

WIDE COPPER-GOLD INTERVALS IN HOLE 13 EXTENDS MT CANNINDAH TO SOUTH-WEST

Highlights: -

- UPPER BRECCIA ZONE 104m @ 1.0% CuEq*. Including highgrade 16m zone @ 2.32% CuEq
- SURFACE GOLD ZONE 0-24m @ 2.11 g/t Au
- LOWER BRECCIA ZONE 108m @ 1.01% CuEq
- DEEPER GOLD ZONE 15m @ 2.78 g/t Au (314m-329m)
- Mineralisation in the lower breccia has similarities with the upper zones of major porphyry systems found throughout the SW Pacific as discussed below
- Hole 13 has extended the existing resource area and also created a great deal of exploration upside for the Mt Cannindah project in the south-west.

Near surface, gold bearing gossanous hydrothermal infill breccia CAE hole # 13: 17m depth. Interval 17m-17.5m: 0.5m grading, 22.7 g/t Au,10.7 g/t Ag, 0.52% Cu.

Typical clast supported breccia dominated by sericite altered hornfels clasts, chalcopyrite -pyrite -calcite-quartz infill. CAE hole # 13, : 52m depth.

DATE: 30 September 2022

Fast Facts

Shares on Issue: 547,299,720

Market Cap (@\$0.21): \$114.93M

(As at 29/9/2022)

Board and Management

Tom Pickett - Executive Chairman

Dr Simon Beams - Non Executive Director

Geoff Missen - Non Executive Director

Michael Hansel - Non Executive Director

Garry Gill - Company Secretary

Company Highlights

- Exceptional exploration management
- Located within existing mining lease
- 100km from Gladstone Port
- Significant copper intercepts at flagship Mt Cannindah project over hundreds of metres
- New Gold discovery within current drill program at Mt Cannindah
- Expansion of current
 5.5MT resource is the focus of the current program
- Large Gold portfolio with Piccadilly project 100km west of Townsville with existing mining lease and EPMs with large target areas yet to be drilled
- No debt

^{*}Copper Equivalent calculation is based on metal prices using 30-day average prices in USD for Q4 2021. Further details are provided in the calculation table at page 23 of the text and in the JORC Table 1 at p53-54.

30 September 2022

ASX Code: CAE

EXECUTIVE CHAIRMAN COMMENTS

"Hole 13 set out to explore extensions of copper and gold mineralisation to the south-west at Mt Cannindah. It achieved everything we had hoped to achieve and more with hundreds of metres of high-grade copper intercepts along with an excellent 24m gold hit from surface. The veining and alteration seen in the lower sections of the Mt Cannindah breccia to the south-west point to similarities with large scale porphyry systems which we will be further investigating. The hole extends the mineralisation to the south-west improving the size of the project and opens up a larger exploration area. It's clear we have already outlined a significant area of excellent grade copper, gold and silver in the breccia zone. Now we can also seek to establish what vectors are present that point, either at depth or peripheral to the Mt Cannindah breccia, towards a major Cu-Au-Ag mineralised porphyry centre having potential for significantly more bulk tonnage."

Fig 1. Location of Mt Cannindah Project in Central Queensland.

30 September 2022

ASX Code: CAE

TECHNICAL DETAILS & RESULTS OF CAE HOLE 13 AT MT CANNINDAH

Cannindah Resources Limited ("Cannindah", "CAE") is pleased to announce the next set of completed assay results from the drilling program currently underway at Mt Cannindah, copper gold silver project south of Gladstone near Monto in central Queensland (Figs 1 to 3) pertaining to hole 22CAEDD013 (final depth 672.5m).

CAE hole # 13 drilled to the south-west (magnetic azimuth 211 degrees). It was planned to determine whether continuity existed between the mineralised breccia drilled at the top of CAE hole # 8 and some patchy mineralised intersections located to the south, in scattered, wide spaced historic exploration holes drilling from west to east. CAE's drilling is designed to obtain better data on copper, gold and silver grades, while testing the general geometry and extent of geological units such as breccias and mineralised structures. If CAE was able to link known mineralisation with new intercepts from CAE hole 13, the new knowledge gained would create a great opportunity to expand the Mt Cannindah resource and understand the geological units to the south and south-west.

