

27 October 2021

SILVER and GOLD INTERCEPTS ENHANCE PROSPECTIVITY AROUND PARIS

Highlights:

- Regional drill program has returned encouraging silver and gold intersections at Ares, Paris East and Helen East targets
 - Ares has been elevated as a priority for follow up drilling with newly recognised similarities to the mineralisation setting at Paris, with significant results including:
 - 2m @ 243g/t silver from 72m and 2m @ 37g/t silver from 76m in hole
 PPRC763; and
 - 25m @ 0.61% lead from 47m and 3m @ 0.6g/t gold from 52m in hole PPRC786.
 - Paris East, the closest satellite target to the Paris resource, returned:
 - 7m @ 35g/t silver from 63m, 6m @ 0.91g/t gold from 102m and 2m @ 0.37g/t gold from 125m in hole PPRC753; and
 - 6m @ 122g/t silver including 3m @ 228g/t silver from 51m in hole PPRC775.
 - Helen East, approximately 3km to the NE of the Paris resource, returned:
 - 49m @ 1.09% lead from 36m, including 14m @ 48g/t silver from 56m with
 7m @ 62g/t silver from 62m and in hole PPRC767; and
 - **21m @ 0.32% lead** and 0.49% zinc from 108m in hole PPRC783.
- Drilling on the perimeter of the Paris resource intersected silver, lead and gold, with significant results including:
 - Paris South: a prospective and sparsely drilled area south of the Paris resource, returned:
 - 10m @ 137g/t silver from 25m including 4m @ 309g/t silver, 19m @ 0.81%
 lead from 12m and 1m @ 1.54g/t gold from 29m in hole PPRC772; and
 - 18m @ 30g/t silver from 79m and 18m @ 0.42% lead from 81m in hole PPRC761.
 - Paris North: at the northern end of Paris Resource, drilling returned:
 - 1m @ 1.72g/t gold from 96m in hole PPRC744.

- Anomalous gold intersections rarely observed outside of the Paris deposit support expanded hydrothermal fluid flow within broader region, notably at Ares.
- Interpretation of targeted alternate structures sub parallel to the dykes that cross cut Paris has opened potential and added targets at Ares and Helen East.
- Follow up drilling at Ares, Ares North, Paris South, Helen East and other targets to commence in February 2022.

Investigator Resources Limited (ASX: IVR, "Investigator" or the "Company") is pleased to provide this release in relation to the regional exploration program that was completed in August 2021 across its 100% owned Peterlumbo tenement that hosts the Paris Silver Project in South Australia.

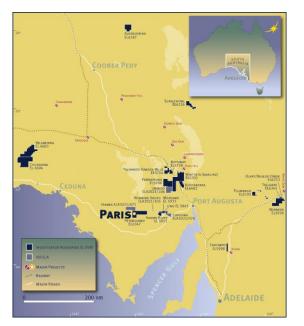


Figure 1: Investigator's South Australian tenements

The Paris Silver Project is located 70kms north of the rural township of Kimba on South Australia's Eyre Peninsular. Access to the project site is predominantly via highways and sealed roads and is approximately 7 hours by road from Adelaide as seen in Figure 1.

Paris is a shallow, high-grade silver deposit amenable to open pit mining. Following an extensive infill drilling campaign in late 2020 an updated Mineral Resource estimate has been completed of 18.8Mt silver at 88g/t for 53.1Moz of silver at a 30g/t cutoff¹. Work has been underway to complete a pre-feasibility study on the Paris deposit which is in the final stages of completion.

Commenting on the results reported here from the regional exploration drill program, Investigator's Managing Director, Andrew McIlwain said:

"This follow-up drilling on the regional targets has delivered encouraging results and is a significant step forward in our search for additional mineralisation within the Peterlumbo region adjacent to our 100% owned Paris Silver deposit. Of the 52 drillholes completed in the program, almost 90% had reportable intersections in either silver, lead, zinc and/or gold. Importantly, over 1/3rd had silver assays greater than the 30g/t cut-off used for the Paris resource.

"The program followed up on the previous drilling reported in May 2021 and was focussed on two aspects: to identify opportunities proximal to the Paris Silver deposit, and secondly, to follow up on anomalism and key structures that were considered prospective from the previous program of drilling.

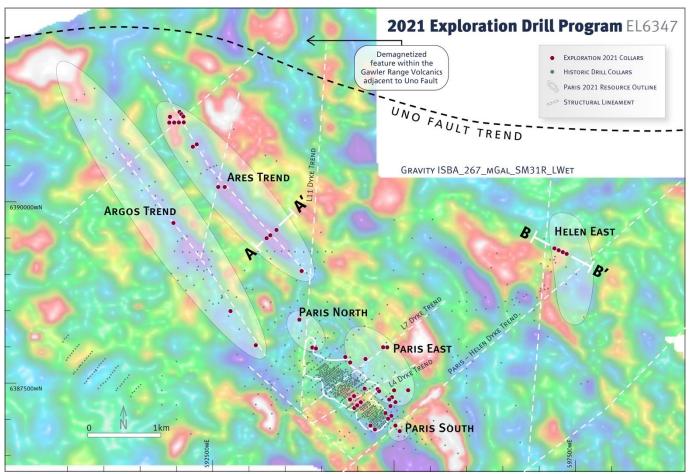
^{1 -} ASX Announcement 28 June, 2021 - Paris Updated Mineral Resource Estimate.

"Closer to the Paris resource, a number of targets were tested, with results from Paris East and Paris South being extremely encouraging. Added to this, the return of a number of significant gold assays, rarely seen outside of the immediate Paris resource footprint, adds interest to these areas.

"Regional drilling at Ares and Helen East supported the conceptual geological models and built upon previous results from wide spaced drilling. The gold assay reported at Ares indicates the likelihood of hydrothermal fluid flow migrating along structures – similar to our model at Paris. Encouragingly, the peak silver intersection at Ares of 2m @ 243g/t Ag is the second highest silver assay encountered outside of the Paris footprint.

"With these encouraging results, further drilling is planned to commence in February 2022. This drilling will follow a drill program at Investigator's Uno & Morgans tenements commencing in December."

2021 Regional drilling program


The regional exploration program was designed to follow up the priority targets identified in late 2020 drilling and reported in 2021 (ASX:10 May 2021). The current drilling was completed in August 2021, for a total of 6,770m of Reverse Circulation ("RC") drilling in 52 holes.

Particular focus was on satellite targets proximal to Paris, as well as targets near the Paris resource footprint, including a number of holes designed to assess prospectivity within a sparsely drilled inferred portion of the Paris resource.

Drilling also targeted structures identified in gravity and magnetic geophysical surveys, in addition to a number of induced polarisation ("IP") targets at Paris East and Ares. At Helen East, a structure proximal to a volcanic dyke with similar Hf:Zr ratio to the L7 dyke at Paris and associated with a gravity high was tested.

At Ares, drilling also tested an alternate NE structural trend proximal to known silver anomalism which can be traced to the Uno Fault, at which there is a distinct area of demagnetisation within the Gawler Range Volcanic sequences.

Details of each of the exploration targets drilled and the outcomes are provided below. Location of holes drilled in the 2021 Regional exploration program are shown in Figure 2 below. Drill assay results and collar information are provided in the appended tables.

Figure 2: Plan showing location of the regional drilling at Paris East target (adjacent to the Paris resource) and Ares, Argos, Helen East targets, overlaying the regional gravity. White dashed lines indicate location of interpreted faults and emplaced dykes.

Regional Drilling

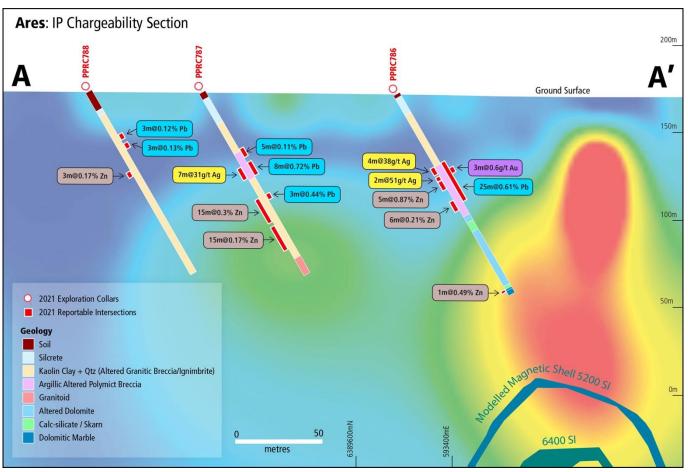
Ares - analogous model to Paris, immediate follow up drilling planned

Ares sits in a prospective structural corridor identified by a gravity feature sub-parallel to the long axis and trend of the Paris deposit and had previously been subjected to scout drilling in 2013-2014. At that time, access to the northern portion of the prospective trend was restricted due to the absence of heritage clearance. A single traverse of four widely spaced drillholes tested a VTEM geophysical anomaly in 2016, which identified anomalous lead-zinc in volcaniclastics overlying a dolomitic basement. An additional round of wide spaced drilling was completed as part of the 2020 exploration drill program and was the first test of the northern portion of the Ares trend. The 2020 program identified further gold and silver anomalism, albeit from extremely widespread and isolated exploration holes, returning a best assay of 1m @ 96g/t Ag (PPRC735)² with no holes within 600m of its collar.

Drilling in the current program was focused at four locations along a strike length of approximately 3.5km with the objective of testing proximal to prior drilling, evaluating alternate structural orientations, and secondly, testing of gravity and induced polarisation ("IP") geophysical features.

This program of work was extremely successful, with significant silver, lead, zinc intersections reported. In addition, the following features confirmed similarities to the Paris setting:

• low level gold, rarely seen in the area outside of Paris, indicative of similar mineralizing fluid source;


^{2 -} ASX 10th May, 2021 - Regional Silver Potential Confirmed at Paris.

- silica altered breccia associated with mineralization, in a number of holes, indicative of potential for structural complexity; and
- similar basement sequences as those underlying Paris (Hutchison Group dolomites), a brittle potential host for mineralisation.

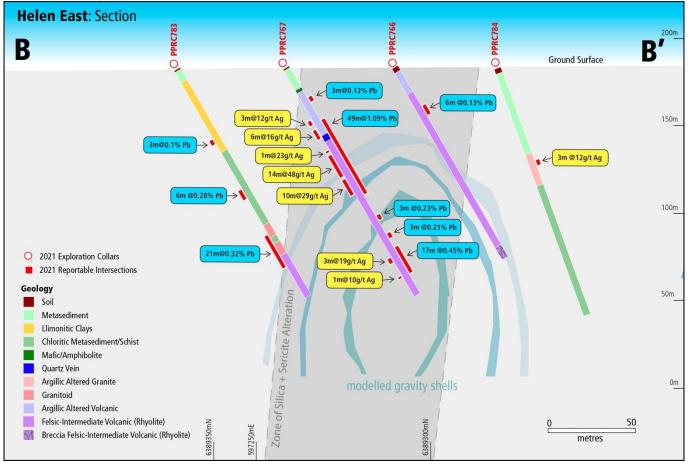
Importantly, hole PPRC763 returned a peak intersection of 2m @ 243g/t silver from 72m, with a further 2m @ 37g/t silver from 76m. This peak assay is the second highest silver intersection drilled by Investigator outside of the Paris deposit. This hole also returned 1m @ 0.22g/t gold.

Both the silver and gold mineralisation identified at Ares reinforce previous petrological analysis of silica altered chips in the region that display evidence of hydrothermal alteration and metal bearing fluid flow. Importantly, low level gold has not been seen as a general occurrence in the area, with the exception of the immediate Paris deposit footprint and one adjacent prospect.

The presence of silver and gold along the Ares trend in wide spaced drilling, along with the presence of host basement lithologies similar to Paris, that similarly have not been encountered widely in the region, are highly encouraging. These positive features open up Ares as an area that warrants immediate follow up drilling.

Figure 3: Ares section with drillholes and reportable intersections overlying IP chargeability. Note highest IP response initially considered to reflect graphitic sediments warrants direct test with dolomite association with bottom of PPRC786. Refer Figure 2 for section location.

Another outcome of the program is that a northeasterly trending structure at the northern limit of this drill program, which is sub parallel in orientation to a number of dykes observed at Paris, has been identified as a candidate for mineralisation. This structural trend extends towards the regionally significant Uno Fault, where it is associated with a demagnetized feature within the Gawler Range Volcanic sequence.


This area has recently been the focus of an ultra-fine fraction soil orientation sampling program (results pending) and is in a similar setting to other targets identified for drilling at Investigator's Uno and Morgans tenements (location identified in tenement plan – Figure 1 above).

Future drilling will focus on extending coverage over the Ares trend, both infilling and testing alternate cross cutting features for their mineralising potential (Figure 2).

Helen East

Helen East is positioned on the outer rim of the Nankivel Intrusive Complex, coincident with the northeasterly trending Paris-Helen silicified dyke (refer Figure 4 below). Historical geochemistry from early holes at the location identified Hf:Zr ratios of 1:20 within silica and sericite altered volcanics indicating the likelihood of origination from a hydrous and highly fractionated magma source, with potential to be a source for metal bearing hydrothermal fluid similar to the signature of the cross-cutting Line 7 Dyke at Paris³.

A program of four drill holes was designed to target a gravity high feature proximal to the interpreted dyke orientation, with drilling approximately 80m to the northeast of previous drilling centred on a gravity high.

Figure 4: Helen East cross-section displaying recent drilling in relation to modelled gravity shells that correlate well with rhyolite intersected in drilling. Note a zone of strong silica and sericite alteration identified. Refer Figure 2 for section location.

Three of the four holes intersected silica - sericite altered porphyritic rhyolite which correlated well with modelled gravity data at this location. Mineralised zones were generally more intensely altered and displayed common fracture filled sulphides. A best result in this program was 14m @ 48g/t Ag from 56m in

^{3 -} ASX 10 May, 2021 Regional Silver Potential Confirmed at Paris.

PPRC767, accompanied by a significant lead assay of 49m @ 1.09% lead from 49m in the same hole. PPRC783 returned 21m @ 0.32% lead and 0.49% zinc from 108m.

Work at Helen East in this program has stepped away from locations of prior intensive work and focused on alternate structural and geophysical features that have not been adequately explored in the past. Current results provide encouragement and additional step out work to test this target further will be undertaken in 2022.

Paris Perimeter Drilling

Paris East

A relatively under-explored area to the east of the Paris deposit, the Paris East drilling was designed to expand on the limited historical drilling that had returned anomalous silver intersections. Drilling was designed to test opportunities for a potential fault repetition of Paris mineralisation or identify a separate mineralised structural feature.

