

Tuesday, 20 September 2022

Metallurgical test results indicate viable processing pathway for Koppamurra Rare Earths Project (updated with Section 2 of JORC Table 1)

Australian Rare Earths Limited (<u>ASX: AR3</u>) ('AR3' or the 'Company') advises that Section 2 of the JORC Table 1 was inadvertently omitted from its release to ASX on 19 September 2022 titled "Metallurgical test results indicate viable processing pathway for Koppamurra Rare Earths Project". Accordingly, attached here is the ASX release of yesterday incorporating the required Section 2 of JORC Table 1.

The announcement has been authorised for release the by the Board of AR3 Limited.

For further information please contact:

AR3 Limited Rick Pobjoy Acting Managing Director T: 1 300 646 100 **Media Enquiries** Nicholas Read / Paul Armstrong Read Corporate T: 08 9388 1474

Monday, 19 September 2022

Metallurgical test results indicate viable processing pathway for Koppamurra Rare Earths Project

SXANNOUNCEMENT

Leach optimisation test work has resulted in excellent recoveries of the four key magnet rare earth elements (REE) while reducing acid consumption and impurity dissolution providing potential for both an environmentally sound and commercially attractive process pathway to economically produce a high-quality specification product.

Highlights

- Excellent results from leach optimisation test work undertaken by ANSTO on drill composite samples taken from the Koppamurra prospect
- Results demonstrate a 50% reduction in acid consumption while maintaining average recoveries of 65% and up to 77% for the four key magnet Rare Earth Elements (REE) being Neodymium, Praseodymium, Terbium and Dysprosium providing potential for both an environmentally sound and commercially attractive process pathway
- High recoveries of the valuable magnet rare earths (Nd, Pr, Tb & Dy) have increased confidence of consistent metallurgical response over spatially diverse locations within Project area. Diagnostic leach recoveries for 10 composite samples collected across the extent of the recently announced updated Mineral Resource, (81.4Mt at 785ppm Total Rare Earth Oxide (TREO)), show notable consistency of response and very high tenor of recovery
- Impressive leach response of a high-grade sample, 15,502 ppm TREO, provides additional confidence the proportion of accessible REE in high grade samples is consistent with the representative composites in the Mineral Resource.
- 850kg of material extracted from the Trial Pit completed at Koppamurra earlier this year currently being processed by ANSTO for rare earth recovery and product specification analysis
- This is a significant step-up in the scale of test work and will pave the way for testing a 500 tonne bulk sample and advanced flowsheet development
- Koppamurra is well placed to capitalise on the sizeable forecast growth in demand for sources of rare earths, with the Project having all four of the key rare earth elements required to make high-strength permanent magnets needed for the growing demand for EV motors, wind turbines and domestic appliances

Australian Rare Earths Limited (<u>ASX: AR3</u>) ('AR3' or the 'Company') is pleased to announce that it has taken another key step forward in its development strategy for its 100%-owned Koppamurra Rare Earths Project in South Australia-Victoria with the receipt of highly encouraging interim results from metallurgical test work.

ANNOUNCEMENT

The results, from leach optimisation test work being undertaken by the world-renowned test work facility at ANSTO in Sydney, have demonstrated the ability to extract all four key high-value magnet rare earth elements (REE) with a significant reduction in acid consumption and impurity dissolution. These results indicate a more efficient and environmentally sound process pathway while maintaining the commercially attractive recovery levels.

Australian Rare Earths Acting Managing Director Rick Pobjoy said: "These results are pivotal because they show that all four of the key magnet rare earth elements contained in the Koppamurra resource can be extracted at high recoveries".

"These results paint an extremely favourable outlook for the project from a technical, financial and environmental perspective."

"We now look forward to replicating the results on a larger scale as part of our strategy to continue derisking the project."

Details of Metallurgical Testwork

Leach optimisation test work has led to a reduction in acid consumption and gangue (waste) dissolution with only minor reduction in rare earth recoveries, increasing the potential to economically produce a high-quality specification product while maintaining overall recovery of valuable REE.

Two samples, taken from the Koppamurra prospect, were assessed for rare earth recovery characteristics at varying pH and leach durations; KM0234_3 (1,241 ppm TREO) and KM0241_4 (2,125 ppm TREO). Leaching in the pH range 1.5 to 2.0 showed recoveries of the four valuable magnet REEs (Nd, Pr, Tb & Dy) were maintained, with average recoveries of 65% and up to 77%, while acid consumption from the dissolution of iron and aluminium dropped significantly.

