ASX Code: AIV Issued Capital 216,202,577 ordinary shares (AIV) #### **Market Capitalisation** \$6.486M (1st July 2022, \$0.03) #### **Directors** Min Yang (Chairman, NED) Mark Derriman (Managing Director) Geoff Baker (NED) Dongmei Ye (NED) Andrew Bald (NED) Louis Chien (Alternate Director to Min Yang) #### **About ActivEX** ActivEX Limited is a minerals exploration company committed to the acquisition, identification, and delineation of new resource projects through active exploration. The ActivEX portfolio is focused on gold copper and critical metal projects, with substantial tenement packages in the north and southeast Queensland. Suite 2, 3B Macquarie Street Sydney, NSW 2000 admin@activex.com.au www.activex.com.au Phone +61 (02) 9251 9088 ABN 11 113 452 896 # High Grade Gold and Critical Metal Assays Received from Georgetown Project 4th July 2022 #### **Summary and Highlights** - Excellent Gold results from rock samples add value to the previously reported critical metal results - Samples also returned high grades of Manganese, Lead and Iron - 34 rock samples collected from the Georgetown Project with significant results including: - 25.6g/t Au & 16.3ppm Ag - 13.4g/t Au, 23.1ppm Ag & 0.43%Pb - 7.0g/t Au, 306ppm Ag, 0.24% Cu, 12.3% Pb & 1.1% Mn - o 5.85/t Au, 16.1ppm Ag & 0.48% Pb - o 5.54g/t Au, 0.45% Pb, 0.12% Zn & 0.37% Mn - o 0.32g/t Au, 32.1ppm Ag, 0.53% Cu, 41.6% Fe & 6.2% Mn - 0.28g/t Au, 19.6ppm Ag, 0.35% Cu, .27% Pb & 12.45% Mn - 0.135g/t Au, 22ppm Ag, 0.46% Cu, 40.2% Fe, 0.47% Pb & 8.2% Mn - Expanded landholding in Georgetown Gold and Critical Metals Region Gold and Critical Metal Explorer ActivEX Limited (ASX: AIV) ("ActivEX" or "the Company") is pleased to report encouraging high grade gold assays from sampling programs undertaken at the Georgetown Project. Assay highlights are referenced. A total of 66 soil, 34 rock (including pegmatites) and 13 stream samples have been received back from the ALS geochemistry laboratory in Townsville. Managing Director Mark Derriman commented: "These first-pass gold and critical metal assays for Georgetown provide an encouraging indication that Georgetown is host to a number of metals and critical minerals with good grades. The assays we've received todate still only represent a small population of the total amount of sampling work planned for the tenements, so on that basis the results look particularly encouraging. In addition, we are expanding our footprint in the region with 3 new applications currently with the Queensland Mines Department for approval" # GEORGETOWN GOLD AND LITHIUM PROJECT – North Queensland (EPMs 27805, 27811, 27812 & EPM Applications 28120, 28277 and 28417 – ActivEX 100%) (Prospecting for critical minerals Cu, Ta, Nb, Co, Sn, W, Li and Mn) The Georgetown Gold Project (**Figure 1 & 2**) is situated within the Proterozoic Etheridge Province in northeast Queensland, approximately 400km west-northwest of Townsville and 80km north of the Gilberton Gold Project. The project comprises a granted area of 504.29km² with ActivEX Limited holding a 100% interest in all the tenements. One EPM application (Bridle Track, EPM 28417) has been lodged in May, which covers 100 sub-blocks. Historic data shows pegmatites were intersected in previous drill holes; However, no Au or Li has been assayed. Bridle Track is anticipated to be granted towards the second half of 2022. The Georgetown Project is in an area which is prospective for several metals, precious and base, in addition to critical metals (Cu, Ta, Nb, Co, Sn, W Li and Mn) over a wide range of deposit styles. Initial evaluation of the Georgetown Project was focussed on critical metals and gold potential, as evident by the numerous historical gold and silver workings The Buchanan's Creek lithium/tantalum prospect located to the west of the Forsayth tenement and operated by unlisted explorer Strategic Metals Australia comprises pegmatite hosted lithium and tantalum mineralisation. The pegmatites have intruded into a folded sequence comprising Cobbold Metadolerite and Lane Creek micaceous metasediments. A similar sequence of pegmatites intruding into dolerite and micaceous metasediment is evident within the tenements of the Georgetown Project. Results from surficial geochemical exploration within the Forsayth tenement are shown in **Figure 3** with significant gold and critical metal results obtained from several areas. In the centre of the area, samples FYR010 to 015 were taken from a small iron/manganese ridge over 40m in length. The outcrop comprised massive ironstone with manganese staining and local boxwork textures likely after sulphides at depth. Several prospecting pits have been dug along the length of the ironstone ridge to a depth of 1.5m with no obvious drill testing. The ironstone returned results to 5.5g/t Au 41.6% Fe, 10% Mn, 0.9% Pb and 0.53% Cu. This target will be further evaluated via geological mapping, rock sampling and pXRF soil geochemistry. A series of ferruginous quartz veins in the west of the tenement were sampled (FYR005 to 008 and 017 to 018) with results to 25.6g/t Au12.2% Pb, 306 ppm Ag, 5.5% Mn, 0.35% Cu and 0.23% Zn. Stream sediment sampling with results to 336ppb Au warrant further evaluation. Soil sampling was completed at the Toad Prospect (Leichardt Creek) over folded micaceous metasediments and dolerite with several mapped pegmatites and is similar geological sequence to the Buchanan's Creek lithium/tantalum prospect located 15km to the west. Initial results revealed possible indicators of critical metals mineralisation, and further exploration will be carried out (**Figures 4 and 5**). This announcement is authorised by the Board of ActivEX Limited For further information contact: Mr Mark Derriman, Managing Director Figure 1. ActivEX Limited Queensland Projects and tenements Figure 2. ActivEX Limited Georgetown Projects - Granted(green) and Applications(red) Figure 