Silver, lead and zinc mineralisation was encountered in this drilling, with the best results including 6m @ 122g/t silver from 51m in hole PPRC775, 2m @ 30g/t silver from 106m in hole PPRC776 and 7m @ 35g/t silver from 63m in hole PPRC753.

Of significance, gold was identified, in addition to silver/lead/zinc, with a best assay of 6m @ 0.91g/t from 102m in hole PPRC753. Together with other silver intersections in nearby holes, this result supports the theory that this may be a parallel mineralised fault zone to Paris.

Reassessment of data from this area will be undertaken to focus further targeting work in future programs.

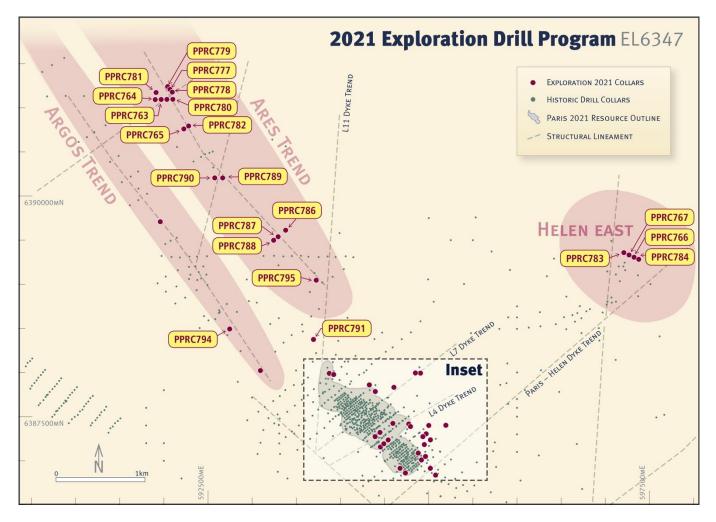
Paris South

Drilling to the south of the Paris resource was proposed following a review of historical reconnaissance drilling that had identified low order silver anomalism and potential structural opportunity, neither of which were considered to have been adequately tested in earlier programs. Two angled holes were drilled to test for extension of fault structures with potential to host mineralisation. PPRC761 successfully intersected a mineralised fault structure and returned 18m @ 30g/t Ag from 79m, which included 9m @ 41g/t Ag from 81m. Consistent lead and zinc mineralisation was also present within this zone of silver mineralisation with a peak assay at 84m of 1.2% Pb and 0.4% Zn. Of note was the presence of low level but anomalous gold, generally at 0.1g/t levels (refer appended table of significant intersections) which support the presence of a gold-silver hydrothermal source, possibly related to NW fault conduits or alternatively the NE Paris-Helen dyke (yet to be determined). Host lithologies were limonitic clays with silica altered fragments that are interpreted to represent a steep dipping fault structure. Hole PPRC772 returned a very significant 10m @ 137g/t Ag from 25m, including 4m @ 309g/t Ag from a shallow 26m depth along with a number of additional zones of lower grade silver mineralisation. This peak silver intersection was associated with lead mineralisation (19m @ 0.81 Pb from 12m) but also, significantly the presence of gold with an assay of 1m @ 1.54g/t Au from 29m.

The results at Paris South support the presence of potentially steep dipping structures that are interpreted to be controls on mineralisation at Paris, and potentially link Paris with the Nankivel region. The results further resolve that the Paris-Helen dyke where drilled can be associated with gold mineralisation and validates the potential of this structure as a target for this style of mineralisation.

Additionally, this drilling confirms the presence of significant grade silver mineralisation immediately adjacent to the Paris resource. Further drilling, currently limited due to a restricted heritage area, would be required to determine the potential for the Paris resource to be extended beyond its current southern boundary.

Paris North


Drilling at the northern end of Paris deposit comprised of two inclined holes targeting the contact of Paris host breccia lithologies with a later cross cutting dyke (Line 11 dyke) which terminates the Paris mineralisation. An increased silver grade had been identified in the vicinity of this dyke in two prior drillholes. This contact had not previously been drill tested.

The drilling of 2 holes targeting the eastern contact of the dyke (PPRC744, PPRC745) returned a number of low order intersections, all below 20g/t silver, which downgraded the model being tested. An additional four holes planned for this test were not drilled. Of interest, hole PPRC744 failed to intersect the target dyke, however returned 1m @ 1.72g/t Au from 96m within a chlorite altered, fine grained granite.

An additional single hole (PPRC791) was positioned to test an IP chargeable, but resistive feature proximal to the Line 11 dyke on its western side and returned 9m @ 17g/t Ag from 72m and 3m @ 11g/t Ag from 123m. Prior to intersecting the modelled dyke at 94m, this hole intersected a broad zone of strongly argillic and limonite altered clays with sporadic lead and zinc anomalism. Of further note in this hole is a zone of elevated gold assay with 6m @ 0.17g/t Au from 69m.

Further drilling is warranted to follow up on the anomalism in drillhole PPRC791, particularly given it was a single hole test of a significant feature.

Drilling at Paris North to date has not altered the current Paris deposit dimension from the 2021 Mineral Resource estimate. The IP target located west of the Line 11 dyke would require additional drilling to confirm potential for hosting of potentially economic mineralisation.

Figure 5: Shows the exploration drill holes referred to in this release. A total of 52 holes (red dots) were drilled in the 2021 regional exploration program. Inset detailing Paris drilling is shown as Figure 4 below.

Paris resource

In conjunction with this regional drill program, a series of drillholes were drilled within the Paris resource footprint, proximal to Line 4, an area that has seen little drilling since 2013, and where coverage is largely at 100m line spacing (and thus forms an inferred component of the current 2021 Mineral Resource estimate). The drilling was designed to provide greater detail on the depth to basement, confirm host lithology and mineralisation potential. Additionally, one hole was drilled in an effort to identify and determine the orientation of the Line 4 cross cutting rhyolitic dyke at Paris which is poorly understood – this hole was successful and will improve geological confidence in this area.

Results confirmed an overall shallow depth to basement in this area with modest silver results returned including 24m @ 40g/t Ag from 12m in PPRC748 and 14m @ 45g/t Ag from 13m in PPRC750. The results of this program of work, whilst able to be incorporated into any additional Mineral Resource estimation, are at a spacing and number that is not likely to materially alter the current resource estimate however provides additional information for future programs of work.

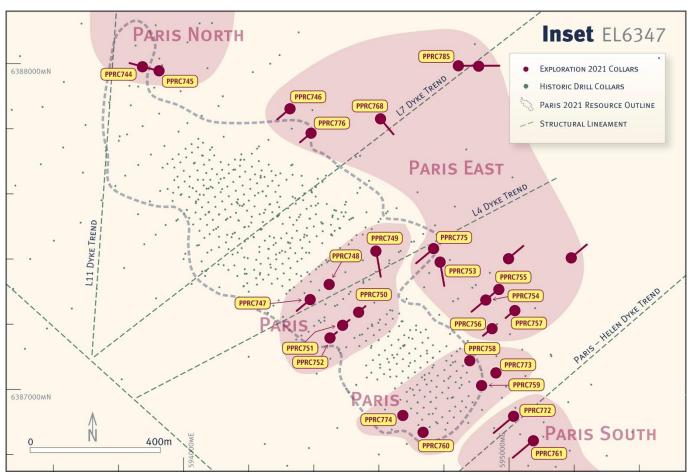


Figure 6: Inset area showing recent drill collars located proximal to Paris resource.

Conclusions

 Regionally, the encouraging results from the drilling program completed in 2021 have demonstrated potential for additional mineralisation in a number of prospects proximal to the Paris Silver Project and support the assessment that hydrothermal mineralising fluids are not solely constrained to the Paris deposit and its trend.

The program has advanced concepts and models for areas of potential mineralisation at Ares, Paris East and Helen East where follow up drill programs of varying sizes are being currently being planned. It is anticipated that further drilling of these prospects will be commenced in early 2022.

2. Results from the drilling undertaken during this program closer to Paris offer some potential for future expansion of the Paris resource if additional follow up drilling is positive. The mineralisation identified at Paris East and Paris South, will drive design of future drill programs with the objective of adding to the available resource.

For and on behalf of the board.

Andrew McIlwain Managing Director

For more information:

Andrew McIlwain	Peter Taylor
Managing Director	Media & Investor Relations
Investigator Resources Ltd	NWR Communications
+ 61 (0) 8 7325 2222	+ 61 (0) 412 036 231
amcilwain@investres.com.au	peter@nwrcommunications.com.au

About Investigator Resources

Investigator Resources Limited (ASX: IVR) is a metals explorer with a focus on the opportunities for silver-lead, copper-gold and other metal discoveries. Investors are encouraged to stay up to date with Investigator's news and announcements by registering their interest here: <u>https://investres.com.au/enews-updates/</u>

Capital Structure (as at 30 September 2021)

Directors & Management

Shares on issue	1,323,946,607	Mr Kevin Wilson	Non-Exec. Chairman
Unlisted Options	28,000,000	Mr Andrew Mcllwain	Managing Director
Performance Rights	10,000,000	Mr Andrew Shearer	Non-Exec. Director
Top 20 shareholders	30.3%	Ms Melanie Leydin	CFO & Joint Company Secretary
Total number of shareholders	5,718	Ms Anita Addorisio	Joint Company Secretary

Competent Person Statement

The information in this announcement relating to exploration results is based on information compiled by Mr. Jason Murray who is a full-time employee of the company. Mr. Murray is a member of the Australian Institute of Geoscientists. Mr. Murray has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Murray consents to the inclusion in this report of the matters based on information in the form and context in which it appears.

The information in this announcement that relates to Mineral Resources Estimates at the Paris Silver Project is extracted from the report entitled "Paris Updated Mineral Resource Estimate" dated 28 June 2021 and is available to view on the Company's website <u>www.investres.com.au</u> The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

<u>APPENDIX 1:</u> JORC Code, 2012 Edition – Table 1

The following section is provided to ensure compliance with the JORC (2012) requirements for the reporting of the Silver and Gold Intercepts Enhance Prospectivity Around Paris in the ASX release "Paris Regional Drilling Results" dated 27 October 2021.

Assessment and Reporting Criteria Table Mineral Resource – JORC 2012

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measure- ment tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF in- struments, etc). These exam- ples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample repre- sentivity and the appropriate calibration of any measure- ment tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry stand- ard' work has been done this would be relatively simple (eg 'RC drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling prob- lems. Unusual commodities or mineralisation types (eg sub- marine nodules) may warrant disclosure of detailed infor- mation. 	 Reverse Circulation ("RC") Drilling RC drilling was used to obtain samples from each 1m down-hole from which a nominal 3kg sample was collected for routine multi element geochemical analysis. Exploratory holes within the Paris resource footprint were riffle split where dry, or spear sampled where wet in this program. Holes drilled outside of the Paris resource footprint were sampled direct from the rig utilising a cone splitter with representative 1m down-hole samples retained for sub sampling as required. Residual sample that was retained from each 1m interval was composited by spear sampling into a 3m sample that was assayed by the laboratory. Drill intervals had visual moisture content and volume recorded i.e., Dry, Moist, Wet and Normal, Low, Excessive in addition to the method of sampling recorded. No other aspects for determination of mineralisation that are material to the public report have been used.
Drilling techniques	• Drill type (eg core, RC, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple	 RC drilling programs were completed using standard 5 ½ inch face sampling hammers, with holes varying in orientation (refer collar table). RC drilling within the Paris footprint did not utilise a rig

Criteria	JORC Code explanation	Commentary
	or standard tube, depth of dia- mond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 attached splitter due to the potential for cross contamination should balling clay or similar intervals be intersected in holes drilled within the Paris footprint given knowledge of ground conditions. Regional exploratory holes utilised a cyclone mounted cone splitter to divide sample into a bulk 1m sample and a nominal 3kg calico sample. Drillers supplied sample on a per metre basis into large format numbered sample bags.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Reverse Circulation Drilling RC drilling did not record whole bag weights for holes that were sampled on a speared 3m composite basis. Visual observations were recorded on a 1m basis for these holes at the time of drilling with Low/Normal/High volume and Dry/Moist/Wet content. RC drilling whole bag weights were recorded for all 1m sub-sampled intervals. Wet or dry sample and volume details were also recorded. Laboratory bag weights of samples submitted were also recorded. Removal of cyclone attached cone splitter was undertaken for drilling within the Paris footprint given experience with balling and wet clays in some intervals. Visual records for volume and moisture content were recorded as per regional program. All bulk samples of Paris drilling were weighed on a 1m basis. There is noted to be some degree of variability of recovery within holes drilled that in many instances can be groundwater related. Intersections were compared
		 be groundwater related. Intersections were compared to 1m bag weights for the program and no obvious bias was identified as result of sample volume and grade. Observed poor and variable recovery is flagged in the sampling database. Wet or moist samples are also flagged in the sampling database. No selective hole twinning has occurred due to the reconnaissance nature of drilling.
Logging	Whether core and chip sam- ples have been geologically and geotechnically logged to a level of detail to support appro- priate Mineral Resource esti- mation, mining studies and metallurgical studies.	 Entire holes are logged comprehensively and photo- graphed on site. Qualitative logging includes lithology, colour, moisture content, sample volume, mineralogy, veining type and percentage, sulphide content and percentage, descrip- tion, marker horizons, weathering, texture, alteration, mineralization, and mineral percentage. Quantitative logging includes magnetic susceptibility.
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) pho- tography. 	Portable XRF is utilised on an informal basis to identify zones of mineralisation and mineralogical components to assist in lithological logging but not relied upon for reporting of mineralisation in this release.
	The total length and	