CAE holes in the southern zone of the Mt Cannindah breccia (CAE # 7, 8) were drilled from east to west (magnetic azimuth bearing 261 degrees) and returned thick intersections of high-grade copper-gold silver (Fig 4), reported in previous CAE ASX announcements

CAE hole 7: ASX announcement dated 21/2/2022:

- 75m of copper across two separate zones.
- 20m @ 1.19% Cu, 0.55g/t Au, 46g/t Ag from 95m to 115m, converts to 20m @ 1.89% Cu Eq.
- A lower zone of hydrothermal infill breccia in hole 7: 55m @ 0.77% Cu, 0.21g/t Au ,8.7g/t Ag from 192m to 247m, converts to 55m @ 0.97 % Cu Eq.
- Discovery, well below copper breccia of high-grade gold zone in hole 7 manifested by steep dipping semi-massive sulphide & quartz vein filled structure from 449m-452m in an overall 30m zone of elevated gold from 424m.
- Average of samples from 449m to 452m is 3m @ 28.67 g/t Au
- Most prominent sulphidic 1m section in hole 7, 450m to 451m returned 1m @ 81.6 g/t Au, 109.2 g/t Ag, 30.5% S.

CAE hole 8: ASX announcement dated 21/2/2022:

- Total mineralised intercept of infill breccia from hole 8 from surface is aggregated below, along with the various mineralised zones:
- 278m @ 0.87% Cu, 0.43 g/t Au, 16 g/t Ag (0m to 278m), this converts to 278m @ 1.26%
 Copper Equivalent (Cu Eq).
- Oxidised Breccia: 17m @ 0.23 % Cu, 1.09 g/t Au, 12.8 g/t Ag (0m to 17m) this converts to 17m @ 1.00 % Cu Eq
- Supergene zone: 2m @ 3.75% Cu, 1.4 g/t u, 19.7 g/t Ag (17m to 19m), this converts to 2m
 @ 4.78 % Cu Eq

30 September 2022

ASX Code: CAE

- Near surface gold zone, primary hydrothermal breccia: 4m @ 0.3 % Cu, 1.53 g/t Au, 11.5 g/t
 Ag (28m to 32m), this converts to 4m @ 1.33 % Cu Eq
- Upper, high-grade chalcopyrite rich infill hydrothermal breccia: 43m @ 1.33 % Cu, 0.67 g/t
 Au, 29.8 g/t Ag (41m to 84m), this converts to 43m @ 1.98 % Cu Eq
- Thin quartz sulphide vein in clast supported breccia: 1m @ 8.18 g/t Au (478m-479m).

CAE holes # 7 & 8 have drilled down the long axis and demonstrably across the layering of the Mt Cannindah breccia body (refer CAE ASX Announcement: 21 February 2022).

The overall geological interpretation built up from CAE holes 7 & 8 and historical drilling is of a steeply west dipping, roughly north south oriented, tabular body of breccia, bounded on the east by hornfels and on the west by diorite and wedges of hornfels. After drilling holes 7 & 8, interpretation of the southern section of the breccia deposit, at around 300m RL, an apparent transition was noted from chalcopyrite rich hydrothermal infill breccia to a pyritic clast supported breccia with variable, but often lower amounts of chalcopyrite. The boundary between the hydrothermal infill breccia and the clast supported breccia appears deeper in the northern section of the breccia deposit, suggesting a northerly plunge for this contact. Bleached, altered, diorite porphyries and post mineral andesite dykes cut the clast supported breccia.

Geological observations from oriented drill core from CAE holes, indicate that there is often a general gentle easterly dip to the slabs/clasts within the hydrothermal breccia. This essentially means that, far from drilling down dip, the CAE holes drilling from the east have in fact been often drilling at right angles to the structural grain of the breccia. Structural information was also obtained from the gold bearing, sulphidic structure intersected at 450m in hole #7. This steep structure strikes at 140 degrees magnetic and is likely to cut the pathway of hole # 13.

CAE hole # 13 is collared very close (within 1m or so) of CAE hole #8. The azimuth of CAE #13 is 211 degrees magnetic, i.e., making a difference in drill direction between the trace of hole # 7 & 8 and hole # 13 of 50 degrees (magnetic). The traces of the CAE holes are projected in plan view in Fig 4.

The summary geology for CAE hole 22CAEDD013 is as follows:

- 0m-15.5m: oxidised gossanous infill hydrothermal breccia. dominated by hornfels clasts cut by weathered andesite dyke.
- 15.5m –142.31 Infill hydrothermal breccia, dominantly hornfels clasts with pyrite-chalcopyrite-quartz calcite infill.
- 142.31m -144.1m: Fault breccia and rock crush.
- 144.1m-219.2: Predominantly biotite hornfels, variably fractured and sericite altered. Little evidence of sulphide. Cut by minor post mineral andesite dykes.
- 219.2m-320.3m: Clast supported breccia dominated by clasts of hornfels, altered porphyritic diorite. Infill quartz-calcite, rock flour, minor chlorite, minor pyrite-+/chalcopyrite.

