DATELINE RESOURCES LIMITED

(ACN 149 105 653) ASX Code: DTR

CAPITAL STRUCTURE

Share Price (05/07/22)\$0.097Shares on issue491.5 millionMarket Cap\$47.6 million

MAJOR SHAREHOLDERS

Mr. Mark Johnson AO	19.45
Southern Cross Exploration N.L	19.33
HSBC Custody Nominees	10.76
Stephen Baghdadi	5.25%

DIRECTORS & MANAGEMENT

Mark Johnson AO Chairman

Stephen Baghdadi Managing Director

Greg Hall Non-Executive Director

Tony Ferguson Non-Executive Director

Bill Lannen Non-Executive Director

Mark Ohlsson Company Secretary

CONTACT Mark Ohlsson Phone: +61 2 9375 2353 Postal Address: P.O. Box 553 South Hurstville NSW 2221 Email: info@datelineresources.com.au DATELINE

813,000 ounce Mineral Resource estimate for Colosseum Gold Project

HIGHLIGHTS

- Mineral Resource estimate based on 599 drillholes for 55,609 metres, validated by Dateline.
- 71% of the Mineral Resource is classified as Measured or Indicated.
- Mineral Resource is open at depth and Company believes that significant potential exists below the Mineral Resource estimate.

Dateline Resources Limited (ASX: DTR) (**Dateline** or the **Company**) is pleased to announce the estimation of a JORC-2012 compliant Mineral Resource of 20.9Mt @ 1.2g/t Au for 813,000oz at the Colosseum Gold Project in California, USA.

Of the total Mineral Resource, 258koz @1.2g/t Au (32%) are classified as Measured, 322koz @1.2g/t Au (39%) as Indicated and 235koz @1.3g/t Au (29%) as Inferred.

Commenting on the Mineral Resource estimate, Dateline's Managing Director, Stephen Baghdadi, said:

"An 813,000 ounce Mineral Resource of which over 70% is in the Measured and Indicated category is an excellent starting point for the Colosseum Project.

"Significantly, the Mineral Resource estimate is open at depth, with further drilling being planned to assess the depth potential of this breccia pipe deposit.

"The recent diamond drilling program validated our belief in the geology of the system, and we are extremely pleased to be delivering a Mineral Resource of this scale as our first estimate for the Project.""

Figure 1: Colosseum mining operation before close down due to a low gold price in 1993

Verification Drilling Program

Dateline acquired a significant volume of hardcopy data as part of the Colosseum acquisition in 2021. The data collected by the previous operators was to a very high-quality level, enabling a database that reflects the deposit to be collected and analysed.

All of the drillhole data was reviewed and loaded into a relational database, building the first 3D view of the mine.

In order for the Company to use the historical data and report to JORC-2012 standards, a program of confirmatory drillholes was completed. These drillholes confirmed the mineralisation identified by previous operators and provided the confidence for the Mineral Resource estimate to be completed.

Mineral Resource remains open at depth

This JORC-2012 compliant Mineral Resource estimate for the Colosseum Gold Mine was primarily based on information compiled by the previous operators in the decade prior to 1993. Later stages of mining focused on expanding the existing reserves to feed the mill, not exploration drilling at depth. Mining was completed down to the 5800ft rl Bench on the North Pit and the 5300ft rl Bench on the South Pit. The current 2022 Mineral Resource estimate was calculated down to the 4900ft rl Bench, with only five holes drilled below that level. This included two very deep holes drilled to ~3,000 ft (~1,000 metres) vertical depth below the surface that confirmed the breccia pipes are still present at the end of the hole.

The Company believes that, based on the continuity of mineralisation within the Mineral Resource and the fact the breccia pipe has been intersected at depth, significant exploration potential exists below the current Mineral Resource estimate. As mineralisation forms a pipe-like structure and is relatively consistent over the full depth of the model, the Company believes there is excellent potential for this mineralisation to continue at depth¹.

The Company is preparing plans to drill beneath the Mineral Resource model using a directional diamond rig to minimise surface disturbance and allow for multiple deviated drillholes to be drilled from the same collar position.

Figure 2 Oblique view of Colosseum Leapfrog Lithologic Model

¹ Investors should note that although geological modelling and the drilling referred to in the previous paragraph demonstrate a continuity of the mineralisation, the drilling conducted to date below the Mineral Resource estimate is not included in MRE.

Mineral Resource Estimate

The block model for the Mineral Resource estimate was completed utilising data from 273 reverse circulation (**RC**) holes for 132,180 feet (40,288 metres), 33 rotary/percussion holes for 11,625 feet (3,543 metres), 31 diamond drillholes for 21,691 feet (6,611 metres), and 262 Air Trac holes for 16,948 feet (5,166 metres). All holes were used to create the block model. A total of 326 out of 599 holes were used in the Mineral Resource Estimate.

Figure 3 Historic Drillhole location map

Table 1 below shows the Mineral Resource estimate for the Colosseum deposit. The Mineral Resource model commences at the base of the existing open pits and is constrained by a lack of drilling below 4900ft RL. The Mineral Resource is estimated at a cut-off grade of 0.48g/t Au.

	Cut-off Grade g/t Au	Tonnes	Grade g/t Au	Contained Ounces	%
Measured	0.48	6,866,000	1.2	257,000	32%
Indicated	0.48	8,326,000	1.2	321,000	39%
Inferred	0.48	5,745,000	1.3	234,000	29%
Total	0.48	20,936,000	1.2	813,000	100%

Table 1: JORC-compliant Mineral Resource estimate for Colosseum Gold Mine

Notes:

1) Mineral Resource estimated at 0.48g/t Au cut-off;

2) Numbers may not add up due to rounding. Differences occur when converting from Imperial to Metric units are less than 1%.

Figure 4: Grade-Tonnage Curve

Resource Grade Sensitivity

The Mineral Resource of the Colosseum Gold Project is variable depending upon the selected Cut-off Grade (CoG). To illustrate this sensitivity, the global block model quantities and grade estimates are presented at different cut-off grades in Table 2 for the in-situ Mineral Resource. These block-diluted Mineral Resources are presented in order to provide grade-distribution information, as well as to provide for economic conditions other than those envisioned by the 0.014 oz Au/ton (0.48g/t Au) economic cut-off. Values are based on in-situ values.

The reader is cautioned that the figures presented in this table should not be misconstrued with a Mineral Resource statement. The figures are only presented to show the sensitivity of the block model estimates to the selection of CoG.

Cutoff		Grade	
(Au g/mt)	Tonnes	Au g/mt	Oz Au
0.48	20,935,108	1.20	812,791
0.686	15,438,474	1.44	714,842
1.029	8,049,453	1.95	505,822
1.371	4,264,677	2.67	366,722
1.714	2,606,343	3.39	284,461
2.057	1,962,241	3.90	246,612
2.743	1,153,032	4.97	184,317
3.429	693,997	6.24	139,247

Table 2. 2022 MicroModel generated Colosseum in-situ Tonnage/Grade values for varying cut-offs

Summary of Mineral Resource Estimate and Reporting Criteria

As per ASX Listing Rule 5.8 and the 2012 JORC reporting guidelines, a summary of the material information used to estimate the Mineral Resource is detailed below (for more detail please refer to JORC Table 1, Sections 1 to 3 included below in Appendix 1).

Geology and geological interpretation

The Colosseum deposit is located at the southern end of the Sevier foreland thrust belt in the southern Basin and Range Province.

The deposit is associated with emplacement of a breccia complex into Precambrian basement rocks. The complex is comprised of two felsite (also called "rhyolite" and "rhyolite felsite" by other authors) breccia pipes that form a northeast-southwest elongate complex, which contains mineralized zones of disseminated auriferous pyrite.

As reported by Davis and others (1989), gold at the Colosseum deposit is generally sub-microscopic and associated with sulphide mineralisation, chiefly pyrite. It occurs as free gold, with minor alloyed silver. It is primarily in contact with pyrite in fractures in the pyrite or along pyrite grain edges. Secondarily, it occurs as isolated particles in quartz and other gangue minerals but spatially always close to pyrite, and rarely as particles encased in euhedral pyrite.

Based on the current understanding of the Colosseum deposit, and the existing deposit type models, the Colosseum deposit could be described as a hybrid, or combinations of overlapping deposit types. The Colosseum deposit is a hydrothermal breccia pipe with a combination of epithermal mineralization at original higher levels and mesothermal mineralization at the lower levels. Sedimentary breccia fragments with associated sulfides

within the breccia may have originated from an earlier replacement deposit, not related to the breccia pipe itself.

Drilling techniques and drillhole spacing

As of the effective date of this report, the Mineral Resource database includes data from 604 holes, for a total of 186,017 feet (56,698 metres), that were drilled by Dateline and various historical operators in the Colosseum Mine area.

The historical drilling was completed from 1972 to 1991 and includes 599 holes for a total of 182,444 feet (55,609 metres) of drilling. Most of the historical drilling was done using reverse-circulation ("RC") and conventional rotary methods. An inventory of known drilling in the area totals 16,948 feet (5,166 metres) in 262 Air Trac holes, 21,691 feet (6,611 metres) in 31 core holes, 132,180 feet (40,288 metres) in 273 reverse circulation holes and 11,625 feet (3,543 metres) in 33 rotary/percussion holes.

All the Colosseum drillhole data was used in developing the Mineral Resource model, with the exception of three historic drill holes (C88-37, C88-38, CP-2) as they are considered exploration holes and outside the area of the Mineral Resource. Many of the historic holes were mined out. Those holes were used to compute only variograms and to assign values to the block model.

In April 2022, Dateline drilled five diamond core holes along existing haul roads into the South Pit, for a total of 1,986 feet (605 metres). Three shallow holes were vertical and 2 were angled holes designed to identify the west pipe boundary at depth in this area and confirm the location and grade of the favourable lithologic units. This drilling was included in the Mineral Resource database but none of the holes were used to estimate the current Mineral Resource of this report, rather it was used to confirm the historic resource block estimates.

Sampling and sub-sampling techniques

A Quality Assurance/Quality Control (**QAQC**) program has demonstrated that sample preparation and laboratory performance for the various drilling campaigns provided sample assays which are considered appropriate, with sufficient accuracy and precision, for the purpose of defining a Mineral Resource estimate.

Individual laboratory sample preparation procedures varied slightly but still followed a standard analytical industry process of taking submitted samples through successive stages of reducing particle sizes and weights to obtain representative subsamples for assaying. Procedures comprised drying, crushing (jaw or rolls), splitting (riffle), pulverizing (spindle, plate, bowl), splitting (scoops), and fire assaying (30-60 g charge using lead collector and AAS finish). There were no unusual or questionable gold assaying methods used. Copies of submittal sheets and assay certificates are available for most of the later drilling campaigns.

Estimation methodology

The evaluation of Mineral Resources for the Colosseum Gold Project involved the following procedures:

- Constructing a digital terrain model from the 1992 topographic data;
- Importing of drillhole data into MicroModel software;
- Using Leapfrog software to develop geologic 3D model to provide boundaries for basic statistics and grade modelling based on lithology;
- Compositing of assay data;
- Statistical analysis of composite samples;
- Variogram modelling to establish mineral trends and ranges of sample influence based on lithology;
- Generating a 3D block modeling of grades within the respective geologic domains;
- Validating the created grade model ;
- Classifying the mineral resources into confidence categories of measured, indicated and inferred;
- Assessing of "reasonable prospects for economic extraction" and selecting reporting Cut-off Grade (CoG); and

• Preparing of the Mineral Resource statement.

Block grades for gold were estimated from 20-foot composite assay samples using Ordinary Kriging (**OK**) algorithm into 25x25x20 ft blocks. The Colosseum Mineral Resource was classified as Measured, Indicated, or Inferred on the basis of the number and distance of composite assays used in the interpolation of a block gold grade, as well as the number of holes that contributed values to the interpolation. These distances were based on variogram analysis of the gold composite data for each lithology.

To demonstrate reasonable prospects for eventual economic extraction of Mineral Resources, a cut-off grade of 0.48g/t Au was used based on metal recovery assumptions, long term Au price assumption of US\$2035/oz, estimated mining costs, processing costs, G&A in the context of a conventional opencut mine with gold processing by carbon in pulp (**CIP**) to recover gold doré on site.

A JORC-2012 compliant Mineral Resource is summarised in **Error! Reference source not found.** in metric units. Rounding of short tons, grades, and troy ounces, as required by reporting guidelines, may result in apparent differences between tons, grades, and contained metal contents.

Based on a thorough understanding of the geology at the Colosseum Project, in conjunction with realistically assumed and justifiable technical and economic conditions, the QP considers the Mineral Resource to demonstrate reasonable prospects for eventual economic extraction.

Cut-off grades

The Mineral Resource is reported at a cut-off grade of 0.48 g/t Au. This is a marginal cut-off grade based on the amount of recoverable gold required to just cover operating costs if a tonne of material from the mine is classed as ore instead of waste. It is calculated as:

(AOC + PC + GA) / ((Gold price per grade unit – Royalties) x Process Recovery)

where:

AOC = Additional ore cost per ton of mill feed. This is how much more it costs to mine a ton of material as ore instead of waste. It covers things like grade control, closer blasting and longer hauls.

PC = Processing cost per ton of mill feed. This includes crushing, grinding, CIP, gold room, tailings and all power, reagents and operators and technical/management/supervisory staff.

GA = General and administration cost per year divided by annual mill feed tonnes. It covers all non-operations employees, tenement fees, county fees, external consultants (environmental, IT, etc.) and non-operations services like non-operating power or water treatment.

The deposit was operated as an opencut gold mine with ore processing by CIP from 1987 to 1992 but no detailed mine or process planning has been undertaken yet for the current project. Cut-off grade inputs are based on typical costs for an opencut mine processing 1.1 million tons per year in the west of the USA and actual data for Colosseum where available.

AOC was assumed to be US\$0.20/ton based on experience from similar scale opencut gold mines.

PC was set at US\$14.81/ton based on CIP costs from Infomine's CostMine database.

GA was estimated at US\$7.29/ton using 2021 salaries for non-operations personnel and assumed costs for other non-operations activities such as community relations and environmental management.