Criteria	JORC Code explanation	Commentary
	percentage of the relevant in- tersections logged.	
Sub-sam- pling tech- niques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the na- ture, quality and appropriate- ness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise repre- sentivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are ap- propriate to the grain size of the material being sampled. 	 Reverse Circulation Drilling RC drilling was sampled at nominal 1m intervals. In holes drilled within the Paris Resource footprint and where dry samples were intersected, sampling was undertaken using a stand-alone riffle splitter. Approximately 3kg of the original sample was submitted to the laboratory for assay. In holes drilled within the Paris Resource footprint, wet or clayey samples that were likely to cause contamination or poor representivity if riffle splitts samples (balling clays etc) were spear sampled in this program. Riffle splitters were visually inspected prior to drilling to confirm appropriate construction and fitness for purpose. 87.5/12.5%, 75/25% and 50/50% splitters were utilised dependent on original sample volume. RC drill holes completed on exploration drilling outside of the Paris Resource footprint were spear sampled on a 3m composite basis from individual 1m intervals. At the same time, a cone split sample was retained in an individually numbered calico for subsequent sub sample analysis should a 3m composite return anomalous geochemistry. Records of sampling type and interval widths are recorded at the time of sampling. If 3m composite samples are resampled at 1m intervals the original sample is retained in database but deprioritised such that 1m intervals take precedence. Field duplicates are taken on every 20th sample in the program. Subsampling techniques are undertaken in line with standard operating practices to ensure no bias. QA checks of the laboratory included re-split and analysis of a selection of samples from coarse reject material and pulp reject material to determine if bias at laboratory was present. The nature, quality and appropriateness of the sampling technique is considered appropriate for the grainsize and type of mineralisation and confidence level being attributed to the results presented.
Quality of assay data and labora- tory tests	• The nature, quality and appro- priateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 A certified and accredited commercial laboratory ALS Laboratories ("ALS") (Perth) was used for all assays. Samples were analysed using methods MEMS61 with a 25g prepared sample subjected to a 4 acid total

Criteria	JORC Code explanation	Commentary
	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 digest with perchloric, nitric, hydrofluoric and hydro-chloric acids and analysed by ICP-AES and ICP-MS for 48 elements including Ag and Pb. Over-range samples (>100ppm Ag, >1% Pb) were reassayed using ME-OG62, 4 acid total digest with ICP-AES finish to 1,500ppm Ag and 20% Pb. Silver results greater than 1,500ppm are re-assayed by ME-OG62H using 4 acid total digest with ICP-AES finish to 3,000ppm Ag. If samples remain over-range after this method, then GRA-21 is used for Ag (0.1 – 1.0% Ag). ALS have recently closed their Australian laboratory capable of undertaking the method of analysis and any GRA21 analyses are required to be undertaken at their Vancouver, Canada facility. Samples with silver greater than 1% are analysed by Ag-CON01 for Ag (0.7 – 995,000ppm). Samples were analysed for gold by ALS method AA26 by fire assay using AAS. External laboratory cross checks were not undertaken in this program but were recently completed in 2020 during the Paris resource drilling and supported the accuracy of the ALS techniques described above at that time. CA/OCC Summary Records of QA/QC techniques undertaken during each drilling program are retained by Investigator. Certified reference standards including blanks, were randomly selected and inserted into the sampling sequence (1 in 25 samples) for RC sampling where 1m intervals were assayed. Standards were designed to validate laboratory accuracy and ranged from low grade to high grade material. Review of standards indicated that they reported within 3m composite sampling on the basis that resampling of mineralisation at 1m intervals would occur where detected. Some resampling based on results is yet to occur. Field duplicate samples were not taken on 3m composite intervals in this program. No significant analytical biases have been detected in the results presented however some variability may be present in some 3m intersections that are yet to be resampled,

Criteria	JORC Code explanation	Commentary
		are of lower confidence than 1m sub sampled intervals but regarded as representative of mineralisation at an early exploration stage.
Verification of sampling and assay- ing	 The verification of significant intersections by either inde- pendent or alternative com- pany personnel. 	 Results of significant intersections were verified by a minimum of two Investigator personnel visually and utilising Micromine drill hole validation. No hole twinning occurred in this program. Primary data is captured directly into an in-house referential and integrated database system managed by the Exploration Manager.
	• The use of twinned holes.	 All assay data is cross validated using Micromine drill hole validation checks including interval integrity checks. Laboratory assay data is not adjusted aside converting
	 Documentation of primary data, data entry procedures, data verification, data storage (phys- ical and electronic) protocols. Discuss any adjustment to as- 	 all results released as % to ppm. Below detection results reported with a "<" sign are converted to "-" as part of validation. Where an over range re-assay is returned, the result is transferred into the database with the method of analysis identified against each sample number with such
Location of	say data.Accuracy and quality of sur-	over range results. Collar co-ordinate surveys
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Collar co-ordinate surveys All coordinates are recorded in GDA 94 MGA Zone 53. RC Holes have been field located utilising handheld GPS (accuracy of approximately +/-4m) and orthoim- agery. Post drilling, collars are surveyed utilising differential GPS with a typical accuracy of +/-10cm. Survey method for all drill holes is recorded in the com- pany's referential database. Topographic control uses a high resolution DTM gen- erated by an AeroMetrex 28cm survey. All oriented angled holes were lined up manually using sighting compass by the rig geologist. Down hole surveys Survey results, depth and survey tool are recorded for each hole in Investigator's in house referential data- base.
		 Vertical drillholes were surveyed at 6m and end of hole. Angled drillholes were surveyed at 6m and then every 30m down hole until end of hole. Hole surveys were checked by geologists for potential errors due to lithological conditions (eg magnet-ite/sphalerite) or setup errors. Suspect surveys were flagged in the database and omitted where reasonable evidence was present to do so. Some issue with azimuth accuracy in down hole

Criteria	JORC Code explanation	Commentary
		surveying was noted in the reported program and at- tributed to a faulty down hole camera but given early exploration stage, and shallow holes is not considered an issue at this time.
Data spac- ing and dis- tribution	 Data spacing for reporting of Exploration Results. 	 Drill hole spacing is variable over the program (refer to drill location plan) and reconnaissance in nature. Traverses are oriented and designed to target potential structural or lithological trends.
	• Whether the data spacing and distribution is sufficient to es- tablish the degree of geologi- cal and grade continuity appro- priate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifica- tions applied.	 Drillhole spacing is insufficient to establish geological and grade continuity in this program. Drilling of a select number of holes within the Paris footprint was designed to preliminary test broad spaced zones yet to be sufficiently infilled from the last resource estimate and are insufficient in number or distribution to offer a material change to the existing estimates.
	• Whether sample compositing has been applied.	 3m compositing of 1m sample intervals occurred dur- ing exploration drilling. Concurrent 1m down hole sampling allowed for subsequent subsampling at greater detail or subsampling at the time of drilling at the geologist's discretion (on observing signs of miner- alisation). Sampling method is recorded for all drill- holes in the referential database.
Orientation of data in re- lation to ge- ological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	 Drilling in the program was targeting a varied number of targets based on lithological, structural (geophysical) and in some instances geochemical targets. The ori- entation of sampling was designed to best test each feature but given many holes are single site holes, there is insufficient data in many instances to be sure that holes are oriented to ensure unbiased sampling
	 If the relationship between the drilling orientation and the ori- entation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 and infill drilling would be required to improve confidence. Most drilling has been undertaken vertically and inclined in both directions on section depending on target model.
Sample se- curity	The measures taken to ensure sample security.	 Reverse Circulation Samples were collected at rig site in individually numbered calico sample bags and tied and placed into poly-weave bags in groups of approximately 5 samples and cable tied to prevent access. Samples were dispatched to ALS laboratories in Adelaide by Investigator personnel or independent contractors. Records of each batch dispatched included the sample numbers sent, date and the name of the person transporting each batch. Investigator personnel provided, separate to the sample dispatch, a submission sheet detailing the sample numbers in the dispatch and analytical procedures to ALS laboratories.

Criteria	JORC Code explanation	Commentary
Audits or re- views	The results of any audits or re- views of sampling techniques and data.	 ALS laboratories conduct an audit of samples received to confirm correct numbers per the submission sheet provided. Exceptions if identified are communicated to Investigator. Assay pulps are returned to Investigator from contracted laboratories on a regular basis and stored securely at a secure warehouse facility leased by Investigator. Pulp samples are stored in original cardboard boxes supplied by the laboratory with laboratory batch code displayed on each box. Boxes are stacked on pallets and shrink wrapped. Samples may suffer from oxidation and are not stored under nitrogen or in a freezer. Field 1m sub samples are stored on site at the drill hole location within interval bags until sub sampling is identified as required. Given the random sub sampling selection based on composite results the ability to tamper whilst possible, is unlikely to be simple or effective to result in a significant material change given approximate tenure of intervals is known from 3m composite sampling completed. The ability to resample both 1m split and retained 1m bulk sample at rig location is retained as further check management. The program was under supervision of Investigator's Senior Project Geologist with sufficient experience in the style of mineralisation and methods of drilling and sampling. Reviews of past drill hole data has seen continual improvement, with significant changes to recording of quality control data from drill holes to ensure maximum confidence in assessment of drill and assay data. Current drilling and sampling procedures have been reviewed during site visits by Investigator's Exploration Manager.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral ten- ement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overrid- ing royalties, native title inter- ests, historical sites, wilderness or national park and environ- mental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Paris Project is contained within EL 6347 that was granted to Sunthe Minerals Pty Ltd ("Sunthe") a wholly owned subsidiary of Investigator. Investigator manages EL 6347 and holds 100% interest. EL 6347 is located on Crown Land covered by several pastoral leases. An ILUA has been signed between Sunthe and the Gawler Range Aboriginal Corporation. This ILUA terminated on 28th February 2017 however this termination does not affect EL 6347 (or any renewals, regrants and extensions) as Sunthe entered into an accepted contract prior to 28th February 2017. The Peterlumbo Project area has been culturally and heritage cleared for exploration activities over all areas drilled. There are no registered Conservation or National Parks on EL 6347. An Exploration PEPR (Program for Environment Protection and Rehabilitation) for the entirety of EL 6347 has been approved by DEM (South Australian Government Department for Energy and Mining). All drilling work has been conducted under DEM approved work program permitting, and within the Exploration PEPR guidelines. All relevant landowner notifications have been completed as part of work programs.
Exploration done by other par- ties	 Acknowledgment and appraisal of exploration by other parties. 	 No previous exploration work has been undertaken at the Paris Project by other parties in the areas drilled as part of this program. The Paris deposit was discovered by Investigator in 2011.
Geology	Deposit type, geological setting and style of mineralisation.	 The Paris Project is an Ag-Pb deposit that is hosted predominantly within a sequence of flat lying polymictic volcanic breccia related to the Gawler Range Volcanics with strong structural controls to mineralisation. Paris is an intermediate sulphidation mineralised body associated with a felsic volcanic breccia system in an epithermal environment with a significant component of strata bound and structural control. Regional targets surrounding Paris and subject to this release are based on the premise that structural controls to prospectivity. Lower Gawler Range Volcanics and brittle/permissive basement lithologies (eg dolomites/calc silicates) that

Criteria	JORC Code explanation	Commentary
Drill hole In- formation	 A summary of all information material to the understanding of the exploration results including a tabulation of the following in- formation for all Material drill holes: easting and northing of the drill hole collar 	 are intersected by structural features are key targets being tested. Potential for epithermal mineralisation and skarn mineralisation is present and noted within the region. Nearby Nankivel Intrusive Complex is considered a potential porphyry target and potential fluid source/driver to mineralisation encountered in the broader Paris/Peterlumbo locality. Drill hole information is recorded within the Investigator in-house referential database. The company has maintained continuous disclosure of drilling details and results for the Peterlumbo tenement, which are presented in previous public announcements. A table of collar information for all holes drilled and reported in this program is included with this release.
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and inter- ception depth hole length. If the exclusion of this infor- mation is justified on the basis that the information is not Mate- rial and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	 No material information relating to this program is excluded.
Data aggre- gation meth- ods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregation. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Any references to reported intersections in this release are on the basis of weighted average intersections. No top cut to intersections has been applied. Allowance for 1m of internal dilution within intersection calculations is made. Lower cut-off grades for intersections by major elements are: Silver >10ppm, Lead >1,000ppm, Zinc >1,000ppm, Copper >500ppm. Reporting of silver at >10ppm is presented in accompanying tables of results given the exploration nature of drilling and limited historical drill coverage. Investigator regard this threshold as anomalous, albeit lower than 30ppm used within the Paris deposit itself for reporting, any highlighted sub interval intersections for silver are reported using 30ppm as a lower cutoff. No metal equivalents are reported.

Criteria	JORC Code explanation	Commentary
		• Where intersections may include 3m composite data the accompanying table of significant intersections identifies as such.
Relation- ship be- tween min- eralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Mineralisation geometry is generally flat lying within the majority of the breccia hosted deposit at Paris however there may be a locally steeper dipping component within the dolomite basement and projecting into transitional breccia zones that is correlated with localised faulting. In a regional context, mineralisation has presented predominantly within structures (fault zones) which may be steep dipping and in these instances angled holes have been utilised. Given the spacing of holes in this program, in many instances the geometry of mineralisation is unable to be accurately determined due to lack of spatial data. All reported intersections are on the basis of down hole length and have not been calculated to true widths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 See attached plans showing drill hole density. See attached tables of significant intersections.
Balanced re- porting	Where comprehensive reporting of all Exploration Results is not practicable, representative re- porting of both low and high grades and/or widths should be practiced to avoid misleading re- porting of Exploration Results.	 Comprehensive reporting is undertaken. If an intersection has 3m composite data that is not subsampled at 1m down hole intervals it is clearly identified in the reported intersections tables. All prior historic holes identified in drill plans have been released to the ASX in prior programs of work.
Other sub- stantive ex- ploration data	 Other exploration data, if mean- ingful and material, should be reported including (but not lim- ited to): geological observations; geophysical survey results; geo- chemical survey results; bulk samples – size and method of treatment; metallurgical test re- sults; bulk density, groundwater, geotechnical and rock character- istics; potential deleterious or contaminating substances. 	 A substantial body of work has occurred on the nearby Paris Deposit as part of ongoing pre-feasibility studies which includes metallurgical testwork, process flowsheet design and mining studies. The broader Peterlumbo area subject to this release has had gravity and aero-magnetic surveying completed and used for targeting. Dipole-Dipole IP surveying has been completed in the past and was utilised to target some holes in this program. Prior drilling, geochemistry and petrologic studies have confirmed prospectivity and presence of hydrothermal alteration systems in the region. Groundwater is generally present below 40m depth however may or may not be present in many areas drilled and likely attributed to lithological controls and

Criteria	JORC Code explanation	Commentary
		 degrees of alteration or presence of fault structures. Multi-element geochemistry assaying (48 or 61 elements) is routine for all sampling. Some elemental associations are recognised within certain lithologies and are used as a tool to assist in interpretation of original lithologies where alteration affected the ability to visually determine. Significant soil sampling has occurred in the past and been utilised for drill targeting. Recently, additional test orientation lines have been sampled using a CSIRO developed ultra-fine fraction methodology and results of this orientation work at Peterlumbo is awaited to assess its potential to further resolve targeting.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, in- cluding the main geological in- terpretations and future drilling areas, provided this information is not commercially sensitive. 	 Results of this drill program will be interpreted further in conjunction with orientation ultra-fine fraction soil sampling results to resolve targeting and follow up in future programs. Re analysis of geophysical structures in relation to both gold and silver/base metals occurrences and ex- trapolation of target zones particularly at Ares, Paris South and Helen East to occur prior to follow up drill- ing.

