

ASX ANNOUNCEMENT

5 July 2022

High Grade Gold Drilling Results Continue at Agate Creek

The Board of Laneway Resources Limited ("Laneway" or "the Company") (ASX:LNY) is pleased to advise of continuing high grade gold assay results from the drilling program completed earlier this year at the high grade Sherwood and Sherwood West deposits within Laneway's 100% owned Agate Creek Gold Project in North Queensland.

Highlights

- Assay results have now been received for the remaining RC drill holes, primarily from the geotechnical drilling.
- Significant drill intercepts at the Sherwood deposit include:
 - CCGC354
 - o 1m @ 9.40 g/t Au from 43m
 - CCGC355
 - o 1m @ 4.07 g/t Au from 2m
 - CCGC356
 - o **1m @ 6.37 g/t Au** from 64m
 - o 1m @ 34.40 g/t Au from 116m
- Significant drill intercepts at the Sherwood West deposit include:
 - CCGC339
 - o 7.2m @ 5.97 g/t Au from 14.4m (including 2.4m @ 10.55 g/t Au from 18m)
 - CCGC340
 - o **8.4m @ 4.46 g/t Au** from 12m (including **1.2m @ 12.2 g/t Au** from 13.2m).
 - CCGC345
 - o 10.8m @ 2.74 g/t Au from (including 1.2m @ 10.25g/t Au from 14.4m)
- These are the last of the drilling results from the recent RC drilling program, primarily utilised for geotechnical engineering design drilling.
- The diamond drilling program that was also completed was designed primarily to assess geotechnical constraints for pit designs and also targeted additional deeper Rhyolite zones at Sherwood. This diamond drilling program still has assay results pending.

The drilling program followed the completion of the Multi-Element study, and was designed to confirm the interpreted intrusive related gold system (IRGS) potential and targeted:

- Interpreted extensions and repetitions at Sherwood & Sherwood West; and
- The deeper interpreted high grade gold zones below Sherwood.

Further details of the results of the Multi-element study are contained in the Company's ASX announcement of 18 November 2021. Assay results from the first 38 holes in the program were contained in the Company's ASX announcements of 17 December 2021, 4 March 2022 and 23 March 2022.

The drill hole location co-ordinates and significant assay results are contained in the tables in the attached appendices 1,2 & 3 below and the location of the drilled holes is also shown in the Figures 1, 2 & 3 below.

Drilling results so far are confirming extensions of the previously mined veins along with previously identified deeper almost parallel systems which also host narrow high grade gold zones.

Laneway Managing Director, Brad Gordon commented:

These results are being incorporated into pit designs for the current mining activities at Agate Creek and with the progress being made towards the restart of the Georgetown Gold Processing Plant, Laneway has a clear pathway to monetise the expanding high grade Mineral Resource being outlined at Agate Creek.

This announcement is Authorised by the Board of Directors For further information contact:

Brad Gordon Managing Director, Laneway Resources

Phone: (07) 3108 3500

E-Mail: admin@lanewayresources.com.au

Competent Persons Statements

The information in this report that relates to Exploration Results is based on information compiled by Mr Scott Hall who is a member of the Australian Institute of Mining and Metallurgy. Mr Hall is a full-time employee of Laneway Resources Limited and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.' Mr Hall consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