30 September 2022

ASX Code: CAE

- 320.3m-328.88m: Strongly sericite altered fault/shear zone with some quartz-sulphide vein infill and semi-massive sulphide.
- 328.88m-432.67m: Polymict clast supported breccia dominated by close packed sericite altered porphyritic diorite, flinty hornfels. infill of quartz-calcite-K feldsparpyrite and minor chalcopyrite. Some andesite dykes and rock crush fault zones.
- 432.67m-609.2m: Polymict clast supported breccia dominated by close packed sericite altered porphyritic diorite, flinty hornfels. infill of quartz-calcite-K feldspar, strongly pyritic, little to no chalcopyrite. Some andesite dykes.
- 609.2m-623.1m: Mainly post-mineral porphyritic andesite dykes with slivers of sericite altered clast supported breccia.
- 623.1m-630m: Strongly sericite altered fault zone.
- 630m-667.1m: Sericite altered bleached clast supported breccia. Some porphyry style stockwork veining. Minor pyrite.
- 667.1m -672.5m EOH: Sericite altered bleached dacite/diorite porphyry, probable dyke.

Drilling of CAE hole #13 tested the geological interpretations developed for the south of the Mt Cannindah Breccia after the drilling of CAE holes 7 & 8. The results of CAE hole # 13 successfully delivered the outcomes originally proposed for the hole:

- Intercept of a high-grade oxidised gold zone from surface within gossanous hydrothermal infill breccia (0m to 24m @ 2.11 g/t Au, 10.9 g/t Ag, 0.52 % Cu).
- Drilled two thick zones (approx. 100m downhole widths of 1% CuEq) within the primary zone of infill hydrothermal breccia.
 - (1) 36m to 140m: 104m @ 1.0% CuEq, (0.63% Cu, 0.41g/t Au, 14.1g/t Ag).
 - (2) 229m to 337m: 108m @ 1.01% CuEq, (0.57% Cu, 0.58g/t Au, 9.8g/t Ag.
 - When lower grade sections are included , mineralised copper-gold breccia zones in hole # 13 aggregate to (1) an upper infill breccia zone (0m-170m) of 170m @ 0.92 % CuEq (0.48%Cu, 0.58 g/t Au,10.9 g/t Ag,3.17% S) and (2) a lower infill breccia zone (214m-440m) of 226m @ 0.55 % CuEq (0.30%Cu, 0.33 g/t Au,6 g/t Ag,3.11% S).
 - The large thicknesses of mineralized breccia intersected in CAE hole #13 confirm the
 potential of the Mt Cannindah breccia as CAE extends drilling to the south-west and
 south.
 - A high-grade gold zone was intersected at around 320m, manifested by strong quartz sericite alteration and semi-massive sulphide infill.
 - The overall deeper gold zone aggregates to 15m @ 2.78 g/t Au (314m to 329m) which includes 4m @ 6.50 g/t Au (320m-324m).
 - Within the broader intersection, 3 x 1m intervals are present greater than 5 g/t Au.

30 September 2022

- A prominent semi-massive sulphide infill zone, containing high-grade gold occurs at 322m to 323m: 1m @ 22.98 g/t Au, 60.0 g/t Ag. with high Pb, elevated Bi.
- This gold structure dips north-east and has similar geochemical and mineralogical characteristics to the highly sulphidic, bonanza gold structure intersected at 450m in CAE hole # 7.
- The intersection at 322m in CAE hole # 13 adds to the list of high-grade gold structures drilled at depth on the western side of Mt Cannindah (see Fig 5). The likely possibility that the high-grade Au structures in CAE holes # 7 and 13 may be able to be joined up creates some exciting exploration ahead. More drilling and probable geophysics will be required to test this interpretation.
- There is a wide zone of polymict clast supported breccia, below the copper-gold bearing hydrothermal infill breccia, extending to the bottom of the hole from 440m to 672.5m. This sericite-carbonate altered breccia is dominated by subangular clasts of altered diorite, porphyry and hornfels, often with abundant quartz calcite infill. Strongly pyritic sections are present. The high-level nature of this breccia is indicated by the perfect crystal development of the infill suggesting open spaced growth in voids in the breccia.
- Blocks of quartz pyrite stock worked veined altered hornfels and porphyritic diorite are
 relatively common in the lower breccia zones in CAE hole # 13, particularly as it pushes
 on deeper in a south-west direction. The multidirectional, multi-generational veining
 and quartz sericite pyrite (phyllic) alteration are all typical of a high-level porphyry style
 mineralisation environment. The implication is that these blocks have been carried up
 from a mineralised porphyry occurring at depth, possibly to the south or south-west.
- The stockwork veining of pyrite with phyllic alteration selvedges described above, bear similarities with the upper zones of major porphyry systems found throughout the SW Pacific. CAE plan to engage international porphyry experts to review the Mt Cannindah project data to establish what vectors are present that point, either at depth or peripheral to the Mt Cannindah breccia, towards a major Cu-Au-Ag mineralised porphyry centre having potential for bulk tonnage.
- Copper gold mineralisation occur in the polymict breccia, in minor amounts scattered through the lower intervals of hole # 13 as vein and matrix infill.
- Veins of molybdenite are also relatively common throughout the lower sections.
- In short, the thick copper gold intercepts in the infill breccia zones of CAE hole # 13 have provided great encouragement that the Mt Cannindah copper -gold -silver breccia system is open to the south.

