

NEW HIGH GRADE GOLD DISCOVERY AT DIAMBA SUD

HIGH-GRADE MINERALISATION INTERSECTED - AREA H

- Shallow, high-grade mineralisation defined over 125m of strike at Area H
- Best results include:
 - 17m @ 9.6 g/t Au from 82m and 10m at 5.8 g/t Au from 117m (DSR323)
 - 9m @ 4.2 g/t Au from 63m and 12m @ 7.0 g/t Au from 92m (DSR341)
 - 3m @ 11.4 g/t Au from 58m, 8m @ 10.5 g/t Au from 64m and 15m @ 1.9g/t
 Au from 75m (DSR345)
- 8 holes with multiple high-grade intercepts with cumulative intercept lengths per hole of between 10m and 53m with an average grade of 3.7 g/t Au per hole
- Discovery remains open along strike and at depth
- Resource definition drilling at Area H to commence early 2022
- Area H located ~1.2 km southwest of the 781koz Area D and Area A deposits
- Scoping study commenced over Area A and Area D

Hole ID	Interval (m)	Gold (g/t Au)	From (m)
DSR323	17	9.6	82
DSR341	12	7.0	92
DSR345	8	10.5	64
DSR323	10	5.8	117
DSR343	14	4.0	101
DSR342	18	2.3	53
DSR343	13	3.0	42
DSR341	9	4.2	63
DSR338	22	1.6	106
DSR345	3	11.4	58
DSR345	15	1.9	75
DSR342	10	2.7	77

Key Area H - intercepts:

Chesser's MD and CEO Andrew Grove commented: "Area H results clearly demonstrate the significant exploration potential that still exists over the Diamba Sud tenement. Mineralisation is open along strike and at depth and drilling planned for next year will add this area to the Resource inventory. Scoping studies currently being undertaken over Area A and Area D should clearly demonstrate the economics and development potential of the shallow, high-grade and metallurgically simple mineralisation. We fully expect the maiden Mineral Resource base to significantly grow in 2022."

Chesser Resources Limited ("Chesser" or "the Company" (ASX:CHZ)) is pleased to provide an update on drilling results from the Diamba Sud Gold Project in Senegal, West Africa.

This release reports on the Phase 7 drill results from 33 reverse circulation drill ("RC") holes, totalling 4,178m over three prospects on the Diamba Sud tenement (Figure 1):

- Area H 14 RC drill holes totalling 2,147m
- Western Splay 9 RC drill holes totalling 990m
- Area F 10 RC drill holes totalling 1,041m

In addition, the results from two diamond drill holes from the Area A resource definition drilling program were returned, totalling 163.5m.

Figure 1: Plan view showing historical drilling and holes reported in this release with selected significant results¹ and underlying resistivity image.

¹ Refer to ASX announcement dated 16 November 2021 for details of the Mineral Resource Estimates. The Company is not aware of any new information or data that materially affects the information included in the referenced ASX announcement and confirms that all material assumptions and technical parameters underpinning the estimates in the market announcement continue to apply and have not materially changed.

DIAMBA SUD DRILLING

AREA H

Area H is located 1.2km southwest of Area D and located over a geochemical anomaly coincident with the interpreted trend of the Northern Arc structure. A single RC drill traverse (six holes), reported 23 April 2021², defined a steep dipping mineralised structure with intercepts including:

- DSR263: 4m at 9.6 g/t gold
- DSR262: 11m at 2.1 g/t gold
- DSR263: 3m at 1.7 g/t gold, 2m at 2.5 g/t gold, 5m at 3.4 g/t gold and 5m at 4.2g/t gold
- DSR264: 9m at 1.9 g/t gold

Fourteen RC drill holes were drilled on six 25m spaced drill traverses following up on the previous results. Significant mineralisation was intercepted on all drill traverses (Figure 2) over the 125m of strike drilled with mineralisation remaining open along strike in both directions and at depth.