Acid consumption is a key economic driver in the leach process, and the reduction in consumption at higher pH has the potential to decrease costs at a commercial scale. Reduction in iron and aluminium dissolution reduces the risk of these deleterious components reporting to the final product on a commercial scale. Leach test work at increased solids density on a representative composite is underway to confirm the REE extraction response and acid consumption.

Figure 1: Rare earth extraction, and impurity dissolution, at varying pH at 6 hours leach time for samples KM0-241_4, KM0-234_3

ANNOUNCEMENT

High recoveries of the valuable magnet rare earths (Nd, Pr, Tb & Dy) have increased confidence of consistent metallurgical response over spatially diverse locations within Project area.

Diagnostic leach recoveries for 10 composites collected across the length and breadth of the recently updated clay hosted rare earth Mineral Resource at Koppamurra have shown great alignment despite the geographic spread.

Ten composites, CP001 to CP010, were developed from drill sample residues across a broad area of the clay hosted rare earth Mineral Resource area, with locations identified in the attached map, Figure 3. The combined samples taken from several drillholes in each composite area generated between 30 and 60kg of material each, with grades averaging from 852 ppm TREO to 1,874 ppm TREO. Diagnostic tests at pH 1.0 and pH 4.0 over test durations of 2, 4, and 6 hours, produced similar results for similar conditions on the spatially diverse CP composite samples. Slurry leach tests are progressing on a 10kg composite, comprised of CP003, CP004, CP006, CP009 and CP010 composites, which are subsamples from the area currently proposed for the application for a Mining Lease. Diagnostic and increased solids density tests have generally demonstrated good alignment in the comparative tests for the Koppamurra Project samples to date.

Figure 2: Valuable rare earth extraction for the Koppamurra Mineral Resource area composite samples CP001 to CP010 at pH 1, 6 hours

Impressive leach response of the high-grade sample KM1573_6, measured at 15,502 ppm TREO, provides additional confidence the proportion of accessible REE in high grade samples is consistent with the representative composites in the resource.

Leach response of a high-grade sample KM1573_6, measured at 15,502 ppm TREO, was assessed in diagnostic tests with intermediate sampling. The high-grade sample showed 80% recovery of NdPr and 60% DyTb at 6 hours leach duration, similar to the response of the representative Mineral Resource area composites CP001 through CP010. This result demonstrates the consistency in recoveries across the resource composition variation.

A larger scale test work program to produce a rare earth product from 850kg of Trial Pit material is underway, spearheading flowsheet development and pilot design.

A total of 850kg of material collected from the Trial Pit at Koppamurra is currently being processed by ANSTO for rare earth recovery and product specification analysis. This is a step change in the scale of rare earth recovery test work that has been conducted to date, and will inform design and operational criteria for even larger scale testing and piloting. The rapid technical development of the flowsheet and the project to pilot scale will be supported by ongoing leach optimisation work and process technology selection at ANSTO.

Figure 3: Diagnostic Leach - Composite sample locations, CP001 through CP010

The announcement has been authorised for release the by the Board of AR3 Limited.

For further information please contact:

AR3 Limited Rick Pobjoy Acting Managing Director T: 1 300 646 100 Media Enquiries Nicholas Read / Paul Armstrong Read Corporate T: 08 9388 1474 ANNOUNCEMENT

Competent Person's Statement

The information in this report that relates to metallurgical results is based on information compiled by Australian Rare Earths Limited and reviewed by Mr. James Davidson who is the Technical Director of Wallbridge Gilbert Aztec and a Fellow of the Australian Institute of Mining and Metallurgy (F AusIMM). Mr. Davidson has sufficient experience that is relevant to the metallurgical testing which was undertaken to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Davidson consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

Forward Looking Statement

This announcement contains forward-looking statements which involve a number of risks and uncertainties. These forward-looking statements are expressed in good faith and believed to have a reasonable basis. These statements reflect current expectations, intentions or strategies regarding the future and assumptions based on currently available information. Should one or more of the risks or uncertainties materialise, or should underlying assumptions prove incorrect, actual results may vary from the expectations, intentions and strategies described in this announcement. No obligation is assumed to update forward looking statements if these beliefs, opinions, and estimates should change or to reflect other future developments.