APPENDIX 1: NEW SIGNIFICANT DRILL INTERCEPTS OVER 2 g/t GOLD

Hole ID	From Depth	To Depth	Au g/t	Overall Interval
CCGC311	97	98	2.33	1m @ 2.33 g/t Au
CCGC312	30	31	2.08	1m @ 2.08 g/t Au
CCGC320	51	52	4.29	1m @ 3.30 g/t Au
CCGC320	52	53	2.31	111 @ 5.50 g/t Au
CCGC336	49	50	4.55	1m @ 4.55 g/t Au
CCGC348	15	16	5.05	1m @ 5.05 g/t Au
CCGC339	0	1.2	3.15	1.2m @ 3.15 g/t Au
CCGC339	14.4	15.6	3.88	
CCGC339	15.6	16.8	6.27	
CCGC339	16.8	18	1.39	7.2m @ 5.97 g/t Au
CCGC339	18	19.2	10.70	7.2111 @ 3.37 g/t Au
CCGC339	19.2	20.4	10.40	
CCGC339	20.4	21.6	3.15	
CCGC340	12	13.2	3.23	
CCGC340	13.2	14.4	12.20	
CCGC340	14.4	15.6	2.45	
CCGC340	15.6	16.8	2.64	8.4m @ 4.46 g/t Au
CCGC342	15.6	16.8	6.13	8.4111 @ 4.40 g/t Au
CCGC342	16.8	18	2.73	
CCGC342	18	19.2	2.97	
CCGC342	19.2	20.4	3.34	
CCGC344	7.2	8.4	2.12	1.2m @ 2.12 g/t Au
CCGC345	10.8	12	3.23	
CCGC345	12	13.2	0.49	
CCGC345	13.2	14.4	0.35	
CCGC345	14.4	15.6	10.25	
CCGC345	15.6	16.8	0.91	10.8m @ 2.74 g/t Au
CCGC345	16.8	18	0.22	
CCGC345	18	19.2	2.24	
CCGC345	19.2	20.4	4.74	
CCGC345	20.4	21.6	2.21	
CCGC347	8.4	9.6	2.39	1m @ 2.39 g/t Au
CCGC354	43	44	9.40	1m @ 9.40 g/t Au
CCGC355	2	3	4.07	1m @ 4.07 g/t Au
CCGC356	64	65	6.37	1m @ 6.37 g/t Au
CCGC356	116	117	34.40	1m @ 34.40 g/t Au

- Results shown are as represented as drilled intervals not true widths,
- CCGCXXX drill holes location coordinates can be seen in Appendix 3 & Figures 1-3,

APPENDIX 2 PREVIOUSLY ANNOUNCED SIGNIFICANT DRILL RESULTS OVER 2 g/t GOLD

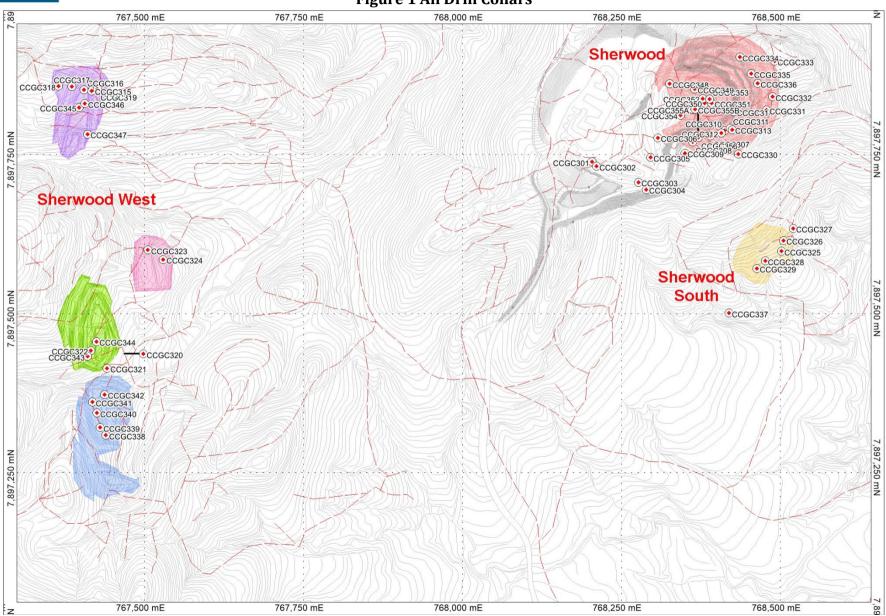
Assays have been previously reported ASX announcement 23 March 2022