Mineralisation appears to be associated with quartz-carbonate-hematite-albite-pyrite alteration within hydrothermally altered brecciated sedimentary rocks. The north-south trending steep dipping sedimentary sequence is bounded by granite to the east and west. The geometry of the mineralisation appears to be moderately west dipping within the steeply dipping sedimentary rock sequence (Figure 3), however more work is required to fully understand the controls and geometry of mineralisation.

Significant results achieved in the recent drill program include:

- DSR323: 17m at 9.6 g/t gold, 10m at 5.8 g/t gold and 4m at 4.1 g/t gold
- DSR341: 6m at 3.5 g/t gold, 17m at 1.1 g/t gold, 9m at 4.2 g/t gold, 5m at 3.0 g/t gold, 12m at 7.0 g/t gold and 1m at 11.8g/t gold
- DSR345: 3m at 11.4 g/t gold, 8m at 10.5 g/t gold, 15m at 1.9 g/t gold and 9m at 2.9 g/t gold
- DSR342: 4m at 1.2 g/t gold, 18m at 2.3 g/t gold, 10m at 2.7 g/t gold and 8m at 2.9 g/t gold
- DSR343: 13m at 3.0 g/t gold, 14m at 4.0 g/t gold and 6m at 1.7 g/t gold
- DSR340: 7m at 2.5 g/t gold, 2m at 2.7 g/t gold and 9m at 2.8 g/t gold

Area H will be subject to additional drilling early next year as it appears highly likely that a resource will be defined over this area.

² Refer ASX announcement dated 23 April 2021. The Company is not aware of any new information or data that materially affects the information contained in that announcement.

Figure 2: Plan view showing historical drilling and holes reported in this release with selected significant results³

³ Refer to ASX announcements 23 April 21 for drilling results. The Company is not aware of any new information or data that materially affects the information contained in those announcements.

Figure 3: Area H Section 1428375mN showing historical drilling, holes reported in this release, selected significant results⁴ and interpreted geology.

WESTERN SPLAY

Western Splay area is defined by co-incident gold auger geochemical anomalies and a geophysical feature approximately 5km to the southwest of the Area A.

Sixteen RC drill holes have previously been drilled over the area, reported 3 April 2017, 21 July 2020, 28 July 2020, and 23 April 2021⁴. Historical drilling defined a 300m open ended mineralised structure trending northwest-southeast, results included:

- DSR145: 22m at 2.1 g/t gold
- DSR150: 2m at 19.8 g/t gold
- DSR152: 10m at 1.1 g/t gold and 6m at 1.8 g/t gold

Nine RC drill holes were drilled during the Phase 7 drill program over the northwest end of the previous previously defined mineralised structure (Figure 4). Section line 1426375mN

⁴ Refer to ASX announcements 23 April 21 for drilling results. The Company is not aware of any new information or data that materially affects the information contained in those announcements.

intersected the mineralised structure in holes DSR330, DSR331 and DSR333. Mineralised intervals were associated with pyrite mineralisation and albite-hematite-carbonate-quartz alteration within brecciated sedimentary units.

The northwest-southeast mineralised trend has been confirmed from the drill results and structure remains open along strike.

Results from the other drill traverses only returned narrow mineralised results, however drilling was located south and off the mineralised trend.

The identified mineralised trend will be subject to further drilling in the next drill program.

Significant results including:

- DSR331: 16m at 1.9 g/t gold
- DSR330: 17m at 1.4 g/t gold
- DSR333: 5m at 4.4 g/t gold and 2m at 3.5 g/t gold

Figure 4: Plan view showing historical drilling and holes reported in this release with selected significant results⁵

⁵ Refer to ASX announcements 3 April 2017, 21 July 2020, 28 July 2020, and 23 April 2021 for drilling results. The Company is not aware of any new information or data that materially affects the information contained in those announcements.

AREA F

Only minor mineralised intercepts were returned from the 10 RC drill holes drilled to follow up historical intercepts at Area F (Figure 5). Further review will be required to understand these results.