About Australian Rare Earths Limited

Australian Rare Earths (AR3) is committed to the timely exploration and development of its 100% owned, flagship Koppamurra Project, located in South Australia and Victoria. Koppamurra is a prospective ionic clay hosted rare earth deposit; uniquely rich in all the elements required in the manufacture of rare earth permanent magnets which are essential components in electric vehicles, wind turbines and domestic appliances. The Company is focused on executing a growth strategy that will ensure AR3 is positioned to become an independent and sustainable source of rare earths, playing a pivotal role in the global transition to a green economy.

JORC TABLE 1

	Section 2 Reporting of Exploration Results								
Criteria	Explanation	Comment							
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 Koppamurra Project comprises of a granted South Australian Exploration Licences (EL), EL6509, EL6613, EL6690 and EL6691, along with Victorian EL007254 and EL007719 covering a combined area of ~4,000 km2 which is in good standing. EL6509 is within 100m of a Glen Roy Conservation Park and the Naracoorte Caves National Park, the latter of which is excised from the tenement. The License area contains several small Extractive Mineral Leases (EML) held by others, Native Vegetation Heritage Agreement areas, as well as the Deadman's Swamp Wetlands which are wetlands of national importance. A Native Title Claim by the First Nations of the Southeast #1 has been registered but is yet to be determined. The claim area includes the areas covered by EL's 6509, 6613, 6690 and 6691. The exploration work was completed on the tenements (EL 6509) in South which is 100% owned by the company Australian Rare Earths Ltd. The Exploration License EL6509 original date of grant was 15/09/2020 with an expiry date of 14/09/2022, EL6509 is currently under renewal. Renewal Application Date; 02/08/2022. Details regarding royalties are discussed in chapter 3.4 of Australian Rare Earths Prospectus dated 7 May 2021. 							
by other parties	appraisal of exploration by other parties.	companies in the area have not previously targeted or identified REE mineralisation. Historical exploration activities in the vicinity of							
		koppamurra include investigations for coal,							

Criteria	Explanation	Comment
		gold and base metals, uranium, and heavy
		mineral sands.
		Historical exploration by other parties is
		detailed in Australian Rare Earths Prospectus
		dated 7 May 2021.
Geology	Deposit type, geological	The Koppamurra deposit is interpreted to
	setting, and style of	contain analogies to ion adsorption ionic clay
	mineralisation.	REE deposits. REE mineralisation at
		Koppamurra is hosted by clayey sediments
		interpreted to have been deposited onto a
		limestone base (Gambier Limestone) and
		accumulated in an interdunal, lagoonal or
		estuarine environment. The source of the REE
		at Koppamurra is most likely basalt associated
		alkali volcanics of the Newer Volcanics Province
		in south-eastern Australia. Mineralogy of the
		clay is indicative of formation under mildly
		alkaline conditions in a marine or coastal
		environment from fine-grained sediments
		either river transported or winablown thereby
		supporting this interpretation. Wineralogical
		test work conducted on cidy sample from the
		project area established that the dominant clay
		faw REE rich minorals detected during the SEM
		investigation are not considered inconsistent
		with the suggestion that a significant
		proportion of RFF are distributed in the
		material as adsorbed elements on clay and iron
		oxide surfaces. There are several known types
		of reaolith hosted REE deposits including, ion
		adsorption clay deposits, alluvial and placer
		deposits. Whilst Koppamurra shares
		similarities with both ion adsorption clay
		deposits and volcanic ash fall placer deposits,
		there are also several differences, highlighting
		the need for further work before a genetic
		model for REE mineralisation at Koppamurra
		can be confirmed.
		There is insufficient geological work
		undertaken to determine any geological
		disruptions, such as faults or dykes, that may
		cause variability in the mineralisation.