The gold price was set at US\$2,035/oz, being 10% above the June 2022 spot price. This price was set high enough to ensure any future ore reserve will be included within the Mineral Resource but low enough to be reasonably possible within the likely life of the project.

Gold transport, insurance and refining costs were assumed to be US\$20/oz.

Gold process recovery was set at 90% based on the 1984 metallurgical test work. Actual recoveries from 1987 to 1992 were reportedly higher than this but the testwork is better documented and more conservative.

The cut-off grade was adjusted upward to allow for assumed mining dilution of 10% at zero grade so the cut-off grade reflects the in-situ Mineral Resource grade.

Classification criteria

The Mineral Resource estimate reported here was prepared in a manner consistent with the Committee of Mineral Reserves International Reporting Standards (**CRIRSCO**), of which both the Canadian Institute of Mining, Metallurgy and Petroleum (**CIM**) and Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the **JORC Code**) are members.

According to the JORC Code, 2012 Edition, prepared by the Joint Ore Reserves Committee of the Australasian Institute of Mining and Metallurgy, Australian Institute of Geoscientists and Minerals Council of Australia (**JORC**), a 'Mineral Resource' is a concentration or occurrence of solid material of economic interest in or on the Earth's crust in such form, grade (or quality), and quantity that there are reasonable prospects for eventual economic extraction. The location, quantity, grade (or quality), continuity and other geological characteristics of a Mineral Resource are known, estimated, or interpreted from specific geological evidence and knowledge, including sampling. Mineral Resources are sub-divided, in order of increasing geological confidence, into Inferred, Indicated and Measured categories.

The author has classified Mineral Resources in order of increasing geological and quantitative confidence into Inferred, Indicated, and Measured categories based on "Reporting of Mineral Resources" of the JORC Code, 2012 Edition. JORC Mineral Resource definitions are included below:

Mineral Resource

All reports of Mineral Resources must satisfy the requirement that there are reasonable prospects for eventual economic extraction (i.e., more likely than not), regardless of the classification of the resource.

The term 'Mineral Resource' covers mineralisation, including dumps and tailings, which has been identified and estimated through exploration and sampling and within which Ore Reserves may be defined by the consideration and application of the Modifying Factors.

The term 'reasonable prospects for eventual economic extraction' implies an assessment (albeit preliminary) by the Competent Person in respect of all matters likely to influence the prospect of economic extraction including the approximate mining parameters. In other words, a Mineral Resource is not an inventory of all mineralisation drilled or sampled, regardless of cut-off grade, likely mining dimension's location or continuity. It is a realistic inventory of mineralisation which, under assumed and justifiable technical, economic and development conditions, might, in whole or in part, become economically extractable.

The Colosseum Mineral Resource was classified as Measured, Indicated, or Inferred on the basis of the number and distance of composite assays used in the interpolation of a block gold grade, as well as the number of holes that contributed values to the interpolation. These distances were based on variogram analysis of the gold composite data for each lithology.

Measured Mineral Resource

A 'Measured Mineral Resource' is that part of a Mineral Resource for which quantity, grade (or quality), densities, shape, and physical characteristics are estimated with confidence sufficient to allow the application of Modifying Factors to support detailed mine planning and final evaluation of the economic viability of the deposit.

Geological evidence is derived from detailed and reliable exploration, sampling and testing gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings, and drill holes, and is sufficient to confirm geological and grade (or quality) continuity between points of observation where data and samples

are gathered.

A Measured Mineral Resource has a higher level of confidence than that applying to either an Indicated Mineral Resource or an Inferred Mineral Resource. It may be converted to a Proved Ore Reserve or under certain circumstances to a Probable Ore Reserve.

Mineralisation may be classified as a Measured Mineral Resource when the nature, quality, amount, and distribution of data are such as to leave no reasonable doubt, in the opinion of the Competent Person determining the Mineral Resource, that the tonnage and grade of the mineralisation can be estimated to within close limits, and that any variation from the estimate would be unlikely to significantly affect potential economic viability.

This category requires a high level of confidence in, and understanding of, the geological properties and controls of the mineral deposit.

Indicated Mineral Resource

An 'Indicated Mineral Resource' is that part of a Mineral Resource for which quantity, grade (or quality), densities, shape and physical characteristics are estimated with sufficient confidence to allow the application of Modifying Factors in sufficient detail to support mine planning and evaluation of the economic viability of the deposit.

Geological evidence is derived from adequately detailed and reliable exploration, sampling and testing gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings, and drill holes, and is sufficient to assume geological and grade (or quality) continuity between points of observation where data and samples are gathered.

An Indicated Mineral Resource has a lower level of confidence than that applying to a Measured Mineral Resource and may only be converted to a Probable Ore Reserve.

Mineralisation may be classified as an Indicated Mineral Resource when the nature, quality, amount, and distribution of data are such as to allow confident interpretation of the geological framework and to assume continuity of mineralisation.

Inferred Mineral Resource

An 'Inferred Mineral Resource' is that part of a Mineral Resource for which quantity and grade (or quality) are estimated based on limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade (or quality) continuity. It is based on exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings, and drill holes.

An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to an Ore Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.

The Inferred category is intended to cover situations where a mineral concentration or occurrence has been identified and limited measurements and sampling completed, but where the data are insufficient to allow the geological and grade continuity to be confidently interpreted. While it would be reasonable to expect that the majority of Inferred Mineral Resources would upgrade to Indicated Mineral Resources with continued exploration, due to the uncertainty of Inferred Mineral Resources, it should not be assumed that such upgrading will always occur

Confidence in the estimate of Inferred Mineral Resources is not sufficient to allow the results of the application of technical and economic parameters to be used for detailed planning in Pre-Feasibility (Clause 39) or Feasibility (Clause 40) Studies. For this reason, there is no direct link from an Inferred Mineral Resource to any category of Ore Reserves.

Statement of Mineral Resources

The Mineral Resource estimate for the Colosseum project was developed by Barbara Carroll, (CPG, SME RM), in accordance with the guidelines of the Joint Ore Reserve Committee (JORC) 2012 code, utilising MicroModel v10.0, a commercial mine planning software package. Ms. Carroll is a Competent Person as defined by in the JORC Code, 2012 Edition and is independent of Dateline Resources. The date of the Mineral Resource estimate is 20 Jun 2022. The Mineral Resource estimate is based on the 1972 thru 1991 historic drilling constrained by geologic boundaries with an OK algorithm. The current drilling completed by Dateline in April 2022 was used to confirm grade and lithologic contacts used for the Mineral Resource.

The definitions of Measured, Indicated and Inferred Mineral Resources reported here are defined in the JORC Code, 2012 Edition.

Authorised by the Dateline Board.

For more information, please contact:

Stephen Baghdadi Managing Director +61 2 9375 2353 www.datelineresources.com.au Andrew Rowell White Noise Communications +61 400 466 226 andrew@whitenoisecomms.com

Follow Dateline on Twitter:

https://twitter.com/Dateline DTR

About Dateline Resources Limited

Dateline Resources Limited (ASX: DTR) is an Australian publicly listed company focused on gold mining and exploration in North America. The Company owns 100% of the Gold Links and Green Mountain Projects in Colorado, USA and 100% of the Colosseum Gold Mine in California.

The Gold Links Gold Mine is a historic high-grade gold mining project where over 150,000 ounces of gold was mined from high-grade veins. Mineralisation can be traced on surface and underground for almost 6km from the Northern to the Southern sections of the project. Ore mining commenced in late 2021, with first saleable gold concentrate produced in April 2022.

The Company owns the Lucky Strike gold mill, located 50km from the Gold Links mine, within the Green Mountain Project. Ore is transported to Lucky Strike for processing.

The Colosseum Gold Mine is located in the Walker Lane Trend in East San Bernardino County, California and produced approximately 344,000 ounces of gold (see ASX release dated 15 March 2021). Significant potential remains for extension to mineralisation at depth as well as potential for rare earth elements.

Competent Person Statement

Sample preparation and any exploration information in this announcement is based upon work reviewed by Mr Greg Hall who is a Chartered Professional of the Australasian Institute of Mining and Metallurgy (CP-IMM). Mr Hall has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to quality as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Hall is a Non-Executive Director of Dateline Resources Limited and consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

The information in this report that relates to Mineral Resources and Exploration Results has been prepared by Barbara Carroll, CPG, Principal of GeoGRAFX Consulting, LLC. who is an independent Competent Person within the meaning of the JORC (2012) code. Ms. Carroll is a Certified Professional Geologist with the American Institute of Professional Geologists and a Registered Member of SME. Ms. Carroll has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which she is undertaking to quality as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves" (JORC Code) and consents to the inclusion in the report of the matters based on their information in the form and context in which it appears.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling d techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as 	As of the effective date of this report, the resource database includes data from 604 holes, for a total of 186,017 feet (56,698 metres), that were drilled by Dateline and various historical operators in the Colosseum Mine area. Historic Drilling
	limiting the broad meaning of sampling.	The historical drilling was completed from 1972 to 1991 and includes 599 holes for a total of 182,444 feet (55,609
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	metres) of drilling. Most of the historical drilling was done using reverse-circulation ("RC") and conventional rotary methods. An inventory of known drilling in the area totals 16,948 feet (5,166 metres) in 262 Air Trac holes, 21,691 feet
	 Aspects of the determination of mineralisation that are Material to the Public Report. 	(6,611 metres) in 31 core holes, 132,180 feet (40,288 metres) in 273 reverse circulation holes and 11,625 feet
	 are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	(3,543 metres) in 33 rotary/percussion holes. The preponderance of samples for all drill programs of all operators were taken at 5-foot intervals, which is customary for RC drilling, and is significantly less than the thickness of the bulk-tonnage style of mineralization at the Colosseum mine. Each drill sample interval is therefore a fraction of the true thickness of the mineralized zones. The predominant sample length for the drill intervals in the Colosseum database is five feet (28,339 samples out of 35,836–79%) of assays with values, with the remaining percentage of shorter

sample lengths for core holes based on lithology.

and five-foot sample length for reverse circulation holes, twelve-foot sample length for air track holes, and various

Historic work programs are described below:

Draco Mines 1972-1974

Draco completed five core holes (CP-1 to 5) totaling 7,065 ft and submitted 654 samples of varying lengths to Cortez Met, Skyline, Rocky Mountain Geochem, and Mineral Assay laboratories for gold and silver fire assays. Multi-element analyses were completed on selected samples. There is no record of the sample preparation procedures used by the assay labs and there is no record of usage of CRMs, BLKs, and DUPs. Drill hole results and supporting assay certificates are available.

Placer Amex – 1975-1976

Placer Amex completed 18 core holes (CP-6 to 23) totalling 8,230 ft and submitted 1,608 five-foot samples to Cortez Met and Mineral Assay laboratories for gold and silver fire assays. There is no record of usage of CRMs, BLKs, and DUPs. Sample submittal sheets with drill hole results and supporting assay certificates are available.

Draco Mines - 1979-1980

Draco completed 26 rotary percussion holes (CH-24 to 52) totalling 10,777 ft and submitted 2,293 five-foot samples to Skyline and Mineral Assay laboratories for gold and silver fire assays. Multi-element analyses were completed on selected samples. There is no record of usage of CRMs, BLKs, and DUPs. Sample submittal sheets with drill hole results and supporting assay certificates are available.

Amselco - 1982 - 1984

Amselco completed two drilling campaigns comprising reverse circulation and core holes.

1982-84 – 163 reverse circulation holes (CM series) totaling 95,436 ft with 22,763 samples submitted to Monitor and Rocky

Criteria	JORC Code explanation	Commentary
		Mountain laboratories for gold fire assays. Multi-element analyses were completed on selected holes by Cone Geochemical and Amselco's own laboratory.
		QC monitoring comprised 10% control material of known grades, 5% silica sand blanks, and 5% repeat samples inserted with each batch of samples. In addition, 10% duplicate samples, with controls, were shipped to Amselco's own laboratory. Control materials returned most results within + 5% of the known grade with a maximum of + 10%.
		1982-84 – 6 core holes totaling 3,738 ft were completed for metallurgical and engineering (Section 13, Mineral Processing).
		Colosseum Gold Inc – 1987
		Colosseum Gold completed two drilling campaigns comprising core and air track blast holes.
		1987 – 2 core holes totaling 2,625 ft with 337 samples submitted to Monitor and Rocky Mountain laboratories for gold fire assays, and copper, zinc, and sulphur analyses. Sample record sheets, and mine assay records are available for these holes, but assay certificates are not.
		1987 – 6 percussion (C87-3 to 8) holes totaling 447 ft were completed and 43 samples submitted to Chemex and American Assay for gold fire assays and multi-element analyses. Assay certificates are available for these holes.
		1987 – 211 air track blast holes totaling 14,398 ft and 1,236 samples were submitted to Strobeck laboratory for gold and silver fire assays. A check assaying program was completed by Cimetta and Hunter laboratories. Discrepancies were noted for the number of holes drilled and between some assay samples and drill hole identifiers. Sample submittal sheets and assays certificates are available for some samples.
		Bond Gold Colosseum Inc – 1988-1991
		Bond Gold completed three campaigns of reverse circulation drilling.
		1988 – 36 holes (C88 series) totaling 18,555 ft and 3,926 samples submitted to Skyline for gold and silver fire assays. Assay certificates are available.
		1989 – 2 deep holes totaling 1,330 ft and 266 samples submitted to American Assay laboratory for gold fire assays, total sulphur, and CN soluble copper and zinc analyses. QC monitoring comprised 10% random duplicate samples. Drill hole results and supporting assay certificates are available.
		1990 – 67 holes (R90 and DB90 series) totaling 18,200 ft and 3,113 samples submitted to American Assays Laboratories. QC monitoring comprised 10% random duplicate samples, and selected duplicate samples were submitted to Chemex and Skyline laboratories for check assays. Job order forms and assay certificates are available.
		Lac Minerals - 1991
		Lac Minerals completed one campaign of reverse circulation drilling.
		1991 – 18 holes (SP91 series) totaling 3,200 ft and 640 samples submitted to American Assay Laboratories for gold and silver fire assays. QC monitoring comprised 10% random duplicate samples. Job order forms and assay certificates are available.