Hole ID	From Depth	To Depth	Interval (m)	Au (g/t)	Overall Interval
CCGC306	42	43	1	12.45	2m @ 0.24 a/t A
CCGC306	43	44	1	4.16	2m @ 8.31 g/t Au
CCGC311	66	67	1	3.82	1m @ 3.82 g/t Au
CCGC312A	30	31	1	2.08	1m @ 2.08 g/t Au
CCGC312B	67	68	1	2.92	1m @ 2.92 g/t Au
CCGC313	39	40	1	2.99	1m @ 2.99 g/t Au
CCGC314	19	20	1	6.31	2m @ 5.06 g/t Au
CCGC314	20	21	1	3.80	2111 @ 5.00 g/t Au
CCGC319	34	35	1	2.21	1m @ 2.21 g/t Au
CCGC322	17	18	1	2.67	
CCGC322	18	19	1	6.05	3m @ 3.68 g/t Au
CCGC322	19	20	1	2.32	
CCGC323	0	1	1	1.91	
CCGC323	1	2	1	5.36	
CCGC323	2	3	1	2.99	
CCGC323	3	4	1	10.65	0 m @ 4 60 a/t A
CCGC323	4	5	1	5.00	8m @ 4.62 g/t Au
CCGC323	5	6	1	6.01	
CCGC323	6	7	1	1.28	
CCGC323	7	8	1	3.72	
CCGC325	4	5	1	6.16	1m @ 6.16 g/t Au
CCGC327	7	8	1	2.70	1m @ 2.70 g/t Au
CCGC328	9	10	1	2.12	1m @ 2.12 g/t Au
CCGC330A	1	2	1	2.24	1m @ 2.24 g/t Au
CCGC330B	31	32	1	4.55	1m @ 4.55 g/t Au
CCGC330C	133	134	1	3.52	1m @ 3.52 g/t Au
CCGC331A	21	22	1	3.02	1m @ 3.02 g/t Au
CCGC331B	43	44	1	4.35	1m @ 4.35 g/t Au
CCGC331C	79	80	1	20.30	1m @ 20.30 g/t Au
CCGC331C	80	81	1	5.10	2m @ 2 FF a/t Au
CCGC331C	81	82	1	2.00	2m @ 3.55 g/t Au
CCGC331D	91	92	1	3.17	1m @ 3.17 g/t Au
CCGC331E	97	98	1	2.75	1m @ 2.75 g/t Au
CCGC331F	112	113	1	2.86	1m @ 2.86 g/t Au
CCGC334A	4	5	1	2.04	1m @ 2.04 g/t Au
CCGC334B	14	15	1	11.35	
CCGC334B	15	16	1	6.72	
CCGC334B	16	17	1	5.71	Cm @ F 07 = 4 A
CCGC334B	17	18	1	5.03	6m @ 5.37 g/t Au
CCGC334B	18	19	1	1.90	
CCGC334B	19	20	1	1.50	

- Assays have been previously reported ASX announcement 23 March 2022
- Results shown are as represented as drilled intervals not true widths,
- suffixes of A, B, C do not portray separate drill-holes purely separated intervals within the same drill-hole CCGCXXX whose location coordinates can be seen in Appendix 3 & Figures 1-3,