Appendix 1 - Tables of Significant Intersections.

REPORTABLE GOLD INTERSECTIONS >0.1g/t

PROSPECT	HOLE ID	FROM (m)	TO (m)	Sample Type	INTERSECTION
Paris North	PPRC744	93	94	1m Sample	1m @ 0.15g/t Au [93-94m]
		96	97	1m Sample	1m @ 1.72g/t Au [96-97m]
Paris East	PPRC746	56 57 1m Sample 1m @ 0.1g,		1m @ 0.1g/t Au [56-57m]	
Paris	PPRC749	24	25	1m Sample	1m @ 0.18g/t Au [24-25m]
	PPRC750	47	48	1m Sample	1m @ 0.18g/t Au [47-48m]
		56	57	1m Sample	1m @ 0.1g/t Au [56-57m]
	PPRC751	32	33	1m Sample	1m @ 0.1g/t Au [32-33m]
		64	65	1m Sample	1m @ 0.15g/t Au [64-65m]
		76	78	1m Sample	2m @ 0.21g/t Au [76-78m]
Paris East	PPRC753	63	64	1m Sample	1m @ 0.22g/t Au [63-64m]
		102	108	1m Sample	6m @ 0.91g/t Au [102-108m]
		125	127	1m Sample	2m @ 0.37g/t Au [125-127m]
		129	130	1m Sample	1m @ 0.15g/t Au [129-130m]
	PPRC755	84	85	1m Sample	1m @ 0.31g/t Au [84-85m]
Paris	PPRC760	4	6	1m Sample	2m @ 0.12g/t Au [4-6m]
Paris South	PPRC761	52	54	1m Sample	2m @ 0.11g/t Au [52-54m]
		61	62	1m Sample	1m @ 0.14g/t Au [61-62m]
Ares	PPRC763	72	73	1m Sample	1m @ 0.22g/t Au [72-73m]
Paris South	PPRC772	29	30	1m Sample	1m @ 1.54g/t Au [29-30m]
Paris	PPRC774	87	88	1m Sample	1m @ 0.12g/t Au [87-88m]
Paris East	PPRC775	51	53	1m Sample	2m @ 0.29g/t Au [51-53m]
		56	57	1m Sample	1m @ 0.19g/t Au [56-57m]
	PPRC776	66	67	1m Sample	1m @ 0.1g/t Au [66-67m]
Ares	PPRC778	93	94	1m Sample	1m @ 0.19g/t Au [93-94m]
	PPRC779	118	119	1m Sample	1m @ 0.1g/t Au [118-119m]
	PPRC786	52	55	1m Sample	3m @ 0.6g/t Au [52-55m]
	PPRC789	51	54	3m Composite	3m @ 0.16g/t Au [51-54m]
Paris North	PPRC791	69	75	3m Composite	6m @ 0.17g/t Au [69-75m]

REPORTABLE SILVER > 10g/t INTERSECTIONS

PROSPECT	HOLE ID	FROM (m)	TO (m)	Sample Type	INTERSECTION
Paris North	PPRC744	23	26	1m Sample	3m @ 16g/t Ag [23-26m]
		29	32	1m Sample	3m @ 17g/t Ag [29-32m]
		48	51	1m Sample	3m @ 22g/t Ag [48-51m]
		56	59	1m Sample	3m @ 17g/t Ag [56-59m]
		62	68	1m Sample	6m @ 14g/t Ag [62-68m]
		70	76	1m Sample	6m @ 13g/t Ag [70-76m]
Paris North	PPRC745	55	56	1m Sample	1m @ 21g/t Ag [55-56m]
		65	68	1m Sample	3m @ 12g/t Ag [65-68m]
		107	108	1m Sample	1m @ 12g/t Ag [107-108m]
Paris East	PPRC746	71	74	1m Sample	3m @ 18g/t Ag [71-74m]
		80	81	1m Sample	1m @ 11g/t Ag [80-81m]
		84	85	1m Sample	1m @ 10g/t Ag [84-85m]
		115	116	1m Sample	1m @ 13g/t Ag [115-116m]
Paris	PPRC747	23	26	1m Sample	3m @ 13g/t Ag [23-26m]
		34	38	1m Sample	4m @ 15g/t Ag [34-38m]
		60	63	1m Sample	3m @ 12g/t Ag [60-63m]
		93	95	1m Sample	2m @ 13g/t Ag [93-95m]
		101	102	1m Sample	1m @ 12g/t Ag [101-102m]
		105	108	1m Sample	3m @ 17g/t Ag [105-108m]
	PPRC748	40	26	1m Sample	24m @ 40g/t Ag [12-36m] includes
		12	36		2m @ 247g/t Ag [17-19m]
		44	46	1m Sample	2m @ 15g/t Ag [44-46m]
		48	55	1m Sample	7m @ 35g/t Ag [48-55m]
	PPRC749	39	44	1m Sample	5m @ 39g/t Ag [39-44m] includes 1m @ 96g/t Ag [43-44m]
		60	65	1m Sample	5m @ 19g/t Ag [60-65m]
		68	72	1m Sample	4m @ 20g/t Ag [68-72m]
	PPRC750			1m Sample	14m @ 45g/t Ag [13-27m] includes
		13	27		5m @ 86g/t Ag [16-21m]
		46	52	1m Sample	6m @ 15g/t Ag [46-52m]
		54	58	1m Sample	4m @ 25g/t Ag [54-58m]
	PPRC751	7	11	1m Sample	4m @ 12g/t Ag [7-11m]
	1110/31	13	11	1m Sample	1m @ 18g/t Ag [13-14m]
		15	20	1m Sample	4m @ 27g/t Ag [16-20m]
		10	20	1m Sample	
		32	38	111 Sumple	6m @ 44g/t Ag [32-38m] includes
		62	65	1m Sample	2m @ 102g/t Ag [32-34m]
		63	65	1m Sample	2m @ 50g/t Ag [63-65m]
		76	78	1m Sample	2m @ 40g/t Ag [76-78m]
	PPRC752	31	33	1m Sample	2m @ 19g/t Ag [31-33m]
		36	39	1m Sample	3m @ 49g/t Ag [36-39m]
		57	58	1m Sample	1m @ 62g/t Ag [57-58m]
		60	62	1m Sample	2m @ 15g/t Ag [60-62m]