3 Forsayth tenement showing area of anomalous rock (white) and stream (yellow) geochemistry Figure 4 Leichardt Creek tenement showing interpreted geology and the Toad soil grid Figure 5 Toad Soil Grid showing interpreted geology and soil geochemistry **Photos 1 & 2** Forsayth Muscovite Garnet Pegmatites intruding fine grained biotite granite (left) and a close-up of the green mica mineralisation (right) **Photos 3 and 4** Forsayth Iron (Fe) and Manganese (Mn) ridge. Photo Left: 5.4g/t Au 0.365% Mn 0.45% Pb 0.12% Cu. Photo Right: Mineralised vein quartz 25.6g/t Au and 16.3 ppm Ag #### **Declarations under 2012 JORC Code and JORC Tables** The information in this report which relates to Exploration Results is based on information reviewed by Mr. Mark Derriman, who is a member of The Australian Institute of Geoscientists (1566) and Mr. Xusheng Ke, who is a Member of the Australasian Institute of Mining and Metallurgy (310766) and a Member of the Australian Institute of Geoscientists (6297). Mr. Mark Derriman and Mr. Xusheng Ke have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activities which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Mark Derriman and Mr. Xusheng Ke consent to the inclusion of his name in this report and to the issue of this report in the form and context in which it appears. #### Previous Disclosure - 2012 JORC Code Information relating to Mineral Resources, Exploration Targets and Exploration Data associated with previous disclosures relating to the Gilberton and Georgetown Gold Project in this report has been extracted from the following ASX Announcements: - ASX announcement titled "Gilberton and Ravenswood Gold Projects Exploration Update" dated 28 October 2020. - ASX announcement titled "Highly encouraging results from the Gilberton Gold Project" dated 10 September 2021 - ASX announcement titled "Georgetown Lithium Potential to be assessed" dated 15 November 2021 - ASX announcement titled "Lithium and other Critical Metal analyses at the Gilberton Project" dated 27 January 2022 Copies of reports are available to view on the ActivEX Limited website www.activex.com.au. These reports were issued in accordance with the 2012 Edition of the JORC Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement. # JORC Code, 2012 Edition – Table 1 High Grade Gold and Critical Minerals Results from the Georgetown Project– July 2022 ### **Section 1 Sampling Techniques and Data** | Criteria | JORC Code explanation | Commentary | |--------------------------
---|--| | Sampling
techniques | Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. | The rock samples were random grab samples of outcrop and collected as 2-3kg samples in prenumbered calico bags. The soil and stream samples were sieved to -1mm and placed in pre numbered paper geochemistry bags and were 200-300 grams in weight This form of sampling is adequate for early-stage exploration. All samples were submitted to ALS in Townsville for gold and multi element analyses. The Au results are not being reported as they have not been received as yet | | Drilling
techniques | Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air
blast, auger, Bangka, sonic, etc) and details (e.g., core diameter,
triple or standard tube, depth of diamond tails, face-sampling bit or
other type, whether core is oriented and if so, by what method, etc). | Not applicable as no field-based exploration is being reported | | Drill sample
recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | Not applicable as no field based exploration is being reported | | Logging | Whether core and chip samples have been geologically and
geotechnically logged to a level of detail to support appropriate
Mineral Resource estimation, mining studies and metallurgical | Not applicable as no field based exploration is being reported | | Criteria | JORC Code explanation | Commentary | |---|--|---| | Sub-sampling
techniques
and sample
preparation | studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material | Not applicable as no field based exploration is being reported | | Quality of
assay data
and
laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. | The analyses are full geochemical analyses carried out by ALS Laboratories The rock samples were analysed by method ME-ICP61 for the following elements Au Ag %AI As Ba Be Bi %Ca Cd Co Cr Cu %Fe Ga %K La %Mg Mn Mo Na Ni P Pb %S Sb Sc Sr Th %Ti TI U V W Zn Ag Pb Unless indicated the results are ppm The soil and stream samples were analysed by the method ME-MS61R for the following elements: Au Ag %AI As Ba Be Bi %Ca Cd Ce Co Cr Cs Cu %Fe Ga Ge Hf In K La Li %Mg Mn Mo Na Nb Ni P Pb Rb Re %S Sb Sc Se Sn Sr Ta Te Th Ti TI U V W Y Zn Zr Dy Er Eu Gd Ho Lu Nd Pr Sm Tb Tm Yb | | Criteria | JORC Code explanation | Commentary | |---|--|--| | | | | | Verification of sampling and assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | Not applicable as no field based exploration is being reported | | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | Not applicable as no field based exploration is being reported | | Data spacing
and
distribution | Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity
appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | Random rock grab samples were collected | | Orientation of data in relation to geological structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Not applicable as no field based exploration is being reported | | Sample
security | The measures taken to ensure sample security. | The samples were collected in the field and delivered by hand to the ALS facility in Townsville by the Company Geologist | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | ActivEX internally reviewed the sampling technique and deemed it