30 September 2022

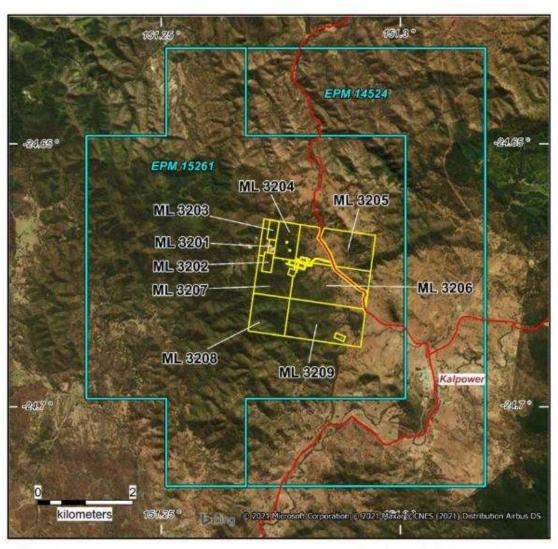
ASX Code: CAE

- The implication of the wide zone of sericite altered polymict breccia below the infill breccia is that the Mt Cannindah mineralised system continues to the south-west laterally and beyond the depth of hole # 13.
- The common molybdenite veining in the polymict breccia point to the higher temperature core of the intrusive system potentially being developed to the southwest.
- As there has been very little exploration in the south-west direction, and almost no previous drilling, CAE hole # 13 has not only likely extended the existing resource but also created a great deal of exploration upside for the Mt Cannindah project.

Figs 4 to 6 are plan views showing CAE hole # 13 in relation to the 2021 and 2022 CAE holes in the Mt Cannindah breccia area plotted respectively with Cu, Au, Ag assays. Cross section plots of hole # 13 assay results to date are presented in Fig 7 to Fig 9 respectively as downhole Cu, Au, Ag assays.

The location of CAE holes in plan & section view in relation to historic holes is presented in Appendix 2 App 2.1 showing a location plan of the cross section of CAE hole 13 plotted with historical drilling: App 2 Figs 1 to 3 show plan views of CAE and historic drillholes with downhole assays respectively of Cu, Au, and Ag...

A photo record of general geological features, breccia and mineralization styles and porphyry affinities occurring in CAE hole # 13 is presented in Figs 10 to 23.


Table 1 lists the assay highlights from drillhole 22CAEDD013, Appendix 1 lists Cu, Au, Ag assays and visual estimates of chalcopyrite, pyrite for CAE hole # 13.

.