REPORTABLE SILVER > 10g/t INTERSECTIONS

PROSPECT Paris East	PPRC753	FROM (m) 11	TO (m) 12	Sample Type 1m Sample	INTERSECTION 1m @ 10g/t Ag [11-12m]
Fulls Lust	FFNC755	32	53	1m Sample	21m @ 14g/t Ag [32-53m]
				1m Sample	7m @ 35g/t Ag [63-70m] includes
		63	70		7m @ 62g/t Ag [62-69m] and 1m @
					131g/t [64-65m]
		73	80	1m Sample	7m @ 13g/t Ag [73-80m]
		97	98	1m Sample	1m @ 11g/t Ag [97-98m]
		100	108	1m Sample	8m @ 15g/t Ag [100-108m]
		124	127	1m Sample	3m @ 26g/t Ag [124-127m]
		129 135	130 139	1m Sample	1m @ 30g/t Ag [129-130m] 4m @ 15g/t Ag [135-139m]
	PPRC754	73	74	1m Sample 1m Sample	1m @ 16g/t Ag [73-74m]
	PPRC755	44	45	1m Sample	1m @ 13g/t Ag [44-45m]
		54	59	1m Sample	5m @ 16g/t Ag [54-59m]
		72	75	1m Sample	3m @ 13g/t Ag [72-75m]
		78	85	1m Sample	7m @ 13g/t Ag [78-85m]
	PPRC756	55	56	1m Sample	1m @ 12g/t Ag [55-56m]
		93	94	1m Sample	1m @ 10g/t Ag [93-94m]
	PPRC757	55	56	1m Sample	1m @ 12g/t Ag [55-56m]
		59	60	1m Sample	1m @ 23g/t Ag [59-60m]
Paris	PPRC758	86 15	87	1m Sample	1m @ 15g/t Ag [86-87m] 1m @ 10g/t Ag [15-16m]
rui b	FFNC/38	15	16 20	1m Sample 1m Sample	1m @ 10g/t Ag [19-20m]
		30	33	1m Sample	3m @ 15g/t Ag [30-33m]
		36	37	1m Sample	1m @ 12g/t Ag [36-37m]
		96	99	1m Sample	3m @ 24g/t Ag [96-99m]
	PPRC759	29	46	1m Sample	17m @ 21g/t Ag [29-46m]
		52	64	1m Sample	12m @ 13g/t Ag [52-64m]
		66	68	1m Sample	2m @ 17g/t Ag [66-68m]
		73	75	1m Sample	2m @ 13g/t Ag [73-75m]
		97	107	1m Sample	10m @ 14g/t Ag [97-107m]
	PPRC760	93	94	1m Sample	1m @ 14g/t Ag [93-94m]
		103 138	104 141	1m Sample	1m @ 11g/t Ag [103-104m]
Paris South	PPRC761	79	97	1m Sample 1m Sample	3m @ 14g/t Ag [138-141m] 18m @ 30g/t Ag [79-97m] includes
Funs South	FFRC/01	,,,	57	111 Sumple	9m@ 41g/t Ag [81-89m]
Ares North	PPRC763	72	74	1m Sample	2m @ 243g/t Ag [72-74m]
		76	78	1m Sample	2m @ 37g/t Ag [76-78m]
			-	1m Sample	
		80	83		3m @ 19q/t Aq (80-83m)
		80 85	87	1m Sample	3m @ 19g/t Ag [80-83m] 2m @ 12g/t Ag [85-87m]
				· ·	
Helen East	PPRC767	85	87	1m Sample	2m @ 12g/t Ag [85-87m]
Helen East	PPRC767	85 93	87 104	1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m]
Helen East	PPRC767	85 93 33 39 53	87 104 36 45 54	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m]
Helen East	PPRC767	85 93 33 39 53 56	87 104 36 45 54 70	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 14m @ 48g/t Ag [56-70m]
Helen East	PPRC767	85 93 33 39 53 56 72	87 104 36 45 54 70 82	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 14m @ 48g/t Ag [56-70m] 10m @ 29g/t Ag [72-82m]
Helen East	PPRC767	85 93 33 39 53 56 72 124	87 104 36 45 54 70 82 127	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [33-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 14m @ 48g/t Ag [56-70m] 10m @ 29g/t Ag [72-82m] 3m @ 19g/t Ag [124-127m]
		85 93 33 53 56 72 124 136	87 104 36 45 54 70 82 127 137	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample 1m Sample 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [33-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 1m @ 48g/t Ag [56-70m] 10m @ 29g/t Ag [72-82m] 3m @ 19g/t Ag [124-127m] 1m @ 10g/t Ag [136-137m]
Helen East Paris South	PPRC767 PPRC7772	85 93 33 53 56 72 124 136 12	87 104 36 45 54 70 82 127 137 14	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample 1m Sample 1m Sample 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 14m @ 48g/t Ag [56-70m] 10m @ 29g/t Ag [72-82m] 3m @ 19g/t Ag [126-137m] 2m @ 13g/t Ag [12-14m]
		85 93 33 53 56 72 124 136	87 104 36 45 54 70 82 127 137	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample 1m Sample 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 14m @ 48g/t Ag [56-70m] 10m @ 29g/t Ag [72-82m] 3m @ 19g/t Ag [126-137m] 2m @ 13g/t Ag [12-14m] 3m @ 11g/t Ag [17-20m]
		85 93 33 53 56 72 124 136 12 17	87 104 36 45 54 70 82 127 137 14 20	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample 1m Sample 1m Sample 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 14m @ 48g/t Ag [56-70m] 10m @ 29g/t Ag [72-82m] 3m @ 19g/t Ag [126-137m] 2m @ 13g/t Ag [12-14m] 3m @ 11g/t Ag [17-20m]
		85 93 33 53 56 72 124 136 12 17	87 104 36 45 54 70 82 127 137 14 20	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample 1m Sample 1m Sample 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 14m @ 48g/t Ag [56-70m] 10m @ 29g/t Ag [124-127m] 3m @ 19g/t Ag [124-127m] 1m @ 10g/t Ag [12-14m] 3m @ 13g/t Ag [12-14m] 3m @ 11g/t Ag [17-20m] 10m @ 137g/t Ag [25-35m] includo
		85 93 33 56 72 124 136 12 17 25	87 104 36 45 54 70 82 127 137 14 20 35	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample 1m Sample 1m Sample 1m Sample 1m Sample 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [55-54m] 1m @ 23g/t Ag [75-70m] 10m @ 23g/t Ag [72-82m] 3m @ 19g/t Ag [124-127m] 1m @ 10g/t Ag [136-137m] 2m @ 13g/t Ag [12-14m] 3m @ 11g/t Ag [17-20m] 10m @ 137g/t Ag [25-35m] includ 4m @ 309g/t Ag [26-30m]
		85 93 33 39 53 56 72 124 136 12 17 25 138	87 104 36 45 54 70 82 127 127 14 20 35 141	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample 1m Sample 1m Sample 1m Sample 1m Sample 1m Sample 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [75-70m] 10m @ 29g/t Ag [72-82m] 3m @ 19g/t Ag [124-127m] 1m @ 10g/t Ag [124-127m] 1m @ 10g/t Ag [124-127m] 1m @ 11g/t Ag [17-20m] 3m @ 11g/t Ag [17-20m] 3m @ 13g/t Ag [25-35m] includ 4m @ 309g/t Ag [26-30m] 3m @ 14g/t Ag [138-141m]
Paris South	PPRC772	85 93 33 39 53 56 72 124 136 12 13 17 25 138 160 51 61	87 104 36 45 54 70 82 127 137 14 20 35 141 161 57 62	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 14m @ 48g/t Ag [56-70m] 10m @ 29g/t Ag [72-82m] 3m @ 19g/t Ag [12-14m] 3m @ 11g/t Ag [136-137m] 2m @ 13g/t Ag [12-14m] 3m @ 11g/t Ag [12-35m] includ 4m @ 309g/t Ag [25-35m] includ 4m @ 309g/t Ag [26-30m] 3m @ 14g/t Ag [138-141m] 1m @ 10g/t Ag [138-141m] 1m @ 10g/t Ag [16-161m] 6m @ 11g/t Ag [51-57m] 1m @ 72g/t Ag [61-62m]
Paris South	PPRC772 PPRC773	85 93 33 39 53 56 72 124 136 12 17 25 138 160 51 61 65	87 104 36 45 54 70 82 127 137 14 20 35 141 161 57 62 66	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 14m @ 48g/t Ag [56-70m] 10m @ 29g/t Ag [72-82m] 3m @ 19g/t Ag [12-14m] 3m @ 10g/t Ag [136-137m] 2m @ 13g/t Ag [12-14m] 3m @ 11g/t Ag [17-20m] 10m @ 137g/t Ag [25-35m] includ 4m @ 309g/t Ag [26-30m] 3m @ 14g/t Ag [138-141m] 1m @ 10g/t Ag [160-161m] 6m @ 11g/t Ag [16-157m] 1m @ 72g/t Ag [61-62m] 1m @ 21g/t Ag [65-66m]
Paris South	PPRC772	85 93 33 39 53 56 72 124 136 12 17 25 138 160 51 61 65 37	87 104 36 45 54 70 82 127 137 14 20 35 141 161 57 62 66 38	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 14m @ 48g/t Ag [56-70m] 10m @ 29g/t Ag [72-82m] 3m @ 19g/t Ag [12-127m] 1m @ 10g/t Ag [136-137m] 2m @ 13g/t Ag [12-14m] 3m @ 11g/t Ag [12-14m] 3m @ 11g/t Ag [12-35m] includ 4m @ 309g/t Ag [26-30m] 3m @ 14g/t Ag [138-141m] 1m @ 10g/t Ag [160-161m] 6m @ 11g/t Ag [16-157m] 1m @ 21g/t Ag [65-66m] 1m @ 21g/t Ag [65-66m] 1m @ 29g/t Ag [37-38m]
Paris South Paris	PPRC772 PPRC773 PPRC774	85 93 33 39 53 56 72 124 136 12 17 25 138 160 51 61 65 37 82	87 104 36 45 54 70 82 127 137 14 20 35 141 161 57 62 66 38 92	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [54-570m] 10m @ 29g/t Ag [72-82m] 3m @ 19g/t Ag [124-127m] 1m @ 10g/t Ag [126-137m] 2m @ 13g/t Ag [12-14m] 3m @ 11g/t Ag [12-20m] 10m @ 137g/t Ag [25-35m] includ 4m @ 309g/t Ag [26-30m] 3m @ 14g/t Ag [18-141m] 1m @ 10g/t Ag [160-161m] 6m @ 11g/t Ag [15-57m] 1m @ 20g/t Ag [61-62m] 1m @ 22g/t Ag [65-66m] 1m @ 21g/t Ag [65-66m] 1m @ 22g/t Ag [37-38m] 10m @ 28g/t Ag [82-92m]
Paris South	PPRC772 PPRC773	85 93 33 39 53 56 72 124 136 12 17 25 138 160 51 65 37 82 25	87 104 36 45 54 70 82 127 137 14 20 35 141 161 57 62 66 38 92 28	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [55-70m] 10m @ 29g/t Ag [72-82m] 3m @ 19g/t Ag [124-127m] 1m @ 10g/t Ag [126-137m] 2m @ 13g/t Ag [12-14m] 3m @ 11g/t Ag [12-14m] 3m @ 11g/t Ag [17-20m] 10m @ 137g/t Ag [25-35m] includ 4m @ 309g/t Ag [26-30m] 3m @ 14g/t Ag [138-141m] 1m @ 100g/t Ag [160-161m] 6m @ 11g/t Ag [51-57m] 1m @ 21g/t Ag [61-62m] 1m @ 21g/t Ag [65-66m] 1m @ 21g/t Ag [65-66m] 1m @ 21g/t Ag [87-38m] 10m @ 28g/t Ag [82-92m] 3m @ 14g/t Ag [25-28m]
Paris South Paris	PPRC772 PPRC773 PPRC774	85 93 33 39 53 56 72 124 136 12 17 25 138 160 51 61 65 37 82 25 33	87 104 36 45 54 70 82 127 137 14 20 35 141 161 57 62 66 38 92 28 38	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [55-70m] 10m @ 29g/t Ag [72-82m] 3m @ 10g/t Ag [124-127m] 1m @ 10g/t Ag [126-137m] 2m @ 10g/t Ag [12-14m] 3m @ 11g/t Ag [12-14m] 3m @ 13g/t Ag [25-35m] includ 4m @ 309g/t Ag [26-30m] 3m @ 14g/t Ag [150-161m] 6m @ 11g/t Ag [150-161m] 1m @ 20g/t Ag [61-62m] 1m @ 21g/t Ag [61-62m] 1m @ 21g/t Ag [61-62m] 1m @ 21g/t Ag [82-92m] 3m @ 14g/t Ag [25-28m] 5m @ 20g/t Ag [82-92m] 3m @ 14g/t Ag [25-28m]
Paris South Paris	PPRC772 PPRC773 PPRC774	85 93 33 39 53 56 72 124 136 12 17 25 138 160 51 65 37 82 25	87 104 36 45 54 70 82 127 137 14 20 35 141 161 57 62 66 38 92 28	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample	2 m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [53-54m] 10m @ 29g/t Ag [72-82m] 3m @ 19g/t Ag [124-127m] 1m @ 10g/t Ag [124-127m] 2m @ 13g/t Ag [124-127m] 3m @ 11g/t Ag [136-137m] 2m @ 13g/t Ag [12-14m] 3m @ 11g/t Ag [17-20m] 10m @ 137g/t Ag [25-35m] includ 4m @ 309g/t Ag [26-30m] 3m @ 14g/t Ag [138-141m] 1m @ 10g/t Ag [160-161m] 6m @ 11g/t Ag [51-57m] 1m @ 72g/t Ag [61-62m] 1m @ 22g/t Ag [37-38m] 10m @ 25g/t Ag [25-25m] 3m @ 14g/t Ag [25-28m] 3m @ 14g/t Ag [25-28m] 5m @ 20g/t Ag [33-38m] 4m @ 20g/t Ag [40-44m]
Paris South Paris	PPRC772 PPRC773 PPRC774	85 93 33 39 53 56 72 124 136 12 17 25 138 160 51 61 65 37 82 25 33 40	87 104 36 45 54 70 82 127 137 14 20 35 141 161 57 62 66 38 92 28 38 44	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [72-82m] 3m @ 19g/t Ag [124-127m] 1m @ 10g/t Ag [124-127m] 1m @ 10g/t Ag [124-127m] 1m @ 10g/t Ag [17-20m] 2m @ 13g/t Ag [25-35m] includ 4m @ 309g/t Ag [26-30m] 3m @ 14g/t Ag [138-141m] 1m @ 10g/t Ag [160-161m] 6m @ 11g/t Ag [51-57m] 1m @ 22g/t Ag [61-62m] 1m @ 22g/t Ag [25-36m] 3m @ 14g/t Ag [55-56m] 1m @ 22g/t Ag [82-92m] 3m @ 14g/t Ag [52-28m] 5m @ 22g/t Ag [33-38m] 4m @ 20g/t Ag [33-38m] 4m @ 20g/t Ag [40-44m] 5m @ 122g/t Ag [51-57m]
Paris South Paris	PPRC772 PPRC773 PPRC774	85 93 33 39 53 56 72 124 136 12 17 25 138 160 51 61 65 37 82 25 33 40 51	87 104 36 45 54 70 82 127 137 14 20 35 141 161 57 62 66 38 92 28 38 44 57	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample	2 m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [53-54m] 10m @ 29g/t Ag [72-82m] 3m @ 19g/t Ag [124-127m] 1m @ 10g/t Ag [124-127m] 2m @ 13g/t Ag [124-127m] 3m @ 11g/t Ag [136-137m] 2m @ 13g/t Ag [12-14m] 3m @ 11g/t Ag [17-20m] 10m @ 137g/t Ag [25-35m] includ 4m @ 309g/t Ag [26-30m] 3m @ 14g/t Ag [138-141m] 1m @ 10g/t Ag [160-161m] 6m @ 11g/t Ag [51-57m] 1m @ 72g/t Ag [61-62m] 1m @ 22g/t Ag [37-38m] 10m @ 25g/t Ag [25-25m] 3m @ 14g/t Ag [25-28m] 3m @ 14g/t Ag [25-28m] 5m @ 20g/t Ag [33-38m] 4m @ 20g/t Ag [40-44m]
Paris South Paris	PPRC772 PPRC773 PPRC774	85 93 33 39 53 56 72 124 136 17 25 138 160 51 61 65 37 82 25 33 40 51 110	87 104 36 45 54 70 82 127 137 141 20 35 66 38 22 38 44 57 111	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample	2 m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [33-36m] 1m @ 23g/t Ag [53-34m] 1m @ 23g/t Ag [53-34m] 1m @ 23g/t Ag [72-82m] 3m @ 19g/t Ag [12-127m] 1m @ 10g/t Ag [12-137m] 2m @ 13g/t Ag [12-14m] 3m @ 11g/t Ag [12-14m] 3m @ 11g/t Ag [12-30m] 10m @ 137g/t Ag [25-35m] includ 4m @ 309g/t Ag [25-35m] includ 4m @ 309g/t Ag [25-35m] 1m @ 10g/t Ag [138-141m] 1m @ 10g/t Ag [138-141m] 1m @ 10g/t Ag [16-161m] 6m @ 11g/t Ag [51-57m] 1m @ 22g/t Ag [82-92m] 3m @ 14g/t Ag [37-38m] 10m @ 28g/t Ag [82-92m] 3m @ 14g/t Ag [25-28m] 5m @ 20g/t Ag [40-44m] 6m @ 112g/t Ag [10-111m]
Paris South Paris	PPRC772 PPRC773 PPRC774 PPRC775	85 93 33 39 53 56 72 124 136 12 17 25 138 160 51 61 65 37 82 25 33 40 51 110 115	87 104 36 45 54 70 82 127 137 14 20 35 141 66 38 92 28 38 44 57 111 117	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 14m @ 48g/t Ag [56-70m] 10m @ 29g/t Ag [72-82m] 3m @ 10g/t Ag [12-127m] 1m @ 10g/t Ag [12-14m] 3m @ 13g/t Ag [25-35m] includ 4m @ 309g/t Ag [26-30m] 3m @ 14g/t Ag [138-141m] 1m @ 10g/t Ag [160-161m] 6m @ 11g/t Ag [55-57m] 1m @ 20g/t Ag [61-62m] 1m @ 22g/t Ag [62-92m] 3m @ 14g/t Ag [32-38m] 10m @ 22g/t Ag [32-92m] 3m @ 14g/t Ag [33-38m] 10m @ 22g/t Ag [32-92m] 3m @ 14g/t Ag [25-28m] 5m @ 20g/t Ag [32-38m] 10m @ 22g/t Ag [32-38m] 10m @ 20g/t Ag [32-38m] 10m @ 20g/t Ag [32-38m] 10m @ 12g/t Ag [10-44m] 6m @ 122g/t Ag [51-57m] 1m @ 11g/t Ag [110-111m]
Paris South Paris	PPRC772 PPRC773 PPRC774 PPRC775	85 93 33 39 53 56 72 124 136 12 17 25 138 160 51 61 65 37 82 25 33 40 51 110 115	87 104 36 45 54 70 82 127 137 14 20 35 141 161 57 62 66 38 92 28 38 44 57 111 117 108	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [52-70m] 10m @ 29g/t Ag [72-82m] 3m @ 19g/t Ag [12-82m] 3m @ 19g/t Ag [12-127m] 1m @ 10g/t Ag [12-14m] 3m @ 11g/t Ag [12-14m] 3m @ 13g/t Ag [22-30m] 10m @ 137g/t Ag [25-35m] include 4m @ 309g/t Ag [26-30m] 3m @ 14g/t Ag [138-141m] 1m @ 10g/t Ag [160-161m] 6m @ 11g/t Ag [51-57m] 1m @ 20g/t Ag [61-62m] 1m @ 21g/t Ag [62-28m] 3m @ 14g/t Ag [25-28m] 3m @ 14g/t Ag [25-28m] 3m @ 14g/t Ag [25-28m] 5m @ 20g/t Ag [33-38m] 4m @ 20g/t Ag [33-38m] 4m @ 20g/t Ag [51-57m] 1m @ 11g/t Ag [151-11m] 2m @ 14g/t Ag [151-57m] 2m @ 12g/t Ag [151-57m] 1m @ 11g/t Ag [115-117m] 2m @ 14g/t Ag [115-117m]
Paris South Paris Paris East	PPRC772 PPRC773 PPRC774 PPRC775 PPRC776	85 93 33 39 53 56 72 124 136 12 17 25 138 160 51 61 65 37 82 25 33 40 51 110 115 106 110	87 104 36 45 54 70 82 127 137 14 20 35 66 38 92 28 38 44 57 111 108 111	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [52-70m] 1m @ 19g/t Ag [72-82m] 3m @ 19g/t Ag [72-82m] 3m @ 19g/t Ag [12-14m] 3m @ 13g/t Ag [12-14m] 3m @ 13g/t Ag [12-14m] 3m @ 11g/t Ag [17-20m] 10m @ 137g/t Ag [25-35m] include 4m @ 309g/t Ag [26-30m] 3m @ 14g/t Ag [138-141m] 1m @ 10g/t Ag [160-161m] 6m @ 11g/t Ag [65-66m] 1m @ 21g/t Ag [65-66m] 1m @ 22g/t Ag [82-92m] 3m @ 14g/t Ag [125-28m] 5m @ 20g/t Ag [82-92m] 3m @ 14g/t Ag [25-28m] 5m @ 20g/t Ag [82-92m] 3m @ 14g/t Ag [25-27m] 1m @ 20g/t Ag [33-38m] 4m @ 20g/t Ag [51-57m] 5m @ 122g/t Ag [51-57m] 1m @ 11g/t Ag [10-111m] 2m @ 30g/t Ag [10-111m] 2m @ 30g/t Ag [10-111m]
Paris South Paris Paris East	PPRC772 PPRC772 PPRC773 PPRC774 PPRC775 PPRC776 PPRC778	85 93 33 39 53 56 72 124 136 12 17 25 138 160 51 65 37 82 25 33 40 51 110 115 106 110 89	87 104 36 45 54 70 82 127 137 14 20 35 141 161 57 62 66 38 92 28 38 44 57 111 117 108 111 90	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [54-70m] 10m @ 29g/t Ag [72-82m] 3m @ 19g/t Ag [124-127m] 1m @ 10g/t Ag [126-137m] 2m @ 13g/t Ag [12-14m] 3m @ 13g/t Ag [12-14m] 3m @ 13g/t Ag [12-30m] 10m @ 137g/t Ag [25-35m] include 4m @ 309g/t Ag [26-30m] 3m @ 14g/t Ag [138-141m] 1m @ 10g/t Ag [160-161m] 6m @ 11g/t Ag [15-57m] 1m @ 22g/t Ag [82-92m] 3m @ 14g/t Ag [25-28m] 5m @ 20g/t Ag [82-92m] 3m @ 14g/t Ag [25-28m] 5m @ 20g/t Ag [33-38m] 10m @ 28g/t Ag [82-92m] 3m @ 14g/t Ag [51-57m] 1m @ 21g/t Ag [51-57m] 1m @ 21g/t Ag [51-57m] 5m @ 20g/t Ag [10-11m] 2m @ 10g/t Ag [10-111m] 2m @ 30g/t Ag [10-111m] 2m @ 30g/t Ag [10-111m] 1m @ 11g/t Ag [10-111m] 1m @ 11g/t Ag [10-111m]
Paris South Paris Paris Paris East Ares North	PPRC772 PPRC772 PPRC773 PPRC774 PPRC775 PPRC776 PPRC778 PPRC779	85 93 33 39 53 56 72 124 136 12 17 25 138 160 51 61 65 37 82 25 33 40 51 110 115 106 110 89 128 57 47	87 104 36 45 54 70 82 127 137 14 20 35 141 161 57 62 66 38 92 28 38 44 57 111 117 108 111 90 133 60 51	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [55-70m] 10m @ 29g/t Ag [72-82m] 3m @ 19g/t Ag [124-127m] 1m @ 10g/t Ag [12-14m] 3m @ 11g/t Ag [12-14m] 3m @ 11g/t Ag [17-20m] 10m @ 137g/t Ag [25-35m] includ 4m @ 309g/t Ag [26-30m] 3m @ 14g/t Ag [138-141m] 1m @ 10g/t Ag [160-161m] 6m @ 11g/t Ag [51-57m] 1m @ 20g/t Ag [82-92m] 3m @ 14g/t Ag [52-28m] 5m @ 20g/t Ag [82-92m] 3m @ 14g/t Ag [12-138m] 10m @ 22g/t Ag [82-92m] 3m @ 14g/t Ag [10-114m] 2m @ 20g/t Ag [10-111m] 1m @ 20g/t Ag [10-111m] 2m @ 30g/t Ag [106-108m] 1m @ 11g/t Ag [110-111m] 2m @ 30g/t Ag [126-133m] 3m @ 12g/t Ag [128-133m] 3m @ 12g/t Ag [57-60m] 4m @ 38g/t Ag [47-51m]
Paris South Paris Paris Paris East Ares North Helen East	PPRC772 PPRC773 PPRC774 PPRC775 PPRC776 PPRC778 PPRC778 PPRC784 PPRC786	85 93 33 39 53 56 72 124 136 12 17 25 138 160 51 61 65 37 82 25 33 40 51 110 115 106 110 89 128 57 47 53	87 104 36 45 54 70 82 127 137 14 20 35 77 62 66 38 92 28 38 44 57 111 117 108 111 90 133 60 51 55	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [93-104m] 3m @ 12g/t Ag [93-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [55-70m] 10m @ 29g/t Ag [72-82m] 3m @ 19g/t Ag [124-127m] 1m @ 10g/t Ag [126-137m] 2m @ 13g/t Ag [12-14m] 3m @ 11g/t Ag [17-20m] 10m @ 137g/t Ag [25-35m] includ 4m @ 309g/t Ag [26-30m] 3m @ 14g/t Ag [138-141m] 1m @ 10g/t Ag [160-161m] 6m @ 11g/t Ag [51-57m] 1m @ 20g/t Ag [82-92m] 3m @ 14g/t Ag [165-66m] 1m @ 22g/t Ag [82-92m] 3m @ 14g/t Ag [12-528m] 5m @ 20g/t Ag [82-92m] 3m @ 14g/t Ag [10-111m] 1m @ 20g/t Ag [10-57m] 1m @ 12g/t Ag [51-57m] 1m @ 11g/t Ag [110-111m] 2m @ 30g/t Ag [10-6108m] 1m @ 11g/t Ag [110-111m] 2m @ 31g/t Ag [126-133m] 3m @ 12g/t Ag [126-133m] 3m @ 12g/t Ag [57-60m] 4m @ 38g/t Ag [47-51m] 2m @ 31g/t Ag [53-55m]
Paris South Paris Paris Paris East Ares North Helen East Ares	PPRC772 PPRC773 PPRC774 PPRC775 PPRC776 PPRC776 PPRC778 PPRC784 PPRC786 PPRC787	85 93 33 39 53 56 72 124 136 12 17 25 138 160 51 61 65 37 82 25 33 40 51 110 115 106 110 89 128 57 47 53 48	87 104 36 45 54 70 82 127 137 14 20 35 141 66 38 92 28 38 44 57 111 108 111 90 133 60 51 55	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [33-36m] 6m @ 16g/t Ag [33-36m] 6m @ 16g/t Ag [33-45m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [52-70m] 10m @ 29g/t Ag [72-82m] 3m @ 19g/t Ag [12-14m] 3m @ 11g/t Ag [12-14m] 3m @ 11g/t Ag [12-14m] 3m @ 11g/t Ag [12-30m] 10m @ 137g/t Ag [25-35m] include 4m @ 309g/t Ag [25-35m] include 4m @ 309g/t Ag [25-35m] include 4m @ 309g/t Ag [25-35m] 1m @ 12g/t Ag [61-62m] 1m @ 22g/t Ag [61-62m] 1m @ 22g/t Ag [61-62m] 1m @ 22g/t Ag [62-92m] 3m @ 14g/t Ag [25-38m] 10m @ 28g/t Ag [25-28m] 5m @ 20g/t Ag [37-38m] 10m @ 22g/t Ag [52-52m] 3m @ 14g/t Ag [25-28m] 5m @ 20g/t Ag [37-38m] 10m @ 28g/t Ag [25-28m] 5m @ 20g/t Ag [10-11m] 2m @ 14g/t Ag [10-111m] 2m @ 30g/t Ag [10-111m] 2m @ 30g/t Ag [128-133m] 3m @ 12g/t Ag [128-133m] 3m @ 12g/t Ag [52-50m]
Paris South Paris Paris Paris East Ares North Helen East	PPRC772 PPRC773 PPRC774 PPRC775 PPRC776 PPRC778 PPRC778 PPRC784 PPRC786	85 93 33 39 53 56 72 124 136 12 17 25 138 160 51 61 65 37 82 25 33 40 51 110 115 106 110 89 128 57 47 53	87 104 36 45 54 70 82 127 137 14 20 35 77 62 66 38 92 28 38 44 57 111 117 108 111 90 133 60 51 55	1m Sample 1m Sample 3m Composite 3m Composite 1m Sample 1m Sample	2m @ 12g/t Ag [85-87m] 11m @ 21g/t Ag [93-104m] 3m @ 12g/t Ag [93-104m] 3m @ 12g/t Ag [93-36m] 6m @ 16g/t Ag [39-45m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [53-54m] 1m @ 23g/t Ag [55-70m] 10m @ 29g/t Ag [72-82m] 3m @ 19g/t Ag [124-127m] 1m @ 10g/t Ag [126-137m] 2m @ 13g/t Ag [12-14m] 3m @ 11g/t Ag [17-20m] 10m @ 137g/t Ag [25-35m] includ 4m @ 309g/t Ag [26-30m] 3m @ 14g/t Ag [138-141m] 1m @ 10g/t Ag [160-161m] 6m @ 11g/t Ag [51-57m] 1m @ 20g/t Ag [82-92m] 3m @ 14g/t Ag [165-66m] 1m @ 22g/t Ag [82-92m] 3m @ 14g/t Ag [12-528m] 5m @ 20g/t Ag [82-92m] 3m @ 14g/t Ag [10-111m] 1m @ 20g/t Ag [10-57m] 1m @ 12g/t Ag [51-57m] 1m @ 11g/t Ag [110-111m] 2m @ 30g/t Ag [10-6108m] 1m @ 11g/t Ag [110-111m] 2m @ 31g/t Ag [126-133m] 3m @ 12g/t Ag [126-133m] 3m @ 12g/t Ag [57-60m] 4m @ 38g/t Ag [47-51m] 2m @ 31g/t Ag [53-55m]

