GOLDEN CROSS RESOURCES LTD ABN 65 063 075 178 301/66 Berry Street NORTH SYDNEY Phone (02) 9922 1266 5 January 2022 # Copper Hill Tenement Planned Geochemistry Surface Sampling Completed The Company (ASX:GCR) has completed infill and extension surface sampling over part of the Copper Hill tenement Exploration Licence 6391, north of Molong, NSW. The infill / extension sampling of surface soils is designed to extend coverage based on a MGA grid [MGA z55 GDA94] over areas of Copper Hill and surrounds that are potential future infrastructure sites [waste rock stack and tailings storage area, in previous draft site layouts]. #### Land Access Landholders that were contacted for access arrangements to undertake geophysical work are the same for some of the geochemical sampling work. Accordingly both activities have been discussed with landholders as part of the access arrangements, noting areas under cultivation / crop, or where no vehicle access is requested. Sampling was undertaken on a first pass spacing of 200 x 200 metres and covered 36 sites as shown in **Figure 1**. Rain events limited access to sites, and the work was disrupted by the Molong Flood at the end of November, and sporadic outbreaks of Covid cases in the Central West Region leading to localised lockdowns. Wet surface conditions persisted into early December 2021 rendering further sampling medium unsuitable for site collection. Figure 1 Copper Hill Tenement Geochemistry Locations The currently available data and samples are to be interpreted in more detail and further processing and evaluation are to be planned in the next stage of work. This announcement has been reviewed and authorised for release by the GCR Board. The information in this report that relates to Exploration Results is based on information from previous reports, compiled by Mr Bret Ferris, who is a Member of the Australasian Institute of Geoscientsts. (AIG). Mr Ferris is a consultant to Golden Cross Resources Limited, and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Ferris consents to the inclusion in this report of the matters based on that information in the form and context in which it appears. # JORC Compliance Statement Surface Geochemical Sampling: Soil Sections 1 and 2 of Table 1, JORC Code, 2012 Edition ## Section 1: Sampling Techniques and Data | Criteria | JORC Code explanation | Commentary | |---|---|--| | Sampling
techniques | Nature and quality of sampling (eg cut channels, random cl
specific specialised industry standard measurement tools
appropriate to the minerals under investigation, such as do
gamma sondes, or handheld XRF instruments, etc). These e
should not be taken as limiting the broad meaning of samp Include reference to measures taken to ensure sample repra
and the appropriate calibration of any measurement tools of
systems used. | of approximately 25cm using shovel & mattock and sieved in the field to -2mm, producing a sample of ~100-200grams in kraft paper packets for lab submission. Site characteristics were noted in field sample books | | Drilling
techniques | Drill type (eg core, reverse circulation, open-hole hammer,
blast, auger, Bangka, sonic, etc) and details (eg core diame
or standard tube, depth of diamond tails, face-sampling bit
type, whether core is oriented and if so, by what method, e | ter, triple
or other | | Drill sample
recovery | Method of recording and assessing core and chip sample reand results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and and whether sample bias may have occurred due to prefere loss/gain of fine/coarse material. | d grade | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support approp Mineral Resource estimation, mining studies and metallurg studies. Whether logging is qualitative or quantitative in nature. Co costean, channel, etc) photography. The total length and percentage of the relevant intersection logged. | riate noted in field sample books. iral ore (or | | Sub-
sampling
techniques
and sample
preparation | If core, whether cut or sawn and whether quarter, half or a taken. If non-core, whether riffled, tube sampled, rotary split, etc of whether sampled wet or dry. For all sample types, the nature, quality and appropriatenessample preparation technique. Quality control procedures adopted for all sub-sampling stamaximise representivity of samples. Measures taken to ensure that the sampling is representation in situ material collected, including for instance results for fully duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | and ss of the ages to ive of the field | | Quality of
assay data
and
laboratory
tests | The nature, quality and appropriateness of the assaying an laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instrum | procedures - Assays undertaken after pulversing whole sample to >90% passing 75 microns • Aqua Regia digest and analysis by ALS method ME-ICP41 (33 elements, low detection levels). Gold assays by 50g Fire Assay, ALS method Au-AA26. Analyses greater than 1% by method OG62 • No instrumental analyses undertaken. | | | etc, the parameters used in determining the analysis includinstrument make and model, reading times, calibrations fac | ing | | Criteria | JORC Code explanation Co | ommentary | |---|--|--| | | applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | All samples analysed by Australian Laboratory Services. Preparation at the Brisbane laboratory and analysis at Orange Standard internal checks, matching checks with other ALS labs and annual 'round robin' comparisons with competitor labs. Acceptable levels of accuracy and precision have been established | | Verification
of sampling
