BOARD & MANAGEMENT Glenn Davis - Chair Michael Schwarz - MD Gary Ferris - NED Jarek Kopias - Co Sec ### CAPITAL STRUCTURE Ordinary Shares Issued 96.1M Options Issued 3.0M Performance rights Issued 0.3M #### CONTACT Address: Level 3, 170 Greenhill Rd PARKSIDE SA 5063 Email: info@itechminerals.com.au Website: www.itechminerals.com.au Telephone: +61 2 5850 0000 #### Location – Eyre Peninsula Project, South Australia #### Contact: Michael Schwarz Managing Director E: mschwarz@itechminerals.com.au Ph: +61 2 5850 0000 W: www.itechminerals.com.au Or Gavan H Farley Director - Corporate Advisory Novus Capital Mob: +61 420 520 300 Main: +61 2 9375 0114 E: gavan.farley@novuscapital.com.au # MORE THICK, HIGH-GRADE REE RESULTS AT CARALUE BLUFF PROSPECT, SOUTH AUSTRALIA Kaolin and REE rich samples from the Caralue Bluff Prospect, Eyre Peninsula, South Australia - Further drill results from the Caralue Bluff regolith hosted REE Kaolin Prospect return thick, high-grade intervals of REE mineralisation in the clay rich weathering profile, consolidating and expanding the area of REE mineralisation - Intersections at Caralue Bluff include: - CBAC22-071 12m @ 2,343 ppm TREO from 9m - o CBAC22-074 17m @ 1,774 ppm TREO from 4m - o CBAC22-068 12m @ 1,326 ppm TREO from 6m - CBAC22-034 12m @ 913 ppm TREO from 13m - CBAC22-013 16m @ 776 ppm TREO from 2m - CBAC22-064 12m @ 784 ppm TREO from 11m - o CBAC22-055 15m @ 747 ppm TREO from 4m - These results infill and expand the thick, high-grade nature of clay hosted REE mineralisation in the south-east of the prospect - Results from a further 27 drill holes are reported here with over 100 drill holes still to be reported - All drill results are expected by the end of July "The Caralue Bluff Prospect continues to deliver thick, high-grade clay hosted REE mineralisation, close to surface, over a large area of more than 10 km by 9 km. With over 100 drill holes still to be reported we hope to see the prospect continue to deliver." Managing Director Mike Schwarz Watch a video of MD Mike Schwarz explaining the results Figure 1. Location of the Caralue Bluff Prospect - Eyre Peninsula, South Australia iTech Minerals Ltd (ASX: **ITM**, **iTech** or **Company**) completed a 478-hole drill program, in April 2022, across four prospects on the Eyre Peninsula in South Australia. The aim of the program was to test the potential for regolith hosted ion adsorption clay (IAC) REEs and high purity kaolin mineralisation. The fourth batch of drill results, from Caralue Bluff, show that significant intersections of REEs occur within the kaolin (clay) rich weathered horizon over larger areas (Figures 1 & 2). Metallurgical work on 60 mineralised samples from Caralue Bluff are currently undergoing leaching test work with results due within the next 4 weeks. Further samples are being prepared for leaching test work as drill results become available. #### **Caralue Bluff Prospect** The Caralue Prospect was initially established as a high purity kaolin prospect with the identification of thick intervals of bright white kaolin, close to surface, in several historical drill holes. Having identified significant REEs in the kaolin rich intervals at Ethiopia, Burtons and Bartels Prospects, iTech geologists suspected that Caralue Bluff might also be prospective for regolith hosted REE mineralisation. The latest results extend and infill the areas of thick, high-grade REEs, particularly in the south-east of the prospect area. A total area of 12 km x 12 km was tested by drilling of 260 holes, the results of which will determine the continuity of mineralisation within this already extensive area. Figure 2. Fourth batch of drill results from the Caralue Bluff Prospect - Eyre Peninsula, South Australia | Caralue Bluff Drilling Program – Batch 4 Significant Results | | | | | | | | | | | | | | |--|-------------|-----|----------|---------------------------------|-------|--------------|-----|-----------------|---------|------------------------------------|---------|----------------------------------|-------| | | Depth Depth | | | High Value (Magnet) Rare Earths | | | | | | | | | | | | From | То | Interval | erval TREO | | ymium