Significant results including:

- DSR313 1m at 1.1 g/t gold
- DSR315 1m at 1.1 g/t gold

DIAMBA SUD PROJECT Area F: Plan View

 DD drillhole 	Gold Intersections (g/t)
 RC drillhole 	> 5.0
Phase 7	1.0 - 5.0
Phase 1-6	0.35 - 0.5

Figure 5: Plan view showing historical drilling and holes reported in this release with selected significant results⁶

⁶ Refer to ASX announcements 14 May 2019 and 28 August 2019 for drilling results. The Company is not aware of any new information or data that materially affects the information contained in those announcements.

AREA A

Diamond drill holes DSDD008 (interval 179m to 281m) and DSDD061 (interval 98m 159.5m) were not sampled prior to the maiden Mineral Resource estimate due to time constraints and lack of visual mineralisation. These holes did not return any significant results.

NEXT STEPS

A scoping study has commenced over Area A and Area D at Diamba Sud post the release of the maiden Mineral Resource Estimate. The aim of the study is to demonstrate the expected robust economics of the current resource base.

The Company intends to commence an extensive, 15,000 to 20,000m drill program in January 2022 to aggressively target resource expansion, at depth at Areas A and D, and adding the recently identified Area H mineralisation into the resource inventory. Systematic exploration of the numerous prospective targets on the tenement including Western Splay will also be conducted.

The final results from the structural review are expected during December 2021 which will assist resource extension drilling and future targeting.

Regional exploration over the Diamba Nord tenement has commenced and will continue into the new year.

Baseline data collection for Environmental and Social Impact Assessment ("ESIA") requirements is ongoing over the Diamba Sud Project area.

This release was authorised by the Board of Directors of Chesser Resources Limited.

-END-

For Further information, please contact:

Andrew Grove Managing Director and CEO andrewg@chesserresources.com.au Mobile: +61 414 011 383

Media Inquiries

Michael Vaughan Fivemark Partners Mobile: +61 422 602 720

Figure 7: Schematic regional geology of eastern Senegal, showing Chesser's Project locations including the Diamba Sud Project and its proximity to both the SMSZ and the major gold operations and projects.

ABOUT CHESSER RESOURCES

Chesser Resources is an ASX listed gold exploration company with projects located in Senegal, West Africa. Chesser has discovered two high-grade gold Projects (Area A and Area D) at its flagship Diamba Sud project. A 781koz maiden Mineral Resource Estimate was delivered over Areas A and D in November 2021. The Company currently holds or has under application ~1,000km² of highly prospective ground in this underexplored world-class gold region. The Company has corporate offices located in Brisbane and Perth, Australia and a corporate and technical team based in Dakar, Senegal.

Diamba Sud, covers an area of 53.2km² and is located ~2km to the west of the Senegal Mali Shear Zone ("SMSZ"), a major regional structure that host numerous multimillion-ounce world class gold deposits including: B2Gold's 7.6Moz Fekola mine, Barrick's 18Moz Loulo-Gounkoto complex and Allied Gold's Sadiola and Yatela mines. Diamba Sud lies just 7km to the west of Barrick's 5.5Moz Gounkoto mine and to the immediate east of the privately owned 0.5Moz Karakaene mine.

Competent Person's Declaration

The information in this report that relates to the Diamba Sud **Exploration Results** and Exploration Targets is based on information compiled by Mr. Andrew Grove, BEng (Geology), MAIG, who is employed as Managing Director and Chief Executive Officer of Chesser Resources Ltd. Mr. Grove has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves', Mr. Grove consents to the inclusion in the announcement of the matters based on his information in the form and context that the information appears.