Assays have been previously reported ASX announcement 4 March 2022

Hole ID	From Depth	To Depth	Au (g/t)	Overall Interval
CCGC309A	64	65	16.20	1m @ 16.2 g/t Au
CCGC309B	97	98	2.32	1m @ 2.32 g/t Au
CCGC310A	58	59	3.41	1m @ 3.41 g/t Au
CCGC310B	66	67	2.25	1m @ 2.25 g/t Au
CCGC311	64	65	3.51	
CCGC311	65	66	32.80	
CCGC311	66	67	3.82	0.00 0 0 40 0 4 4 4 4
CCGC311	67	68	5.51	6m @ 8.43 g/t Au
CCGC311	68	69	1.72	
CCGC311	69	70	3.23	
CCGC314A	0	24	Pending	1m @ 3.37 g/t Au
CCGC314A	24	25	3.37	Interval data may change as some assays still Pending
CCGC314B	50	51	1.97	
CCGC314B	51	52	1.80	4 m @ 4 00 m/t A
CCGC314B	52	53	2.22	4m @ 1.99 g/t Au
CCGC314B	53	54	1.95	
CCGC314C	57	58	2.06	1m @ 2.06 g/t Au
CCGC314D	95	96	4.35	
CCGC314D	96	97	1.05	3m @2.72 g/t Au
CCGC314D	97	98	2.77	9
CCGC315	25	26	17.45	
CCGC315	26	27	3.71	3m @ 7.95 g/t Au
CCGC315	27	28	2.68	G 44 9
CCGC316	20	21	4.39	
CCGC316	21	22	1.08	2m @ 2.07 g/t Au
CCGC317	5	6	2.69	
CCGC317	6	7	3.64	
CCGC317	7	8	2.57	
CCGC317	8	9	4.43	
CCGC317	9	10	9.14	8m @4.21 g/t Au
CCGC317	10	11	4.03	
CCGC317	11	12	5.51	
CCGC317	12	13	1.69	
CCGC318	6	7	2.07	1m @ 2.07 g/t Au
CCGC319	28	29	15.65	
CCGC319	29	30	3.73	2m @ 9.69 g/t Au
CCGC332	25	26	1.36	
CCGC348**	14	15	1.00	0 000 %
CCGC348**	15	16	5.05	2m @ 3.08 g/t Au
CCGC349A**	11	12	9.68	1m @ 9.68 g/t Au
CCGC349B**	36	37	2.38	<u> </u>
CCGC349B**	37	38	1.03	
CCGC349B**	38	39	1.68	
CCGC349B**	39	40	4.81	
CCGC349B**	40	41	18.70	
CCGC349B**	41	42	5.73	
CCGC349B**	42	43	2.09	
CCGC349B**	43	44	1.34	14m @ 5.84 g/t Au
CCGC349B**	44	45	0.68	
CCGC349B**	45	46	33.90	
CCGC349B**	46	47	2.44	
CCGC349B**	47	48	1.40	
CCGC349B**	48	49	1.51	
CCGC349B**	49	50	4.00	
0000049D	49	30	4.00	


- Results shown are as represented as drilled intervals not true widths,
- suffixes of A, B, C do not portray separate drill-holes purely separated intervals within the same drill-hole CCGCXXX whose location coordinates can be seen in Appendix 3 & Figures 1-3,
- only results above 2g/t have been shown unless dilution as part of a larger intercept
- **Assays have been previously reported ASX announcement 17 December 2021