30 September 2022

ASX Code: CAE

Tenure

EPM 14524 EPM 15261
• 9 sub-blocks
• ~ 28 sq km • ~ 43.5 sq km

MLs 3201-3209 (contiguous)
• ~ 5.7 sq km

Total of 71.5 sq km of Exploration Permits & 5.7 sq km of Mining Leases

OWNERSHIP
The Mt Cannindah Project is 100%
owned by Cannindah Resources Limited

Mt Cannindah Projects

Mt Cannindah Mining Pty Ltd wholly owned subsidiary of

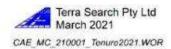


Fig 2. Mt Cannindah Project Tenure

30 September 2022

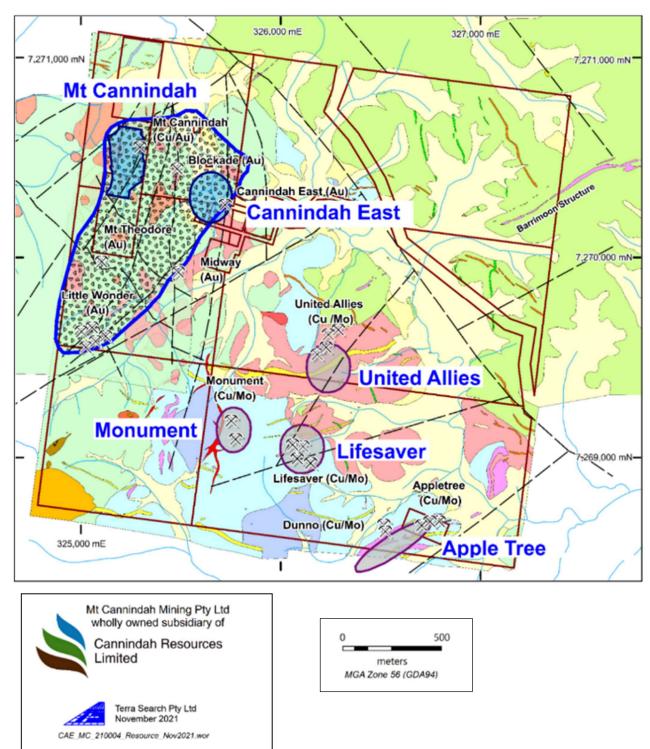


Fig 3. Mt Cannindah project Location of prospect areas and mineralised targets.

30 September 2022

Table 1. Assay Highlights from Drillhole 22CAEDD013

Down Hole Mineralized Zones Hole 22CAEDD013	From	То	m	CuEq %	Cu %	Au g/t	Ag g/t	S %
Upper Aggregate Interval	0	170	170	0.92	0.48	0.58	10.9	3.17
Oxide zone from surface :gossanous infill breccia,Transition to sulphide in lower few metres	0	24	24	1.89	0.52	2.11	10.9	0.67
Oxide/Transition includes following zones :								
Near Surface High-grade oxide gold	6.5	9	2.5	2.95	0.12	4.30	23.0	0.29
Includes 0.5m @ 10.8g/t Au :	7.5	8.5	1	4.88	0.11	7.62	17.9	0.17
High-grade oxide/transition	14.5	17.5	3	4.38	0.81	5.70	13.1	0.78
Includes higher grade interval:	17	17.5	0.5	14.41	0.52	22.69	10.7	1.88
High-grade lower transition	20.5	23.5	3	3.9	0.51	5.32	20.2	2.21
Includes higher grade interval:	21.5	22.5	1	6.25	0.20	9.80	9.0	2.19
Upper Primary Hydrothermal breccia, hornfels dominant, infill chalcopyrite-pyrite-calcite-quartz.	24	170	146	0.75	0.47	0.33	10.9	3.58
Includes Following Primary zones								
Higher copper section	36	140	104	1.0	0.63	0.41	14.1	4.56
Includes higher Cu breccia Zone 1	62	78	16	2.32	1.37	1.13	33.5	5.28
Includes higher Cu breccia Zone 2	126	139	13	1.48	1.20	0.24	17.4	4.61
Lower Primary Hydrothermal breccia, total aggregate of mineralized zone	214	440	226	0.55	0.30	0.33	6.0	3.11
Lower Primary Hydrothermal breccia, hornfels dominant, infill chalcopyrite-pyrite-calcite-quartz. Subset to reflect best copper zone.	224	288	64	1.08	0.82	0.29	11.1	6.38
Lower Hydrothermal breccia, Subset to reflect best gold zone.	224	333	109	1.0	0.57	0.58	9.7	4.84
Include aggregate of several high- grade gold zonesl	314	329	15	2.0	0.22	2.77	12.2	2.02
Includes upper narrow high-grade gold zone	314	315	1	3.80	0.36	5.47	14.0	3.54
Includes high-grade gold zone	320	324	4	4.42	0.25	6.50	26.2	3.39
Includes upper high-grade gold zone in semi-massive structure infill	322	323	1	14.67	0.22	22.98	60.0	7.62
Includes lower narrow high-grade gold zone	328	329	1	6.12	0.34	9.25	19.9	1.29