Criteria	JORC Code explanation	Commentary
		2022 Drilling
		As disclosed to the ASX on May 12, 2022, Dateline Resources Limited completed 605 metres (1,986 feet) of drilling in 5 drill holes at the Colosseum Project. All the drilling was done from the surface with HQ diamond drill core. Industry standard core handling and sampling procedures were employed to ensure high quality samples.
		Core samples were collected at 5 foot intervals.
		All core was logged for rock type, RQD, and recovery and dispatched for assay with standard 5 foot long sample intervals.
		Logging geologist identified zones of interest, but the entire hole was measured and marked up in 5 foot intervals. Whole core was sampled.
		Core was bagged into pre-numbered bags, and taken to the FEDEX Freight office in Las Vegas, palletized by the Logging Geologist, covered in shrink wrap and handed over to the FEDEX dock personnel for overnight shipping to Paragon Geochemical Laboratory in Sparks Nevada.
		Samples were sent to Paragon Geochemical in Sparks, Nevada for sample preparation and assaying. Samples were dried, weighed, crushed and split to obtain 1 kg. The split samples were placed in a ring and puck mill to produce 85% minus 75 micron pulp. This material was blended on clean cloth and packaged in paper pulp bags. Using a pulp balance, a 30gm sample was weighted out for standard lead collector fire assay with an AAS finish. Overlimit values using a 5 ppm threshold were analyzed via gravimetric analysis.
		All samples followed a strict Chain of Custody.
		Routine QAQC samples were inserted in the sample runs at a rate of 20%, comprising Certified Reference Materials from CDN Resource Laboratories Ltd., and verified blank granitic material.
		Sampling practice is appropriate to the geology and mineralization of the deposit and complies with industry best practice.

0.11		0					
Criteria	JORC Code explanation	Commenta	ry				
Drilling		Listaria D					
techniques	 Drill type (eg core, reverse circulation, open-noie hammer, rotary air blast, auger, Bangka, sonic, 	HISTORIC D	ata		#		
	etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-	Company	Date	Series	# Holes	Feet	Туре
	sampling bit or other type, whether core is oriented and if so, by what method, etc)	Draco Mines	1972- 1974	СР	5	7,070	Core
		Placer Amex	1975- 1976	СР	18	8,256	Core
		Draco Mines	1979- 1980	СН	27	11,148	Rotary/Percussi on
		Amselco	1982- 1984	СМ	162	95,160	Reverse Circulation
			1983- 1984	EDDH, WDDH	6	3,740	Core
		Colosseu m Gold Inc	1987	C87-1,2	2	2,625	Core
				C87-3-8	6	477	Rotary/Percussi on
				C88-9	1	100	Reverse Circulation
				ATDH*	262	16,948	Air Trac
		Bond Gold Colosse um Inc.	1988	C88	31	16,415	Reverse Circulation
		1989	C89	2	1,330	Reverse Circulation	
			1990	R90	53	15,265	Reverse Circulation
				DB90	6	690	Reverse Circulation
		LAC Minerals- Colosse um Inc	1991	SP91	18	3,220	Reverse Circulation
		TOTAL			599	182,444	
		Drilling typ	e details	unknown	1		_
		2022 Drilling					
		The drilling	g progra	m utilized s	surface co	re drilling	g.
		The core drilling was conducted with an EVERDIGM ECR 18 drill. All holes utilized triple tube to increase recoveries. The drilling was completed by an experienced diamond drilling core driller.					
Drill	Method of recording and assessing core and chip	Historic d	ata				
sample recovery	sample recoveries and results assessed.	Sample recoveries for historic drillholes unknown.					
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	Relationship between recovery and grade unknown					
	Whether a relationship exists between sample	2022 Drilli	ing				
 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	All drilling based on <i>2</i>	recoveri 10 foot te	es have be poling.	een loggeo	d and no	tated each rur	
	To maximi chain poly	ze samp mer muo	le recover s were us	ies, use o ed to incre	f triple tu ease rec	be and long overy.	
		Recovery was good overall at better than 90%					
		There has	been no	analysis l	between s	ample re	ecoveries and

Criteria	JORC Code explanation	Commentary
		grade to date.
Logging	Whether core and chip samples have been	Historic data
	geologically and geotecnnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Core and chip samples were geologically and geotechnically logged at the mine site to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	Geological logging of core samples is qualitative and quantitative in nature.
	The total length and percentage of the relevant	2022 Drilling
	intersections logged.	All core was geologically logged. Lithology, veining, alteration, mineralization and oxides were recorded in the appropriate tables of the drill hole database.
		Each core box was photographed dry and wet, after logging of unit and structures were notated on the core.
		Geological logging of core samples is qualitative and quantitative in nature.
Sub- sampling	 If core, whether cut or sawn and whether quarter, half or all core taken 	Historic Data
techniques	 If non-core whether riffled tube sampled rotary 	It is not known if whole or split core samples were taken.
and sample preparation	split, etc and whether sampled wet or dry.	Up to 1987, samples were shipped by various trucking and courier companies from the project site to laboratories in
	 For all sample types, the nature, quality and appropriateness of the sample preparation 	western United States. In 1987, American Assay Laboratories established an on-site laboratory for mine production samples.
	 technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	Individual laboratory sample preparation procedures varied slightly but still followed a standard analytical industry process of taking submitted samples through successive stages of reducing particle sizes and weights to obtain representative subsamples for assaying. Procedures comprised drying,
		bowl), splitting (scoops), and fire assaying (30-60g charge using lead collector and AAS finish). There were no unusual or questionable gold assaying methods used. Copies of submittal
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 	drilling
		2022 Drilling
		All drill core was sampled using whole core samples. Samples were placed in heavy-duty, pre-numbered poly sample bags. Samples were placed on pallets and secured with stretch wrap and packing tape and shipped in batches by company personnel directly to Paragon Geochemical via FedEx Freight following standard chain of custody protocols.
		Routine QAQC samples were inserted at a 20% rate into the sample batches and comprised Certified Reference Materials (CRMs) from CDN Resource Laboratories Ltd. and verified blank granitic material.
		Rock samples sent to Paragon Geochemical in Sparks, Nevada were dried, weighed, crushed and 1 kg subsample split, which was pulverized to better than 85% passing 75 microns. Rocks samples were analyzed by standard 30gm fire assay for gold.
		Sample size assessment was not conducted but used sampling size which is typical for gold deposits.
Quality of	The nature, quality and appropriateness of the assauing and laboratory proodures used and	Historic Data
and laboratory	whether the technique is considered partial or total.	1972-1984 samples were sent to reputable labs that followed standard analytical procedures and QAQC procedures of the

Criteria	JORC Code explanation	Commentary
 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been 	 day. Amselco (BHP) 1984-1985 had rigorous security and QAQC standards that exceed current reporting requirements. Fire assays for gold were completed using industry standard fire assay methodology. External standards and blank material were inserted into routine sample stream prior to laboratory submission. 1987 Samples were sent to multiple assay labs for analysis of 	
established.		the same sample. 1987-1991 American Assay Laboratories on-site laboratory analyzed the samples. Standards and blanks were inserted at regular intervals. 2022 Drilling Samples were assayed by industry standard methods by Paragon Geochemical in Sparks, Nevada.
		Fire assays for gold were completed using industry standard fire assay methodology. External certified reference materials and blank materials were inserted into the routine sample stream prior to laboratory submission.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Historical Data Computer printouts and assay certificates are available for the CP, CH and CM series holes. The Amselco CM drill hole assays were loaded onto the computer in Denver directly from the Amselco lab. Assay data was then broken down into specific drill hole intervals to form a final data base. All assay data entered in the computer was subsequently checked against original lab submittal sheets to remedy any errors. The completed geological and assay information was combined with drill hole collar and down the hole surveys to form an integrated data base (Amselco, 1984). There are a total of 37,147 assays in the historic database. The data for holes drilled prior to Dateline's work are available as scanned copies of paper files in PDF file format. The data for assays ranges from scans of original assay certificates and submittal forms to scanned printouts from early digital assay databases thru 1985. The computer print-out files were processed using an OCR text recognition system, the results compared against the originals and any errors found corrected. Those results were then checked against the assay certificates and any discrepancies were corrected. Subsequent assays were scanned from assay certificates and verified. The author considers the scans of original assay certificates to be primary sources, whereas the printouts from an earlier database are secondary sources.
		2022 Drilling Sampling, documentation and sample submittal were under the guidance and care of Chris Osterman, PhD Geol (Registered Member SME).and Raymond Harris, Arizona RG. Geologic information was recorded directly on paper drill logs

developed specifically for the Colosseum Mine project to collect pertinent information relating to sample depths, RQD, lithology, veining, alteration, mineralization, and oxides. Sample sheets containing sample depths, QA/QC (duplicates, standards, and blanks inserted in sample runs) was stored in excel spreadsheets.

Criteria	JORC Code explanation	Commentary
		Logs were scanned and sent to database manager along with sample sheets for entry into MX Deposit, the Company's secured data management system available through Seequent.
Location of	Accuracy and quality of surveys used to locate drill	Historic Data
data points	holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collar coordinates for historic drill holes were surveyed in their respective local mine grid coordinate system in use at the time of survey. Collar survey files were available for most of the
	 Specification of the grid system used. 	collars.
	• Quality and adequacy of topographic control.	1990 computer printouts were found in the Barrick data files that contained the collar coordinate information for the Hole Series, C87, CH, CM, CP, WDDH, ATDH, C88, EDDH in the Amselco/Bond local mine grid system. The files were processed using an OCR text recognition system, the results compared against the originals and any errors found corrected. Hole Series generated in the Amselco/Bond grid were checked against the corresponding survey files. The remaining collars were entered from the survey files and compared against collar locations on plan maps. Discrepancies were noted in the Collar table.
		A total of 599 drill holes were entered into the collar table within the Colosseum mine area to be used in the resource estimate. Drill holes for exploration targets were not included in the database. Additionally, 22 holes from the ATDH series assays contained references to drill holes with no known coordinates.
		The Amselco/Bond local mine grid was rotated 45 degrees from true north. Drill hole traces from the historic data base were plotted and compared to plan maps and sections. Azimuth discrepancies were observed in some of the SP91, BD90, ATDH series angle holes when comparing the historic database to the holes plotted in plan or section. Resolution to the difference in Azimuth was noted in the Collar table.
		Downhole deviation surveys for the azimuth and inclination of the CP and CH series holes were taken at 5 foot intervals. Computer printouts are available for these holes in the Barrick Data files.
		Drill hole downhole deviation surveys for inclination and azimuth were obtained by Amselco at 200 foot intervals using an Eastman borehole camera. It was not possible to survey certain of the holes where collars collapsed immediately below the casing or where difficult conditions were encountered during drilling. Surveys were completed for 76 of the 163 CM holes and indicated that the holes tended to steepen by 1° per 200 feet while the azimuth showed little variation. These criteria were applied to unsurveyed holes. (Amselco, 1984).
		Later datasets used for resource estimation or level/cross sections did not include downhole survey information. Subsequent sections showed downhole surveys only for holes CP-1, CP-2, CH-50 and CH-52. Those surveys were included in the data set for the historical data set. The unsurveyed drill- holes were evaluated on section and found to have similar locations for geologic and grade breaks as compared to the surrounding surveyed drill-holes and blast hole assay data, and therefore, are considered suitable for resource estimation.
		2022 Drilling
		All drill hole collars were surveyed using differential Trimble R12i GPS and Trimble S7 Total Station. The positions are accurate to within 10 cm x-y and height (z) to +/- 20 cm.
		The holes are surveyed in the California State Plane Zone V coordinate system in feet. Hole locations are reported in

Criteria	JORC Code explanation	Commentary
		UTM WGS84 coordinate system in metres.
		Downhole survey results were provided by Oretest using a Reflex ACT2 camera to record core orientation. Initial surveys were taken at 50 feet, then 75 feet intervals thereafter inside the drill string and EOH. Outputs were provided on paper and as digital files.
Data	Data spacing for reporting of Exploration Results.	Historic Data
spacing and distribution	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	The historic drill hole data was used for prior mining of the Colosseum deposit to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied at the time and is appropriate to be used for the current Mineral Resource Estimate.
		The original uncut assay intervals were composited to reflect a standard 20 foot bench height based on previous mining at Colosseum. This method computes a length-weighted average of the portions of assay intervals which fall within each 20-foot bench. Composite intervals with less than 10 feet of assayed length were not used for grade estimation. The maximum composite length allowed was 30 feet to allow for inclined holes.
		2022 Drilling
		Current drill holes were drilled to confirm lithological and grade boundaries established from historical drilling. Hole spacing varied depending on target.
		Data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for resource estimation procedure(s).
		No sample compositing was done.
Orientation	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Historic Data, 2022 Drilling
of data in relation to geological structure		Drill holes were drilled obliquely to near perpendicular to the known mineralized structures. Definition of structure location was the principal goal.
		Sample orientation is deemed to be representative for reporting purposes.
		No bias is considered to have been introduced by the existing sampling orientation.
Sample security	The measures taken to ensure sample security.	Historic Data
scounty		Measures to ensure sample security for historic drillholes unknown.
		2022 Drilling
		All samples were taken and maintained under the constant care of Dateline Resources Limited personnel. Samples were sealed on pallets and delivered to the laboratory by a licensed transportation company.
Audits or	The results of any audits or reviews of sampling techniques and data	Historic Data
Teviews	tecnniques and data.	Sampling techniques were developed and reviewed by mine site personnel.
		2022 Drilling
		Drill hole sampling techniques and QAQC procedures were developed and reviewed by Dale A. Sketchley, M.Sc., P. Geo. of Acuity Geoscience Ltd.,
		The QAQC program returned only a few CRM and BLK failures, which were deemed to be non-material for resource estimation.