APPENDIX 3: DRILL HOLE COLLAR LOCATIONS GPS SURVEYED

Hole ID	GDA94 East	GDA94 North	RL	Azimuth	Dip	Total Depth
CCGC301	768203.7639	7897738.506	502.9116187	360	-90	6
CCGC302	768210.861	7897731.409	502.7702557	360	-90	6
CCGC303	768276.5419	7897706.585	497.402466	360	-90	21.6
CCGC304	768289	7897695	475.0490649	360	-90	21.6
CCGC305	768295.7504	7897745.514	436.1821024	360	-90	55
CCGC306	768307.2322	7897776.459	424.3858511	360	-90	61
CCGC307	768390.12	7897779.479	519.773376	360	-90	79
CCGC308	768361.8478	7897769.699	502.077057	360	-90	91
CCGC309	768349.5828	7897752.156	503.829376	360	-90	133
CCGC310	768412.2555	7897787.465	503.98465	360	-90	121
CCGC311	768421.2669	7897791.322	515.584229	360	-90	127
CCGC312	768406.9326	7897783.666	517.116333	360	-90	109
CCGC313	768424.0804	7897789.177	484.485352	360	-90	109
CCGC314	768427.0194	7897817.488	521.668579	360	-90	109
CCGC315	767416.688	7897850.046	514.204773	360	-90	31
CCGC316	767404.7006	7897851.659	516.355103	360	-90	25
CCGC317	767385.394	7897857.144	525.92041	360	-90	19
CCGC318	767364.4338	7897857.557	541.149353	360	-90	13
CCGC319	767425.3703	7897853.022	533.519958	270	-60	48
CCGC320	767498.1646	7897436.742	447.952972	270	-60	60
CCGC321	767440.8435	7897414.311	456.511993	360	-90	25
CCGC322	767415.009	7897441.931	466.773315	360	-90	31
CCGC323	767505	7897600	450	360	-90	13
CCGC324	767529	7897585	450	360	-90	25
CCGC325	768502	7897598	444	360		19
CCGC326	768505	7897615	445	360	-90	19
CCGC327	768520	7897634	446	360	-90	31
CCGC328	768476	7897583	442	360	-90	31
CCGC329	768463	7897571	442	360	-90	31
CCGC330	768434	7897751	511	360	-90	151
CCGC331	768478	7897820	513	360	-90	175
CCGC332	768488	7897841	514	360	-90	73
CCGC333	768491	7897897	539	360	-90	73
CCGC334	768436	7897903	532	360	-90	145
CCGC335	768454	7897877	518	360	-90	73
CCGC336	768464	7897862	516	360		139
CCGC337	768419	7897501	435	360	-90	85
CCGC338	767439	7897309	450	360	-90	21.6
CCGC339	767430	7897321	499	360		21.6
CCGC340	767425	7897344	460	360	-90	21.6
CCGC341	767418	7897361	459	360	-90	21.6
CCGC342	767437	7897373	456	360	-90	21.6
CCGC343	767410	7897433	460	360	-90	21.6
CCGC344	767424	7897456	464	360	-90	21.6
CCGC345	767397	7897824	511	360	-90	21.6
CCGC346	767406	7897830	504	360	-90	21.6
CCGC347	767410	7897782	496	360		21.6
CCGC348	768326	7897861	488	360		37
CCGC349	768365	7697853	488	360	-90	79
CCGC350	768381.014	7897830.995	487.084	360	-90	14.4
CCGC351	768392.024	7897830.67	486.734	360	-90	14.4
CCGC352	768377.629	7897837.927	486.831	360	-90	14.4
CCGC353	768388.879	7897837.085	487.044	360	-90	14.4
CCGC354	768343	7897812	496	360	-90	73
CCGC355A	768361	7897821	496	360	-90	7
CCGC355B	768366	7897821	496	360		13
CCGC356	768371	7897777	517	360	- -90 -65	144