REPORTABLE LEAD INTERSECTIONS >1000ppm

PROSPECT	HOLEID	FROM (m)	TO (m)	Sample Type	INTERSECTION
Paris North	PPRC744	26	29	1m Sample	3m @ .22 % Pb [26-29m]
		48 56	49 57	1m Sample 1m Sample	1m @ .27 % Pb [48-49m] 1m @ .13 % Pb [56-57m]
		61	62	1m Sample	1m @ .17 % Pb [61-62m]
		68	69	1m Sample	1m @ .11 % Pb [68-69m]
		71	73	1m Sample	2m @ .21 % Pb [71-73m]
		77	79	1m Sample	2m @ .16 % Pb [77-79m]
	PPRC745	50	52	1m Sample	2m @ .13 % Pb [50-52m]
		54	56	1m Sample	2m @ .12 % Pb [54-56m]
		64	65	1m Sample	1m @ .12 % Pb [64-65m]
		90	93	1m Sample	3m @ .11 % Pb [90-93m]
		107	108	1m Sample	1m @ .1 % Pb [107-108m]
		126	128	1m Sample	2m @ .13 % Pb [126-128m]
Paris East	PPRC746	133 24	135 25	1m Sample 1m Sample	2m @ .3 % Pb [133-135m] 1m @ .36 % Pb [24-25m]
Fuild Eust	FFAC740	51	52	1m Sample	1m @ .12 % Pb [51-52m]
		61	62	1m Sample	1m @ .12 % Pb [61-62m]
		64	69	1m Sample	5m @ .29 % Pb [64-69m]
		72	73	1m Sample	1m @ .11 % Pb [72-73m]
		80	85	1m Sample	5m @ .22 % Pb [80-85m]
		115	117	1m Sample	2m @ .22 % Pb [115-117m]
Paris	PPRC747	27	39	1m Sample	12m @ . 22 % Pb [27-39m]
		41	44	1m Sample	3m @ 1.65 % Pb [41-44m]
		61	63	1m Sample	2m @ .13 % Pb [61-63m]
		91	94	1m Sample	3m @ .12 % Pb [91-94m]
		101	102	1m Sample	1m @ .22 % Pb [101-102m]
	PPRC748	31	39	1m Sample	8m @ .37 % Pb [31-39m]
	PPRC749	41	42	1m Sample 1m Sample	1m @ .18 % Pb [41-42m] 2m @ .26 % Pb [18-20m]
	FPRC/49	18 23	20 34	1m Sample 1m Sample	2m @ .26 % Pb [18-20m] 11m @ .19 % Pb [23-34m]
		41	42	1m Sample	1111 @ .19 % Pb [23-5411] 1m @ .14 % Pb [41-42m]
		45	46	1m Sample	1m @ .12 % Pb [45-46m]
		69	71	1m Sample	2m @ .13 % Pb [69-71m]
	PPRC750	10	13	1m Sample	3m @ .18 % Pb [10-13m]
		16	17	1m Sample	1m @ .24 % Pb [16-17m]
		20	21	1m Sample	1m @ .26 % Pb [20-21m]
		25	27	1m Sample	2m @ .13 % Pb [25-27m]
		33	62	1m Sample	29m @ .29 % Pb [33-62m]
		63	66	1m Sample	3m @ .16 % Pb [63-66m]
	PPRC751	9	15	1m Sample	6m @ .25 % Pb [9-15m]
		18	19	1m Sample	1m @ .13 % Pb [18-19m]
		33	38	1m Sample	5m @ .59 % Pb [33-38m]
		42	49 65	1m Sample	7m @ .3 % Pb [42-49m]
		62 76	65 78	1m Sample	3m @ .32 % Pb [62-65m]
	PPRC752	32	78 35	1m Sample 1m Sample	2m @ .23 % Pb [76-78m] 3m @ .34 % Pb [32-35m]
	1110/32	57	62	1m Sample	5m @ .22 % Pb [57-62m]
Paris East	PPRC753	19	20	1m Sample	1m @ .11 % Pb [19-20m]
		37	46	1m Sample	9m @ .17 % Pb [37-46m]
		52	54	1m Sample	2m @ .17 % Pb [52-54m]
		61	81	1m Sample	20m @ .4 % Pb [61-81m]
		90	94	1m Sample	4m @ .15 % Pb [90-94m]
		97	98	1m Sample	1m @ .17 % Pb [97-98m]
		100	108	1m Sample	8m @ .17 % Pb [100-108m]
		117	119	1m Sample	2m @ .46 % Pb [117-119m]
		122	123	1m Sample	1m @ .29 % Pb [122-123m]
		134	139	1m Sample	5m @ .2 % Pb [134-139m]
	PPRC754	18	20	1m Sample	2m @ .26 % Pb [18-20m]
		22	23	1m Sample	1m @ .1 % Pb [22-23m]
		26	43	1m Sample	17m @ .45 % Pb [26-43m]
	DDDC7EE	74	76	1m Sample	2m @ .49 % Pb [74-76m]
	PPRC755	17 33	19 34	1m Sample 1m Sample	2m @ .31 % Pb [17-19m] 1m @ .11 % Pb [33-34m]
		42	34 47	1m Sample	1m @ .11 % Pb [33-34m] 5m @ .11 % Pb [42-47m]
		54	59	1m Sample	5m @ .17 % Pb [54-59m]
		69	91	1m Sample	22m @ .35 % Pb [69-91m]
		92	96	1m Sample	4m @ .19 % Pb [92-96m]
		98	99	1m Sample	1m @ .1 % Pb [98-99m]
	PPRC756	78	84	1m Sample	6m @ .13 % Pb [78-84m]
		90	91	1m Sample	1m @ .1 % Pb [90-91m]
		98	100	1m Sample	2m @ .15 % Pb [98-100m]
	PPRC757	43	44	1m Sample	1m @ .12 % Pb [43-44m]
		59	61	1m Sample	2m@.68%Pb[59-61m]
	1	63	65	1m Sample	2m @ .2 % Pb [63-65m]
		05			
		86	87	1m Sample	1m @ .19 % Pb [86-87m]