Criteria	Explanation	Comment
Drill hole	A summary of all	The material information for drill holes relating
Information	information material to	to this report are contained within Appendices
	the understanding of the	of this report.
	exploration results	
	including a tabulation of	
	the following	
	information for all	
	Material drill holes:	
	• easting and northing of	
	the arill hole collar	
	Level – elevation above	
	sea level in metres) of the	
	drill hole collar	
	• dip and azimuth of the	
	hole	
	 down hole length and intercention denth 	
	 hole length 	
	If the evolution of this	
	information is justified	
	on the basis that the	
	information is not	
	Material and this	
	wateriar dass not	
	detract from the	
	understanding of the	
	report the Competent	
	Person should clearly	
	explain why this is the	
Data aggregation	In reporting Exploration	No metal equivalents have been used
methods	Results weighting	No metal equivalents have been used.
memous	averaging techniques	No aggregation techniques were used to assign
	maximum and/or	arades for composited samples Samples were
	minimum arade	composited homogenised and subsamples of
	truncations le a cuttina	the homogenised material was provided to
	of high grades) and cut-	establish rare earth head arades for the
	off arades are usually	Composite sample
	Material and should be	composite sumple.
	stated	
	Where aggregate	
	intercents incornorate	
	short lengths of high_	
	arade results and longer	
	lengths of low arade	
	results, the procedure	
	used for such	
	aggregation should be	
	stated and some typical	
	examples of such	

Criteria	Explanation	Comment
	aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship	These relationships are	All intervals reported are down hole lengths.
between mineralisation widths and intercept lengths	particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	The mineralisation is interpreted to be flat lying and drilling is vertical perpendicular to mineralisation. Any internal variations to REE distribution within the horizontal layering was not defined, therefore the true width is considered not known.
Diagrams	Appropriate maps and	Diagrams are included in the body of this
	sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	report.
Balanced reporting	Where comprehensive	This report contains all metallurgical and
	Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced	JORC guidelines. Where data may have been excluded, it is considered not material.

Criteria	Explanation	Comment
	avoiding misleading	
	reporting of Exploration	
	Results.	
Other substantive	Other exploration data, if	All relevant metallurgical testwork and other
exploration data	meaningful and material,	exploration data has been reported in this
	should be reported	report.
	including (but not limited	
	to): geological	
	observations;	
	geophysical survey	
	results; geochemical	
	survey results; bulk	
	samples – size and	
	method of treatment;	
	metallurgical test results;	
	bulk density,	
	groundwater,	
	geotechnical and rock	
	characterístics; potentiai	
	deleterious or	
	contaminating	
Fronth an oral	Substances.	Furthern Mary will appear to ford dition of
Further Work	The nature and scale of	Further Work will consist of additional
	(a a tasts for lateral	Kennamurra to entimize the rare earth
	(e.g., lesis jor lateral	Roppamaria to optimise the rare earth
	extensions or large scale	recovery and gangue dissolution characteristics
	stop out drilling)	at a range of solias defisities.
	Diggrams clearly	
	bightighting the great of	
	nossible extensions	
	including the main	
	aeological	
	interpretations and	
	future drilling greas	
	nrovided this information	
	is not commercially	
	sensitive	
	Schollive.	

Appendix I

Aircore holes and intervals used for the material provided for metallurgical test work