appropriates for early-stage exploration. | ### **Section 2 Reporting of Exploration Results** (Criteria listed in the preceding section also apply to this section.) | Criteria | JORC Code explanation | Commentary | |--|---|--| | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | Lithostructural targets were developed inhouse by ActivEX geologists for EPM's Forsayth, Leichardt Creek and Cleanskin Creek tenements EPMs 27812, 27811 and 27805 The tenements are 100% owned by ActivEX Limited The tenements are located in Queensland approximately 50km west and southwest of Georgetown and 20km west of Forsayth Georgetown is the nearest major town. There are no JVs and Royalties Initial exploration programs were submitted to the Native Title Claimants The tenements are located in the Etheridge Shire | | Exploration
done by other
parties | Acknowledgment and appraisal of exploration by other parties. | Surtec Geophysical – grass roots exploration for fissure type gold Bridge Minerals – rock and stream sampling Australian Anglo American – stream and soil sampling Kidston Au – ground IP survey Western Compass Minerals – Ground mag and Auger Drilling Associated Mining-Streams and rock sampling | | Geology | Deposit type, geological setting and style of mineralisation. | The exploration targets are gold, base metals and lithium
mineralisation associated with granites, pegmatites, micaceous
metasediments and quartz veins | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | Not applicable as no field based exploration is being reported | | Criteria | JORC Code explanation | Commentary | |---|--|---| | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | Not applicable as no field based exploration is being reported | | Relationship
between
mineralisation
widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). | Not applicable as no field based exploration is being reported | | Diagrams | Appropriate maps and sections (with scales) and tabulations of
intercepts should be included for any significant discovery being
reported These should include, but not be limited to a plan view of
drill hole collar locations and appropriate sectional views. | A map showing the all-target areas in relation to the tenements, is
included in the announcement. | | Balanced
reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results. | The geological maps included in this report are open file datasets obtained from the Queensland Government Data Download Section of the Website Through the study of Geological Site Observation Database (Published by Geological Survey of Queensland), the Company identified a historic lithium prospect (Buchanan) to the NW and historic tantalum prospects to the west of EPM 27812 Geological Survey of Queensland Sub-Project #6, Queensland Government Exploration Initiative Report Completed in 2018 entitled "Metallogenic Study of the Georgetown, Forsayth and Gilberton Regions, North Queensland, Dr G. Morrison, etc, developed a new metallogenic database, GIS and interpretation for the Georgetown region of North Queensland and highlighted a number of "mineral camps" | | Other
substantive | Other exploration data, if meaningful and material, should be reported
including (but not limited to): geological observations; geophysical
survey results; geochemical survey results; bulk samples – size and | Not applicable as no field based exploration is being reported | | Criteria | JORC Code explanation | Commentary | |---------------------
--|---| | exploration
data | method of treatment; metallurgical test results; bulk density,
groundwater, geotechnical and rock characteristics; potential
deleterious or contaminating substances. | | | Further work | The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | The next phase of surficial geochemical exploration will include
further geochemical sampling and geological mapping within
Leichardt Creek, Forsayth and Georgetown in Q2/Q3 2022. | Pursuant to ASX Listing Rule 5.4.3 the Company reports as follows in relation to minerals tenements held as of the 30th June 2022 and acquired or disposed of during that quarter and their locations. The Cloncurry Project tenements were sold 100% to Fetch Metals and the 49% equity in the Ravenswood Project was converted to 2,000,000 shares in ASX listed Ballymore Resources. ### <u>List of Exploration/Mining Tenements held by ActivEX Limited at 30 June 2022</u> | Project Name | Tenement Name | EPM(a) | Status | Granted | Expires | Holder | Details | Interest at start of quarter | Interest at end of quarter | Sub-blocks at start of quarter | Sub-blocks at end of quarter | |----------------------|-----------------|--------|-------------|-----------|-----------|-----------------|------------------|------------------------------|----------------------------|--------------------------------|------------------------------| | Southeast Queensl | and | | | | | | | | | | | | | Barambah | 14937 | Granted | 14-Mar-05 | 13-Mar-27 | ActivEX Limited | | 100% | 100% | 9 | 9 | | Fok Copper 9 | Booubyjan | 14476 | Granted | 08-Jun-04 | 07-Jun-22 | ActivEX Limited | Renewal lodged | 100% | 100% | 15 | 15 | | Esk Copper &