REPORTABLE LEAD INTERSECTIONS >1000ppm

				Constant of Themes	
PROSPECT Paris	HOLE ID PPRC758	FROM (m) 10	TO (m)	Sample Type	INTERSECTION 2m @ 11 % Ph [10-12m]
rans	FPRC/58	10	12 51	1m Sample 1m Sample	2m @ .11 % Pb [10-12m] 37m @ .35 % Pb [14-51m]
		79	85	1m Sample	6m @ .16 % Pb [79-85m]
		97	98	1m Sample	1m @ .11 % Pb [97-98m]
	PPRC759	10			2m @ .36 % Pb [10-12m]
		18	47	1m Sample	29m @ .56 % Pb [18-47m]
		49	55	1m Sample	6m @ .16 % Pb [49-55m]
		57	70	1m Sample	13m@.51%Pb[57-70m]
		72	83	1m Sample	11m @ .21 % Pb [72-83m]
		98	101	1m Sample	3m @ .15 % Pb [98-101m]
	PPRC760	6	7	1m Sample	1m @ .11 % Pb [6-7m]
		83	86	1m Sample	3m @ .2 % Pb [83-86m]
		136	143	1m Sample	7m @ .19 % Pb [136-143m]
Paris South	PPRC761	81	99	1m Sample	18m@.42%Pb[81-99m]
Ares	PPRC763	72	73	1m Sample	1m @ .15 % Pb [72-73m]
Helen East	PPRC765 PPRC766	123 27	126 33	3m Composite	3m @ .23 % Pb [123-126m] 6m @ .13 % Pb [27-33m]
neien Eust	PPRC766 PPRC767	27	33 24	3m Composite 3m Composite	6m @ .13 % Pb [27-33m] 3m @ .12 % Pb [21-24m]
	11110/07	36	85	3m Comp/1m Sample	49m @ 1.09 % Pb [36-85m]
		99	102	3m Composite	3m @ .23 % Pb [99-102m]
		111	102	3m Composite	3m @ .21 % Pb [111-114m]
		120	137	1m Sample	17m @ .45 % Pb [120-137m]
Paris East	PPRC768	117	120	3m Composite	3m @ .1 % Pb [117-120m]
Paris South	PPRC772	9	10	1m Sample	1m @ .23 % Pb [9-10m]
		12	31	1m Sample	19m @ .81 % Pb [12-31m]
		36	37	1m Sample	1m @ .11 % Pb [36-37m]
		51	52	1m Sample	1m @ .13 % Pb [51-52m]
Paris	PPRC773	13	19	1m Sample	6m @ .13 % Pb [13-19m]
		27	28	1m Sample	1m @ .11 % Pb [27-28m]
		39	40	1m Sample	1m @ .12 % Pb [39-40m]
		41 56	43 60	1m Sample	2m @ .11 % Pb [41-43m] 4m @ .13 % Pb [56-60m]
		65	60	1m Sample 1m Sample	4m @ .13 % Pb [56-60m] 1m @ .71 % Pb [65-66m]
		68	73	1m Sample	5m @ .12 % Pb [68-73m]
		85	86	1m Sample	1m @ .12 % Pb [85-86m]
	PPRC774	82	83	1m Sample	1m @ .1 % Pb [82-83m]
		86	92	1m Sample	6m @ .32 % Pb [86-92m]
		94	95	1m Sample	1m @ .12 % Pb [94-95m]
Paris East	PPRC775	42	44	1m Sample	2m @ .15 % Pb [42-44m]
		52	58	1m Sample	6m @ .43 % Pb [52-58m]
		61	71	1m Sample	10m @ .27 % Pb [61-71m]
		89	94	1m Sample	5m @ .15 % Pb [89-94m]
		98	99	1m Sample	1m @ .1 % Pb [98-99m]
		111	112	1m Sample	1m @ .26 % Pb [111-112m]
		116	125	1m Sample	9m @ .23 % Pb [116-125m]
	0000776	127	128	1m Sample	1m @ .11 % Pb [127-128m]
	PPRC776	21 24	22 25	1m Sample 1m Sample	1m @ .13 % Pb [21-22m] 1m @ .11 % Pb [24-25m]
		55	56	1m Sample	1m @ .11 % Pb [55-56m]
		73	81	1m Sample	8m @ .12 % Pb [73-81m]
		96	97	1m Sample	1m @ .11 % Pb [96-97m]
		102	103	1m Sample	1m @ .1 % Pb [102-103m]
		110	111	1m Sample	1m @ .16 % Pb [110-111m]
		114	115	1m Sample	1m @ .28 % Pb [114-115m]
		124	130	1m Sample	6m @ .72 % Pb [124-130m]
Ares	PPRC777	93	96	3m Composite	3m @ .21 % Pb [93-96m]
Ares		98	96 99	1m Sample	1m @ .13 % Pb [98-99m]
Ares	PPRC777 PPRC778	98 86	96 99 91	1m Sample 1m Sample	1m @ .13 % Pb [98-99m] 5m @ .23 % Pb [86-91m]
Ares	PPRC778	98 86 105	96 99 91 106	1m Sample 1m Sample 1m Sample	1m @ .13 % Pb [98-99m] 5m @ .23 % Pb [86-91m] 1m @ .22 % Pb [105-106m]
	PPRC778 PPRC779	98 86 105 132	96 99 91 106 133	1m Sample 1m Sample 1m Sample 1m Sample	1m @ .13 % Pb [98-99m] 5m @ .23 % Pb [86-91m] 1m @ .22 % Pb [105-106m] 1m @ .19 % Pb [132-133m]
Ares Helen East	PPRC778	98 86 105 132 45	96 99 91 106 133 48	1m Sample 1m Sample 1m Sample 1m Sample 3m Composite	1m @ .13 % Pb [98-99m] 5m @ .23 % Pb [86-91m] 1m @ .22 % Pb [105-106m] 1m @ .19 % Pb [132-133m] 3m @ .1 % Pb [45-48m]
	PPRC778 PPRC779	98 86 105 132 45 78	96 99 91 106 133 48 84	1m Sample 1m Sample 1m Sample 1m Sample 3m Composite 3m Composite	1m @ .13 % Pb [98-99m] 5m @ .23 % Pb [86-91m] 1m @ .22 % Pb [105-106m] 1m @ .19 % Pb [132-133m] 3m @ .1 % Pb [45-48m] 6m @ .28 % Pb [78-84m]
	PPRC778 PPRC779	98 86 105 132 45	96 99 91 106 133 48	1m Sample 1m Sample 1m Sample 1m Sample 3m Composite	1m @ .13 % Pb [98-99m] 5m @ .23 % Pb [86-91m] 1m @ .22 % Pb [105-106m] 1m @ .19 % Pb [132-133m] 3m @ .1 % Pb [45-48m] 6m @ .28 % Pb [78-84m] 21m @ .32 % Pb [108-129m]
Helen East	PPRC778 PPRC779 PPRC783	98 86 105 132 45 78 108	96 99 91 106 133 48 84 129	1m Sample 1m Sample 1m Sample 1m Sample 3m Composite 3m Composite 3m Composite	1m @ .13 % Pb [98-99m] 5m @ .23 % Pb [86-91m] 1m @ .22 % Pb [105-106m] 1m @ .19 % Pb [132-133m] 3m @ .1 % Pb [45-48m] 6m @ .28 % Pb [78-84m]
Helen East	PPRC778 PPRC779 PPRC783	98 86 105 132 45 78 108 84	96 99 91 106 133 48 84 129 87	1m Sample 1m Sample 1m Sample 3m Composite 3m Composite 3m Composite 3m Composite 3m Composite	1m @ .13 % Pb [98-99m] 5m @ .23 % Pb [86-91m] 1m @ .22 % Pb [105-106m] 1m @ .19 % Pb [132-133m] 3m @ .1 % Pb [45-48m] 6m @ .28 % Pb [78-84m] 21m @ .32 % Pb [108-129m] 3m @ .1 % Pb [84-87m] 3m @ .11 % Pb [144-147m]
Helen East Paris East	PPRC778 PPRC779 PPRC783 PPRC785	98 86 105 132 45 78 108 84 144	96 99 91 106 133 48 84 129 87 147	1m Sample 1m Sample 1m Sample 3m Composite 3m Composite 3m Composite 3m Composite 3m Composite 3m Composite	1m @ .13 % Pb [98-99m] 5m @ .23 % Pb [86-91m] 1m @ .22 % Pb [105-106m] 1m @ .19 % Pb [132-133m] 3m @ .1 % Pb [45-48m] 6m @ .28 % Pb [78-84m] 21m @ .32 % Pb [108-129m] 3m @ .12 % Pb [84-87m]
Helen East Paris East	PPRC778 PPRC779 PPRC783 PPRC785 PPRC786	98 86 105 132 45 78 108 84 144 47	96 99 91 106 133 48 84 129 87 147 72	1m Sample 1m Sample 1m Sample 3m Composite 3m Composite 3m Composite 3m Composite 3m Composite 1m Sample/3m Comp	1m @ .13 % Pb [98-99m] 5m @ .23 % Pb [86-91m] 1m @ .22 % Pb [105-106m] 1m @ .19 % Pb [132-133m] 3m @ .1 % Pb [45-48m] 21m @ .32 % Pb [78-84m] 21m @ .12 % Pb [78-84m] 3m @ .11 % Pb [44-147m] 35m @ .11 % Pb [144-147m] 25m @ .61 % Pb [78-72m] 5m @ .11 % Pb [39-44m]
Helen East Paris East	PPRC778 PPRC779 PPRC783 PPRC785 PPRC786	98 86 105 132 45 78 108 84 144 47 39	96 99 91 106 133 48 84 129 87 147 72 44	1m Sample 1m Sample 1m Sample 3m Composite 3m Composite 3m Composite 3m Composite 3m Composite 1m Sample/3m Comp 3m Composite	1m @ .13 % Pb [98-99m] 5m @ .23 % Pb [86-91m] 1m @ .22 % Pb [105-106m] 1m @ .19 % Pb [132-133m] 3m @ .1 % Pb [45-48m] 6m @ .28 % Pb [78-84m] 21m @ .32 % Pb [108-129m] 3m @ .11 % Pb [44-147m] 25m @ .61 % Pb [47-72m]
Helen East Paris East	PPRC778 PPRC779 PPRC783 PPRC785 PPRC786	98 86 105 132 45 78 108 84 144 47 39 48	96 99 91 106 133 48 84 129 87 147 72 44 56	1m Sample 1m Sample 1m Sample 1m Sample 3m Composite 3m Composite 3m Composite 3m Composite 1m Sample/3m Comp 3m Composite 1m Sample	1m @ .13 % Pb [98-99m] 5m @ .23 % Pb [86-91m] 1m @ .22 % Pb [105-106m] 1m @ .19 % Pb [132-133m] 3m @ .1 % Pb [45-48m] 21m @ .32 % Pb [78-84m] 21m @ .12 % Pb [78-84m] 3m @ .11 % Pb [44-147m] 35m @ .11 % Pb [44-147m] 25m @ .61 % Pb [47-72m] 5m @ .11 % Pb [39-44m] 8m @ .72 % Pb [48-56m]
Helen East Paris East	PPRC778 PPRC779 PPRC783 PPRC785 PPRC785 PPRC786 PPRC787	98 86 105 132 45 78 108 84 144 47 39 48 69	96 99 91 106 133 48 84 129 87 147 72 44 56 72	1m Sample 1m Sample 1m Sample 1m Sample 3m Composite 3m Composite 3m Composite 3m Composite 1m Sample/3m Comp 3m Composite 1m Sample 3m Composite	1m @ .13 % Pb [98-99m] 5m @ .23 % Pb [86-91m] 1m @ .22 % Pb [105-106m] 1m @ .19 % Pb [132-133m] 3m @ .1 % Pb [42-48m] 6m @ .28 % Pb [78-84m] 21m @ .32 % Pb [108-129m] 3m @ .11 % Pb [44-147m] 25m @ .61 % Pb [144-147m] 25m @ .61 % Pb [47-72m] 5m @ .11 % Pb [39-44m] 8m @ .72 % Pb [48-56m] 3m @ .44 % Pb [69-72m]
Helen East Paris East	PPRC778 PPRC779 PPRC783 PPRC785 PPRC785 PPRC786 PPRC787	98 86 105 132 45 78 108 84 144 47 39 48 69 30	96 99 91 106 133 48 84 129 87 147 72 44 56 72 33	1m Sample 1m Sample 1m Sample 1m Sample 3m Composite 3m Composite 3m Composite 3m Composite 1m Sample/3m Comp 3m Composite 1m Sample 3m Composite 3m Composite 3m Composite 3m Composite	1m @ .13 % Pb [98-99m] 5m @ .23 % Pb [86-91m] 1m @ .22 % Pb [105-106m] 1m @ .19 % Pb [132-133m] 3m @ .1 % Pb [45-48m] 6m @ .28 % Pb [78-84m] 21m @ .32 % Pb [108-129m] 3m @ .11 % Pb [44-147m] 25m @ .61 % Pb [74-72m] 5m @ .11 % Pb [39-44m] 8m @ .72 % Pb [48-56m] 3m @ .44 % Pb [69-72m] 3m @ .12 % Pb [30-33m]
Helen East Paris East Ares	PPRC778 PPRC779 PPRC783 PPRC785 PPRC785 PPRC786 PPRC787 PPRC788	98 86 105 132 45 78 108 84 144 47 39 48 69 30 36	96 99 91 106 133 48 84 129 87 147 72 44 456 72 33 39	1m Sample 1m Sample 1m Sample 1m Sample 3m Composite 3m Composite 3m Composite 3m Composite 1m Sample/3m Comp 3m Composite 1m Sample 3m Composite 3m Composite 3m Composite 3m Composite 3m Composite	1m @ .13 % Pb [98-99m] 5m @ .23 % Pb [86-91m] 1m @ .22 % Pb [105-106m] 1m @ .19 % Pb [132-133m] 3m @ .1 % Pb [45-48m] 6m @ .28 % Pb [78-84m] 21m @ .32 % Pb [108-129m] 3m @ .12 % Pb [84-87m] 3m @ .11 % Pb [44-72m] 25m @ .61 % Pb [47-72m] 5m @ .11 % Pb [39-44m] 8m @ .72 % Pb [48-56m] 3m @ .12 % Pb [69-72m] 3m @ .12 % Pb [69-73m] 3m @ .12 % Pb [30-33m] 3m @ .13 % Pb [36-39m]
Helen East Paris East Ares	PPRC778 PPRC779 PPRC783 PPRC785 PPRC785 PPRC786 PPRC787 PPRC788	98 86 105 132 45 78 108 84 144 47 39 48 69 30 36 57	96 99 91 106 133 48 84 129 87 147 72 44 56 72 33 39 60	1m Sample 1m Sample 1m Sample 1m Sample 3m Composite 3m Composite	1m @ .13 % Pb [98-99m] 5m @ .23 % Pb [86-91m] 1m @ .22 % Pb [105-106m] 1m @ .19 % Pb [132-133m] 3m @ .1 % Pb [45-48m] 6m @ .28 % Pb [78-84m] 21m @ .32 % Pb [108-129m] 3m @ .11 % Pb [44-87m] 25m @ .61 % Pb [47-72m] 5m @ .11 % Pb [39-44m] 8m @ .72 % Pb [48-56m] 3m @ .12 % Pb [69-72m] 3m @ .12 % Pb [69-72m] 3m @ .12 % Pb [30-33m] 3m @ .13 % Pb [36-39m] 3m @ .12 % Pb [57-60m]