Section 2 Reporting of Exploration Results

(Criteria listed in the	preceding section also apply to this section.)	
Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure	Type, reference name/number, location and ownership including agreements or material	The Colosseum Mine project is located in T17N R13E Sec 10, 11, 14, 15, 22, 23 SB&M.
status	 issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments. 	All tenements are 100% owned by Dateline Resources Limited or a wholly owned subsidiary and there exist production-based royalties. Barrick Gold is entitled to a 2.5% Net Smelter Return royalty on all future production of any metals from the Colosseum Gold Mine.
	to obtaining a licence to operate in the area.	
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	Historical work was completed by various mining companies since 1972.
		• Draco Mines (1972-1974)
		• Placer Amex (1975-1976)
		Draco Mines (1980)
		• Amselco (1982-1984
		Dallhold Resources/Bond Gold (1986-1989
		• Lac Minerals (1989-1994)
		All the companies were reputable, well-known mining/exploration companies that followed the accepted industry standard protocols of the time.
Geology	Deposit type, geological setting and style of mineralisation.	The Colosseum project is hosted by Proterozoic granites, gneisses. These were intruded by Tertiary age rhyolitic stocks, dikes and breccias.
		The gold mineralization occurs in a number of different breccia pipes with both sedimentary and volcanic rock fragments. Gold is associated with pyrite within the breccia pipes.
Drill hole Information	A summary of all information material to the understanding of the exploration results	See Appendix C within the report for details of the historical drill hole locations.
	including a tabulation of the following information for all Material drill holes:	See Table 10-2 within the report for details of current drill holes
	• easting and northing of the drill hole collar	A plan showing the location of the drillholes is included in the report
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	\circ dip and azimuth of the hole	
	$\circ $ down hole length and interception depth	
	 hole length. 	
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or 	Data were composited on 20 foot bench heights as part of the block model generation.
	minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	Drill hole intersections are reported above a lower exploration cut-off grade of 0.48g/t Au and no upper cut off grade has been applied.
	Where aggregate intercepts incorporate short lengths of high grade results and longer	

Criteria	JORC Code explanation	Commentary				
	 lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of motal equivalent values should be clearly. 					
	stated.					
Relationship between mineralisation	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with 	Drillholes are orientated vertically and obliquely to the mineralized structures and disseminated bodies.				
widths and intercept lengths	respect to the drill hole angle is known, its nature should be reported.	by geometries from known occurrences in the adjacent mine workings and the core drilling intercepts.				
	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 					
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Appropriate plan view of drill hole collar locations, plans and sections with scales are included in the report.				
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Representative reporting of both low and high grades and/or widths have been reported.				
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	All meaningful and material data has been included in the report.				
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not 	The objective of the work will be to further confirm the legacy drilling and upgrade the inferred category of the current resource classification. Core drilling will serve to provide representative samples for metallurgical, geotechnical and other material testing. Additional drilling will serve to expand the deposit at depth and add to the existing resource. This additional data will be used to refine the resource and complete a scoping study.				
	commercially sensitive.	The following recommendations are divided into geology and resource, engineering, and metallurgy, and permitting and other, categories.				
		Geology and Resource				
		 Drill within the South Pit to convert resources to higher levels of confidence. 				
		 Continue drill hole exploration within the Colosseum project area, as the deposit is open at depth in both the North and South Pit areas. 				
		 Drilling within the project should be done by core drilling to help improve the geological and structural models. 				
		 Topographic survey (spot heights) for the general area across the current extents of mineralization to verify/correct 				

Criteria	JORC Code explanation	Commentary				
		topography, resurvey the legacy DH collar data and integrate pit survey data to re-build the topographical DTM.				
		 Complete integration of historic bench mapping and blast hole data to improve geological boundaries and to update grade block model. 				
		 Split core samples and include density measurements and standard multi-element suite in samples analyzed. 				
		 Re-assay adjacent routine samples associated with failed CRMs. 				
		Engineering and Metallurgy				
		 Additional test work, geared to identifying the extent of the sedimentary breccia ore and the possible special treatment of this higher-grade material to enhance recovery and/or lower costs, in conjunction with economic assessment or feasibility studies. 				
		 Investigate feasibility of the flotation recovery of the sulphides containing the gold, with shipment to one of the two sulphide roasters in Nevada. 				
		 Additional analysis and test work, prior to final feasibility studies and possible production decisions in order to 1) investigate possible higher returns by heap leaching of lower grade material with low capital expenditure, 2) consider the option of shipping sulfide flotation concentrates to roasters in Nevada thereby getting a return on the fuel value of the sulfides and lowering capex and operating costs, and 3) traditional CIP recovery methods. 				
		Update mineral resource model with new drilling				
		Permitting and Other				
		Prioritize permitting efforts.				
		 Following the completion of the above items, proceed to Conceptual Scoping Study and Preliminary Economic Analysis. 				
Section 3 Estim	nation and Reporting of Mineral Resources					
Criteria listed in sect Criteria	tion 1, and where relevant in section 2, also apply to JORC Code explanation	o this section.) Commentary				
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used 	The current Dateline drill-hole databases were directly created by GeoGRAFX using original digital analytical certificates in the case of the assay tables, drill log lithologies, and checking against original digital records in the case of the collar and down-hole deviation tables. Working copies of collar coordinates, downhole survey information, assays and lithology were converted into excel templates for data verification.				
		These templates contain data checking routines designed to prevent common data entry errors. This original mine-site drill-hole information was then subjected to various verification measures, the primary one consisting of auditing of the digital data by				

GIS, modeling, and resource estimation software. Barbara Carroll (CPG) conducted a field examination of the

This database is secure, operated by a single database

Project specific Microsoft Access® database.

comparing the drill-hole collar coordinates, hole orientations, and analytical information in the database against historical paper records in the Barrick data set. Verified data was loaded into a

administrator. Data can then be converted to formats required by

 Comment on any site visits undertaken by the Competent Person and the outcome of those
 Barbara Carroll (CPG) conducted a field examination of the project area on April 4, 2022 and met with consulting geologist Chris Osterman PhD.

Site visits

Criteria	JORC Code explanation	Commentary			
	 visits. If no site visits have been undertaken indicate why this is the case. 	The visit included field review of the property geology, current drilling, core logging and handling, confirmation of the location of a number of the historic drill holes and collection of representative core samples to verify assays results from current drilling.			
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	The geological interpretation is based on historic drill hole information, pit mapping, and level plans and cross sections generated while the mine was in production. Based on the density and reproducibility of the data the interpretation is considered robust. The geological interpretation of mineralized boundaries were considered robust and alternative interpretations were not considered. The interpreted mineralization boundaries were used as hard boundaries for the Mineral Resource estimation.			
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	The deposit mineralization occurs in a breccia-pipe complex that consists of two felsic breccia pipes that are each about 170 by 235 m wide at the surface, elongated to the northeast-southwest, and connected by a narrow dike. The Resource block model ranges from surface to approximately 1,180 feet (360 metres) below surface over a length of approximately 2,000 feet (610 metres) from east to west and 3,250 feet (991 metres) from north to south.			
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological 	The Mineral Resource estimate for the Colosseum project was developed by Barbara Carroll, (CPG, SME RM), utilizing MicroModel v10.0, a commercial mine planning software package. The date of the resource is 20 June 2022. The mineral resource estimate is based on the 1972 through 1991 historic drilling, constrained by geologic boundaries, and using an Ordinary Kriging (OK) algorithm. The current drilling completed by Dateline in April 2022 was used to confirm grade and lithologic contacts used for the resource. No direct grade capping was done; the extended influence of the high-grade outlier composites was restricted in the kriging plans using an "influence area" methodology. This methodology takes into account the metal at the top of cumulative probability plots, uses a spatial control driven by geological knowledge and avoids metal losses that would otherwise occur through underestimation of enriched zones. Modelled elements within the Colosseum project area are zoned by lithology. The historic drill log data and associated cross sections were used to create the geologic model. The Colosseum geologic contact boundary, to which a Radial Basis Function model was applied to generate surfaces enveloping the lithologic type of interest at the contact locations. A three-dimensional block model was developed to represent the Colosseum deposit utilizing MicroModel v10.0. The model was created with individual block dimensions of 25 x 25 x 20 feet (xyz) to conform to historical mining parameters. The model origin is located at 10,000 east, 20,150 north, and at an elevation of 4,900 ft above sea level. The block model extends 2,000 ft (80 blocks) in the easting direction, 3,250 ft (130 blocks).			

Criteria	JORC Code explanation	Commentary				
	interpretation was used to control the resource estimates.Discussion of basis for using or not using grade cutting or capping.	The mineral resource grade estimate is based on composited drillhole data constrained by geologic boundaries. Block model grade interpolation was performed using Ordinary Kriging spatial estimation method which serves to minimize the error variance and is not dependent on the data used to create the estimate.				
	• The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	Block grade assignment used a maximum of two composites from each of six sectors, with no more than five samples coming from a single drill hole. Maximum search distance was 120 feet for all lithologies. Higher grade composite values greater than or equal to 2.0 opt were restricted to a limited search distance, in order to minimize the influence of those outliers.				
		Several methods were used to validate the block model to determine the adequacy of the Colosseum deposit resource. Confirmation drilling was used to ascertain the quality of the model within the core zone.				
		In addition, statistical comparisons were made of the Ordinary Kriged (OK) results against Inverse Distance Squared (IDS), and Nearest Neighbor (NN) estimation methods, as well as Swath Plots, and visual inspection of the results. The combined evidence from these validation methods verifies the Ordinary Kriging estimation model results.				
		No assumptions were made regarding recovery of by-products during the Mineral Resource estimate.				
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnages are estimated on a dry basis.				
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	The Mineral Resource is reported at a cut off grade of 0.014 oz/ton Au (0.48 g/t Au). This is a marginal cut off grade based on the amount of recoverable gold required to just cover operating costs if a ton of material from the mine is classed as ore instead of waste. It is calculated as:				
		(AOC + PC + GA) / ((Gold price per grade unit – Royalties) x Process Recovery)				
		Where:				
		AOC = Additional ore cost per ton of mill feed. This is how much more it costs to mine a ton of material as ore instead of waste. It covers things like grade control, closer blasting and longer hauls.				
		PC = Processing cost per ton of mill feed. This includes crushing, grinding, CIP, gold room, tailings and all power, reagents and operators and technical/management/supervisory staff.				
		GA = General and administration cost per year divided by annual mill feed tonnes. It covers all non-operations employees, tenement fees, county fees, external consultants (environmental, IT, etc) and non-operations services like non-operating power or water treatment.				
		The deposit was operated as an opencut gold mine with ore processing by CIP from 1987 to 1992 but no detailed mine or process planning has been undertaken yet for the current project. Cut off grade inputs are based on typical costs for an opencut mine processing 1.1 million tons per year in the west of the USA and actual data for Colosseum where available.				
		AOC was assumed to be US\$0.20/ton based on experience from similar scale opencut gold mines.				
		PC was set at US\$14.81/ton based on CIP costs from Infomine's CostMine database.				
		GA was estimated at US\$7.29/ton using 2021 salaries for non-				

Criteria	JORC Code explanation	Commentary
		operations personnel and assumed costs for other non-operations activities such as community relations and environmental management.
		The gold price was set at US\$2035/oz being 10% above the June 2022 spot price. This price was set high enough to ensure any future ore reserve will be included within the Mineral Resource but low enough to be reasonably possible within the likely life of the project.
		Barrick Gold is entitled to a 2.5% Net Smelter Return royalty on all future production of any metals from the Colosseum Gold Mine Gold transport, insurance and refining costs were assumed to be US\$20/oz.
		Gold process recovery was set at 90% based on the 1984 metallurgical test work. Actual recoveries from 1987 to 1992 were reportedly higher than this but the test work is better documented and more conservative.
		The cut off grade was adjusted upward to allow for assumed mining dilution of 10% at zero grade so the cut off grade reflects the in-situ Mineral Resource grade.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining 	The Mineral Resource is estimated in the context of an opencut mine supplying ore to a CIP gold processing facility at 1.1 million tons per year. The estimate meets the reasonable prospects for eventual economic extraction criterion in that it:
	dilution. It is always necessary as part of the process of determining reasonable prospects for eventual	 Is based on the same opencut mining and CIP processing methods used successfully from 1987 to 1992.
	economic extraction to consider potential mining methods, but the	 The current tenement status of the project area permits opencut mining and gold ore processing.
	assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this	 Costs used in the cut off grade calculation are from an industry accepted database and are relevant to the project.
	is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 A conservative process recovery compared to actual operating results from 1987 to 1992 was assumed for the cut off grade calculation.
		 The cut off grade calculation includes allowance for opencut mining dilution typical for the size and nature of the orebody and mining rate.
		 While the gold price used in the cut off grade calculation is higher than the spot price in June 2022 it is at a level which could be reasonably possible over the life of the project.
		• The Mineral Resource Estimate is constrained to a depth which could be reasonably expected to be economically achieved by opencut mining given the geometry of the deposit and the costs, recoveries and gold price assumed.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical	The gold process recovery for the cut off grade calculation was set at 90% based on metallurgical test work for the 1984 Feasibility
	amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where	Study. Process recoveries during operations were reported to be around 92%.