Gold | Blairmore | 16265 | Granted | 04-Sep-07 | 03-Sep-22 | ActivEX Limited | Renewal lodged | 100% | 100% | 24 | 24 | | Colu | Coalstoun | 14079 | Granted | 23-Oct-03 | 22-Oct-23 | ActivEX Limited | | 100% | 100% | 46 | 46 | | North Queensland | | | | | | | | | <u>'</u> | | | | | Mt Hogan | 18615 | Granted | 19-Jun-13 | 18-Jun-23 | ActivEX Limited | | 100% | 100% | 54 | 54 | | Gilberton Gold | Gilberton | 18623 | Granted | 08-Apr-14 | 07-Apr-24 | ActivEX Limited | | 100% | 100% | 29 | 29 | | Gilberton Gold | Gum Flat | 26232 | Granted | 02-Feb-17 | 01-Feb-27 | ActivEX Limited | | 100% | 100% | 17 | 17 | | | Split Rock | 26307 | Granted | 06-Mar-17 | 05-Mar-27 | ActivEX Limited | | 100% | 100% | 14 | 14 | | | Cleanskin Creek | 27805 | Granted | 26-Aug-21 | 25-Aug-26 | ActivEX Limited | | 100% | 100% | 31 | 31 | | | Leichardt Creek | 27811 | Granted | 30-Sep-21 | 29-Sep-26 | ActivEX Limited | | 100% | 100% | 10 | 10 | | Georgetown Gold | Forsayth | 27812 | Granted | 26-Aug-21 | 25-Aug-26 | ActivEX Limited | | 100% | 100% | 5 | 5 | | & Lithium | Nelson | 28120 | Application | N/A | N/A | ActivEX Limited | | 100% | 100% | 2 | 2 | | | Stockman | 28277 | Application | N/A | N/A | ActivEX Limited | | 100% | 100% | 7 | 7 | | | Bridle Track | 28417 | Application | N/A | N/A | ActivEX Limited | | 100% | 100% | 0 | 100 | | Pentland Gold | Pentland | 14332 | Granted | 10-Dec-04 | 09-Dec-24 | ActivEX Limited | JV with Rockland | 49% | 49% | 39 | 39 | ### ActivEX Canning Queensland and Western Australian Coal tenement schedule | Tenure | Project | Status | Grant | Expiry | Location | Sub-blocks | Sq Km | State | |-----------|-----------------|-------------|-----------------------|------------|---------------------|------------|-------|-------| | EPC 2360 | DENISON CREEK | Granted | 14/01/2014 | 13/01/2021 | 22KM NE OF NEBO | 17 | 54.4 | | | EPC 2386 | LONESOME CREEK | Granted | 28/11/2013 | 27/11/2020 | SW OF BILOELA | 36 | 115.2 | | | EPC 2387 | BILOELA SOUTH | Granted | 28/11/2013 | 27/11/2020 | SW OF BILOELA | 38 | 121.6 | | | EPC 2390 | STYX | Granted | 4/03/2015 | 3/03/2025 | 74KM NW ROCKHAMPTON | 42 | 134.4 | | | EPC 2392 | MOUNT LORNE | Granted | 22/04/2015 | 21/04/2025 | 20KM W OGMORE | 46 | 147.2 | Qld | | EPC 2421 | CRACOW WEST | Granted | 18/03/2014 | 17/03/2021 | 6KM SW CRACOW | 7 | 22.4 | | | EPC 2432 | CARNARVON | Granted | 31/10/2013 | 30/10/2020 | 55KM N OF INJUNE | 30 | 96 | | | EPC 2451 | MOUNT PATTERSON | Granted | 22/04/2015 | 21/04/2025 | 60KM W OF GLENDEN | 31 | 99.2 | | | EPC 2459 | RIVERVIEW | Granted | 2/05/2014 | 1/05/2021 | EAST OF PENTLAND | 69 | 220.8 | | | E 04/2681 | LIVERINGA | Application | LODGE DATE: 11/5/2020 | N/A | 120KM SE OF DERBY | 5 | 15.7 | WA | ### Georgetown Assay Results – Rock-chip sampling program | Site | Date | Sample# | Project | Tenement | Sample | Sample Type | GDA94 Z54 mE | GDA94 Z54 mN | Au | Al | As | Ba | Be | Bi | |------|----------|---------|------------|------------------|--------|-------------|--------------|--------------|-------|------|------|------|------|-----| | | | | | | | | | | ppm | % | ppm | ppm | ppm | ppm | | 1 | 6/4/2022 | FYR001 | Georgetown | Forsayth | Rock | Outcrop | 760550 | 7945157 | 0.005 | 7.25 | <5 | 140 | 6.8 | 3 | | 2 | 6/4/2022 | FYR002 | Georgetown | Forsayth | Rock | Outcrop | 761491 | 7944536 | 0.005 | 7.31 | <5 | 90 | 6.4 | 8 | | 3 | 6/4/2022 | FYR003 | Georgetown | Forsayth | Rock | Outcrop | 761721 | 7944646 | 0.005 | 7.39 | <5 | 30 | 5.9 | 5 | | 4 | 6/4/2022 | FYR004 | Georgetown | Forsayth | Rock | Outcrop | 762098 | 7944761 | 0.005 | 7.24 | <5 | 40 | 5.7 | 2 | | 5 | 6/4/2022 | FYR005 | Georgetown | Forsayth | Rock | Outcrop | 761012 | 7943064 | 7.05 | 1.05 | 6250 | 60 | 1.3 | 8 | | 6 | 6/4/2022 | FYR006 | Georgetown | Forsayth | Rock | Outcrop | 761012 | 7943064 | 0.102 | 2.36 | 849 | 190 | 1.6 | <2 | | 8 | 6/4/2022 | FYR007 | Georgetown | Forsayth | Rock | Outcrop | 760881 | 7943040 | 5.85 | 0.59 | 673 | 30 | 0.6 | <2 | | 9 | 6/4/2022 | FYR008 | Georgetown | Forsayth | Rock | Float | 760881 | 7943043 | 0.95 | 1.11 | 5020 | 50 | 1.3 | 11 | | 10 | 6/4/2022 | FYR009 | Georgetown | Forsayth | Rock | Outcrop | 760892 | 7943053 | 0.02 | 7.53 | 17 | 80 | 5.2 | 7 | | 11 | 6/4/2022 | FYR010 | Georgetown | Forsayth | Rock | Outcrop | 761390 | 7942713 | 0.129 | 0.33 | 69 | 1390 | 1.5 | ∨ | | 13 | 6/4/2022 | FYR011 | Georgetown | Forsayth | Rock | Outcrop | 761750 | 7942326 | 0.324 | 0.78 | 1930 | 270 | 1.2 | 25 | | 14 | 6/4/2022 | FYR012 | Georgetown | Forsayth | Rock | Outcrop | 761742 | 7942334 | 0.28 | 0.22 | 950 | 240 | 1.1 | 9 | | 15 | 6/4/2022 | FYR013 | Georgetown | Forsayth | Rock | Outcrop | 761694 | 7942395 | 0.135 | 0.26 | 425 | 200 | 0.9 | 11 | | 16 | 6/4/2022 | FYR014 | Georgetown | Forsayth | Rock | Outcrop | 760559 | 7941964 | 5.54 | 0.41 | 294 | 50 | 0.5 | <2 | | 17 | 6/4/2022 | FYR015 | Georgetown | Forsayth | Rock | Outcrop | 760502 | 7942289 | 0.009 | 0.1 | 17 | 10 | <0.5 | <2 | | 18 | 6/4/2022 | FYR016 | Georgetown | Forsayth | Rock | Outcrop | 760840 | 7942095 | 0.006 | 6.69 | <5 | 20 | 97.1 | <2 | | 19 | 6/4/2022 | FYR017 | Georgetown | Forsayth | Rock | Outcrop | 760546 | 7942013 | 13.4 | 0.67 | 2240 | 50 | 1 | 17 | | 20 | 6/4/2022 | FYR018 | Georgetown | Forsayth | Rock | Outcrop | 760551 | 7942004 | 25.6 | 0.12 | 143 | 30 | 0.5 | 5 | | 21 | 6/4/2022 | FYR019 | Georgetown | Forsayth | Rock | Outcrop | 760544 | 7940097 | 0.068 | 7.31 | 19 | 70 | 9.1 | 6 | | 22 | 6/4/2022 | FYR020 | Georgetown | Forsayth | Rock | Outcrop | 761467 | 7940460 | 0.063 | 7.35 | <5 | 30 | 4.7 | 2 | | 23 | 6/4/2022 | FYR021 | Georgetown | Forsayth | Rock | Outcrop | 761478 | 7940418 | 0.12 | 0.18 | 310 | 290 | <0.5 | 3 | | 24 | 6/4/2022 | FYR022 | Georgetown | Forsayth | Rock | Outcrop | 761515 | 7940426 | 0.007 | 7.62 | <5 | 70 | 19.8 | <2 | | 25 | 6/4/2022 | FYR023 | Georgetown | Forsayth | Rock | Outcrop | 762051 | 7940775 | 0.008 | 6.4 | 12 | 40 | 4.1 | 9 | | 26 | 6/4/2022 | LCR001 | Georgetown | Leichardt Creek | Rock | Outcrop | 758983 | 7975728 | 0.005 | 8.48 | <5 | 2160 | 7.1 | <2 | | 27 | 6/4/2022 | LCR002 | Georgetown | Leichardt Creek | Rock | Outcrop | 758712 | 7975753 | 0.012 | 0.09 | <5 | 10 | <0.5 | <2 | | 28 | 6/4/2022 | LCR003 | Georgetown | Leichardt Creek | Rock | Outcrop | 755207 | 7970855 | 0.009 | 0.07 | <5 | 10 | <0.5 | <2 | | 38 | 6/4/2022 | LCR004 | Georgetown | Leichardt Creek | Rock | Outcrop | 755412 | 7970801 | 0.005 | 7.49 | <5 | 40 | 5.2 | 3 | | 39 | 6/4/2022 | LCR005 | Georgetown | Leichardt Creek | Rock | Outcrop | 753365 | 7970557 | 0.005 | 7.7 | <5 | 60 | 2.2 | <2 | | 40 | 6/4/2022 | CSR001 | Georgetown | Cleankskin Creek | Rock | Outcrop | 730164 | 7964796 | 0.005 | 0.07 | <5 | 10 | <0.5 | <2 | | 41 | 6/4/2022 | CSR002 | Georgetown | Cleankskin Creek | Rock | Outcrop | 730222 | 7964821 | 0.005 | 0.13 | <5 | 20 | <0.5 | <2 | | 42 | 6/4/2022 | CSR003 | Georgetown | Cleankskin Creek | Rock | Outcrop | 730191 | 7964821 | 0.005 | 0.08 | <5 | 50 | <0.5 | <2 | | 43 | 6/4/2022 | CSR004 | Georgetown | Cleankskin Creek | Rock | Outcrop | 731187 | 7964441 | 0.005 | 3.17 | <5 | 260 | 1.3 | <2 | | 44 | 6/4/2022 | CSR005 | Georgetown | Cleankskin Creek | Rock | Outcrop | 731258 | 7964392 | 0.005 | 3.05 | <5 | 260 | 1.4 | <2 | | 45 | 6/4/2022 | CSR006 | Georgetown | Cleankskin Creek | Rock | Outcrop | 731201 | 7964382 | 0.005 | 3.31 | <5 | 510 | 2.6 | <2 | | Site | Date | Sample# |