30 September 2022

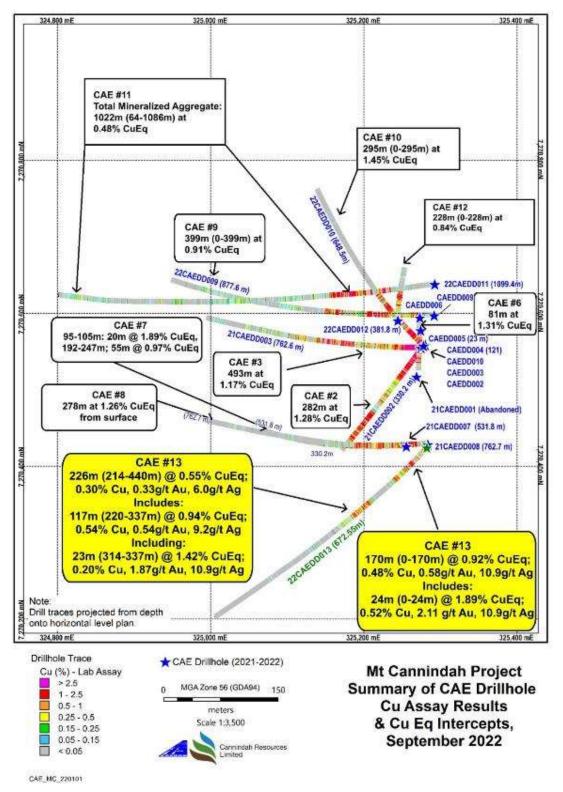


Fig 4. CAE Hole # 13 in relation to 2021-2022 CAE Drillholes at Mt Cannindah. Downhole lab Cu plotted, CuEq intercepts annotated. Assays reported for CAE hole # 13 from 0m to 672.5m.

30 September 2022

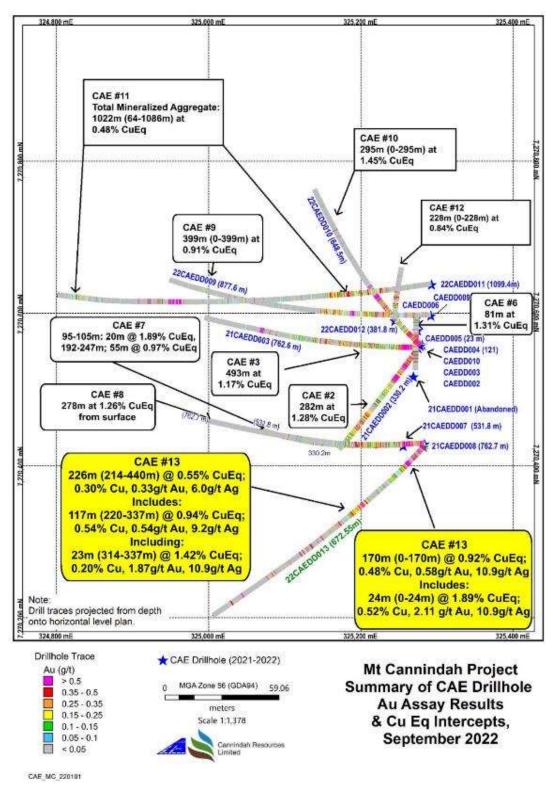


Fig 5. CAE Hole # 13 in relation to 2021-2022 CAE Drillholes at Mt Cannindah. Downhole lab Au plotted, CuEq intercepts annotated. Assays reported for CAE hole # 13 from 0m to 672.5m.

30 September 2022

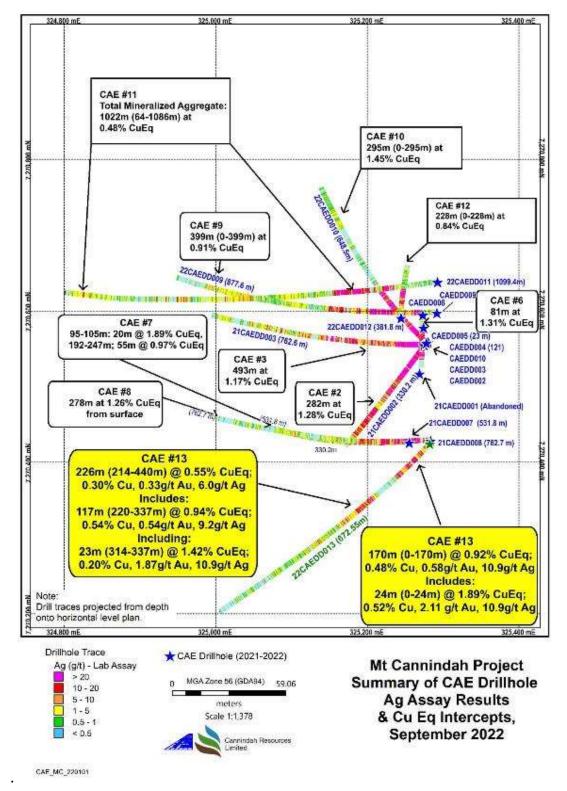


Fig 6. CAE Hole # 13 in relation to 2021-2022 CAE Drillholes at Mt Cannindah. Downhole lab Ag plotted , CuEq intercepts annotated. Assays reported for CAE hole # 13 from 0m to 672.5m.