DEDODTADIE ZINC INTEDSECTIONS S1000000
REPORTABLE ZINC INTERSECTIONS >1000ppm

Paris North	HOLE ID PPRC744	FROM (m) 80	TO (m) 84	Sample Type 1m Sample	INTERSECTION 4m @ .13% Zn [80-84m]
	PPRC744 PPRC745			1m Sample 1m Sample	
	PPRC745	41	42		1m @ .1% Zn [41-42m]
		55	69	1m Sample	14m @ .21% Zn [55-69m]
		71	74	1m Sample	3m @ .23% Zn [71-74m]
		116	117	1m Sample	1m @ .12% Zn [116-117m]
		122	123	1m Sample	1m @ .11% Zn [122-123m]
Paris East	PPRC746	28	29	1m Sample	1m @ .12% Zn [28-29m]
		36	41	1m Sample	5m @ .11% Zn [36-41m]
		45	46	1m Sample	1m @ .12% Zn [45-46m]
Paris	PPRC747	38	44	1m Sample	6m @ .37% Zn [38-44m]
		48	51	1m Sample	3m @ .12% Zn [48-51m]
		59	63	1m Sample	4m @ .18% Zn [59-63m]
		66	68	1m Sample	2m @ .13% Zn [66-68m]
		71	81	1m Sample	10m @ .11% Zn [71-81m]
		93	94	1m Sample	1m @ .14% Zn [93-94m]
		101	102	1m Sample	1m @ .8% Zn [101-102m]
	PPRC748	53	54	1m Sample	1m @ .1% Zn [53-54m]
	PPRC749	27	35	1m Sample	8m @ .18% Zn [27-35m]
		68	72	1m Sample	4m @ .28% Zn [68-72m]
		74	76	1m Sample	2m @ .18% Zn [74-76m]
		90	91	1m Sample	1m @ .12% Zn [90-91m]
		110	111	1m Sample	1m @ .1% Zn [110-111m]
		138	139	1m Sample	1m @ .18% Zn [138-139m]
		144	145	1m Sample	1m @ .2% Zn [144-145m]
		156	145	1m Sample	1m @ .16% Zn [156-157m]
	PPRC750	43	60	1m Sample	17m @ .24% Zn [43-60m]
		62	68	1m Sample	6m @ .44% Zn [62-68m]
	PPRC751	40	41	1m Sample	1m @ .12% Zn [40-41m]
	PPAC/31	54	55		1m @ .12% Zn [54-55m]
	- I - I-	63		1m Sample	
			65	1m Sample	2m @ .53% Zn [63-65m]
	PPRC752	33	62	1m Sample	29m @ .83% Zn [33-62m]
Paris East	PPRC753	68	69	1m Sample	1m @ .19% Zn [68-69m]
		73	110	1m Sample	37m @ .71% Zn [73-110m]
		122	131	1m Sample	9m @ .19% Zn [122-131m]
		133	135	1m Sample	2m @ .13% Zn [133-135m]
	PPRC754	39	44	1m Sample	5m @ .16% Zn [39-44m]
		49	50	1m Sample	1m @ .21% Zn [49-50m]
		52	64	1m Sample	12m @ .23% Zn [52-64m]
		66	76	1m Sample	10m @ .28% Zn [66-76m]
	PPRC755	58	59	1m Sample	1m @ .28% Zn [58-59m]
		65	73	1m Sample	8m @ .2% Zn [65-73m]
		77	101	1m Sample	24m @ .4% Zn [77-101m]
	PPRC756	58	102	1m Sample	44m @ .23% Zn [58-102m]
	PPRC757	68	71	1m Sample	3m @ .11% Zn [68-71m]
		77	87	1m Sample	10m@.47%Zn[77-87m]
Paris	DDDCJEO	49	54		5m @ .19% Zn [49-54m]
FULIS	PPRC758		54	1m Sample	
		56		1m Sample	2m @ .14% Zn [56-58m]
		62	63 70	1m Sample	1m @ .36% Zn [62-63m]
		66	70	1m Sample	4m @ .23% Zn [66-70m]
		73	91	1m Sample	18m@.24%Zn[73-91m]
		97	98	1m Sample	1m @ .14% Zn [97-98m]
	PPRC759	84	90	1m Sample	6m @ .15% Zn [84-90m]
		94	95	1m Sample	1m @ .1% Zn [94-95m]
		97	100	1m Sample	3m @ .23% Zn [97-100m]
	PPRC760	79	82	1m Sample	3m @ .11% Zn [79-82m]
		141	151	1m Sample	10m @ .16% Zn [141-151m]
Paris South	PPRC761	28	62	1m Sample	34m @ .33% Zn [28-62m]
		79	88	1m Sample	9m @ .2% Zn [79-88m]
		96	97	1m Sample	1m @ .12% Zn [96-97m]
		99	100	1m Sample	1m @ .11% Zn [99-100m]
Ares	PPRC763	72	74	1m Sample	2m @ .14% Zn [72-74m]
		72	78	1m Sample	1m @ .13% Zn [77-78m]
		85	86	1m Sample	1m @ .12% Zn [85-86m]
		93	104	1m Sample	11m @ .24% Zn [93-104m]
	PPRC764	45	48	3m Composite	3m @ .14% Zn [45-48m]
		73		Sincomposite	
	PPRC765	117	126	3m Composite	9m @ .22% Zn [117-126m]

REPORTABLE ZINC INTERSECTIONS >1000ppm

PROSPECT	HOLEID	FROM (m)	TO (m)	Sample Type	INTERSECTION
Helen East	PPRC766	33	36	3m Composite	3m @ .1% Zn [33-36m]
	PPRC767	39	54	3m Comp/1m Sample	15m@.34%Zn[39-54m]
		56	73	1m Sample	17m @ .48% Zn [56-73m]
		75	85	1m Sample	10m @ .57% Zn [75-85m]
		96	102	3m Composite	6m @ .35% Zn [96-102m]
		105	108	3m Composite	3m @ .1% Zn [105-108m]
		111	114	3m Composite	3m @ .28% Zn [111-114m]
		117	137	3m Comp/1m Sample	20m @ .35% Zn [117-137m]
Paris East	PPRC768	117	120	3m Composite	3m @ .22% Zn [117-120m]
Paris South	PPRC772	44	46	1m Sample	2m @ .13% Zn [44-46m]
		81	84	1m Sample	3m @ .11% Zn [81-84m]
Paris	PPRC773	13	46	1m Sample	33m @ .26% Zn [13-46m]
		52	53	1m Sample	1m @ .11% Zn [52-53m]
		65	66	1m Sample	1m @ .12% Zn [65-66m]
		78	80	1m Sample	2m @ .15% Zn [78-80m]
		85	86	1m Sample	1m @ .1% Zn [85-86m]
		92	93	1m Sample	1m @ .12% Zn [92-93m]
		94	95	1m Sample	1m @ .1% Zn [94-95m]
		107	108	1m Sample	1m @ .11% Zn [107-108m]
	PPRC774	83	84	1m Sample	1m @ .11% Zn [83-84m]
		88	91	1m Sample	3m @ .16% Zn [88-91m]
		93	94	1m Sample	1m @ .14% Zn [93-94m]
Paris South	PPRC775	70	75	1m Sample	5m @ .15% Zn [70-75m]
		78	81	1m Sample	3m @ .16% Zn [78-81m]
		85	94	1m Sample	9m @ .14% Zn [85-94m]
		97	100	1m Sample	3m @ .17% Zn [97-100m]
		102	103	1m Sample	1m @ .1% Zn [102-103m]
		111	112	1m Sample	1m @ .13% Zn [111-112m]
		116	126	1m Sample	10m @ .76% Zn [116-126m]
Paris East	PPRC776	51	54	1m Sample	3m @ .12% Zn [51-54m]
Fulls Lust	FFAC/70	60	64	1m Sample	4m @ .33% Zn [60-64m]
		127	128	1m Sample	1m @ .13% Zn [127-128m]
Ares	PPRC777	127	123	1m Sample	3m @ .11% Zn [100-103m]
Arts	PPRC778	89	93	1m Sample	4m @ .18% Zn [89-93m]
	11110770	112	114	1m Sample	2m @ .24% Zn [112-114m]
		116	117	1m Sample	1m @ .11% Zn [116-117m]
	PPRC779	110	120	1m Sample	3m @ .18% Zn [117-120m]
	11110775	129	134	1m Sample	5m @ .28% Zn [129-134m]
	PPRC780	93	102	3m Composite	9m @ .14% Zn [93-102m]
	PPRC781	87	90	3m Composite	3m @ .12% Zn [87-90m]
	PPRC782	87	93	3m Composite	6m @ .15% Zn [87-93m]
	FFAC/02	96	93 105		9m @ .31% Zn [96-105m]
				3m Composite	
Helen East	רסד־סמת	108 57	111 60	3m Composite	3m @ .12% Zn [108-111m]
neieli EdSt	PPRC783	57	60 84	3m Composite	3m @ .1% Zn [57-60m]
		75	84	3m Composite	9m @ .2% Zn [75-84m]
		96 108	99 120	3m Composite	3m @ .14% Zn [96-99m]
Dent 5	0000	108	129	3m Composite	21m @ .49% Zn [108-129m]
Paris East	PPRC785	144	147	3m Composite	3m @ .25% Zn [144-147m]
Ares	PPRC786	53	54	1m Sample	1m @ .1% Zn [53-54m]
		56	61	1m Sample	5m@.87%Zn[56-61m]
		69	75	3m Composite	6m @ .21% Zn [69-75m]
		128	129	1m Sample	1m @ .49% Zn [128-129m]
	PPRC787	69	84	3m Composite	15m @ .3% Zn [69-84m]
		87	102	3m Composite	15m @ .17% Zn [87-102m]
	PPRC788	51	54	3m Composite	3m @ .17% Zn [51-54m]
	PPRC789	51	57	3m Composite	6m @ .2% Zn [51-57m]
		84	90	3m Composite	6m @ .14% Zn [84-90m]
	PPRC790	60	66	3m Composite	6m @ .33% Zn [60-66m]
		69	72	3m Composite	3m @ .13% Zn [69-72m]
		75	81	3m Composite	6m @ .13% Zn [75-81m]
Paris North	PPRC791	87	99	3m Composite	12m @ .12% Zn [87-99m]
Argos	PPRC794	36	45	3m Composite	9m @ .14% Zn [36-45m]
		54	63	3m Composite	9m @ .13% Zn [54-63m]
		81	84	3m Composite	3m @ .11% Zn [81-84m]
	PPRC795	75	90	3m Composite	15m @ .17% Zn [75-90m]
Ares					

Appendix 2 - Drillhole Location Table

Hole Number	Easting (metres)	Northing (Metres)	RL (Metres)	Azimuth	Dip	Total Depth
PPRC744	593873	6387991	172	285	-70	120
PPRC745	593923	6387977	172	285	-70	150
PPRC746	594325	6387860	174	230	-70	144
PPRC747	594388	6387275	174	230	-60	108
PPRC748	594446	6387322	174	0	-90	72
PPRC749	594591	6387424	176	170	-60	160
PPRC750	594547	6387246	175	50	-70	78
PPRC751	594498	6387203	175	50	-70	78
PPRC752	594458	6387165	175	50	-70	78
PPRC753	594788	6387388	179	170	-60	144
PPRC754	594928	6387275	182	230	-60	114
PPRC755	594967	6387307	183	230	-60	114
PPRC756	594946	6387187	181	230	-70	102
PPRC757	595016	6387241	184	230	-70	102
PPRC758	594878	6387090	179	0	-90	120
PPRC759	594915	6387014	180	0	-90	150
PPRC760	594733	6386867	183	0	-90	168
PPRC761	595073	6386842	183	230	-60	160
	592034	6391096	159	90		132
PPRC762					-60	
PPRC763	591969	6391095	158	90	-60	150
PPRC764	591902	6391094	158	90	-60	150
PPRC765	592226	6390763	167	58	-60	144
PPRC766	597322	6389307	184	115	-60	126
PPRC767	597265	6389332	183	115	-60	150
PPRC768	594604	6387831	177	140	-60	126
PPRC769	594904	6387994	176	90	-60	132
PPRC770	594998	6387402	184	50	-60	120
PPRC771	595191	6387404	188	50	-60	126
PPRC772	595014	6386917	181	230	-60	168
PPRC773	594959	6387051	181	0	-90	132
PPRC774	594672	6386919	180	0	-90	138
PPRC775	594768	6387432	179	230	-60	132
PPRC776	594391	6387787	174	230	-70	156
PPRC777	592068	6391208	157	140	-60	138
PPRC778	592094	6391178	158	140	-60	138
PPRC779	592041	6391237	156	140	-60	144
PPRC780	592100	6391096	160	90	-60	120
PPRC781	591911	6391173	157	90	-60	144
PPRC782	592279	6390796	167	58	-60	120
PPRC783	597208	6389358	183	115	-60	150
PPRC784	597375	6389283	184	115	-70	150
PPRC785	594845	6387993	176	90	-60	156
PPRC786	593376	6389613	172	50	-60	132
PPRC787	593292	6389541	173	50	-60	132
PPRC788	593241	6389499	174	50	-60	132
PPRC789	592664	6390210	169	90	-60	114
PPRC790	592574	6390209	170	90	-60	120
				90		
PPRC791	593693	6388377	173		-70	132
PPRC792	593092	6388027	167	58	-60	138
PPRC793	591958	6389710	180	58	-60	132
PPRC794	592743	6388496	171	58	-60	114
PPRC795	593722	6389048	182	50	-60	120

,