₂O₃ | | odymium
6O11 | Dyspros | ium Dy ₂ O ₃ | Terbiur | n Tb ₄ O ₇ | %MREO | | | (m) | (m) | (m) | ppm | ppm | %TREO | ppm | %TREO | ppm | %TREO | ppm | %TREO | | | CBAC22_013 | 2 | 18 | 16 | 776 | 145.4 | 19% | 43 | 6% | 5.5 | 0.7% | 1.3 | 0.2% | 25% | | CBAC22_034 | 13 | 25 | 12 | 913 | 193.8 | 21% | 55 | 6% | 6.7 | 0.7% | 1.6 | 0.2% | 28% | | and | 37 | 41 | 4 | 447 | 89.7 | 20% | 24 | 5% | 5.2 | 1.2% | 1.1 | 0.3% | 27% | | and | 45 | 49 | 4 | 402 | 75.6 | 19% | 18 | 5% | 9.0 | 2.2% | 1.8 | 0.5% | 26% | | and | 54 | 55 | 1 | 921 | 169.7 | 18% | 38 | 4% | 21.6 | 2.3% | 3.7 | 0.4% | 25% | | CBAC22_039 | 17 | 31 | 14 | 633 | 119.3 | 19% | 30 | 5% | 12.7 | 2.0% | 2.6 | 0.4% | 26% | | CBAC22_055 | 4 | 19 | 15 | 747 | 114.4 | 15% | 36 | 5% | 5.0 | 0.7% | 1.0 | 0.1% | 21% | | CBAC22_056 | 13 | 33 | 20 | 640 | 117.7 | 18% | 35 | 5% | 4.7 | 0.7% | 1.0 | 0.2% | 25% | | CBAC22_058 | 7 | 11 | 4 | 616 | 102.9 | 17% | 32 | 5% | 5.1 | 0.8% | 1.0 | 0.2% | 23% | | CBAC22_064 | 11 | 23 | 12 | 784 | 132.5 | 17% | 40 | 5% | 5.5 | 0.7% | 1.0 | 0.1% | 23% | | CBAC22_068 | 6 | 18 | 12 | 1326 | 262.2 | 20% | 68 | 5% | 8.1 | 0.6% | 2.2 | 0.2% | 26% | | CBAC22_070 | 10 | 39 | 29 | 357 | 62.4 | 18% | 18 | 5% | 3.7 | 1.0% | 0.6 | 0.2% | 24% | | CBAC22_071 | 9 | 21 | 12 | 2343 | 476.0 | 20% | 122 | 5% | 15.3 | 0.7% | 3.7 | 0.2% | 26% | | CBAC22_073 | 7 | 11 | 4 | 653 | 92.1 | 14% | 29 | 4% | 6.1 | 0.9% | 1.2 | 0.2% | 20% | | CBAC22_074 | 4 | 21 | 17 | 1744 | 368.7 | 21% | 96 | 6% | 11.6 | 0.7% | 2.7 | 0.2% | 27% | Table 1. Significant REE intersections at the Caralue Bluff Prospect – Eyre Peninsula, South Australia #### **Caralue Bluff Significant Intersections** A further 27 drill holes are reported, of which 12 contained significant intervals of REEs above 350 ppm TREO (Figure 2, Table 1). A further 5 holes were not able to penetrate a hard silcrete/ferricrete surface layer and therefore did not test the underlying target horizon. The remaining drill holes did not have significant intervals of REEs above the cut-off grade of 350 ppm. Of the 260 holes drilled at Caralue Bluff, 157 have now been reported, with results from a further 103 expected before the end of July. #### **Next Steps** 60 samples from Caralue Bluff are currently undergoing metallurgical test work. Samples are being tested for their easily leachable REE component with a straight acid leach at pH 1-2 and then for the ionic component with a leaching solution at pH 4 and 0.5M ammonium sulphate. For all potential IAC REE projects, samples are being selected to be representative of the entire range of geological environments within the prospect, not only laterally (east-west and north-south), but also at various levels within the weathering profile (vertically). Figure 3. Chip tray of sample from drill hole CBAC22-071 which contains 12m @ 2343 ppm TREO from 9m For further information please contact the authorising officer Michael Schwarz: iTech Minerals Michael Schwarz, FAusIMM, AIG Managing Director E: mschwarz@itechminerals.com.au Ph: +61 2 5850 0000 W: www.itechminerals.com.au **Novus Capital** Gavan H Farley Director – Corporate Advisory Mob: +61 420 520 300 Main: +61 2 9375 0114 E: gavan.farley@novuscapital.com.au #### **ABOUT ITECH MINERALS LTD** iTech Minerals Ltd is a newly listed mineral exploration company exploring for and developing battery materials and