					Interval	Interval		Down		
				Composite	From	То	Drill	Width	Dip	
Hole_ID	East	North	RL	ID	(m)	(m)	Method	(mm)	Direction	Azimuth
KM2263	495915	5877828	103.80	CP001	4	5	Aircore	76	0	-90
KM2263	495915	5877828	103.80	CP001	5	6	Aircore	76	0	-90
KM2264	496091	5877727	105.88	CP001	1	2	Aircore	76	0	-90
KM2266	496415	5877493	106.43	CP001	4	5	Aircore	76	0	-90
KM2266	496415	5877493	106.43	CP001	5	6	Aircore	76	0	-90
KM2267	496540	5877337	105.13	CP001	5	6	Aircore	76	0	-90
KM2268	496664	5877183	105.44	CP001	5	6	Aircore	76	0	-90
KM2269	496798	5877020	108.69	CP001	2	3	Aircore	76	0	-90
KM1728	498906	5886722	120.87	CP002	4	5	Aircore	76	0	-90
KM1729	498801	5886714	121.08	CP002	2	3	Aircore	76	0	-90
KM1730	498702	5886712	121.04	CP002	3	4	Aircore	76	0	-90
KM1731	498599	5886715	120.55	CP002	3	4	Aircore	76	0	-90
KM1732	498507	5886721	120.75	CP002	4	5	Aircore	76	0	-90
KM1733	498405	5886721	120.91	CP002	1	2	Aircore	76	0	-90
KM1738	498210	5886521	119.25	CP002	4	5	Aircore	76	0	-90
KM1739	498305	5886521	120.12	CP002	3	4	Aircore	76	0	-90
KM1742	498602	5886521	121.65	CP002	5	6	Aircore	76	0	-90
KM1743	498702	5886520	122.46	CP002	4	5	Aircore	76	0	-90
KM1743	498702	5886520	122.46	CP002	5	6	Aircore	76	0	-90
KM1745	498904	5886517	122.99	CP002	7	8	Aircore	76	0	-90
KM1198	493794	5885322	96.74	CP003	2	3	Aircore	76	0	-90
KM1198	493794	5885322	96.74	CP003	3	4	Aircore	76	0	-90
KM1198	493794	5885322	96.74	CP003	4	5	Aircore	76	0	-90
KM1198	493794	5885322	96.74	CP003	5	6	Aircore	76	0	-90
KM1199	493896	5885319	97.31	CP003	1	2	Aircore	76	0	-90
KM1200	493996	5885319	94.87	CP003	4	5	Aircore	76	0	-90
KM1202	493892	5885219	98.19	CP003	0	1	Aircore	76	0	-90
KM1204	493798	5885118	98.06	CP003	1	2	Aircore	76	0	-90
KM1204	493798	5885118	98.06	CP003	2	3	Aircore	76	0	-90
KM1205	493895	5885117	98.05	CP003	1	2	Aircore	76	0	-90
KM1205	493895	5885117	98.05	CP003	2	3	Aircore	76	0	-90
KM1209	493799	5885020	97.78	CP003	4	5	Aircore	76	0	-90
KM1672	494381	5882817	102.82	CP004	2	3	Aircore	76	0	-90
KM1672	494381	5882817	102.82	CP004	3	4	Aircore	76	0	-90
KM1674	494379	5883017	99.41	CP004	2	3	Aircore	76	0	-90
KM1690	494080	5883008	101.22	CP004	2	3	Aircore	76	0	-90
KM1691	494281	5883114	99.89	CP004	1	2	Aircore	76	0	-90
KM1691	494281	5883114	99.89	CP004	2	3	Aircore	76	0	-90
KM1693	494181	5883020	100.63	CP004	2	3	Aircore	76	0	-90
KM1694	494281	5882918	99.56	CP004	2	3	Aircore	76	0	-90
KM1695	494179	5882916	99.60	CP004	2	3	Aircore	76	0	-90
KM1695	494179	5882916	99.60	CP004	3	4	Aircore	76	0	-90
KM1696	494082	5882918	99.78	CP004	0	1	Aircore	76	0	-90

