboo

Criteria	JORC Code explanation	Commentary
		Formation, magmatic Ni-Cu-PGE mineralisation in the Ruins Dolerite and later stage Proterozoic Cu-Au mineralisation associated with significant structures and late-stage intrusions.
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	No drilling reported.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated 	No drilling reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	No drilling was undertaken
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to figures within this report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 The accompanying document is a balanced report with a suitable cautionary note.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 WMC identified and mapped the Rough Triangle Lode in 1958.

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Additional rock chip sampling, detailed mapping will be undertaken at additional outcropping lodes and environmental and heritage surveys will be undertaken over the Rough Triangle and others with an aim to drill in 2022.