Criteria	JORC Code explanation	Commentary			
	this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.				
Environmen-tal factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	The current tenement status over the project area permits the resumption of opencut mining and ore processing.			
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	For the current resource estimate, each block was assigned a density based on the block's lithology coding; 12.1 cubic feet/ton for Felsite (rock type 1) and Granite (rock type 2), and 11.55 for Breccia units (rock types 3 and 4). These values reflect the historic density values used by Amselco in 1984 for previous resource estimates.			
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	The author has classified resources in order of increasing geological and quantitative confidence into Inferred, Indicated, and Measured categories based on "Reporting of Mineral Resources" of the JORC Code, 2012 Edition. The Colosseum resource was classified as Measured, Indicated, or Inferred on the basis of the number and distance of composite assays used in the interpolation of a block gold grade, as well as the number of holes that contributed values to the interpolation. These distances were based on variogram analysis of the gold composite data for each lithology. The resource classification has taken into account data spacing, distribution, quality and quantity of the data as well as the confidence in predicting the grade and lithologic continuity. The Mineral Resource estimation reflects the Competent Person's view of the deposit.			
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	The process for geological modelling, estimation and reporting of the Mineral Resource is industry standard and has been subject to independent review. Patrick J. Hollenbeck, CPG, Randall K. Martin, MSc, QP, and LJ Bardswich, P.E. have reviewed the estimation procedure and found the process to meet industry			

Criteria	JORC Code explanation	Commentary
		standards.
Discussion of relative accuracy/ confidence	• Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	The Mineral Resource has been reported in accordance with the guidelines of the 2012 edition of the Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves and reflects the relative accuracy of the Mineral Resource estimates. The statement relates to global estimates of tonnes and grade.
	 The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	

Appendix C – Technical Report Colosseum Project

San Bernardino, California, USA										
HOLE_ID	EASTING	NORTHING	ELEV	AZIMUTH	DIP	TD	ТҮРЕ	COMPANY	YEAR	
60.4	Ft	Ft	5720	0	00	2465	DDU	Durana	1072	
CP-1	11505	20770	5730	0	-90	2465	DDH	Draco	1972	
CP-2	12345	21040	5587	0	-90	3245	DDH	Draco	1972	
CP-4	11359.2	20810	5777.8	269.486	-55	480	DDH	Draco	1974	
CP-5	11124.4	22226.5	6020.8	269.486	-45	470	DDH	Draco	1974	
CP-10	11210	20677.2	5800.8	314.485	-60	334	DDH	Placer Amex	1975	
CP-11	11210.4	20677.2	5800.8	359.486	-60	70	DDH	Placer Amex	1975	
CP-12	11211.9	20677.02	5800.8	348.486	-60	501	DIH	Placer Amex	1975	
CP-13	11212.6	20673.7	5800.8	269.486	-60	417	DDH	Placer Amex	1975	
CP-14	11348.3	20837.51	5784.8	0	-90	502	DDH	Placer Amex	1975	
CP-15	11348.3	20837.51	5784.8	314.486	-60	501	DDH	Placer Amex	1975	
CP-16	10843.2	21890.2	5967.8	9.486	-60	897	DDH	Placer Amex	1975	
CP-6	10992.5	21090.3	5956.8	0	-90	312	DDH	Placer Amex	1975	
CP-7	10992.5	21090.3	5956.8	134.486	-60	265	DDH	Placer Amex	1975	
CP-8	10992.5	21090.3	5956.8	162.486	-60	408	DDH	Placer Amex	1975	
CP-9	11212.6	20673.7	5800.8	0	-90	348	DDH	Placer Amex	1975	
CP-17	11246.8	22061.4	5932.8	0	-90	461	DDH	Placer Amex	1976	
CP-18	11246.8	22061.41	5934.3	270	-60	675	DDH	Placer Amex	1976	
CP-19	11044.42	20512.65	5774.758	0	-90	503	DDH	Placer Amex	1976	
CP-20	11038.65	20512.65	5774.758	0	-90	501	DDH	Placer Amex	1976	

HOLE_ID	EASTING Et	NORTHING Ft	ELEV	AZIMUTH	DIP	TD	ТҮРЕ	COMPANY	YEAR
CP-21	11389.2	21091.8	5754.8	269.486	-60	531	DDH	Placer Amex	1976
CP-22	11389.2	21091.8	5754.8	314.486	-60	588	DDH	Placer Amex	1976
CP-23	11445.5	21354.6	5742.8	269.486	-60	442	DDH	Placer Amex	1976
CP-3	11352	20810	5777.8	269.486	-78	410	DDH	Draco	1976
CH-24	11349	20799	5789	270	-45	373	RP	Draco	1979
CH-25	11343	20798	5789	270	-60	418	RP	Draco	1979
CH-26	11338	20800	5791	270	-75	473	RP	Draco	1979
СН-27	11255	20713	5803	271	-45	43	RP	Draco	1979
CH-28	11262	20715	5802	270	-80	185	RP	Draco	1979
СН-29	11350	20913	5790	0	-90	365	RP	Draco	1979
CH-30	11395	20917	5760	274	-	505	RP	Draco	1979
<u> </u>	44200	20017	5350	274	46.5	205		Duran	4070
CH-31	11399	20917	5759	2/4	- 63.5	385	RP	Draco	1979
CH-32	11403	21029	5751	274	-	325	RP	Draco	1979
CH-35	11229.75	20821.1	5829.36	0	-90	370.8	RP	Draco	1979
CH-36	11084	21420	5906	97.5	-60	500	RP	Draco	1980
СН-37	11084	21414	5906	0	-90	505	RP	Draco	1980
CH-38	11132	21329	5917	87.5	-	445	RP	Draco	1980
CH-39	11100	21329	5922	0	65.5 -90	505	RP	Draco	1980
CH-40	11097	21326	5925	270	-75	505	RP	Draco	1980
CH-41	11000	21245	5967	90	-53	485	RP	Draco	1980
CH-42	11002	21247	5967	94.5	-63	315	RP	Draco	1980
CH-43	11000	21249	5967	0	-90	505	RP	Draco	1980
CH-44	10966	21137	5982	85.5	-66	505	RP	Draco	1980
CH-45	10942	21126	5983	0	-90	465	RP	Draco	1980
CH-46	10945	21025	5983	90	-47	300	RP	Draco	1980
CH-47	10950	21024	5983	90	-66	505	RP	Draco	1980
CH-48	10955	21025	5983	0	-90	505	RP	Draco	1980
СН-49	11246	20727	5803	273	-48	445	RP	Draco	1980
CH-50	11250	20725	5804	271	-63	470	RP	Draco	1980
CH-51	11256	20725	5805	270	-83	410	RP	Draco	1980
CH-52	10664	20703	5834	89	-50	335	RP	Draco	1980
CM-1	10825.5	21100.1	5911.6	109.486	-45	860	RC	Amselco	1983
CM-10	11034.3	22266	6021.2	229.486	-60	602	RC	Amselco	1983
CM-11	10973.9	21028.6	5979.5	349.486	-45	240	RC	Amselco	1983
CM-12	11054.3	21214.6	5917	169.486	-50	760	RC	Amselco	1983
CM-13	11068.5	22312.2	6019.5	289.486	-45	96	RC	Amselco	1983
CM-14	11057	22252	6023.8	349.486	-45	280	RC	Amselco	1983
CM-15	10915.7	22086.7	6041	49.486	-45	220	RC	Amselco	1983
CM-16	11436.1	21146.6	5731.7	289.486	-60	720	RC	Amselco	1983
CM-17	10938.6	21338	5937	169.486	-60	440	RC	Amselco	1983
CM-18	10829.3	22095.8	6027.6	349.486	-50	220	RC	Amselco	1983
CM-19	11279.6	21241.4	5807.6	229.486	-60	700	RC	Amselco	1983
CM-2	11033.1	21371.4	5924.4	107.486	-50	780	RC	Amselco	1983

HOLE_ID	EASTING Ft	NORTHING Ft	ELEV FT	AZIMUTH	DIP	TD	ТҮРЕ	COMPANY	YEAR
CM-20	10993.6	22464.3	5913.1	229.486	-55	600	RC	Amselco	1983
CM-21	10809.2	21894.1	5936	49.486	-60	800	RC	Amselco	1983
CM-22	10746.1	22072.4	5979.5	349.486	-45	500	RC	Amselco	1983
CM-23	10911.9	20845.6	5961	109.486	-45	600	RC	Amselco	1983
CM-24	10973.4	20846.9	5963.6	48.486	-40	480	RC	Amselco	1983
CM-25	10679	20881	5896.2	109	-46	780	RC	Amselco	1983
CM-26	10909.1	21714.7	5961.7	348.486	-56	830	RC	Amselco	1983
CM-27	11029	21431.5	5925.9	168.486	-61	960	RC	Amselco	1983
CM-28	10770.3	20951.1	5902.6	108.486	-45	720	RC	Amselco	1983
CM-29	11016.7	21389	5926.1	109	-56	880	RC	Amselco	1983
CM-3	11009.4	22036.6	6017.4	289.486	-45	626	RC	Amselco	1983
CM-30	11440.5	21523.6	5745.6	260.486	-41	820	RC	Amselco	1983
CM-31	11115.4	21336.8	5921.3	108.486	-45	400	RC	Amselco	1983
CM-32	11236.2	20876.1	5830.8	348.486	-63	720	RC	Amselco	1983
CM-33	11454	20786.9	5740.7	288.486	-41	780	RC	Amselco	1983
CM-34	11047.5	22285.2	6019.8	288.486	-40	980	RC	Amselco	1983
CM-35	11231.1	20822.3	5831.1	228.495	-44	443	RC	Amselco	1983
CM-36	11550.8	20653.5	5697.7	289.486	-61	600	RC	Amselco	1983
CM-37	11305.1	22501.7	5943.6	250.486	-48	915	RC	Amselco	1983
CM-38	10864.9	21993.6	5995.6	348.486	-45	1000	RC	Amselco	1983
CM-39	11459.3	20759.3	5737.6	288.486	-57	565	RC	Amselco	1983
CM-4	11304.1	22136.9	5967.4	289.486	-45	860	RC	Amselco	1983
CM-40	11234.4	22339.9	6004.4	261.486	-74	840	RC	Amselco	1983
CM-41	11382.3	22168	5960.7	228.486	-40	1080	RC	Amselco	1983
CM-42	11693.5	21217.5	5711.5	228.486	-55	745	RC	Amselco	1983
CM-43	11008	21093.3	5960.9	108.486	-45	440	RC	Amselco	1983
CM-44	11002.2	21108.8	5961.2	83.486	-70	363	RC	Amselco	1983
CM-45	11389.5	22156.7	5960.9	280.486	-51	845	RC	Amselco	1983
CM-46	10795.7	21897.5	5934.7	348.486	-57	745	RC	Amselco	1983
CM-47	10922.6	20838	5960.6	96.486	-63	380	RC	Amselco	1983
CM-48	10930.5	20831.7	5960.8	228.486	-55	588	RC	Amselco	1983
CM-49	11329	20787.9	5785.3	289	-55	260	RC	Amselco	1983
CM-5	10931.4	22219.8	6038.2	289.486	-60	300	RC	Amselco	1983
CM-50	10919.3	22468.6	5910.5	269.486	-67	680	RC	Amselco	1983
CM-51	11083.3	22400	5967.1	228.486	-45	595	RC	Amselco	1983
CM-52	10902.3	22472.7	5910.3	348.486	-44	460	RC	Amselco	1983
CM-53	10922.2	22464.4	5910.5	63.486	-75	700	RC	Amselco	1983
CM-54	11531.3	21093.7	5696.9	289	-62	620	RC	Amselco	1983
CM-55	11504.6	21307.8	5710.6	289	-58	620	RC	Amselco	1983
CM-56	11525.4	20956.5	5700.3	289	-62	655	RC	Amselco	1983
CM-57	10897.9	22489.6	5908.8	303.486	-51	420	RC	Amselco	1983
CM-58	10844.7	22110.1	6036.8	293.486	-43	560	RC	Amselco	1983
CM-59	10616.2	22120.1	5883.9	34.486	-40	1020	RC	Amselco	1983
CM-6	11018.3	22078.4	6047.8	349.486	-45	900	RC	Amselco	1983
CM-60	10815	22109.8	6036	248.486	-58	540	RC	Amselco	1983

HOLE_ID	EASTING Ft	NORTHING Ft	ELEV FT	AZIMUTH	DIP	TD	ТҮРЕ	COMPANY	YEAR
CM-61	11658.6	20769.6	5667.4	288.486	-60	655	RC	Amselco	1983
CM-62	11102.5	21198	5914.2	108.486	-50	400	RC	Amselco	1983
CM-63	11160.1	22033	5958	293.486	-40	960	RC	Amselco	1983
CM-64	11337.5	20783.7	5785	348.486	-50	840	RC	Amselco	1983
CM-65	10802.8	21107	5904.3	108.486	-55	760	RC	Amselco	1983
CM-66	11138.3	22493.2	5924.8	288.486	-53	640	RC	Amselco	1983
CM-67	10788.6	21898.9	5933.3	328.486	-64	760	RC	Amselco	1983
CM-68	10957.4	20983.2	5982.4	288.486	-40	220	RC	Amselco	1983
CM-69	11271.1	20534.9	5737.9	348.48	-68	620	RC	Amselco	1983
CM-7	11232.3	20843.6	5831.8	289.486	-45	460	RC	Amselco	1983
CM-70	10970.4	21107.8	5963.6	293.486	-40	280	RC	Amselco	1983
CM-71	10530.5	20804.1	5872.9	163.486	-45	620	RC	Amselco	1983
CM-72	11506.6	20855.9	5707.1	288.486	-57	625	RC	Amselco	1983
CM-8	11446.7	21535.7	5745.5	289.486	-60	300	RC	Amselco	1983
CM-9	11434.1	21130.3	5731.6	229.486	-45	662	RC	Amselco	1983
WDDH-1	11096	21211	5916	109	-80	125	DDH	Amselco	1983
WDDH-2	11332	20781	5797	173	-70	318	DDH	Amselco	1983
CM-100	11405.1	21210.7	5750.8	224.486	-53	760	RC	Amselco	1984
CM-101	11024.1	20556	5778.8	50.486	-57	520	RC	Amselco	1984
CM-102	11008.4	21994.2	6018.8	349.486	-69	420	RC	Amselco	1984
CM-103	11183.3	22364.9	5994.8	226.486	-57	320	RC	Amselco	1984
CM-104	11521.6	20915.5	5703.8	232.486	-64	640	RC	Amselco	1984
CM-105	11327.9	22320.9	5982.8	214.486	-59	820	RC	Amselco	1984
CM-106	11484.6	21020.5	5717.8	285.486	-65	660	RC	Amselco	1984
CM-107	11140	22225.2	6017.8	285.486	-66	220	RC	Amselco	1984
CM-108	11303.7	22660.1	5921.8	226.486	-53	760	RC	Amselco	1984
CM-109	11028	20499.5	5765.8	348.486	-46	500	RC	Amselco	1984
CM-110	11220.7	21265.6	5849.8	188.486	-46	640	RC	Amselco	1984
CM-111	11105.9	22481.6	5924.8	225.486	-53	760	RC	Amselco	1984
CM-112	11343.4	20515.7	5712.8	353.486	-57	640	RC	Amselco	1984
CM-113	10925	22154.7	6074.8	342.486	-64	700	RC	Amselco	1984
CM-114	10895.3	20574.7	5779.8	349.486	-48	420	RC	Amselco	1984
CM-115	11453.2	20968.6	5737.8	292.485	-63	680	RC	Amselco	1984
CM-116	11190.9	22459.7	5932.8	224.486	-52	760	RC	Amselco	1984
CM-117	11116.1	21025	5904.8	337.486	-63	240	RC	Amselco	1984
CM-118	11218.5	20571.2	5756.8	357.486	-63	460	RC	Amselco	1984
CM-119	11445.9	20685.7	5732.8	286.496	-56	685	RC	Amselco	1984
CM-120	11191.9	20534.2	5754.8	17.486	-73	660	RC	Amselco	1984
CM-121	11239.5	22559.1	5906.8	223.486	-57	740	RC	Amselco	1984
CM-122	10693.2	21975.8	5909.8	43.486	-45	340	RC	Amselco	1984
CM-123	10789.2	20973.2	5901.8	111.485	-55	730	RC	Amselco	1984
CM-124	11004.3	21038.1	5960.8	327.486	-56	360	RC	Amselco	1984
CM-125	10742.9	21955	5913.8	50.486	-53	645	RC	Amselco	1984
CM-126	11004.8	22161.7	6049.8	289.486	-64	560	RC	Amselco	1984
CM-127	11372.4	21067.6	5750.8	282.486	-59	640	RC	Amselco	1984