critical minerals within its 100% owned Australian projects. The company is exploring for kaolinite-halloysite, regolith hosted ion adsorption clay rare earth element mineralisation and developing the Campoona Graphite Deposit in South Australia. The company also has extensive exploration tenure prospective for Cu-Au porphyry mineralisation, IOCG mineralisation and gold mineralisation in South Australia and tin, Tungsten, and polymetallic Cobar style mineralisation in New South Wales. #### **COMPETENT PERSON STATEMENT** The information which relates to exploration results is based on and fairly represents information and supporting documentation compiled by Michael Schwarz. Mr Schwarz has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Mr Schwarz is a full-time employee of iTech Minerals Ltd and is a member of the Australian Institute of Geoscientists and the Australian Institute of Mining and Metallurgy. Mr Schwarz consents to the inclusion of the information in this report in the form and context in which it appears. This announcement contains results that have previously released as "Replacement Prospectus" on 19 October 2021, "Rare Earth Potential Identified at Kaolin Project" on 21 October 2021, "Rare Earth Potential Confirmed at Kaolin Project" on 12 November 2021, "New Rare Earth Prospect on the Eyre Peninsula" on 29 November 2021, "Positive Results Grow Rare Earth Potential at Kaolin Project" on 13 December 2021, "More Positive Rare Earth Results - Ethiopia Kaolin Project" on 12 January 2022, "Exploration Program Underway at EP Kaolin-REE Project" on 19 January 2022, "Eyre Peninsula Kaolin-REE Drilling Advancing Rapidly" on 16 February 2022, "Ionic Component Confirmed at Kaolin-REE Project" on 9 March 2022, "Drilling confirms third REE Prospect at Bartels – Eyre Peninsula" on 22 March 2022, "Eyre Peninsula Kaolin-REE Maiden Drilling Completed" on 7 April 2022, "Significant REEs discovered at Caralue Bluff" on 14 April 2022, "Substantial REEs in first drill holes at Ethiopia, Eyre Peninsula" on 18 May 2022, "Caralue Bluff and Ethiopia Prospects Continue to Grow" on 20 June 2022 and "New REE drill results expand Caralue Bluff Prospect" on 18 July 2022. iTech confirms that the Company is not aware of any new information or data that materially affects the information included in the announcement. #### **GLOSSARY** CREO = Critical Rare Earth Element Oxide HREO = Heavy Rare Earth Element Oxide IAC = Ion Adsorption Clay LREO = Light Rare Earth Element Oxide MREO = Magnet Rare Earth Element Oxide REE = Rare Earth Element REO = Rare Earth Element Oxide TREO = Total Rare Earth Element Oxide %NdPr = Percentage amount of neodymium and praseodymium as a proportion of the total amount of rare earth elements wt% = Weight percent -45µm fraction = The portion of a drill sample that passes through a sieve that has hole sizes of 45 microns (45/1000th of a millimetre). This is generally the clay rich fraction. ## JORC 2012 EDITION - TABLE 1 Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.) | Criteria | JORC Code Explanation | Commentary | |------------------------|--|--| | Sampling
Techniques | Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. | All samples were collected through a cyclone into plastic bags at 1 m intervals, then subsampled into ~2kg samples within numbered calico bags, composite samples were created from selected 1 metre intervals, which have been sent for chemical analyses. Composite intervals were created based upon the geology and colour. As such the composite intervals created vary in length from 2m to 5m. Composite samples weigh roughly 1-2kg for initial test work. The Competent Person has reviewed referenced publicly sourced information through the report and considers that sampling was commensurate with industry standards current at the time of drilling and is appropriate for the indication of the presence of mineralisation. | | Drilling