30 September 2022

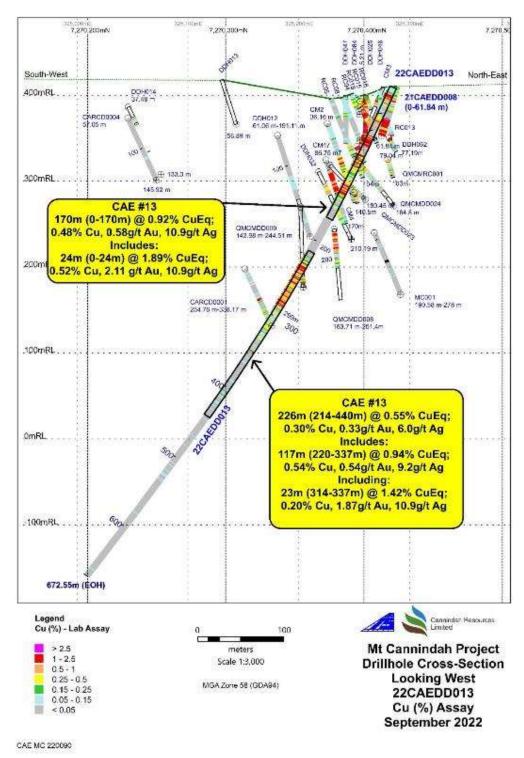


Fig 7. Mt Cannindah mine area NE-SW cross section CAE hole 13 looking north west , with Cu lab assay results plotted down hole, significant intersections annotated. Assays reported for CAE hole # 13 from 0m to 672.5m. Azimuth CAE hole # 13 at collar: 211 magnetic.

30 September 2022

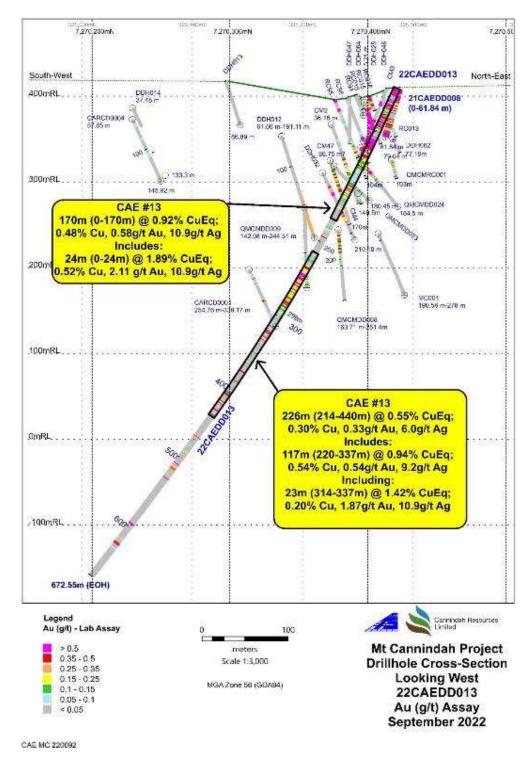


Fig 8. Mt Cannindah mine area NE-SW cross section CAE hole 13 looking north west , with Au lab assay results plotted down hole, significant intersections annotated. Assays reported for CAE hole # 13 from 0m to 672.5m. Azimuth CAE hole # 13 at collar: 211 magnetic.

30 September 2022

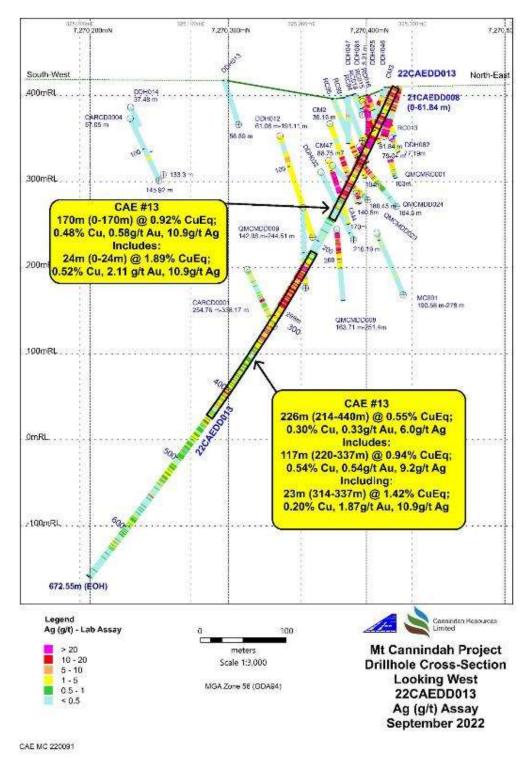


Fig 9. Mt Cannindah mine area NE-SW cross section CAE hole 13 looking north west, with Ag lab assay results plotted down hole, significant intersections annotated. Assays reported for CAE hole # 13 from 0m to 672.5m. Azimuth CAE hole # 13 at collar: 211 magnetic.