Project | Tenement | Sample | Sample Type | GDA94 Z54 mE | GDA94 Z54 mN | Ca | Cd | Co | Cr | Cu | Fe | |------|----------|---------|------------|------------------|--------|-------------|--------------|--------------|-------|------|-----|-----|------|------| | | | | | | | | | | % | ppm | ppm | ppm | ppm | % | | 1 | 6/4/2022 | FYR001 | Georgetown | Forsayth | Rock | Outcrop | 760550 | 7945157 | 0.49 | <0.5 | 1 | 8 | 4 | 1.01 | | 2 | 6/4/2022 | FYR002 | Georgetown | Forsayth | Rock | Outcrop | 761491 | 7944536 | 0.43 | <0.5 | 2 | 5 | 5 | 0.94 | | 3 | 6/4/2022 | FYR003 | Georgetown | Forsayth | Rock | Outcrop | 761721 | 7944646 | 0.39 | <0.5 | 1 | 6 | 2 | 1.01 | | 4 | 6/4/2022 | FYR004 | Georgetown | Forsayth | Rock | Outcrop | 762098 | 7944761 | 0.51 | <0.5 | 1 | 5 | 2 | 1.08 | | 5 | 6/4/2022 | FYR005 | Georgetown | Forsayth | Rock | Outcrop | 761012 | 7943064 | 0.03 | 9.4 | 19 | 11 | 2360 | 23 | | 6 | 6/4/2022 | FYR006 | Georgetown | Forsayth | Rock | Outcrop | 761012 | 7943064 | 0.04 | 9.9 | 5 | 8 | 73 | 17.3 | | 8 | 6/4/2022 | FYR007 | Georgetown | Forsayth | Rock | Outcrop | 760881 | 7943040 | 0.01 | 4.3 | 3 | 17 | 341 | 5.59 | | 9 | 6/4/2022 | FYR008 | Georgetown | Forsayth | Rock | Float | 760881 | 7943043 | 0.08 | 32.8 | 15 | 9 | 2600 | 28.1 | | 10 | 6/4/2022 | FYR009 | Georgetown | Forsayth | Rock | Outcrop | 760892 | 7943053 | 0.28 | <0.5 | 1 | 5 | 8 | 1.02 | | 11 | 6/4/2022 | FYR010 | Georgetown | Forsayth | Rock | Outcrop | 761390 | 7942713 | 0.08 | 0.9 | 1 | 6 | 131 | 24.6 | | 13 | 6/4/2022 | FYR011 | Georgetown | Forsayth | Rock | Outcrop | 761750 | 7942326 | 0.07 | 1.1 | 10 | 5 | 5310 | 41.6 | | 14 | 6/4/2022 | FYR012 | Georgetown | Forsayth | Rock | Outcrop | 761742 | 7942334 | 0.1 | 4.1 | 4 | <1 | 3490 | 45 | | 15 | 6/4/2022 | FYR013 | Georgetown | Forsayth | Rock | Outcrop | 761694 | 7942395 | 1.8 | 1.2 | 1 | 2 | 4570 | 40.2 | | 16 | 6/4/2022 | FYR014 | Georgetown | Forsayth | Rock | Outcrop | 760559 | 7941964 | 0.03 | 2.3 | 3 | 12 | 227 | 9.41 | | 17 | 6/4/2022 | FYR015 | Georgetown | Forsayth | Rock | Outcrop | 760502 | 7942289 | 0.04 | <0.5 | 2 | 15 | 77 | 2.09 | | 18 | 6/4/2022 | FYR016 | Georgetown | Forsayth | Rock | Outcrop | 760840 | 7942095 | 0.35 | <0.5 | 1 | 6 | 3 | 0.93 | | 19 | 6/4/2022 | FYR017 | Georgetown | Forsayth | Rock | Outcrop | 760546 | 7942013 | 0.04 | 0.9 | 3 | 13 | 187 | 27.2 | | 20 | 6/4/2022 | FYR018 | Georgetown | Forsayth | Rock | Outcrop | 760551 | 7942004 | 0.01 | <0.5 | 1 | 13 | 13 | 2.1 | | 21 | 6/4/2022 | FYR019 | Georgetown | Forsayth | Rock | Outcrop | 760544 | 7940097 | 0.66 | <0.5 | 1 | 4 | 10 | 1.2 | | 22 | 6/4/2022 | FYR020 | Georgetown | Forsayth | Rock | Outcrop | 761467 | 7940460 | 0.5 | <0.5 | 1 | 4 | 2 | 1.18 | | 23 | 6/4/2022 | FYR021 | Georgetown | Forsayth | Rock | Outcrop | 761478 | 7940418 | 0.11 | <0.5 | 6 | 4 | 3540 | 22.1 | | 24 | 6/4/2022 | FYR022 | Georgetown | Forsayth | Rock | Outcrop | 761515 | 7940426 | 0.3 | <0.5 | 2 | 4 | 12 | 1.16 | | 25 | 6/4/2022 | FYR023 | Georgetown | Forsayth | Rock | Outcrop | 762051 | 7940775 | 0.36 | <0.5 | 1 | 5 | 119 | 1.7 | | 26 | 6/4/2022 | LCR001 | Georgetown | Leichardt Creek | Rock | Outcrop | 758983 | 7975728 | 0.18 | <0.5 | 1 | 6 | 2 | 0.84 | | 27 | 6/4/2022 | LCR002 | Georgetown | Leichardt Creek | Rock | Outcrop | 758712 | 7975753 | 0.02 | <0.5 | 1 | 20 | 9 | 2.19 | | 28 | 6/4/2022 | LCR003 | Georgetown | Leichardt Creek | Rock | Outcrop | 755207 | 7970855 | 0.02 | <0.5 | 1 | 11 | 3 | 1.65 | | 38 | 6/4/2022 | LCR004 | Georgetown | Leichardt Creek | Rock | Outcrop | 755412 | 7970801 | 0.24 | <0.5 | 1 | 5 | 2 | 1.1 | | 39 | 6/4/2022 | LCR005 | Georgetown | Leichardt Creek | Rock | Outcrop | 753365 | 7970557 | 0.07 | <0.5 | 1 | 4 | 3 | 0.72 | | 40 | 6/4/2022 | CSR001 | Georgetown | Cleankskin Creek | Rock | Outcrop | 730164 | 7964796 | <0.01 | <0.5 | 2 | 19 | 5 | 1.83 | | 41 | 6/4/2022 | CSR002 | Georgetown | Cleankskin Creek | Rock | Outcrop | 730222 | 7964821 | 0.01 | <0.5 | 1 | 10 | 2 | 0.99 | | 42 | 6/4/2022 | CSR003 | Georgetown | Cleankskin Creek | Rock | Outcrop | 730191 | 7964821 | <0.01 | <0.5 | 1 | 18 | 5 | 1.71 | | 43 | 6/4/2022 | CSR004 | Georgetown | Cleankskin Creek | Rock | Outcrop | 731187 | 7964441 | 0.02 | <0.5 | 2 | 11 | 3 | 0.76 | | 44 | 6/4/2022 | CSR005 | Georgetown | Cleankskin Creek | Rock | Outcrop | 731258 | 7964392 | 0.02 | <0.5 | 1 | 13 | 5 | 1.01 | | 45 | 6/4/2022 | CSR006 | Georgetown | Cleankskin Creek | Rock | Outcrop | 731201 | 7964382 | 0.02 | <0.5 | 1 | 14 | 5 | 0.77 | | Site | Date | Sample# | Project | Tenement | Sample | Sample Type | GDA94 Z54 mE | GDA94 Z54 mN | Ga | K | La | Mg | Mn | Мо | |------|----------|---------|------------|----------|--------|-------------|--------------|--------------|-----|------|-----|------|-------|-----| | | | | | | | | | | ppm | % | ppm | % | ppm | ppm | | 1 | 6/4/2022 | FYR001 | Georgetown | Forsayth | Rock | Outcrop | 760550 | 7945157 | 20 | 3.31 | <10 | 0.11 | 823 | 1 | | 2 | 6/4/2022 | FYR002 | Georgetown | Forsayth | Rock | Outcrop | 761491 | 7944536 | 20 | 3.51 | 10 | 0.06 | 280 | <1 | | 3 | 6/4/2022 | FYR003 | Georgetown | Forsayth | Rock | Outcrop | 761721 | 7944646 | 30 | 2.17 | 10 | 0.08 | 167 | 1 | | 4 | 6/4/2022 | FYR004 | Georgetown | Forsayth | Rock | Outcrop | 762098 | 7944761 | 20 | 2.91 | 20 | 0.06 | 175 | 1 | | 5 | 6/4/2022 | FYR005 | Georgetown | Forsayth | Rock | Outcrop | 761012 | 7943064 | <10 | 0.42 | 20 | 0.07 | 11050 | 8 | | 6 | 6/4/2022 | FYR006 | Georgetown | Forsayth | Rock | Outcrop | 761012 | 7943064 | 10 | 0.99 | 20 | 0.14 | 21100 | 2 | | 8 | 6/4/2022 | FYR007 | Georgetown | Forsayth | Rock | Outcrop | 760881 | 7943040 | <10 | 0.35 | <10 | 0.02 | 620 | 2 | | 9 | 6/4/2022 | FYR008 | Georgetown | Forsayth | Rock | Float | 760881 | 7943043 | 10 | 0.41 | <10 | 0.06 | 24400 | <1 | | 10 | 6/4/2022 | FYR009 | Georgetown | Forsayth | Rock | Outcrop | 760892 | 7943053 | 30 | 4.57 | <10 | 0.07 | 329 | 1 | | 11 | 6/4/2022 | FYR010 | Georgetown | Forsayth | Rock | Outcrop | 761390 | 7942713 | <10 | 0.2 | 20 | 0.06 | 55800 | 7 | | 13 | 6/4/2022 | FYR011 | Georgetown | Forsayth | Rock | Outcrop | 761750 | 7942326 | <10 | 0.24 | <10 | 0.08 | 61100 | 6 | | 14 | 6/4/2022 | FYR012 | Georgetown | Forsayth | Rock | Outcrop | 761742 | 7942334 | <10 | 0.18 | <10 | 0.11 | >10% | 17 | | 15 | 6/4/2022 | FYR013 | Georgetown | Forsayth | Rock | Outcrop | 761694 | 7942395 | <10 | 0.21 | <10 | 0.18 | 82100 | 10 | | Site | Date | Sample# | Project | Tenement | Sample | Sample Type | GDA94 Z54 mE | GDA94 Z54 mN | Au | Al | As | Ba | Be | Bi | |------|----------|---------|------------|------------------|--------|-------------|--------------|--------------|-----|------|-----|-------|-------|-----| | | | | | | | | | | ppm | % | ppm | ppm | ppm | ppm | | 16 | 6/4/2022 | FYR014 | Georgetown | Forsayth | Rock | Outcrop | 760559 | 7941964 | <10 | 0.21 | <10 | 0.02 | 3650 | 1 | | 17 | 6/4/2022 | FYR015 | Georgetown | Forsayth | Rock | Outcrop | 760502 | 7942289 | <10 | 0.05 | <10 | 0.01 | 1650 | 1 | | 18 | 6/4/2022 | FYR016 | Georgetown | Forsayth | Rock | Outcrop | 760840 | 7942095 | 20 | 1.34 | <10 | 0.04 | 268 | 1 | | 19 | 6/4/2022 | FYR017 | Georgetown | Forsayth | Rock | Outcrop | 760546 | 7942013 | <10 | 0.22 | <10 | 0.02 | 486 | 1 | | 20 | 6/4/2022 | FYR018 | Georgetown | Forsayth | Rock | Outcrop | 760551 | 7942004 | <10 | 0.03 | <10 | <0.01 | 222 | 1 | | 21 | 6/4/2022 | FYR019 | Georgetown | Forsayth | Rock | Outcrop | 760544 | 7940097 | 20 | 2.84 | 10 | 0.07 | 532 | 1 | | 22 | 6/4/2022 | FYR020 | Georgetown | Forsayth | Rock | Outcrop | 761467 | 7940460 | 20 | 2.68 | <10 | 0.07 | 285 | 1 | | 23 | 6/4/2022 | FYR021 | Georgetown | Forsayth | Rock | Outcrop | 761478 | 7940418 | <10 | 0.15 | <10 | 0.07 | 55000 | 18 | | 24 | 6/4/2022 | FYR022 | Georgetown | Forsayth | Rock | Outcrop | 761515 | 7940426 | 20 | 5.56 | <10 | 0.04 | 2130 | 1 | | 25 | 6/4/2022 | FYR023 | Georgetown | Forsayth | Rock | Outcrop | 762051 | 7940775 | 20 | 2.33 | 10 | 0.08 | 1935 | 1 | | 26 | 6/4/2022 | LCR001 | Georgetown | Leichardt Creek | Rock | Outcrop | 758983 | 7975728 | 20 | 8.46 | 10 | 0.1 | 129 | 1 | | 27 | 6/4/2022 | LCR002 | Georgetown | Leichardt Creek | Rock | Outcrop | 758712 | 7975753 | <10 | 0.05 | <10 | <0.01 | 311 | 2 | | 28 | 6/4/2022 | LCR003 | Georgetown | Leichardt Creek | Rock | Outcrop | 755207 | 7970855 | <10 | 0.04 | <10 | <0.01 | 200 | 1 | | 38 | 6/4/2022 | LCR004 | Georgetown | Leichardt Creek | Rock | Outcrop | 755412 | 7970801 | 30 | 3.23 | <10 | 0.07 | 272 | 1 | | 39 | 6/4/2022 | LCR005 | Georgetown | Leichardt Creek | Rock | Outcrop | 753365 | 7970557 | 20 | 6.42 | <10 | 0.03 | 106 | <1 | | 40 | 6/4/2022 | CSR001 | Georgetown | Cleankskin Creek | Rock | Outcrop | 730164 | 7964796 | <10 | 0.04 | <10 | <0.01 | 233 | 2 | | 41 | 6/4/2022 | CSR002 | Georgetown | Cleankskin Creek | Rock | Outcrop | 730222 | 7964821 | <10 | 0.04 | <10 | <0.01 | 171 | 1 | | 42 | 6/4/2022 | CSR003 | Georgetown | Cleankskin Creek | Rock | Outcrop | 730191 | 7964821 | <10 | 0.07 | <10 | <0.01 | 207 | 2 | | 43 | 6/4/2022 | CSR004 | Georgetown | Cleankskin Creek | Rock | Outcrop | 731187 | 7964441 | 10 | 1.96 | 10 | 0.02 | 231 | 1 | | 44 | 6/4/2022 | CSR005 | Georgetown | Cleankskin Creek | Rock | Outcrop | 731258 | 7964392 | 10 | 3.05 | 10 | 0.04 | 222 | 2 | | 45 | 6/4/2022 | CSR006 | Georgetown | Cleankskin Creek | Rock | Outcrop | 731201 | 7964382 | 10 | 3.43 | 10 | 0.03 | 203 | 2 | | Site | Date | Sample# | Project | Tenement | Sample | Sample Type | GDA94 Z54 mE | GDA94 Z54 mN | Na | Ni | Р | Pb | S | Sb | |------|----------|---------|------------|------------------|--------|-------------|--------------|--------------|------|-----|------|--------|-------|-----| | | | | | | | | | | % | ppm | ppm | ppm | % | ppm | | 1 | 6/4/2022 | FYR001 | Georgetown | Forsayth | Rock | Outcrop | 760550 | 7945157 | 3.66 | 1 | 700 | 44 | 0.01 | <5 | | 2 | 6/4/2022 | FYR002 | Georgetown | Forsayth | Rock | Outcrop | 761491 | 7944536 | 2.29 | 3 | 490 | 55 | 0.01 | <5 | |
3 | 6/4/2022 | FYR003 | Georgetown | Forsayth | Rock | Outcrop | 761721 | 7944646 | 2.66 | 2 | 250 | 18 | <0.01 | <5 | | 4 | 6/4/2022 | FYR004 | Georgetown | Forsayth | Rock | Outcrop | 762098 | 7944761 | 2.89 | 2 | 500 | 40 | 0.01 | <5 | | 5 | 6/4/2022 | FYR005 | Georgetown | Forsayth | Rock | Outcrop | 761012 | 7943064 | 0.05 | 19 | 380 | 12.20% | 1.09 | 159 | | 6 | 6/4/2022 | FYR006 | Georgetown | Forsayth | Rock | Outcrop | 761012 | 7943064 | 0.02 | 12 | 200 | 1.28% | 0.02 | 15 | | 8 | 6/4/2022 | FYR007 | Georgetown | Forsayth | Rock | Outcrop | 760881 | 7943040 | 0.02 | 6 | 160 | 4790 | 0.29 | 8 | | 9 | 6/4/2022 | FYR008 | Georgetown | Forsayth | Rock | Float | 760881 | 7943043 | 0.04 | 10 | 180 | 4.69% | 0.4 | 38 | | 10 | 6/4/2022 | FYR009 | Georgetown | Forsayth | Rock | Outcrop | 760892 | 7943053 | 1.13 | 1 | 1060 | 149 | 0.01 | <5 | | 11 | 6/4/2022 | FYR010 | Georgetown | Forsayth | Rock | Outcrop | 761390 | 7942713 | 0.05 | 11 | 190 | 250 | 0.02 | 5 | | 13 | 6/4/2022 | FYR011 | Georgetown | Forsayth | Rock | Outcrop | 761750 | 7942326 | 0.04 | 30 | 170 | 9720 | 0.13 | 21 | | 14 | 6/4/2022 | FYR012 | Georgetown | Forsayth | Rock | Outcrop | 761742 | 7942334 | 0.04 | 19 | 80 | 2660 | 0.08 | 9 | | 15 | 6/4/2022 | FYR013 | Georgetown | Forsayth | Rock | Outcrop | 761694 | 7942395 | 0.04 | 30 | 110 | 4690 | 0.04 | 11 | | 16 | 6/4/2022 | FYR014 | Georgetown | Forsayth | Rock | Outcrop | 760559 | 7941964 | 0.07 | 6 | 200 | 4480 | 0.46 | 8 | | 17 | 6/4/2022 | FYR015 | Georgetown | Forsayth | Rock | Outcrop | 760502 | 7942289 | 0.01 | 3 | 20 | 214 | 0.01 | <5 | | 18 | 6/4/2022 | FYR016 | Georgetown | Forsayth | Rock | Outcrop | 760840 | 7942095 | 3.42 | 2 | 840 | 42 | 0.01 | <5 | | 19 | 6/4/2022 | FYR017 | Georgetown | Forsayth | Rock | Outcrop | 760546 | 7942013 | 0.04 | 6 | 280 | 4290 | 0.32 | 34 | | 20 | 6/4/2022 | FYR018 | Georgetown | Forsayth | Rock | Outcrop | 760551 | 7942004 | 0.02 | 4 | 170 | 519 | 0.04 | <5 | | 21 | 6/4/2022 | FYR019 | Georgetown | Forsayth | Rock | Outcrop | 760544 | 7940097 | 1.35 | 2 | 560 | 94 | 0.01 | <5 | | 22 | 6/4/2022 | FYR020 | Georgetown | Forsayth | Rock | Outcrop | 761467 | 7940460 | 1.96 | 2 | 660 | 31 | <0.01 | <5 | | 23 | 6/4/2022 | FYR021 | Georgetown | Forsayth | Rock | Outcrop | 761478 | 7940418 | 0.07 | 17 | 40 | 219 | 0.03 | <5 | | 24 | 6/4/2022 | FYR022 | Georgetown | Forsayth | Rock | Outcrop | 761515 | 7940426 | 1.72 | 2 | 610 | 57 | 0.01 | <5 | | 25 | 6/4/2022 | FYR023 | Georgetown | Forsayth | Rock | Outcrop | 762051 | 7940775 | 1.41 | 2 | 450 | 28 | 0.01 | <5 | | 26 | 6/4/2022 | LCR001 | Georgetown | Leichardt Creek | Rock | Outcrop | 758983 | 7975728 | 1.4 | 3 | 130 | 49 | 0.01 | <5 | | 27 | 6/4/2022 | LCR002 | Georgetown | Leichardt Creek | Rock | Outcrop | 758712 | 7975753 | 0.02 | 6 | 20 | 6 | <0.01 | <5 | | 28 | 6/4/2022 | LCR003 | Georgetown | Leichardt Creek | Rock | Outcrop | 755207 | 7970855 | 0.02 | 5 | 60 | <2 | 0.01 | <5 | | 38 | 6/4/2022 | LCR004 | Georgetown | Leichardt Creek | Rock | Outcrop | 755412 | 7970801 | 2.2 | 2 | 730 | 24 | 0.01 | <5 | | 39 | 6/4/2022 | LCR005 | Georgetown | Leichardt Creek | Rock | Outcrop | 753365 | 7970557 | 1.17 | <1 | 580 | 40 | 0.01 | <5 | | 40 | 6/4/2022 | CSR001 | Georgetown | Cleankskin Creek | Rock | Outcrop | 730164 | 7964796 | 0.02 | 5 | 40 | 5 | 0.01 | <5 | | 41 | 6/4/2022 | CSR002 | Georgetown | Cleankskin Creek | Rock | Outcrop | 730222 | 7964821 | 0.02 | 3 | 10 | 7 | 0.01 | <5 | | 42 | 6/4/2022 | CSR003 | Georgetown | Cleankskin Creek | Rock | Outcrop | 730191 | 7964821 | 0.01 | 3 | 70 | 3 | 0.01 | <5 | | 43 | 6/4/2022 | CSR004 | Georgetown | Cleankskin Creek | Rock | Outcrop | 731187 | 7964441 | 0.06 | 3 | 30 | 4 | 0.01 | <5 | | 44 | 6/4/2022 | CSR005 | Georgetown | Cleankskin Creek | Rock | Outcrop | 731258 | 7964392 | 0.1 | 3 | 80 | 11 | 0.01 | <5 | | 45 | 6/4/2022 | CSR006 | Georgetown | Cleankskin Creek | Rock | Outcrop | 731201 | 7964382 | 0.1 | 4 | 60 | 9 | 0.01 | <5 | | Class | | C1-# | Dural and | T | C | | CD 404 754 5 | CD404754N | 6- | - | - | - | - | | |-------|------------|---------|-------------|-----------------|--------|-------------|--------------|--------------|-----|-----|-----|---------|-----|-------------| | Site | Date | Sample# | Project | Tenement | Sample | Sample Type | GDA94 Z54 mE | GDA94 Z54 mN | Sc | Sr | Th | Ti
% | П | U | | - | C /4 /2022 | EVD001 | | F | DI | 0 | 760550 | 7945157 | ppm | ppm | ppm | | ppm | ppm | | 1 | 6/4/2022 | FYR001 | Georgetown | Forsayth | Rock | Outcrop | 760550 | | 2 | 32 | <20 | 0.03 | <10 | 10 | | 2 | 6/4/2022 | FYR002 | Georgetown | Forsayth | Rock | Outcrop | 761491 | 7944536 | 4 | 46 | <20 | 0.02 | <10 | 20 | | 3 | 6/4/2022 | FYR003 | Georgetown | Forsayth | Rock | Outcrop | 761721 | 7944646 | 14 | 18 | <20 | 0.02 | <10 | 10 | | 4 | 6/4/2022 | FYR004 | Georgetown | Forsayth | Rock | Outcrop | 762098 | 7944761 | 5 | 30 | <20 | 0.02 | <10 | 20 | | 5 | 6/4/2022 | FYR005 | Georgetown | Forsayth | Rock | Outcrop | 761012 | 7943064 | 2 | 39 | <20 | 0.04 | <10 | <10 | | 6 | 6/4/2022 | FYR006 | Georgetown | Forsayth | Rock | Outcrop | 761012 | 7943064 | 3 | 57 | <20 | 0.04 | <10 | <10 | | 8 | 6/4/2022 | FYR007 | Georgetown | Forsayth | Rock | Outcrop | 760881 | 7943040 | <1 | 8 | <20 | <0.01 | <10 | <10 | | 9 | 6/4/2022 | FYR008 | Georgetown | Forsayth | Rock | Float | 760881 | 7943043 | 1 | 16 | <20 | 0.01 | <10 | 20 | | 10 | 6/4/2022 | FYR009 | Georgetown | Forsayth | Rock | Outcrop | 760892 | 7943053 | 7 | 37 | <20 | 0.02 | <10 | <10 | | 11 | 6/4/2022 | FYR010 | Georgetown | Forsayth | Rock | Outcrop | 761390 | 7942713 | 2 | 185 | <20 | 0.01 | <10 | 20 | | 13 | 6/4/2022 | FYR011 | Georgetown | Forsayth | Rock | Outcrop | 761750 | 7942326 | 5 | 146 | <20 | 0.02 | <10 | 10 | | 14 | 6/4/2022 | FYR012 | Georgetown | Forsayth | Rock | Outcrop | 761742 | 7942334 | 3 | 356 | <20 | <0.01 | <10 | 20 | | 15 | 6/4/2022 | FYR013 | Georgetown | Forsayth | Rock | Outcrop | 761694 | 7942395 | 4 | 459 | <20 | <0.01 | <10 | 30 | | 16 | 6/4/2022 | FYR014 | Georgetown | Forsayth | Rock | Outcrop | 760559 | 7941964 | 1 | 15 | <20 | 0.01 | <10 | <10 | | 17 | 6/4/2022 | FYR015 | Georgetown | Forsayth | Rock | Outcrop | 760502 | 7942289 | <1 | 10 | <20 | <0.01 | <10 | 10 | | 18 | 6/4/2022 | FYR016 | Georgetown | Forsayth | Rock | Outcrop | 760840 | 7942095 | <1 | 22 | <20 | 0.01 | <10 | 10 | | 19 | 6/4/2022 | FYR017 | Georgetown | Forsayth | Rock | Outcrop | 760546 | 7942013 | 2 | 14 | <20 | 0.02 | <10 | <10 | | 20 | 6/4/2022 | FYR018 | Georgetown | Forsayth | Rock | Outcrop | 760551 | 7942004 | <1 | 8 | <20 | <0.01 | <10 | 10 | | 21 | 6/4/2022 | FYR019 | Georgetown | Forsayth | Rock | Outcrop | 760544 | 7940097 | 3 | 44 | <20 | 0.02 | <10 | 20 | | 22 | 6/4/2022 | FYR020 | Georgetown | Forsayth | Rock | Outcrop | 761467 | 7940460 | 7 | 19 | <20 | 0.03 | <10 | 20 | | 23 | 6/4/2022 | FYR021 | Georgetown | Forsayth | Rock | Outcrop | 761478 | 7940418 | 1 | 328 | <20 | <0.01 | <10 | 30 | | 24 | 6/4/2022 | FYR022 | Georgetown | Forsayth | Rock | Outcrop | 761515 | 7940426 | 1 | 27 | <20 | 0.01 | <10 | <10 | | 25 | 6/4/2022 | FYR023 | Georgetown | Forsayth | Rock | Outcrop | 762051 | 7940775 | 8 | 34 | <20 | 0.02 | <10 | <10 | | 26 | 6/4/2022 | LCR001 | Georgetown | Leichardt Creek | Rock | Outcrop | 758983 | 7975728 | 1 | 186 | <20 | 0.03 | <10 | 20 | | 27 | 6/4/2022 | LCR002 | Georgetown | Leichardt Creek | Rock | Outcrop | 758712 | 7975753 | <1 | 2 | <20 | <0.01 | <10 | 10 | | 28 | 6/4/2022 | LCR003 | Georgetown | Leichardt Creek | Rock | Outcrop | 755207 | 7970855 | <1 | 3 | <20 | <0.01 | <10 | 10 | | | 0, 1, 2022 | 22005 | CCC.BCCOWII | 20.0 | | 22.0109 | | | | | -20 | | .10 | | | Site | Date | Sample# | Project | Tenement | Sample | Sample Type | GDA94 Z54 mE | GDA94 Z54 mN | Au | Al | As | Ba | Be | Bi | |------|----------|---------|------------|------------------|--------|-------------|--------------|--------------|-----|----|-----|-------|-----|-----| | | | | | | | | | | ppm | % | ppm | ppm | ppm | ppm | | 38 | 6/4/2022 | LCR004 | Georgetown | Leichardt Creek | Rock | Outcrop | 755412 | 7970801 | 5 | 38 | <20 | 0.02 | <10 | 10 | | 39 | 6/4/2022 | LCR005 | Georgetown | Leichardt Creek | Rock | Outcrop | 753365 | 7970557 | 2 | 41 | <20 | 0.01 | <10 | <10 | | 40 | 6/4/2022 | CSR001 | Georgetown | Cleankskin Creek | Rock | Outcrop | 730164 | 7964796 | <1 | 3 | <20 | 0.01 | <10 | <10 | | 41 | 6/4/2022 | CSR002 | Georgetown | Cleankskin Creek | Rock | Outcrop | 730222 | 7964821 | <1 | 3 | <20 | <0.01 | <10 | <10 | | 42 | 6/4/2022 | CSR003 | Georgetown | Cleankskin Creek | Rock | Outcrop | 730191 | 7964821 | <1 | 4 | <20 | <0.01 | <10 | <10 | | 43 | 6/4/2022 | CSR004 | Georgetown | Cleankskin Creek | Rock | Outcrop | 731187 | 7964441 | 1 | 12 | <20 | 0.05 | <10 | <10 | | 44 | 6/4/2022 | CSR005 | Georgetown | Cleankskin Creek | Rock | Outcrop | 731258 | 7964392 | 2 | 24 | <20 | 0.02 | <10 | 10 | | 45 | 6/4/2022 | CSR006 | Georgetown | Cleankskin Creek | Rock | Outcrop | 731201 | 7964382 | 3 | 35 | <20 | 0.09 | <10 | 10 | | Site | Date | Sample# | Project | Tenement | Sample | Sample Type | GDA94 Z54 mE | GDA94 Z54 mN | ٧ | w | Zn | | | |------|----------|---------|------------|------------------|--------|-------------|--------------|--------------|-----|-----|------|--|---| | | | | - | | | | | | ppm | ppm | ppm | | 1 | | 1 | 6/4/2022 | FYR001 | Georgetown | Forsayth | Rock | Outcrop | 760550 | 7945157 | 7 | <10 | 23 | | 1 | | 2 | 6/4/2022 | FYR002 | Georgetown | Forsayth | Rock | Outcrop | 761491 | 7944536 | 3 | <10 | 11 | | 1 | | 3 | 6/4/2022 | FYR003 | Georgetown | Forsayth | Rock | Outcrop | 761721 | 7944646 | 1 | 10 | 17 | | | | 4 | 6/4/2022 | FYR004 | Georgetown | Forsayth | Rock | Outcrop | 762098 | 7944761 | 2 | <10 | 18 | | | | 5 | 6/4/2022 | FYR005 | Georgetown | Forsayth | Rock | Outcrop | 761012 | 7943064 | 11 | <10 | 2310 | | | | 6 | 6/4/2022 | FYR006 | Georgetown | Forsayth | Rock | Outcrop | 761012 | 7943064 | 10 | <10 | 1650 | | | | 8 |
6/4/2022 | FYR007 | Georgetown | Forsayth | Rock | Outcrop | 760881 | 7943040 | 4 | <10 | 551 | | | | 9 | 6/4/2022 | FYR008 | Georgetown | Forsayth | Rock | Float | 760881 | 7943043 | 6 | 40 | 1830 | | | | 10 | 6/4/2022 | FYR009 | Georgetown | Forsayth | Rock | Outcrop | 760892 | 7943053 | 1 | 10 | 38 | | | | 11 | 6/4/2022 | FYR010 | Georgetown | Forsayth | Rock | Outcrop | 761390 | 7942713 | 38 | <10 | 99 | | | | 13 | 6/4/2022 | FYR011 | Georgetown | Forsayth | Rock | Outcrop | 761750 | 7942326 | 15 | <10 | 133 | | | | 14 | 6/4/2022 | FYR012 | Georgetown | Forsayth | Rock | Outcrop | 761742 | 7942334 | 16 | <10 | 207 | | | | 15 | 6/4/2022 | FYR013 | Georgetown | Forsayth | Rock | Outcrop | 761694 | 7942395 | 20 | <10 | 124 | | | | 16 | 6/4/2022 | FYR014 | Georgetown | Forsayth | Rock | Outcrop | 760559 | 7941964 | 7 | <10 | 1210 | | | | 17 | 6/4/2022 | FYR015 | Georgetown | Forsayth | Rock | Outcrop | 760502 | 7942289 | 3 | <10 | 85 | | | | 18 | 6/4/2022 | FYR016 | Georgetown | Forsayth | Rock | Outcrop | 760840 | 7942095 | 1 | <10 | 20 | | | | 19 | 6/4/2022 | FYR017 | Georgetown | Forsayth | Rock | Outcrop | 760546 | 7942013 | 20 | <10 | 198 | | [| | 20 | 6/4/2022 | FYR018 | Georgetown | Forsayth | Rock | Outcrop | 760551 | 7942004 | 2 | <10 | 9 | | | | 21 | 6/4/2022 | FYR019 | Georgetown | Forsayth | Rock | Outcrop | 760544 | 7940097 | 1 | <10 | 24 | | | | 22 | 6/4/2022 | FYR020 | Georgetown | Forsayth | Rock | Outcrop | 761467 | 7940460 | 2 | 10 | 30 | | | | 23 | 6/4/2022 | FYR021 | Georgetown | Forsayth | Rock | Outcrop | 761478 | 7940418 | 26 | <10 | 36 | | | | 24 | 6/4/2022 | FYR022 | Georgetown | Forsayth | Rock | Outcrop | 761515 | 7940426 | 2 | <10 | 15 | | | | 25 | 6/4/2022 | FYR023 | Georgetown | Forsayth | Rock | Outcrop | 762051 | 7940775 | 2 | 10 | 18 | | | | 26 | 6/4/2022 | LCR001 | Georgetown | Leichardt Creek | Rock | Outcrop | 758983 | 7975728 | 7 | <10 | 8 | | | | 27 | 6/4/2022 | LCR002 | Georgetown | Leichardt Creek | Rock | Outcrop | 758712 | 7975753 | 3 | <10 | <2 | | | | 28 | 6/4/2022 | LCR003 | Georgetown | Leichardt Creek | Rock | Outcrop | 755207 | 7970855 | 2 | <10 | 4 | | | | 38 | 6/4/2022 | LCR004 | Georgetown | Leichardt Creek | Rock | Outcrop | 755412 | 7970801 | 1 | <10 | 42 | | | | 39 | 6/4/2022 | LCR005 | Georgetown | Leichardt Creek | Rock | Outcrop | 753365 | 7970557 | 1 | <10 | 14 | | | | 40 | 6/4/2022 | CSR001 | Georgetown | Cleankskin Creek | Rock | Outcrop | 730164 | 7964796 | 2 | <10 | 2 | | | | 41 | 6/4/2022 | CSR002 | Georgetown | Cleankskin Creek | Rock | Outcrop | 730222 | 7964821 | 1 | <10 | 4 | | | | 42 | 6/4/2022 | CSR003 | Georgetown | Cleankskin Creek | Rock | Outcrop | 730191 | 7964821 | 2 | <10 | <2 | | | | 43 | 6/4/2022 | CSR004 | Georgetown | Cleankskin Creek | Rock | Outcrop | 731187 | 7964441 | 7 | <10 | 6 | | | | 44 | 6/4/2022 | CSR005 | Georgetown | Cleankskin Creek | Rock | Outcrop | 731258 | 7964392 | 6 | <10 | 6 | | | | 45 | 6/4/2022 | CSR006 | Georgetown | Cleankskin Creek | Rock | Outcrop | 731201 | 7964382 | 11 | <10 | 6 | | |