Techniques | Drill type (e.g., core, reverse circulation, open hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). | McLeod Drilling used a Reverse Circulation Aircore drill rig mounted on a 6-wheel drive Toyota Landcruiser. Aircore drilling uses an 76mm aircore bit with 3 tungsten carbide blades and is a form of drilling where the sample is collected at the face and returned inside the inner tune. The drill cuttings are removed by the injection of compressed air into the hole via the annular area between the inner tube and the drill rod. Aircore drill rods are 3 m NQ rods. All aircore drill holes were between 2m and 60m in length The Competent Person has inspected the drilling program and considers that drilling techniques was commensurate with industry standards current at the time of drilling and is appropriate for the indication of the presence of mineralisation. | | Criteria | JORC Code Explanation | Commentary | |---|---|--| | Drill
Sample
Recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | No assessment of recoveries was documented All efforts were made to ensure the sample was representative No relationship is believed to exist, but no work has been done to confirm this. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. | All samples were geologically logged to include details such as colour, grain size and clay content. Collars were located using a handheld GPS As this is early-stage exploration, collar locations will have to be surveyed to be used in mineral resource estimation. The holes were logged in both a qualitative and quantitative fashion relative to clay content | | Sub-
Sampling
Techniques
and Sample
Preparation | If core, whether cut or sawn and whether quarter, half or all cores taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | All samples were collected through a cyclone into plastic bags at 1 m intervals, then subsampled into ~2kg samples within numbered calico bags, composite samples were created from selected 1 metre intervals, which have been sent for chemical analyses. A full profile of the bag contents was subsampled to ensure representivity All samples were dry Composite intervals were created based upon the geology and colour. As such the composite intervals created vary in length from 2m to 5m. Composite samples weigh roughly 1-2 kg for initial test work. Kaolin rich intervals were subsampled and submitted for kaolin analysis at Bureau Veritas using the following method Screen with 45-micron screen using cold water Retain both fractions Dry each fraction at low temp overnight Record masses Riffle split a 10gm (+45 and -45 fraction) for whole rock assay (14 element oxides), LOI and REEs. | ASX: ITM | Criteria | JORC Code Explanation | Commentary | |--|---|---| | Criteria Quality of Assay Data and Laboratory Tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. | Whole Rock and REE analysis was undertaken by Bureau Veritas using both the XRF (XRF4B) and ICP-MS (IC4M) techniques Both the +45 and -45 fraction were analysed for REEs and the bulk sample result was calculated from the relative proportions and REE values of each fraction. XRF (Detection limits in ppm) Al (100) As (10) Ba (10) Ca (100) Cr (10) Cu (10) Fe (100) K (100) Mg (100) Mn (10) Na (100) Ni (10) P (10) Pb (10) S (10) Si (100) Ti (100) U (10) W (10) Y (10) Zn (10) Zr (10) LA-ICP-MS (Detection limits in ppm) Ag (0.1) As (0.2) Ba (0.5) Be (0.2) Bi (0.02) Cd (0.1) Co (0.1) Cr (1) Cs (0.01) Cu (2) Dy (0.01) Er (0.01) Ga (0.1) Gd (0.01) Hf (0.01) Ho (0.01) In (0.05) La (0.01) Mn (1) Mo (0.2) Nb (0.01) Nd (0.01) Ni (2) Pb (1) Rb (0.05) Re (0.01) Sb (0.1) Sc (0.1) Se (5) Sm(0.01) Sr (0.1) Ta (0.01) Tb (0.01) Te (0.2) Th (0.01) Ti (1) Tm (0.01) U (0.01) V (0.1) W (0.05) Y (0.02) Yb (0.01) Zn (5) Zr (0.5) Selected samples that didn't require screening of the -45µm fraction were submitted to ALS Perth using their ME-MS61 technique for multielements. As such the digestion of REE's is not complete. A prepared sample (0.25 g) is digested with perchloric, nitric, hydrofluoric and hydrochloric acids. | | | | digested with perchloric, nitric, | | | | to dissolve most minerals; however, although the term "near-total" is used, depending on the sample matrix, not all elements are quantitatively extracted. | | Criteria | JORC Code Explanation | Commentary | | | | |----------|-----------------------|--|--|--|--| | | | Results for the additional rare earth
elements will represent the acid
leachable portion of the rare earth
elements Detection Limits are as follows | | | | | | | Element Unit DL | | | | | | | | | | | | | | Ag ppm 0.01 | | | | | | | AI % 0.01 | | | | | | | As ppm 0.2 Ba ppm 10 | Bi ppm 0.01 | | | | | | | Ca % 0.01 Cd ppm 0.02 | | | | | | | | | | | | | | Ce ppm 0.01 | | | | | | | Co ppm 0.1 | | | | | | | Cr ppm 1 | | | | | | | Cs ppm 0.05 | | | | | | | Cu ppm 0.2 | | | | | | | Fe % 0.01 | | | | | | | Ga ppm 0.05 | | | | | | | Ge ppm 0.05 | | | | | | | Hf ppm 0.1 | | | | | | | In ppm 0.005 | | | | | | | K % 0.01 | | | | | | | La ppm 0.5 | | | | | | | Li ppm 0.2 | | | | | | | Mg % 0.01 | | | | | | | Mn ppm 5 | | | | | | | Mo ppm 0.05 | | | | | | | Na % 0.01 | | | | | | | Nb ppm 0.1 | | | | | | | Ni ppm 0.2 | | | | | | | P ppm 10 | | | | | | | Pb ppm 0.5 | | | | | | | Rb ppm 0.1 | | | | | | | Re ppm 0.002 | | | | | | | S % 0.01 | | | | | | | Sb ppm 0.05 | | | | | | | Sc ppm 0.1 | | | | | | | Se ppm 1 | | | | | | | Sn ppm 0.2 | | | | | | | Sr ppm 0.2 | | | | | | | Ta ppm 0.05 | | | | | | | Te ppm 0.05 | | | | | | | Th ppm 0.2 | | | | | | | Ti % 0.005 | | | | | | | TI ppm 0.02 | | | | | | | U ppm 0.1 | | | | | | | V ppm 1 | | | | | | | W ppm 0.1 | | | | | | | Y ppm 0.1 | | | | | | | Zn ppm 2 | | | | | L | <u> </u> | | | | | ASX: ITM | Criteria | JORC Code Explanation | Commentary | |---------------------------------------|--|--| | | | Zr ppm 0.5 | | | | Dy ppm 0.05 | | | | Er ppm 0.03 | | | | Eu ppm 0.03 | | | | Gd ppm 0.05 | | | | Ho ppm 0.01 | | | | Lu ppm 0.01 | | | | Nd ppm 0.1 | | | | Pr ppm 0.03 Sm ppm 0.03 | | | | Sm ppm 0.03 Tb ppm 0.01 | | | | Tm ppm 0.01 | | | | Yb ppm 0.03 | | | | | | Verification of Sampling and Assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | No verification of sampling, no use of twinned holes Data is exploratory in nature and is compiled into excel spreadsheets Rare earth element analyses were originally reported in elemental form but have been converted to relevant oxide concentrations as in the industry standard TREO = La₂O₃ + CeO₂ + Pr₆O₁₁ + Nd₂O₃ + Sm₂O₃ + Eu₂O₃ + Gd₂O₃ + Tb₄O₇ + Dy₂O₃ + Ho₂O₃ + Er₂O₃ + Tm₂O₃ + Yb₂O₃ + Lu₂O₃ + Y₂O₃ CREO = Nd₂O₃ + Eu₂O₃ + Tb₄O₇ + Dy₂O₃ + Y₂O₃ LREO = La₂O₃ + CeO₂ + Pr₆O₁₁ + Nd₂O₃ HREO = Sm₂O₃ + Eu₂O₃ + Gd₂O₃ + Tb₄O₇ + Dy₂O₃ + Ho₂O₃ + Fr₂O₃ + Tm₂O₃ + Yb₂O₃ + Lu₂O₃ + Y₂O₃ MREO = Nd₂O₃ + Pr₆O₁₁ + Tb₄O₇ + Dy₂O₃ NdPr = Nd₂O₃ + Pr₆O₁₁ TREO-Ce = TREO - CeO₂ % NdPr = NdPr/ TREO %HREO = HREO/TREO The Complex in the latent in the sum of sum | | Location of Data Points | Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | The location of drill hole collar was undertaken using a hand-held GPS which has an accuracy of +/- 5m using UTM MGA94 Zone 53. The quality and adequacy are appropriate for this level of exploration. | | Data Spacing and Distribution | Data spacing for reporting of
Exploration Results. Whether the data spacing, and
distribution is sufficient to establish the