Figure 1 All Drill Collars

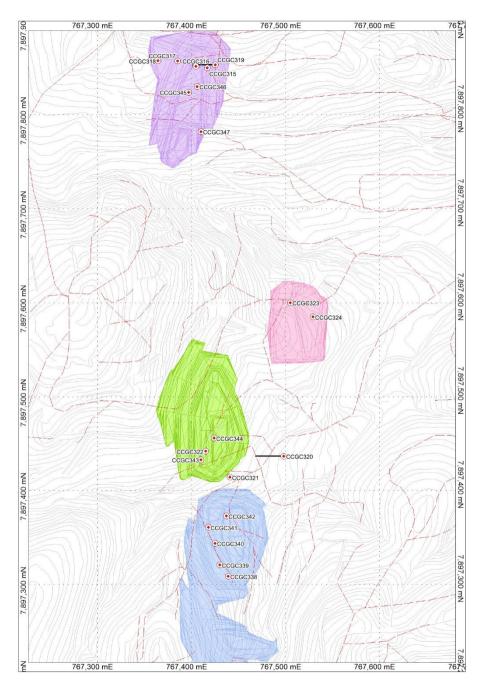
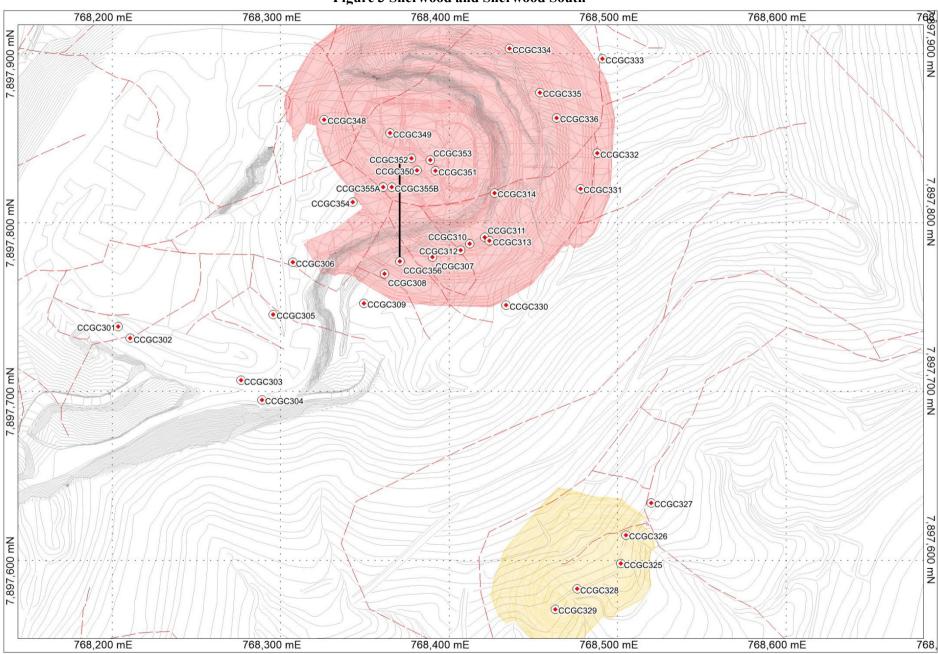



Figure 2 Sherwood West

Figure 3 Sherwood and Sherwood South

Attachment 1

Agate Creek Gold Project July 2022

JORC TABLE 1

CHECKLIST OF ASSESSMENT AND REPORTING CRITERIA (THE JORC CODE, 2012 EDITION)

JORC TABLE 1 provides a summary of assessment and reporting criteria used for the Agate Creek Gold Project in accordance with the Table 1 Checklist in "The Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code, 2012 Edition)".

Ore Reserves and Mineral Resources Reporting Requirements

As an Australian company with securities listed on the Australian Securities Exchange ("ASX"), Laneway Resources Limited (Laneway) is subject to Australian disclosure requirements and standards, including the requirements of the Corporations Act and the ASX. Investors should note that it is a requirement of the ASX listing rules that the reporting of ore reserves and mineral resources in Australia comply with the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the "JORC Code") and that Laneway's ore reserve and mineral resource estimates comply with the JORC Code.