HOLE_ID	EASTING Ft	NORTHING Ft	ELEV FT	AZIMUTH	DIP	TD	ТҮРЕ	COMPANY	YEAR
CM-128	10726.8	21940	5911.8	50.486	-54	740	RC	Amselco	1984
CM-129	11424	20840.3	5747.8	289.486	-64	660	RC	Amselco	1984
CM-130	11169.2	22597.4	5869.8	225.486	-58	720	RC	Amselco	1984
CM-131	10963.8	20660.1	5847.8	50.486	-65	440	RC	Amselco	1984
CM-132	10929.7	20683.9	5849.8	311.486	-45	340	RC	Amselco	1984
CM-133	11184.4	21265.5	5844.8	256.486	-64	430	RC	Amselco	1984
CM-134	11519	21265.5	5709.8	242.486	-57	440	RC	Amselco	1984
CM-135	11174.7	22922.7	5933.8	205.486	-48	800	RC	Amselco	1984
CM-136	10939.3	22207.8	6039.8	168.486	-50	500	RC	Amselco	1984
CM-137	11364.6	20996.8	5749.8	289.486	-50	240	RC	Amselco	1984
CM-138	10820.7	22666.4	5820.8	169.486	-48	420	RC	Amselco	1984
CM-139	11200.4	21326.3	5857.8	199.486	-62	460	RC	Amselco	1984
CM-140	10563.9	22118.2	5857.8	46.486	-50	700	RC.	Amselco	1984
CM-141	10868.7	22671.1	5822.8	169.486	-55	580	RC	Amselco	1984
CM-142	11176.3	20863.6	5847.8	288.486	-47	380	RC	Amselco	1984
CM-143	11239.3	21084.8	5819.8	284.486	-56	460	RC	Amselco	1984
CM-144	11165.3	21063.6	5861	188.486	-54	720	RC	Amselco	1984
CM-145	11245.3	21125.1	5814.8	201.486	-63	200	RC	Amselco	1984
CM-146	11225.9	20692.9	5799.8	350.486	-43	200	RC	Amselco	1984
CM-147	10561.1	22116.8	5856.8	32.486	-49	680	RC	Amselco	1984
CM-148	10841.4	21932.6	5968.8	8.486	-54	300	RC	Amselco	1984
CM-149	11297.7	21124.2	5788.8	297.486	-75	460	RC	Amselco	1984
CM-150	11002	22314.5	6001.8	291.486	-54	840	RC	Amselco	1984
CM-151	11234.8	20804.7	5835.8	355	-67	700	RC	Amselco	1984
CM-152	10824	22686.9	5811.8	171.486	-56	560	RC	Amselco	1984
CM-153	10563.8	21896.9	5829.8	43.486	-49	720	RC	Amselco	1984
CM-154	11099.7	20722.9	5864.8	41.486	-65	760	RC	Amselco	1984
CM-155	11477.5	20787.8	5736.8	273.486	-62	670	RC	Amselco	1984
CM-156	10989.6	20939	5963.8	231	-56	280	RC	Amselco	1984
CM-157	11343.5	20744.2	5783.8	283.486	-62	705	RC	Amselco	1984
CM-158	11114.4	20739.3	5865.8	23.486	-59	360	RC	Amselco	1984
CM-159	11026.2	21036.2	5959.8	106.486	-60	420	RC	Amselco	1984
CM-160	11315.5	20708.5	5781.8	287.486	-47	555	RC	Amselco	1984
CM-161	11378.1	21064.8	5750.8	220.486	-46	320	RC	Amselco	1984
CM-162	11007.8	21033.2	5960.8	148.486	-70	400	RC	Amselco	1984
CM-73	10977.8	20832.8	5963.8	84.486	-60	320	RC	Amselco	1984
CM-74	10976.3	20839.9	5963.8	126.486	-45	380	RC	Amselco	1984
CM-75	11014.3	21342.3	5927.8	169.486	-43	620	RC	Amselco	1984
CM-76	11041.6	22239.2	6023.8	169.486	-59	625	RC	Amselco	1984
CM-77	11015.9	20921.5	5977.8	350.48	-43	480	RC	Amselco	1984
CM-78	11179.7	22135.7	5975.8	284.486	-52	680	RC	Amselco	1984
CM-79	10787	21051	5894.8	110.485	-52	780	RC	Amselco	1984
CM-80	11114.3	21222.9	5913.8	164.486	-47	540	RC	Amselco	1984
CM-81	11073.2	21946	5973.8	350.486	-60	580	RC	Amselco	1984
CM-82	11106.4	21244.8	5914.8	143.486	-53	920	RC	Amselco	1984

HOLE_ID	EASTING	NORTHING	ELEV	AZIMUTH	DIP	TD	ТҮРЕ	COMPANY	YEAR
CM-83	10931	21951.1	6004.8	348.486	-70	340	RC	Amselco	1984
CM-84	10928.7	21103.9	5982.8	171.486	-39	500	RC	Amselco	1984
CM-85	11014.3	20948.4	5976.8	169.486	-69	420	RC	Amselco	1984
CM-86	10638.2	22119.6	5888.8	94.486	-61	700	RC	Amselco	1984
CM-87	11239.6	22074	5937.8	290.486	-48	900	RC	Amselco	1984
CM-88	10965.4	21038.5	5979.8	109.486	-34	540	RC	Amselco	1984
CM-89	11166.5	21952.5	5942.8	346.486	-59	720	RC	Amselco	1984
CM-90	10910.9	22382.9	5949.8	298.486	-55	540	RC	Amselco	1984
CM-91	10991	20688	5862.8	48.486	-55	380	RC	Amselco	1984
CM-92	11429.9	22459	5955.8	238.486	-60	760	RC	Amselco	1984
CM-93	11308.4	22211.1	5984.8	286.486	-55	840	RC	Amselco	1984
CM-94	10954.4	22260.3	6022.8	290.486	-40	540	RC	Amselco	1984
CM-95	11499.9	20883.4	5708.8	264.486	-57	700	RC	Amselco	1984
CM-96	11053.2	21103.6	5921.8	169.486	-54	480	RC	Amselco	1984
CM-97	10606	22161	5877.8	35.486	-52	760	RC	Amselco	1984
CM-98	11079.9	21119.4	5920.8	100	-47	260	RC	Amselco	1984
CM-99	10868.8	22582.7	5865.8	169.486	-55	480	RC	Amselco	1984
EDDH-3	11093.8	22407.9	5965.8	228.486	-60	980	DDH	Amselco	1984
EDDH-6	10917.6	21950.2	6002.9	352.5	-70	800	DDH	Amselco	1984
WDDH-4	11096	21214.3	5915.5	174.5	-49	748	DDH	Amselco	1984
WDDH-5	10955.1	20842.5	5962.8	64.5	-49	769	DDH	Amselco	1984
ATDH-100F	10892.9	20942.9	5976.3	90	-5	70	ATDH	CCI	1987
ATDH-101V	10963.2	20857	5967	0	-90	70	ATDH	ССІ	1987
ATDH-102V	11001.1	21152.8	5962.4	0	-90	70	ATDH	ССІ	1987
ATDH-103F	11023.2	21001.2	5960.3	270	-3	70	ATDH	ССІ	1987
ATDH-104F	11039.4	20941.9	5964.1	297	-5	70	ATDH	ССІ	1987
ATDH-107V	11246	20713	5810	0	-90	22	ATDH	CCI	1987
ATDH-10V	11215.4	20685.4	5811.6	0	-90	70	ATDH	ССІ	1987
ATDH-110F	11132	20620	5807	0	-3	70	ATDH	CCI	1987
ATDH-111V	11129	20614	5805	0	-90	70	ATDH	CCI	1987
ATDH-11F	11124.91	20609.36	5807.1	295	-5	70	ATDH	CCI	1987
ATDH-12F	11103.95	20600.28	5806.9	305	-5	70	ATDH	CCI	1987
ATDH-13V	11132	20738	5862	0	-90	70	ATDH	CCI	1987
ATDH-14F	11130	20744.1	5866	4	-10	70	ATDH	CCI	1987
ATDH-15V	11105.04	20724.5	5862	0	-90	58	ATDH	CCI	1987
ATDH-16F	11102.34	20729.9	5869	322	0	70	ATDH	CCI	1987
ATDH-17V	11077.14	20710.77	5859.7	0	-90	70	ATDH	CCI	1987
ATDH-18F	11071	20725	5868	345	0	70	ATDH	CCI	1987
ATDH-19V	11040	20694	5858.5	0	-90	70	ATDH	CCI	1987
ATDH-1F	10860.7	21244.8	5925.9	132	-5	70	ATDH	ССІ	1987
ATDH-20F	11040.24	20701.83	5863	344	-4	70	ATDH	ССІ	1987
ATDH-21V	11014	20691	5854.7	0	-90	58	ATDH	CCI	1987
ATDH-22F	11014	20695	5860	9	-6	70	ATDH	ССІ	1987
ATDH-23F	10980.7	20707.6	5861.3	30	-10	70	ATDH	ССІ	1987
ATDH-24F	10955.6	20716.6	5863.5	14	-8	70	ATDH	CCI	1987

HOLE_ID	EASTING	NORTHING	ELEV	AZIMUTH	DIP	TD	ТҮРЕ	COMPANY	YEAR
ATDH-25E	10928 9	20726 3	5869.7	15	-10	70	АТОН		1987
ATDH-26F	10905 5	20720.3	5873.6	23	-8	70	АТОН		1987
ATDH-27F	10880	20743.2	5881 3	20	-7	70	ATDH		1987
ATDH-28F	10857.2	20751.5	5887	20	-13	70	ATDH		1987
ATDH-29F	10824.6	20762 1	5890.9		-55	70	ATDH		1987
ATDH-2F	10842 7	21227.9	5918.1	133	-5	70	ATDH		1987
	10950	21956.9	6004.7	81	-4	70			1987
ATDH-31F	10913	21950.5	6002.5	0	-90	70			1987
ATDH-31V	10913	21970	6002.5	0	-90	70			1987
	10915	21961	6000 5	0	-90	70			1987
	10915	21001	6003	0	-90	70			1987
	10825	21337	6035.7	0	-90	22			1987
	10839	22143	6035.6	0	-90	70	АТОН		1907
	10855	22109	6028.1	0	-90	70			1987
	10877 3	22100	6026.1	0	-90	70			1987
	10077.3	22030.3	6024 7	0	-50	70			1987
	10903	22013	6022.0	0	-90	70			1987
	10934.9	22007.3	5015	125	-90	70			1987
	10024.4	21210.9	5915	155	-5	70			1987
	10963.9	21999.4	6024.5	0	-90	70			1987
	11027.1	21969.5	6018.2	0	-90	70			1987
	11027.1	22017	6018.2	0	-90	70			1987
	11014	22037.1	6018.3	0	-90	70	ATDU		1987
	10041.0	22054	6019.1	0	-90	70	ATDU		1987
ATDH-46V	10941.9	22187.5	6077.5	0	-90	40	ATDH		1987
ATDH-47V	10939.9	22162.9	6073.4	0	-90	22	ATDH		1987
ATDH-48V	10953.1	22142.1	6073.4	0	-90	70	ATDU		1987
ATDH-49V	10977.1	22122.8	6073.6	0	-90	70	ATDH		1987
ATDH-4F	10818.5	21193.1	5913.3	109	-5	70	ATDH		1987
ATDH-50V	109/1.6	22159.5	6074	0	-90	34	ATDH		1987
ATDH-51F	10874	22389.9	5950	233	-4	70	ATDH		1987
ATDH-52F	10894.3	22370	5951.8	221	-4	70	ATDH		1987
ATDH-53F	10924.5	22361	5953.1	184	-5	70	ATDH		1987
ATDH-54V	10881.2	22400.8	5946.4	170	-90	70	ATDH		1987
ATDH-55F	11006	22464	5914.2	1/9	-4	70	ATDH		1987
ATDH-55V	10908	22382.7	5948.6	0	-90	70	ATDH		1987
ATDH-56VA	10928.6	22371.3	5949.9	0	-90	70	ATDH		1987
AIDH-56VB	11009.9	22474.2	5911.5	0	-90	/0	ATDH		1987
ATDH-57F	10884.3	22456.6	5912.5	227	0	70	ATDH		1987
ATDH-58V	10891	22478.4	5910.5	0	-90	/0	AIDH		1987
ATDH-59V	10927.2	22458.7	5911.3	0	-90	/0	AIDH		1987
ATDH-5F	10805.7	21164.3	5910.6	107	-5	/0	ATDH		1987
ATDH-60F	11152.8	22145.5	5979.5	269	-4	70	AIDH		1987
ATDH-61F	11158.3	22123.5	5977.7	257	-2	70	ATDH		1987
ATDH-62F	11178.3	22087.3	5968.3	298	-5	58	AIDH	CCI	1987
ATDH-63F	11138.8	22029.6	5965	306	-5	70	ATDH	CCI	1987