degree of geological and grade
continuity appropriate for the Mineral
Resource and Ore Reserve estimation
procedure(s) and classifications applied. Whether sample compositing has been | There is no pattern to the sampling and the spacing is defined by access for the drill rig, geological parameters, and land surface Data spacing and distribution are sufficient to establish the degree of geological and grade continuity for future drill planning, but not for resource reporting | | Criteria | JORC Code Explanation | Commentary | |---|--|---| | | applied. | | | Orientation
of Data in
Relation to
Geological
Structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | It is believed that the drilling has intersected the geology at right angles, however, it is unknown whether the drill holes have interested the mineralisation in a perpendicular manner. The mineralised horizon is obscured by a veneer of transported material. It is believed there is no bias has been introduced. | | Sample
Security | The measures taken to ensure sample security. | All samples have been in the custody of iTech employees or their contractors and stored on private property with no access from the public. Best practices were undertaken at the time All residual sample material (pulps) is stored securely | | Audits or
Reviews | The results of any audits or reviews of sampling techniques and data. | None undertaken. | #### **Section 2 Reporting of Exploration Results** (Criteria listed in the preceding section also apply to this section.) | Criteria | JORC Code Explanation | Commentary | |---|--|--| | Mineral Tenement
and Land Tenure
Status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | Tenement status confirmed on SARIG. The tenements are in good standing with no known impediments. | | Exploration Done by Other Parties | Acknowledgment and appraisal of exploration by other parties. | Relevant previous exploration has been undertaken by Shell Company of Australia Pty Ltd, Adelaide Exploration Pty Ltd and Archer Materials Ltd | | Geology | Deposit type, geological setting and style of mineralisation. | The tenements are within the Gawler Craton, South Australia. iTech is exploring for porphyry Cu-Au, epithermal Au, kaolin and halloysite and REE deposits. This release refers to kaolin mineralisation and ion adsorption rare earth elements mineralisation related to lateritic weathering processes on basement rock of the Gawler Craton, in particular the Palaeoproterozoic Miltalie Gneiss and Warrow Quartzite. | | Drillhole Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar Dip and azimuth of the hole Downhole length and interception depth Hole length If the exclusion of this information is | See Appendix 1 for drill hole information. | | Criteria | JORC Code Explanation | Commentary | |------------------------------------|--|--| | | justified on the basis that the information is not Material and this exclusion does | | | | not detract from the understanding of the report, the Competent Person should | | | | clearly explain why this is the case. | | | Data Aggregation | In reporting Exploration Results, weighting | REE analysis intervals were | | Methods | averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | aggregated using downhole sample length weighted averages with a lower cut-off of 350 ppm TREO with no upper limit applied. A maximum internal dilution of 4m @ 200 ppm TREO was used. | | Relationship | These relationships are particularly | All holes are believed to | | Between | important in the reporting of Exploration | intersect the mineralisation at | | Mineralisation | Results. | 90 degrees and therefore represent true widths | | Widths and Intercept Lengths | If the geometry of the mineralisation with respect to the drill hole angle is known, its | All intercepts reported are | | Longino | nature should be reported. | down hole lengths | | | If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (e.g., 'downhole length, true width not known'). | | | Diagrams | Appropriate maps and sections (with