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	Reverse Circulation (RC) Drill samples were submitted as 1 m intervals. These are considered to be representative of the interval drilled and appropriate for the mineralisation style. Individual samples were collected from the riffle splitter below the cyclone into calico bags for analysis and bulk plastic bags to be retained on site. Intervals were geologically logged by the geology team during drilling. No wet samples were drilled
	• Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Duplicates, blanks, and standards are submitted to ensure results are repeatable and accurate. Laboratory comparison checks will also be completed. With no statistically significant lab errors or biasing shown at this stage.
	• In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay').	RC drilling was used to collect 1 metre samples from which a representative 2-5kg sample is sent to an accredited laboratory for analysis. Samples are dried before being pulverised to -75 microns and analysed for gold by fire assay and as required a multi-element suite by mixed-acid digest – ICPMS/OES.
		Samples were sent to Intertek & ALS Townsville for analysis.
Drilling techniques	Drill type	RC hammer size is 5 inch or larger. Drill samples are homogenised by riffle splitting prior to sampling and a 2-5kg split sample is submitted for assay.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	RC samples are split on 1m intervals using a riffle splitter with the following data recorded at the time of sampling:
		O Sample recovery was visually estimated and documented; and
		O Any biases in sample recovery were observed and recorded; and
		O Samples were documented as being dry, moist or wet. No wet or moist samples were drilled
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	No poor RC sample recovery was encountered during drilling. Visual assessment is made for moisture and contamination. The cyclone and splitter were used to ensure representative samples were taken, with both being routinely cleaned and inspected for damage.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No obvious sample bias has been identified or is expected given the nature of the mineralisation and the sampling methods employed.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All RC drilling is qualitatively and quantitatively logged for a combination of geological and geotechnical attributes in their entirety including as appropriate major & minor lithologies, alteration, vein minerals, vein percentage, sulphide type and percentage, colour, weathering, hardness, grain size.
	If core, whether cut or sawn and whether quarter, half or all core taken.	No core drilled in this current drill program reporting .

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	Drill samples are homogenised by riffle or cone splitting prior to sampling and a 2-5kg split sample is submitted for assay. No wet samples were encountered.
sample preparation	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Typically a representative 2-5kg sample has been sent to an accredited laboratory for analysis. Samples are pulverised to -75 microns and analysed for gold by fire - assay, and as required for a multi-element suite by mixed-acid digest – ICPMS/OES as determined by the onsite geologist. The sample preparation technique is appropriate for the style of mineralisation being analysed.
	Measures taken to ensure that the sampling is representative of the in situ material collected	Sampling is supervised by experienced geologists. Panning of drilled samples is also undertaken to allow additional comparisons as to expected gold grades
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample size is appropriate taking into account the grain size of the material, as well as the style of mineralisation being analysed.
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The method employed is industry standard and considered appropriate for the style of deposit and elements being assayed
laboratory tests	 Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established 	Sample batches generally have Certified Standard Reference Material and/or blanks inserted at start and end of every lab submission. Standards and/or blanks are inserted at least every 30m and sample duplicates are generally taken every 20m. Drilling was supervised by experienced geologists.
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	All assay data received including significant intercepts are reviewed by at least 2 appropriately qualified persons for validation purposes.
assaying		All reported significant intercepts are verified by at least 2 appropriately qualified persons and reviewed by at least one board member.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Procedures are in place for data storage, manipulation, data entry, validation and verification which are considered industry standard.
		Samples are collected into pre-numbered bags at the place of sampling. A geologist or field assistant cross checks the bag numbers against the sample interval before recording them in duplicate into a sample submission book.
		Chain of custody is in place for the samples being delivered the sample submission form is signed by the geologist or senior field technician prior to delivery to the accredited laboratory. The laboratory validates the number of samples and sample identification codes against the submission form, with any errors being reported and rectified.
		Data is transferred to excel spreadsheets utilising data validation to improve data quality, prior to loading into Microsoft Access. Validation against assay, lithological and drill metadata is completed by the software prior to consolidation within the main database.
		Hard copy data is collated and is stored in the Brisbane office. Electronic data is stored on the Company server, appropriate security controls being in place.
	Discuss any adjustment to assay data.	No adjustment of assay data was considered necessary.