The Information in this report that relates to **Mineral Resources** is based on information compiled by Dr. John Arthur (CGeol, FGS), a Competent Person who is a Fellow of the Geological Society of London (membership No. 1005744). Dr Arthur is a fulltime Independent Resource Geologist with 25 years experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Dr Arthur consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward looking statements

Statements relating to the estimated or expected future production, operating results, cash flows and costs and financial condition of Chesser Resources Limited's planned work at the Company's projects and the expected results of such work are forward-looking statements. Forward-looking statements are statements that are not historical facts and are generally, but not always, identified by words such as the following: expects, plans, anticipates, forecasts, believes, intends, estimates, projects, assumes, potential and similar expressions. Forward-looking statements also include reference to events or conditions that will, would, may, could or should occur. Information concerning exploration results and mineral reserve and resource estimates may also be deemed to be forward-looking statements, as it constitutes a prediction of what might be found to be present when and if a project is developed.

These forward-looking statements are necessarily based upon a number of estimates and assumptions that, while considered reasonable at the time they are made, are inherently subject to a variety of risks and uncertainties which could cause actual events or results to differ materially from those reflected in the forward-looking statements, including, without limitation: uncertainties related to raising sufficient financing to fund the planned work in a timely manner and on acceptable terms; changes in planned work resulting from logistical, technical or other factors; the possibility that results of work will not fulfil projections/expectations and realize the perceived potential of the Company's projects; uncertainties involved in the interpretation of drilling results and other tests and the estimation of gold reserves and resources; risk of accidents, equipment breakdowns and labour disputes or other unanticipated difficulties or interruptions; the possibility of environmental issues at the Company's projects; the possibility of cost overruns or unanticipated expenses in work programs; the need to obtain permits and comply with environmental laws and regulations and other government requirements; fluctuations in the price of gold and other risks and uncertainties.

ATTACHMENT 1

Table 1: Location of reported drilling and summary of significant gold intersections

Hole ID	Area	Easting	Northing	RL (m)	Azimuth	Dip	Depth (m)	From (m)	To (m)	Interval (m)	Gold (g/t Au)
DSR313	Area F	232,331	1,429,004	142	90	-60.6	120	32	33	1	1.1
DSR314	Area F	232,359	1,429,004	140	90	-61.0	120				NSR
DSR315	Area F	232,384	1,429,005	140	90	-60.6	101	40	41	1	1.1
DSR316	Area F	232,408	1,429,000	141	90	-60.3	90				NSR
DSR317	Area F	232,091	1,428,808	136	90	-60.2	100				NSR
DSR318	Area F	232,119	1,428,803	136	90	-60.4	90				NSR
DSR319	Area F	232,145	1,428,804	125	90	-60.2	80				NSR
DSR320	Area H	231,647	1,428,323	132	90	-60.6	180				NSR
DSR321	Area H	231,680	1,428,325	128	90	-60.7	160				NSR
DSR322	Area H	231,674	1,428,301	127	90	-59.6	160	125	129	4	1.5
								133	134	1	1.1
								135	136	1	1.0
DSR323	Area H	231,707	1,428,326	125	90	-59.0	138	27	29	2	1.4
								82	99	17	9.6
							including	88	90	2	15.9
							including	92	96	4	21.2
							including	97	98	1	19.0
								117	127	10	5.8
							including	122	123	1	40.7
								132	136	4	4.1
							including	132	133	1	14.9
DSR324	Area F	232,225	1,428,899	133	90	-60.8	120				NSR
DSR325	Area F	232,253	1,428,899	146	90	-59.7	110				NSR
DSR326	Area F	232,288	1,428,905	143	90	-60.1	110				NSR
DSR327	Area H	231,950	1,428,400	132	90	-60.0	120				NSR
DSR328	Western Splay	230,951	1,426,380	123	90	-59.7	120				NSR
DSR329	Western Splay	231,012	1,426,377	121	90	-60.4	120	6	8	2	1.5
								18	20	2	1.0
DSR330	Western Splay	231,047	1,426,377	119	90	-59.9	108	35	52	17	1.4
DSR331	Western Splay	231,072	1,426,377	119	90	-59.8	90	42	58	16	1.9
DSR332	Western Splay	231,099	1,426,376	121	90	-59.9	60				NSR
DSR333	Western Splay	230,983	1,426,380	123	90	-59.1	126	26	31	5	4.4
								117	119	2	3.5
DSR334	Western Splav	230,991	1,426,353	116	90	-59.9	126	22	24	2	1.0
	- r' <i>)</i>							103	104	1	1.0
								120	123	3	1.5
SX: CHZ											