HOLE_ID	EASTING	NORTHING	ELEV	AZIMUTH	DIP	TD	ТҮРЕ	COMPANY	YEAR
ATDH-66E	Ft	21929	5976 /	285	0	70	АТОН		1987
	10905 7	22006.3	5997 5	/19	-3	70			1987
ATDH-68V	10779	22000.5	5984.8		-90	70	АТОН		1987
ATDH-69F	10772 4	22059.2	5982.4	44	-5	70	ATDH		1987
ATDH-6F	10800	21099.3	5897.9	82	-5	70	ATDH		1987
ATDH-70F	10763.6	22072.9	5980.7	49	-4	46			1987
	10753.3	22072.3	5979.8	40	-5	10			1987
	10736.2	22082.7	5976.4	-0	-90	70			1987
	10730.2	22082.1	5978.6	34	-3	70			1987
	10757 7	22067.4	5977.8	0	-90	70			1987
	10765.9	21975.6	5918	53	-5	70			1987
ATDH-76F	10705.5	21973.0	5818.9	21	-5	70			1987
	10732	21992.9	5916.2	18	0	70			1987
	10705 /	21997.2	5910.2	10	0	10			1987
	10703.4	22014.0	5001 3	100	-5	70			1987
	10727.6	21055.2	5901.5	109	-5	70			1987
	10727.0	21977.9	5008.2	0	-90	70			1987
	10/01.1	21977.8	5908.2	0	-90	70			1987
	10600.9	21900.0	5907.7		-90	70			1987
	10504.7	21998.9	5007.3	55	0	70			1987
	10507.5	22021	5002.4 E004 4	111	2	70			1987
	10607	22056.9	5004.4	111	-5	70			1987
	10622.8	22083.4	5007.5	120	-5	56			1987
	10641.5	22100.8	5887	116	-3	70	ATDU		1987
ATDH-88F	10647.2	22134.8	5888.5	86	0	70	ATDH		1987
ATDH-89V	10589	21997.7	5882.3	0	-90	70	ATDH		1987
	10811.1	20974.6	5910.8	88	-5	70	ATDH		1987
ATDH-90V	10577.5	22020.1	5879.9	0	-90	70	ATDH		1987
ATDH-93F	10584.6	22142.1	5803.5	08	-3	22	ATDH		1987
ATDH-94F	10050.2	20896.2	5982.5	225	-5	46	ATDU		1987
ATDH-95F	10950.3	21010.07	5980	179	-44	70			1987
	10936.6	21018.73	5980.6	1/4	-10	70	ATDU		1987
	11219 5	21132.3	5982.1	224	-90	70			1987
B 10	10060	20700.1	5005.5	524	-10	70			1987
B-10	10960	21029	5979.1	0	-90	70			1987
B-12	10940	21050	5980.7	0	-90	70			1987
B-13	10919	21024	5978.8	295	-90	70			1987
B-13F	10919	21065.8	5977.1	285	-5	70	ATDU		1987
D-14	10933	21075	5982.7	0	-90	70			1987
D-15	10910	21000	5977.6	117	-90	70	ATDU		1987
D-10F	10200 70	20979	59/8	117	-5	/0	ATDU		1987
D-10	10000	20974.35	5976.1	0	-90	10	ATDH		1987
D-17	10002.04	20950	59/3.6	0	-90	70	ATDU		1987
D-1/F	10902.04	20954.05	5979	65	-15	70	ATDH		1987
B-18	10865	20920	5969.1	0	-90	/0	ATDH		1987
B-19	10858.26	20898.57	5964.9	0	-90	10	ATDH	CCI	1987

HOLE_ID	EASTING	NORTHING	ELEV	AZIMUTH	DIP	TD	TYPE	COMPANY	YEAR
B-19E	10899	Ft	FT	52	-5	70	АТОН		1987
B-20	10875	20875	5961	0	-90	70			1987
B-20F	10921	20873	5964	/3	0	70			1987
B-201	10921	20871	5962.2		-90	70			1987
B-21	10923	20030	5068	30	0	70			1987
B-21	10977 47	20072	5962.6		-90	70			1987
B 225	10079.61	20849.48	5902.0	22	-30	70			1007
B 225	10978.01	20800.33	5068	20	0	70			1987
B-26	10992	20052	5982.6		-90	70			1987
B-265	10930	21100	5085	222	-5	10			1987
B-27	10920	21094	5082.2	233	-90	70			1987
B-27	10930	21125	5085.2	221	-30	70			1987
B 29	10022	21117	5905.5	231	-5	70			1007
B 295	10933	21130	5086.2	242	-90	50			1987
B 20	10910.7	21130.4	5960.2	243	-4	70			1987
B-29	10945	21175	5901.5	271	-90	10			1987
D-23F	110127.4	21175	5965.7	2/1	-5	70			1987
B-3	10045 15	20911.5	5970	0	-90	70			1987
D-30	10945.15	21200.42	5979.7	0	-90	70			1987
D-31	10955	21225	5970.7	0	-90	70			1987
B-32	11002	21250.14	5970.8	0	-90	70			1987
B-4	10004.80	20941	5995	0	-90	70			1987
B-5	10994.89	20952.70	E077 1	0	-90	70			1987
B-6	10990	20973	5977.1	210	-90	70			1987
B-OF	10983.3	20961.2	5998	210	-5	70			1987
B-9	11002.04	21000	5978.3	0	-90	10	ATDU		1987
C-10	1002.04	21220.40	5904.1	0	-90	10			1987
C-11	10989.39	21248.42	5908.2	0	-90	10			1987
C-12	10970.29	212/3./	5907.1	0	-90	10			1987
C-13	10971.41	21298.99	5903.8	0	-90	10			1987
C-14	10972.4	21322.30	5959.1	0	-90	10			1987
C-13	10972.20	21348.43	5953.3	0	-90	10			1987
C-10	10900	21373	5940.0	0	-90	70			1987
C-17	10900	21400	5940.0	0	-90	70			1987
C-18	10954	21430	5945	0	-90	70			1987
C-19	11021 14	21444	5945	0	-90	10			1987
C-2	1021.14	21029.7	5905	0	-90	70			1987
C-20	10940	21405	5944.4	0	-90	70			1987
C-21	10940	21493	5945.4	0	-90	70			1987
C-22	10935	21519	5947.2	0	-90	70			1987
C 24	10030 C2	21543	5949.3	0	-90	70			1987
C-24	10930.62	21507.97	5951.5	0	-90	70			1987
C 26	10022.71	21592.42	5953.3	0	-90	70			1987
C-20	11034.0	21014.79	5954.1	0	-90	70	ATDH		1987
0.275	11034.8	20978.1	5958.5	0	-90	70	ATDU		1987
C-27F	11024.4	20974.9	5962.7	219	-3	70	AIDH		1987

HOLE_ID	EASTING	NORTHING	ELEV	AZIMUTH	DIP	TD	ТҮРЕ	COMPANY	YEAR
C 25	Ft	21020 2	FT 5961 7	217	5	70			1087
C-2F	11015.9	21020.3	5960	217	-5	70			1987
C-4	11015	21030	5960 7	0	-90	70			1987
C-6	11000	21070	5960.9	0	-90	70			1987
C-7	11005	21100	5960.6	0	-90	70	АТОН		1987
C-8	11009 / 9	21133	5960.5	0	-90	70			1987
C871	111/18 2	20221.6	5678.38	0	-45	1206			1987
C872	11240.5	20221.0	5617.02	286	-40	1/10			1987
C87_2	11011.91	20082.85	5864 5	200	-00	70	RD		1987
C87-4	11272.23	21333.33	5850 /	0	-90	70	RD		1987
C87-5	11355.2	21709.2	5846.4	222	-45	22	RD		1987
C87-6	11331.9	21710.5	5866	0	-90	70	RP		1987
C87-7	10646 10	21020.7	580/ 08	0	-90	122	RD		1987
C87-7	10550 44	20870.11	5070 400	0	-90	122			1987
C 9	11009	20800.34	5060 1	0	-90	10			1987
C-9	1000 9	21195	5900.1	241	-90	70			1987
D 1	110990.0	21105.1	5902.0	241	0	70			1987
D-1	11122	21092	5912.2	0	-90	70			1987
D-10	11125	21209	5914.7	202	-90	70			1987
D-10F	11104	21299	E019.4	295	-5	70			1987
D-11	11007 7	21321	5910.4	250	-90	70			1987
D-11F	11097.7	21310.3	5924.1	239	00	70			1987
D-12	11099.27	21340.81	5921.2	206	-90	70			1987
D-12F	11082	21334	5924.4	206	-5	70			1987
D-13	11061.49	21550.79	5925.1	216	-90	70			1987
D-13F	11050	21342	5927.2	210	-5	70			1987
D-14	11005.49	21373.00	5925.9	0	-90	70			1987
D-13	11049.77	21395.04	5924	0	-90	70			1987
D-10	11059.19	21410.09	5924.0	0	-90	70			1987
D-17	10002.52	21370.81	5920.7	0	-90	70			1987
D-18	11022.22	21333.34	5025.5	0	-50	70			1007
D-19	11032.22	21440.49	5925.5	0	-90	70			1987
D-1A	11099	21070	5015 /	0	-90	70			1987
D-2	11025 60	21115	5915.4	0	-90	70			1987
D-20	11025.09	21403.24	5925.9	0	-90	70			1987
D-21	11013.12	21400.00	5021.0	0	-90	70			1987
D-22	10005	21500	5026.6	0	-50	70			1007
D-23	10995	21550	5020.7	0	-90	70			1987
D-24	10985	21552	50/2 2	0	-50	70			1007
D-26	10974	21509	50/6 0	0	-90	70			1987
D-27	10950 52	21530	5051.2	0	-90	70			1307
D_28	10930.33	21014.22	5055.2	0	0	70			1307
D-29	10940.29	21662.04	5955.0	0	-90	10			1307
D-3	11060	21002.04	5016 7	0	-90	70			1307
D-30	10052 46	21134	5056.6	0	_00	70			1007
0-50	10952.40	21008.99	0.0255	0	-90	70	ATUR		1987

HOLE_ID	EASTING	NORTHING	ELEV	AZIMUTH	DIP	TD	TYPE	COMPANY	YEAR
D-31	Ft 10962.13	Ft 21711.04	5954.6	0	-90	70	ATDH	CCI	1987
D-32	10972.48	21732.87	5952.7	0	-90	70	ATDH	CCI	1987
D-3F	11027.1	21143.4	5920.2	257	-5	70	ATDH	CCI	1987
D-4	11065	21160	5918.6	0	-90	70	ATDH	CCI	1987
D-4F	11036.6	21163.9	5920.9	270	-5	70	ATDH	CCI	1987
D-5	11068	21183	5918.1	0	-90	70	ATDH		1987
D-5E	11054 7	21188 3	5922	282	0	70	ATDH		1987
D-6	11079	21207	5916.2	0	-90	70	ATDH		1987
D-6F	11059.9	21210.2	5919.7	271	-3	70	ATDH		1987
D-7	11090	21225	5914.7	0	-90	70	ATDH	CCI	1987
D-7F	11062.5	21234.8	5919.6	283	0	70	ATDH		1987
D-8	11101.35	21248.13	5914	0	-90	10	ATDH		1987
D-8F	11063.4	21260.6	5919.9	301	0	70	ATDH	CCI	1987
D-9	11113	21272	5914	0	-90	70	ATDH		1987
D-9F	11077	21281.8	5916.8	299	-5	70	ATDH	CCI	1987
F-1	11219.15	21315.13	5854.2	0	-90	70	ATDH	CCI	1987
E-10	11182.18	21515.97	5882	0	-90	70	ATDH	CCI	1987
E-11	11186.68	21540.95	5882.3	0	-90	70	ATDH	CCI	1987
E-12	11171.83	21560.97	5884.4	0	-90	70	ATDH	CCI	1987
E-13	11150.9	21573.12	5888.9	0	-90	70	ATDH	CCI	1987
E-14	11127.28	21581.22	5895.9	0	-90	70	ATDH	CCI	1987
E-15	11104.55	21589.32	5902.6	0	-90	70	ATDH	CCI	1987
E-16	11081.83	21598.54	5908.9	0	-90	70	ATDH	CCI	1987
E-17	11062.48	21614.07	5915.3	0	-90	70	ATDH	CCI	1987
E-18	11047.18	21631.62	5922.2	0	-90	70	ATDH	CCI	1987
E-19	11032.56	21650.97	5928.6	0	-90	70	ATDH	CCI	1987
E-1F	11192	21314	5863	255	0	70	ATDH	CCI	1987
E-2	11217.6	21339.42	5855.4	0	-90	70	ATDH	CCI	1987
E-20	11017.93	21670.32	5934.6	0	-90	70	ATDH	CCI	1987
E-21	11003.53	21690.12	5940.1	0	-90	70	ATDH	CCI	1987
E-22	10992.96	21712.84	5943.5	0	-90	70	ATDH	CCI	1987
E-23	10992.96	21738.72	5947.9	0	-90	70	ATDH	ССІ	1987
E-24	10993.18	21762.12	5950.1	0	-90	70	ATDH	ССІ	1987
E-2F	11194	21340	5861	271	-8	70	ATDH	ССІ	1987
E-3	11213.05	21362	5858.1	0	-90	70	ATDH	ССІ	1987
E-3F	11193	21359	5864	281	-4	70	ATDH	CCI	1987
E-4	11200.77	21384.93	5862.4	0	-90	70	ATDH	CCI	1987
E-4F	11188	21378	5867	272	0	70	ATDH	CCI	1987
E-5	11187.89	21404.54	5867.2	0	-90	70	ATDH	ССІ	1987
E-6	11168.36	21424.07	5871.9	0	-90	70	ATDH	ССІ	1987
E-7	11160	21444	5875.3	0	-90	70	ATDH	ССІ	1987
E-8	11166.09	21468.62	5878.5	0	-90	70	ATDH	ССІ	1987
E-9	11174	21492	5880.9	0	-90	70	ATDH	ССІ	1987
F-11	11156	20862.93	5839	284	0	70	ATDH	ССІ	1987
F-12F	11161	20823	5838	259	0	70	ATDH	CCI	1987