Criteria	JORC Code explanation	Commentary		
	}	The primary returned assay result is used for reporting of all intersections and in mineral resource estimation, no averaging with field duplicates or laboratory repeats was undertaken so as not to introduce volume bias.		
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	All regional drill hole collar surveys were completed utilising industry handheld GPS co- ordinated will be updated with DGPS survey equipment as required for resource estimations.		
		Generally vertical holes less than 60m have not been downhole surveyed.		
	Specification of the grid system used.	All data has been converted to MGA 94 (Zone 54). Elevation values are in AHD RL. meters		
	Quality and adequacy of topographic control.	Elevation control is based data provided by a licensed surveyor.		
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Current drilling spacing is considered sufficient		
	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	Current drilling spacing is considered sufficient		
	Whether sample compositing has been applied.	Sample compositing has and is not expected be undertaken.		
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	Wherever possible drill holes have been planned to intersect the interpreted mineralised structure as near to perpendicular as possible (subject to dill collar access constraints). No sample biasing due to drill orientation has been observed.		
	• If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drilling orientations are considered appropriate to the mineralisation type with no bias observed as a result of the drill orientation.		
Sample security	The measures taken to ensure sample security.	The chain of custody is managed by the project geologist who generally dispatches the sample bags directly from site to the lab by an authorised company representative. Sample dispatches by others have historically been similar in nature.		
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	In 2008 a complete data review was completed up to hole 333, including a thorough QA/QC audit. Relogging and checking of all historical data was completed during the same period. The results of the 2008 review included updated geological logging and additional QA/QC procedures as part of the continuous improvement process.		
		A database audit was also undertaken prior to the 2021 compilation of the new JORC Resource, with no significant issues identified, small errors were fixed prior to extimation		

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. 	The entire Agate Creek Project is held under several permits including (ML100030, MDL 402, EPM 17788, EPM 26460, EPM 27906, EPM 27907 & EPMA 28133) which are located approximately 50 km South of Forsayth (QLD) held 100% by Laneway Resources, Some areas are subject to a Royalty Agreement based on gold production. All Laneway Tenures have a current ILUA and CHMA for mining & exploration activities with the determined Native Title group. Current Conduct and Compensation Agreements are in place with the underlying land holders.
	 The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	All tenures are current and in good standing
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	All historical data has been reviewed and as necessary relogged and validated so it is now considered equivalent to current geological logs and data quality across the project
Geology	Deposit type, geological setting and style of mineralisation.	Laneway is exploring regional and satellite resources to increase the viability of the Sherwood Deposit. Initial focus will be on epithermal style mineralisation similar to that found at Sherwood. Regional prospects are varied and show the potential for intrusion related systems, vein style mesothermal systems. Historical deposits within the Georgetown Inlier show many diverse styles of mineralisation, and as such Laneway will remain open to new styles of mineralisation as regional areas are mapped and sampled.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level –) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	Location of the data in relation to the Drilling is located in Figures and Tables. All intervals reported can be located in Figures & Tables. Data shown are drilled intervals not true widths and all grades are reported as received from laboratory, no top cut has been applied
Data aggregation methods & Relationship between mineralisation widths and intercept lengths	• In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Significant intervals are reported as drilled widths, quoted intervals may contain up to 2 m of internal dilution and have not had a top cut applied All intervals reported can be located in Figures and Tables

Criteria	JORC Code explanation	Commentary
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	All intervals reported can be located in Figures & Tables. Data shown are drilled intervals not true widths and all grades are reported as received from laboratory, no top cut has been applied .
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Assay results have only been selectively reported however all geologically significant results have been tabled.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	
Further work	• The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further work will be undertaken as required once fll analysis of the data has been completed

Competent Person's Statement

The information in this report that relates to Exploration Results, and other scientific and technical information, is based on information compiled by Scott Hall, COO & Exploration Manager for Laneway, who is a Member of The Australasian Institute of Mining and Metallurgy, and a full-time employee of Laneway. Mr Hall has sufficient experience which is relevant to the styles of mineralisation and types of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the JORC Code. Mr Hall consents to the inclusion in this report of the matters based on his information in the form and context in which it appears including sampling, analytical and test data underlying the results.