Hole ID	Area	Easting	Northing	RL (m)	Azimuth	Dip	Depth (m)	From (m)	To (m)	Interval (m)	Gold (g/t Au)	
DSR335	Western Splay	231,018	1,426,352	116	90	-59.9	126	30	31	1	1.6	
								44	46	2	1.5	
								94	95	1	1.2	_
DSR336	Western Splay	231,017	1,426,326	116	90	-59.3	114	61	62	1	1.1	
								68	70	2	1.1	
		-						109	110	1	2.4	
DSR337	Area H	231,655	1,428,278	131	90	-59.7	108	104	108	4	1.5	
DSR338	Area H	231,679	1,428,279	129	90	-59.3	180	29	32	3	1.4	
								62	64	2	5.3	
								68	72	4	2.1	
								106	128	22	1.6	
								147	150	3	7.3	
DSR339	Area H	231,732	1,428,326	128	90	-59.8	132	34	36	2	2.5	
								40	41	1	5.6	
								47	53	6	1.9	
		-					-	58	59	1	2.2	
DSR340	Area H	231,721	1,428,350	123	90	-60.4	186	35	36	1	1.7	
								40	47	7	2.5	
								100	102	2	2.7	
								111	120	9	2.8	_
								131	132	1	1.6	_
								175	176	1	2.0	_
DSR341	Area H	231,754	1,428,348	129	90	-60.1	165	21	23	2	1.4	_
								29	35	6	3.5	_
								39	56	17	1.1	
								63	72	9	4.2	
								81	86	5	3.0	
								92	104	12	7.0	
							including	94	95	1	47.6	
								112	113	1	11.8	
		I	r		T	1	Γ	131	132	1	2.3	
DSR342	Area H	231,747	1,428,372	128	90	-60.7	168	20	24	4	1.2	
								53	71	18	2.3	-
								77	87	10	2.7	-
		1	,		1		1	90	98	8	2.9	-
DSR343	Area H	231,722	1,428,370	128	90	-59.4	150	42	55	13	3.0	-
								59	60	1	3.9	-
								66	67	1	1.7	
								81	82	1	3.1	
								92	93	1	2.0	
								101	115	14	4.0	

Hole ID	Area	Easting	Northing	RL (m)	Azimuth	Dip	Depth (m)	From (m)	To (m)	Interval (m)	Gold (g/t Au)
								125	131	6	1.7
								135	137	2	1.2
DSR344	Area H	231,717	1,428,400	129	90	-59.9	150				NSR
DSR345	Area H	231,740	1,428,400	124	90	-60.3	150	58	61	3	11.4
							including	59	60	1	19.3
								64	72	8	10.5
							including	65	68	3	25.4
								75	90	15	1.9
								95	104	9	2.9
								123	125	2	1.3
DSDD008	Area A	233,407	1,429,609	153	280.9	-59.3	179-281				NSR
DSDD061	Area A	233,042	1,429,320	152	90	-58.3	98- 159.5				NSR

Note: Azimuths taken from the top of the down hole survey, holes with no significant results are annotated with NSR.