KM1866	497823	5884721	122.13	CP005	1	2	Aircore	76	0	-90
KM1867	497900	5884715	124.48	CP005	5	6	Aircore	76	0	-90
KM1868	498001	5884724	125.19	CP005	4	5	Aircore	76	0	-90
KM1869	498103	5884723	125.48	CP005	4	5	Aircore	76	0	-90
KM1870	498197	5884717	125.16	CP005	5	6	Aircore	76	0	-90
KM1870	498197	5884717	125.16	CP005	6	7	Aircore	76	0	-90
KM1871	498306	5884724	124.48	CP005	6	7	Aircore	76	0	-90
KM1872	498305	5884921	124.66	CP005	5	6	Aircore	76	0	-90
KM1873	498208	5884919	124.94	CP005	6	7	Aircore	76	0	-90
KM1418	495827	5883288	110.37	CP006	2	3	Aircore	76	0	-90
KM1418	495827	5883288	110.37	CP006	3	4	Aircore	76	0	-90
KM1419	495737	5883292	109.46	CP006	2	3	Aircore	76	0	-90
KM1423	495351	5883396	104.24	CP006	2	3	Aircore	76	0	-90
KM1427	495747	5883398	107.25	CP006	4	5	Aircore	76	0	-90
KM1430	495747	5883495	105.92	CP006	4	5	Aircore	76	0	-90
KM1430	495747	5883495	105.92	CP006	5	6	Aircore	76	0	-90
KM1445	495757	5883601	108.88	CP006	2	3	Aircore	76	0	-90
KM1446	495865	5883593	111.44	CP006	4	5	Aircore	76	0	-90
KM1446	495865	5883593	111.44	CP006	5	6	Aircore	76	0	-90
KM1247	494419	5879976	100.69	CP007	1	2	Aircore	76	0	-90
KM1248	494423	5879889	100.22	CP007	5	6	Aircore	76	0	-90
KM1252	494505	5879783	100.23	CP007	1	2	Aircore	76	0	-90
KM1260	494530	5879983	100.82	CP007	3	4	Aircore	76	0	-90
KM1261	494515	5879884	100.34	CP007	5	6	Aircore	76	0	-90
KM1262	494622	5879887	102.32	CP007	1	2	Aircore	76	0	-90
KM1263	494723	5879876	103.68	CP007	6	7	Aircore	76	0	-90
KM1263	494723	5879876	103.68	CP007	7	8	Aircore	76	0	-90
KM1268	494710	5879781	102.69	CP007	6	7	Aircore	76	0	-90
KM1334	495303	5878881	102.11	CP008	6	7	Aircore	76	0	-90
KM1335	495249	5879075	99.95	CP008	6	7	Aircore	76	0	-90
KM1337	495341	5879076	97.42	CP008	4	5	Aircore	76	0	-90
KM1337	495341	5879076	97.42	CP008	5	6	Aircore	76	0	-90
KM1337	495341	5879076	97.42	CP008	6	7	Aircore	76	0	-90
KM1341	495301	5879178	102.02	CP008	7	8	Aircore	76	0	-90
KM1341	495301	5879178	102.02	CP008	8	9	Aircore	76	0	-90
KM1343	495102	5878877	101.53	CP008	4	5	Aircore	76	0	-90
KM1346	495153	5879071	100.96	CP008	6	7	Aircore	76	0	-90
KM1346	495153	5879071	100.96	CP008	7	8	Aircore	76	0	-90
KM1591	495443	5884517	105.64	CP009	7	8	Aircore	76	0	-90
KM1594	495143	5884515	101.98	CP009	4	5	Aircore	76	0	-90
KM1595	495047	5884517	101.48	CP009	5	6	Aircore	76	0	-90
KM1595	495047	5884517	101.48	CP009	6	7	Aircore	76	0	-90
KM1597	495251	5884417	101.23	CP009	5	6	Aircore	76	0	-90
KM1598	495347	5884422	100.40	CP009	8	9	Aircore	76	0	-90
KM1598	495347	5884422	100.40	CP009	9	10	Aircore	76	0	-90
KM1598	495347	5884422	100.40	CP009	10	11	Aircore	76	0	-90
KM1598	495347	5884422	100.40	CP009	11	12	Aircore	76	0	-90
KM1600	495447	5884321	105.74	CP009	3	4	Aircore	76	0	-90
KM1600	495447	5884321	105.74	CP009	4	5	Aircore	76	0	-90
KM1601	495350	5884321	103.30	CP009	1	2	Aircore	76	0	-90

KM1602	495265	5884318	103.32	CP009	1	2	Aircore	76	0	-90
KM1608	496253	5882695	111.16	CP010	7	8	Aircore	76	0	-90
KM1608	496253	5882695	111.16	CP010	8	9	Aircore	76	0	-90
KM1609	496351	5882691	110.83	CP010	4	5	Aircore	76	0	-90
KM1609	496351	5882691	110.83	CP010	5	6	Aircore	76	0	-90
KM1610	496377	5882798	109.51	CP010	6	7	Aircore	76	0	-90
KM1610	496377	5882798	109.51	CP010	7	8	Aircore	76	0	-90
KM1610	496377	5882798	109.51	CP010	8	9	Aircore	76	0	-90
KM1611	496245	5882794	111.96	CP010	6	7	Aircore	76	0	-90
KM1611	496245	5882794	111.96	CP010	7	8	Aircore	76	0	-90
KM1611	496245	5882794	111.96	CP010	8	9	Aircore	76	0	-90
KM1622	496284	5882593	111.33	CP010	7	8	Aircore	76	0	-90
KM1623	496375	5882594	111.49	CP010	5	6	Aircore	76	0	-90
KM1623	496375	5882594	111.49	CP010	6	7	Aircore	76	0	-90
KM1623	496375	5882594	111.49	CP010	6	7	Aircore	76	0	-90
KM0234	495974	5880496	103.18	KM0234_3	3	4	Aircore	76	0	-90
KM0241	493286	5884677	94.95	KM0241_4	4	5	Aircore	76	0	-90
KM1573	495149	5885224	103.69	KM1573_6	6	7	Aircore	76	0	-90