HOLE_ID	EASTING	NORTHING	ELEV	AZIMUTH	DIP	TD	ТҮРЕ	COMPANY	YEAR
E_12	Ft	20811	FT 5831	0	-90	70	АТОН		1087
F-14	11175	20811	5832	0	-90	70			1987
F-15	11204	20812	5832	0	-90	70			1987
F-16F	11160	20813	5832	278	0	70	ATDH		1987
F-1F	11156	20862.93	5838	270	0	10	ATDH		1987
F-5	11161	20846	5830	0	-90	70	ATDH		1987
F-5F	11161	20846	5839	272	-10	70	ATDH		1987
F-6	11187	20836	5831	0	-90	70	ATDH		1987
F-7	11210	20837	5829	0	-90	70	ATDH	CCI	1987
F-8F	11216	20867	5833	340	-5	70	ATDH	CCI	1987
F-8V	11216	20867	5830	0	-90	70	ATDH	CCI	1987
F-9F	11191	20869	5836	334	-6	70	ATDH	CCI	1987
F-9V	11191	20869	5830	0	-90	70	ATDH	CCI	1987
G-1	11357.11	20874.85	5788.7	0	-90	70	ATDH	CCI	1987
G-2	11359.59	20850.1	5786.9	0	-90	70	ATDH	CCI	1987
G-3	11369.18	20824.45	5785.6	0	-90	70	ATDH	CCI	1987
G-4	11373	20800	5784.8	0	-90	70	ATDH	CCI	1987
G-5	11375	20775	5783.7	0	-90	70	ATDH	CCI	1987
G-6	11369	20754	5781.9	0	-90	70	ATDH	CCI	1987
G-7	11359	20729	5779.7	0	-90	70	ATDH	CCI	1987
G-8	11340	20710	5778.1	0	-90	70	ATDH	CCI	1987
C88-10	10525	20719	5759.5	340	-70	590	RC	Bond	1988
C88-11	10580	20783	5759.6	340	-70	505	RC	Bond	1988
C88-12	10658	20847	5759.5	340	-70	490	RC	Bond	1988
C88-13	10737	20907	5759.6	340	-70	500	RC	Bond	1988
C88-14	10519.19	20946.6	5760.9	340	-60	560	RC	Bond	1988
C88-15	10423	20925	5778.7	340	-60	595	RC	Bond	1988
C88-16	10583	21041	5761	340	-60	560	RC	Bond	1988
C88-17	10633	21052	5760.9	160	-50	240	RC	Bond	1988
C88-18	10350	20877	5778.9	340	-60	480	RC	Bond	1988
C88-19	10163.38	20915.72	5708.09	160	-60	480	RC	Bond	1988
C88-20	10025.2	20952.9	5642.14	340	-60	615	RC	Bond	1988
C88-21	10326.17	21156.48	5675.52	340	-60	440	RC	Bond	1988
C88-22	11463.73	21672.4	5802.13	250	-60	400	RC	Bond	1988
C88-23	11468.19	21669.74	5801.91	290	-60	360	RC	Bond	1988
C88-24	11578.46	21860.9	5884.06	290	-60	640	RC	Bond	1988
C88-25	11432.31	21859.98	5872.96	250	-70	420	RC	Bond	1988
C88-26	11397.22	22055.02	5916.13	250	-60	440	RC	Bond	1988
C88-27	10845	21989.3	5958.9	180	-80	540	RC	Bond	1988
C88-28	10802.2	22278.3	5958.7	270	-60	600	RC	Bond	1988
C88-29	10791	22251.7	5959.5	315	-70	740	RC	Bond	1988
C88-30	10881.4	22362.4	5957.8	315	-45	500	RC	Bond	1988
C88-31	10834.9	22702.5	5810.7	230	-80	600	RC	Bond	1988
C88-32	10856.2	22714.3	5811.4	55	-50	180	RC	Bond	1988
C88-33	11184.5	22634.4	5868.2	225	-70	690	RC	Bond	1988

HOLE_ID	EASTING	NORTHING	ELEV	AZIMUTH	DIP	TD	ΤΥΡΕ	COMPANY	YEAR
C88-34	11135	22450.3	5920.6	0	-90	830	RC.	Bond	1988
C88-35	11311 3	22504.8	5944.2	225	-80	780	RC	Bond	1988
C88-36	11014.2	22619	5848.2	0	-90	765	RC	Bond	1988
C88-37	9867 473	21165 13	5505 5	255	-45	500	RC	Bond	1988
C88-38	9877.098	21170.3	5505.9	75	-45	300	RC	Bond	1988
C88-43	11220	20860	5720	0	-90	585	RC	Bond	1988
C88-44	11115.5	20980.1	5720	147	-74	490	RC	Bond	1988
C88-9	10504	20910	5843.67	0	-90	100	RC	Bond	1988
C89-48	11280.1	20873.8	5680	0	-90	680	RC	Bond	1989
C89-49	11185.1	20876.1	5679.8	0	-90	650	RC	Bond	1989
BD90-1	11011.8	21117.7	5457.3	0	-90	90	RC	Bond	1990
BD90-2	10980.2	21101.2	5459.4	0	-90	120	RC	Bond	1990
BD90-3	10941.2	21060.5	5466.1	0	-90	120	RC	Bond	1990
BD90-4	10943.6	21072.3	5465.9	85	-68	120	RC	Bond	1990
BD90-5	11023.5	21122.8	5457.4	101	-67	120	RC	Bond	1990
BD90-6	10956.2	21090.7	5459	99	-73	120	RC	Bond	1990
R90-1	11161.67	22099.36	5962.502	0.81	-	310	RC	Bond	1990
R90-10	11223.95	22213.77	5919.9	0	-90	320	RC	Bond	1990
R90-11	11149.36	22199.78	5919.56	0	-90	320	RC	Bond	1990
R90-12	11100.61	22179.51	5919.7	0	-90	320	RC	Bond	1990
R90-13	11126.16	22112.01	5918.78	180	-80	325	RC	Bond	1990
R90-14	10924.17	22059.76	5919.56	0	-90	320	RC	Bond	1990
R90-15	10873.65	22039.19	5920.02	0	-90	320	RC	Bond	1990
R90-16	10925.33	21979.51	5919.98	0	-90	220	RC	Bond	1990
R90-17	10619.4	22120.9	5893.2	0	-90	250	RC	Bond	1990
R90-18	10699.2	22033.9	5917.6	180	-77	225	RC	Bond	1990
R90-19	10725.13	22088.08	5917.73	0	-90	320	RC	Bond	1990
R90-2	11013.23	22273.46	5959.075	0	-90	305	RC	Bond	1990
R90-20	10798.71	22037.51	5919.67	0	-90	320	RC	Bond	1990
R90-21	10641.82	22035.89	5915.99	0	-90	270	RC	Bond	1990
R90-22	11124.89	22059.28	5919.76	180	-80	340	RC	Bond	1990
R90-23	10975.94	22099.18	5920.74	0	-90	320	RC	Bond	1990
R90-24	10975.72	22028.97	5920.2	0	-90	320	RC	Bond	1990
R90-25	11050.84	22021.38	5919.43	0	-90	250	RC	Bond	1990
R90-26	10708.41	22183.08	5917.6	0	-35	350	RC	Bond	1990
R90-27	10708.18	22176.22	5917.6	0	-55	350	RC	Bond	1990
R90-28	10845.18	22518.14	5891.26	0	-90	45	RC	Bond	1990
R90-29	10865.76	22494.13	5891.19	249	-77	275	RC	Bond	1990
R90-3	10962.12	22595.65	5859.417	0	-90	300	RC	Bond	1990
R90-30	10853.84	22523.65	5891.59	345	-58	320	RC	Bond	1990
R90-31	10847.35	22522.16	5891.79	330	-49	265	RC	Bond	1990
R90-32	10849.88	22515.16	5891.22	265	-64	270	RC	Bond	1990
R90-33	10857.48	22509.75	5891.47	210	-57	305	RC	Bond	1990
R90-34	10590.08	22303.13	5816	48	-65	245	RC	Bond	1990

HOLE_ID	EASTING	NORTHING	ELEV	AZIMUTH	DIP	TD	ТҮРЕ	COMPANY	YEAR
R90-35	Ft 10714.75	22170.09	FI 5917.42	328	-58	260	RC	Bond	1990
R90-4	10940 95	22653 33	5833 479	0	-90	310	RC	Bond	1990
R90-43	10999.36	22150.75	5920.52	0	-90	220	RC	Bond	1990
R90-44	10974.14	22239.42	5920.19	0	-90	320	RC	Bond	1990
R90-45	10772.4	22151.16	5918.62	0	-90	320	RC	Bond	1990
R90-46	10701.09	22150.9	5917.25	0	-90	225	RC	Bond	1990
R90-47	10750.5	22228.9	5918.4	0	-90	320	RC	Bond	1990
R90-48	10800.39	22316.36	5918.62	0	-90	320	RC	Bond	1990
R90-49	10849.34	22300.09	5919.45	0	-90	320	RC	Bond	1990
R90-5	10987.17	21959.06	5959.108	0	-90	140	RC	Bond	1990
R90-50	10849.86	22164.56	5918.99	0	-90	320	RC	Bond	1990
R90-51	10875.06	22217.44	5919.87	0	-90	320	RC	Bond	1990
R90-52	10924.8	22277.41	5920.17	0	-90	320	RC	Bond	1990
R90-53	10950.84	22350.13	5921.17	0	-90	300	RC	Bond	1990
R90-54	11022.02	22448.93	5918.75	0	-90	320	RC	Bond	1990
R90-55	11047.56	22354.99	5919.34	0	-90	320	RC	Bond	1990
R90-56	10876.29	22422.64	5919.8	0	-90	320	RC	Bond	1990
R90-57	10923.91	22140.52	5920.2	0	-90	320	RC	Bond	1990
R90-58	10891.65	22574.74	5882.8	353	-80	270	RC	Bond	1990
R90-59	10950.42	22527.63	5894.02	0	-90	200	RC	Bond	1990
R90-6	10718.45	22048.45	5957.038	0	-90	305	RC	Bond	1990
R90-60	11025.7	22529.23	5895.74	0	-90	300	RC	Bond	1990
R90-7	11200	20950	5540.4	0	-90	285	RC	Bond	1990
R90-8	11400	21080	5540.6	0	-90	180	RC	Bond	1990
R90-9	11340	21020	5540	0	-90	330	RC	Bond	1990
SP91-1	10894.3	21000.5	5473.5	295	-55	160	RC	Bond	1991
SP91-10	11411	20970.4	5360.2	0	-90	160	RC	Bond	1991
SP91-11	11366.6	20949.9	5361	0	-90	160	RC	Bond	1991
SP91-12	11474.2	20879.2	5377.9	315	-60	215	RC	Bond	1991
SP91-13	11374.7	20850.2	5366.4	315	-60	190	RC	Bond	1991
SP91-14	11302.1	20975.4	5360.1	0	-90	160	RC	Bond	1991
SP91-15	11355.8	20957.8	5360	0	-90	160	RC	Bond	1991
SP91-16	11192.9	20947.5	5359.9	225	-60	185	RC	Bond	1991
SP91-17	11111.2	20942.9	5359.9	315	-90	165	RC	Bond	1991
SP91-18	11117.9	20900.3	5360.3	0	-90	160	RC	Bond	1991
SP91-19	11168.4	20824.2	5359.8	0	-90	160	RC	Bond	1991
SP91-2	10924.9	21045.2	5468.2	295	-45	160	RC	Bond	1991
SP91-4	11250.2	21170.4	5431.3	270	-80	220	RC	Bond	1991
SP91-5	11351.8	21170.2	5420.8	270	-80	220	RC	Bond	1991
SP91-6	11263.3	21027.8	5358.8	225	-60	185	RC	Bond	1991
SP91-7	11282.4	21022.6	5358.7	0	-90	165	RC	Bond	1991
SP91-8	11372.5	21043.8	5358.7	0	-90	160	RC	Bond	1991
SP91-9	11457.9	21074.1	5405	225	-60	235	RC	Bond	1991

Table 10-2 Summary of Drill Holes Completed by Dateline in the April 2022 Drilling Program (Local Mine Grid coordinates)

Hole ID	Easting LMGB	Northing LMGB	Elev Ft	Azimuth-LMG	Dip	TD Ft
CM22-01	10941.2	21060.5	5466.1	0	-90	203.25
CM22-02	10980.2	21101.2	5459.4	0	-90	225.25
CM22-03	11011.8	21117.7	5457.3	0	-90	204.583
CM22-04	11245.08	21172.73	5432.88	147	-50	705.417
CM22-05	11245.08	21172.73	5432.88	191	-50	647.667
					TOTAL	1,986.167

Table 0-2 Summary of Drill Holes Completed by Dateline in the April 2022 Drilling Program (UTM WGS84 z11 coordinates)

Hole ID	Easting UTM WGS84	Northing UTM WGS84	Elev m	Azimuth-LMG	Dip	TD m
CM22-01	629884.9	3937346	1666.067	0	-90	61.95
CM22-02	629902.1	3937347	1664.025	0	-90	68.66
CM22-03	629912.4	3937343	1663.385	0	-90	62.36
CM22-04	629974.2	3937304	1655.942	192	-50	215.01
CM22-05	629974.2	3937304	1655.942	236	-50	197.41
					TOTAL	605.38 m