ATTACHMENT 2

JORC Code, 2012 Edition – Table 1 (Diamba Sud)

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
<i>Sampling techniques</i>	 Nature and quality of sampling, measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 The Diamond holes were sampled by HQ & NQ Diamond Core drilling. Sampling was nominally at 1 m intervals however over contact zones and geologically significant zones it was reduced to 0.5 m. Samples were collected from the core trays after they had been transported to the camp at Saraya, marked up, recovery recorded and core split in half by a diamond saw. Early RC holes were sampled at 2m intervals from 0 to 40 metres and thereafter at 1m intervals. Later zone D holes were sampled at 1m intervals. 1 metre samples are preserved for future assay as required. Samples were collected in situ at the drill site and are split collecting 1 to 3 kg per sample. Certified reference material and sample duplicates were inserted at regular intervals. Samples were submitted to internationally accredited Laboratories either; SGS in Bamako Mali or ALS for 50g Fire Assay gold analysis. ALS sample preparation is conducted in their facilities in Senegal with the analysis performed in their lab in Burkina Faso. All diamond holes are sampled at geological intervals with a nominal maximum interval of 2 metres.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Diamond drilling was carried out by Forage FTE Drilling, using an Atlas Copco CS14 drill rig. The core was orientated using an ACT II tool and an EZ Trac survey tool. Reverse Circulation drilling was carried out by Forage FTE Drilling, using an Atlas Copco T3W drilling rig with an auxiliary booster.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Diamond core recovery was measured for each run and calculated as a percentage of the drilled interval, in weathered material, core recoveries were generally 80 to 90%, in fresh rock, the core recovery was excellent at 100%. There has been no assessment of core sample recovery and gold grade relationship. An initial visual estimate of sample recovery was undertaken at the drill rig for each RC sample metre collected. Collected samples were weighed to ensure consistency of sample size and monitor sample recoveries. Sample recovery and condition was recorded at the drill site. No systematic sampling issues, recovery issues or bias was picked up and it is therefore considered that both sample recovery and quality is adequate for the drilling technique employed.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill samples were geologically logged by Chesser Resources geologists. Geological logging used a standardised logging system recording mineral and rock types and their abundance, as well as alteration, silicification and level of weathering. A small representative sample was retained in a plastic chip tray for each drill metre for future reference and logging checks. Diamond core was cut in half, one half retained as a
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Diamond core was cut in half, one half retained as a reference and the other sent for assay. Sample size assessment has not been conducted but is consistent with typical for West African gold deposits. All RC samples were split at the drill rig utilizing a 3-tier riffle splitter with no sample compositing being undertaken of the 1 metre samples. Two-metre composite RC samples were collected from and submitted for analysis, between 0-40 metres downhole. From 40 metres to EOH 1 metre samples were submitted for analysis. More recently RC holes in Area D have been sampled at 1m intervals. Duplicates were taken to evaluate representativeness. Sample preparation was undertaken at the respective laboratories by laboratory staff. At the laboratory, samples were weighed, dried, and crushed to 75% <2mm (jaw crusher), pulverized and split to 85 %< 75 um. Gold is assayed by fire assay (50g charge) with an AAS Finish. The crushed sample was split and 1.5kg sample was collected using a single stage riffle splitter. The 1.5kg split samples were pulverised in a an LM2 to 95% passing 200 mesh. Re-assays were performed on samples that reported at the upper detection limit (100 g/t Au), consisting of a 50g fire assay and gravimetric analysis. Barren sand wash was required at the SGS laboratory under secure "chain of custody" procedure for possible future analysis.
<i>Quality of assay data and laboratory tests</i>	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether accentable layels of 	 Analysis for gold is undertaken by 50g Fire Assay with an AAS finish to a lower detection limit of 0.01ppm Au. The fire assay method used has an upper limit of 100g/t. Fire assay is considered a "total" assay technique. No field non assay analysis instruments were used in the analyses reported. A review of certified reference material and sample blanks inserted by the Company indicated no significant analytical bias or preparation errors in the reported analyses.