and
assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | f • N/A for soils samples | | Location of
data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | Sample sites are located by handheld GPS. MGA grid system; zone 55, using GDA94 datum. | | Data
spacing
and
distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. | | | Orientation
of data in
relation to
geological
structure | Whether sample compositing has been applied. Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | mineralisation related to multi-phase intrusives and mineralisation disseminated and veined within various phases of porphyry intrusions and in veins and breccias within the adjacent country rock. • N/A. | | Sample
security | The measures taken to ensure sample security. | No specific measures. The ALS Laboratory is 40 km
from Copper Hill and GCR personnel prepared and
transported all samples, which were receipted at lab. | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | No audits have been carried out specifically on the
sampling techniques. | Section 2: Reporting of Exploration Results | Criteria | JORC Code explanation | Commentary | |--|--|--| | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership
including agreements or material issues with third parties
such as joint ventures, partnerships, overriding royalties,
native title interests, historical sites, wilderness or national
park and environmental settings. | The Copper Hill – Molong Project is held 100% by GCR under EL6391 (33 units, 95 square kilometres). | | | The security of the tenure held at the time of reporting along
with any known impediments to obtaining a licence to
operate in the area. | EL6391 is current to 10 th March 2025. | | Exploration done by other parties | Acknowledgment and appraisal of exploration by other parties. | Since 1960's Anaconda, Amax Australia, Le Nickel, BHP,
and a series of Joint Ventures between Metallic
Resources and Homestake, Cyprus Minerals, MIM and
Newcrest. | | Geology | Deposit type, geological setting and style of mineralisation. | Porphyry-style; tonalite-dacite multi-phase
intrusions into andesitic island-arc volcanics with
copper-gold in disseminations, sheeted veins,
multidirectional stockworks, breccias and adjacent | | Criteria | JORC Code explanation | Commentary | |---|---|--| | | | exoskarns | | Drill hole
Information | A summary of all information material to the understanding of
the exploration results including a tabulation of the following
information for all Material drill holes: | • N/A | | | o easting and northing of the drill hole collar | | | | elevation or RL (Reduced Level – elevation above sea level
in metres) of the drill hole collar | | | | o dip and azimuth of the hole | | | | o down hole length and interception depth | | | | o hole length. | | | | If the exclusion of this information is justified on the basis that
the information is not Material and this exclusion does not
detract from the understanding of the report, the Competent
Person should clearly explain why this is the case. | | | Data
aggregation
methods | In reporting Exploration Results, weighting averaging
techniques, maximum and/or minimum grade truncations (eg
cutting of high grades) and cut-off grades are usually Material
and should be stated. | • N/A | | | Where aggregate intercepts incorporate short lengths of high
grade results and longer lengths of low grade results, the
procedure used for such aggregation should be stated and
some typical examples of such aggregations should be shown in
detail. | 1 | | | The assumptions used for any reporting of metal equivalent
values should be clearly stated. | | | Relationship
between | These relationships are particularly important in the reporting
of Exploration Results. | • N/A. | | mineralisation
widths and
intercept | If the geometry of the mineralisation with respect to the drill
hole angle is known, its nature should be reported. | | | lengths | If it is not known and only the down hole lengths are reported,
there should be a clear statement to this effect (eg 'down hole
length, true width not known'). | | | Diagrams | Appropriate maps and sections (with scales) and tabulations of
intercepts should be included for any significant discovery being
reported These should include, but not be limited to a plan view
of drill hole collar locations and appropriate sectional views. | g further interpretation | | Balanced
reporting | Where comprehensive reporting of all Exploration Results is not
practicable, representative reporting of both low and high
grades and/or widths should be practiced to avoid misleading
reporting of Exploration Results. | t • | | Other
substantive
exploration
data | Other exploration data, if meaningful and material, should be
reported including (but not limited to): geological observations;
geophysical survey results; geochemical survey results; bulk
samples – size and method of treatment; metallurgical test
results; bulk density, groundwater, geotechnical and rock
characteristics; potential deleterious or contaminating
substances. | The sites of previous sampling are shown in Figure 1. : | | Further work | The nature and scale of planned further work (eg tests for
lateral extensions or depth extensions or large-scale step-out
drilling). | Future sampling may include infill, and further
extensions of open geochemical zones, and parts of
EL6391 where surface geochemistry may be useful
in targeting. | | | Diagrams clearly highlighting the areas of possible extensions,
including the main geological interpretations and future drilling
areas, provided this information is not commercially sensitive. | |