scales) and tabulations of intercepts
should be included for any significant
discovery being reported. These should
include, but not be limited to a plan view of
drill hole collar locations and appropriate
sectional views. | See main body of report | | Balanced Reporting | Where comprehensive reporting of all Fundamentary Results in part practicable. | All other relevant data has | | | Exploration Results is not practicable, representative reporting of both low and | been reportedThe reporting is considered | | | high grades and/or widths should be | to be balanced. | | | practiced avoiding misleading reporting of | A full list of drill holes with
significant intercepts >350 | | | Exploration Results. | ppm can be found in the | | | | body of this reportWhere data has been excluded, it is not considered | | Other Substantive | Other evaluration data if magningful and | material | | Other Substantive Exploration Data | Other exploration data, if meaningful and
material, should be reported including (but
not limited to): geological observations;
geophysical survey results; geochemical
survey results; bulk samples – size and
method of treatment; metallurgical test | The Project area has been subject of significant exploration for base metals, graphite and gold. All relevant exploration data has been included in this | | Criteria | JORC Code Explanation | Commentary | |--------------|--|---| | | results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | report. | | Further Work | The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | Further exploration sampling
geochemistry and drilling
required at all prosects | # Appendix 1. Drill hole collars – Caralue Bluff | HOLEID | EASTING () | NORTHING | Azimuth | Dia (da sus sa) | DI (m. AUD) | DEDTIL () | |------------|-------------|----------|-----------|-----------------|-------------|-----------| | HOLE ID | EASTING (m) | (m) | (degrees) | Dip (degrees) | RL (m AHD) | DEPTH (m) | | CBAC22_013 | 606295 | 6315394 | -90 | 360 | 190 | 30 | | CBAC22_019 | 606046 | 6316179 | -90 | 360 | 182 | 13 | | CBAC22_033 | 610413 | 6310849 | -90 | 360 | 197 | 38 | | CBAC22_034 | 610203 | 6310864 | -90 | 360 | 199 | 39 | | CBAC22_039 | 608996 | 6310784 | -90 | 360 | 191 | 45 | | CBAC22_040 | 608809 | 6310789 | -90 | 360 | 190 | 28 | | CBAC22_041 | 608803 | 6309627 | -90 | 360 | 181 | 7 | | CBAC22_042 | 609017 | 6309500 | -90 | 360 | 180 | 4 | | CBAC22_043 | 609213 | 6309442 | -90 | 360 | 181 | 4 | | CBAC22_044 | 610211 | 6309338 | -90 | 360 | 195 | 28 | | CBAC22_047 | 610401 | 6310398 | -90 | 360 | 199 | 30 | | CBAC22_053 | 607204 | 6309205 | -90 | 360 | 182 | 33 | | CBAC22_055 | 607453 | 6309015 | -90 | 360 | 183 | 45 | | CBAC22_056 | 607757 | 6308815 | -90 | 360 | 183 | 33 | | CBAC22_057 | 607603 | 6309004 | -90 | 360 | 181 | 35 | | CBAC22_058 | 607207 | 6309398 | -90 | 360 | 186 | 21 | | CBAC22_060 | 607603 | 6309401 | -90 | 360 | 181 | 26 | | CBAC22_061 | 607404 | 6309396 | -90 | 360 | 175 | 36 | | CBAC22_062 | 607196 | 6309597 | -90 | 360 | 181 | 20 | | CBAC22_064 | 607601 | 6309802 | -90 | 360 | 184 | 25 | | CBAC22_066 | 607197 | 6310004 | -90 | 360 | 181 | 25 | | CBAC22_068 | 606801 | 6310192 | -90 | 360 | 192 | 30 | | CBAC22_070 | 606400 | 6310001 | -90 | 360 | 195 | 48 | | CBAC22_071 | 606794 | 6309802 | -90 | 360 | 187 | 21 | | CBAC22_072 | 606799 | 6309599 | -90 | 360 | 181 | 19 | | CBAC22_073 | 606993 | 6309404 | -90 | 360 | 186 | 32 | | CBAC22_074 | 606808 | 6309425 | -90 | 360 | 184 | 21 |