Criteria	JORC Code explanation	Commentary
	<i>accuracy (ie lack of bias) and precision have been established.</i>	 Results of analyses for field sample duplicates are consistent with the style of mineralisation evaluated and considered to be representative of the geological zones which were sampled. Internal laboratory QA/QC checks are reported by the laboratory and a review of the QA/QC reports suggests the laboratory is performing within acceptable limits.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All drill hole data is paper logged at the drill site and then digitally entered by Company geologists at the site office. All digital data is verified and validated before loading into the drill hole database. No twinning of holes was undertaken in this program which is early-stage exploration in nature. Reported drill results were compiled by the company's geologists, verified by the Company's exploration manager. No adjustments to assay data were made.
<i>Location of data points</i>	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collars were located using GPS averaging. Accuracy of the averaging of the GPS < +/- 2m and is considered appropriate for this level of early exploration. The grid system is UTM Zone 29N
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 All drill holes were located on an irregularly spaced pattern with between 20 and 50m between various collars along the line. Drilling reported in this program is of an early exploration nature has not been used to estimate any mineral resources or reserves.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Exploration is at an early stage and, as such, knowledge on exact location of mineralisation and its relation to lithological and structural boundaries is not accurately known. However, the current drill hole orientation is considered appropriate for the program to reasonably assess the prospectivity of known structures interpreted from other data sources.
Sample security	• The measures taken to ensure sample security.	 All drilling samples were collected and taken to either the SGS or ALS laboratories under secure "chain of custody" procedure by laboratory staff. Sample pulps remain at the SGS laboratory under secure "chain of custody". The RC samples remaining were removed from the site and stored at the company's field camp in Saraya.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 There has been no external audit or review of the Company's sampling techniques or data at this early exploration stage.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The results reported in this report are all contained within The Diamba Sud permit which is held 100% by Boya S.A., a wholly owned subsidiary of Chesser Resources. The Diamba Sud permit is in good standing, with an expiry date of 09/6/2024.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The area that is presently covered by the Diamba Sud was explored intermittently by several companies prior to 2015. Exploration consisted of a government backed regional aeromagnetic survey, gridding, soil sampling and minor auger and exploration drilling. IAMGold undertook minor RAB and Auger drilling at the project (Bembala Prospect) during 2012. The results of which are not known by Chesser Resources Ltd.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The deposit style targeted for exploration is orogenic lode gold. This style of mineralisation can occur as veins or disseminations in altered (often silicified) host rock or as pervasive alteration over a broad zone. Deposits are often found in close proximity to linear geological structures (faults & shears) often associated with deep-seated structures. Lateritic weathering is common within the project area. The depth to fresh rock is variable and may extend up to 70m below surface.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth drill hole sinformation is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Reported results are summarised in Table 1 and within the main body of the announcement. Drill collar elevation is defined as height above sea level in metres (RL). All holes were drilled at an angle deemed appropriate to the local structure as understood at the time of drilling. Down hole length of the hole is the distance from the surface to the end of the hole, as measured along the drill trace.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown 	 Intervals are reported using a threshold where the interval has a 1.0 g/t Au average or greater over the sample interval and selects all material greater than 0.35 g/t Au, with maximum of 2m of continuous internal dilution. Where voids (no sample) occurred within reported intervals, a grade of zero was

Criteria	JORC Code explanation	Commentary
	<i>in detail.</i> • The assumptions used for any reporting of metal equivalent values should be clearly stated.	 assigned to that portion of the reported sample interval. A top grade cut off of 100 g/t Au, based on detection limits, been applied to results presented in Attachment 1. No metal equivalent reporting is used or applied
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The results reported in this announcement, are considered to be of an early stage in the exploration of the project. Mineralisation geometry is not accurately known as the exact orientation and extent of known mineralised structures are not yet determined. Mineralisation results are reported as "downhole" widths as true widths are not yet known
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Drill hole location plans are provided in the main text of the announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 The drilling programme is ongoing, but all drill holes completed with assay results as of the reported date have been included herein - refer Table 1. No completed surveyed holes are omitted for which complete results have been received.
<i>Other substantive exploration data</i>	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No other exploration data that is considered meaningful and material has been omitted from this report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 A 15,000 to 20,000m drill program aimed at expanding resources and testing the exploration potential at Diamba Sud is due to commence in January 2022.