30 September 2022

ASX Code: CAE

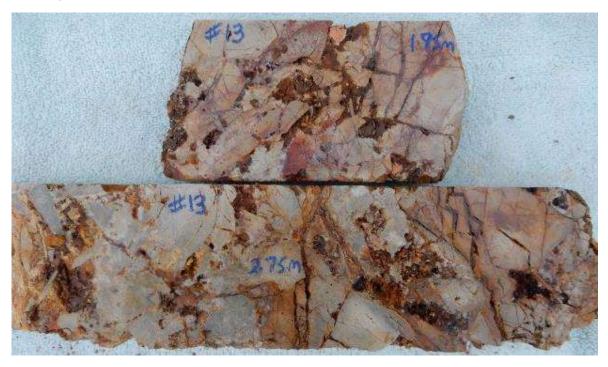


Fig 10. HQ Half Core photos hole 22CAEDD0013, Near surface gold bearing oxide material . Gossanous hydrothermal infill breccia dominated by hornfels clasts: 1.95m, 2.75m. Interval 1.5m-3m: 1.5m grading, 2.0 g/t Au,8.1 g/t Ag, 0.05% Cu

Fig 11. HQ Half Core photos hole 22CAEDD0013, Near surface gold bearing, partially oxide material. Gossanous hydrothermal infill breccia dominated by hornfels clasts, infill quartz ,oxidised sulphide @ 17m depth. Interval 17m-17.5m: 0.5m grading, 22.7 g/t Au, 10.7 g/t Ag, 0.52% Cu, 1.88% S.

Fig 12. HQ Half Core photos hole 22CAEDD0013, Near surface gold bearing sulphidic material. Hydrothermal infill breccia dominated by hornfels & porphyry clasts, infill quartz ,carbonate ,pyrite,chalcopyrite @ 22m depth. Interval 21.5m-22.5m: 1m grading, 9.8 g/t Au,9 g/t Ag, 0.20% Cu, 2.19% S.

30 September 2022

Fig 13. HQ Full Core photo hole 22CAEDD0013, 71.5m, Chalcopyrite – pyrite-quartz – calcite infill between angular clasts of sericite altered hornfels. Interval 71m-72m grading 2.02% Cu, 2.06 g/t Au,44.7 g/t Ag.7.21% S

Fig 14. HQ Full Core oriented in Core Orienting Frame, hole drilling south-west (hole bearing 214 degrees mag) inclined at 64 degrees, view looking north west. Hole 22CAEDD013 at 57.75m: slab like hornfels clasts generally aligned in layers, measured dip of layering of clasts is -40 degrees towards 070 (east north east).

30 September 2022

ASX Code: CAE

Fig 15. HQ Full Core oriented in Core
Orienting Frame, hole drilling south-west
(hole bearing 218 degrees mag) inclined at
63 degrees, view looking south-east. Hole
22CAEDD013 at 130.25m: slab like hornfels
clasts generally aligned in layers, dipping
east. chalcopyrite -pyrite-calcite-quartz
infill. Interval 130m-131m grading 2.24%
Cu, 0.56 g/t Au,30 g/t Ag, 9.2% S.

Fig 16. HQ Full Core photos hole 22CAEDD0013, 233.5m,237.4m, Chalcopyrite – pyrite-quartz – calcite infill between angular clasts of sericite altered hornfels. Interval (top) 233m-234m grading 1.77% Cu, 0.43 g/t Au,25 g/t Ag,7.95% S; (bottom) 237m-238m grading 1.88% Cu, 0.23 g/t Au,21.8 g/t Ag,.5.49% S.

30 September 2022

Fig 17. HQ Full Core photos hole 22CAEDD0013, 273.5m, 291m, Chalcopyrite – pyrite-quartz – calcite infill between angular clasts of sericite altered hornfels. Interval 273m-274m 1m grading 1.12% Cu, 0.19 g/t Au,16.8g/t Ag.,5.78% S; 291m-292m 1m grading 0.69% Cu, 0.14 g/t Au,7.9 g/t Ag,4.48% S.

Fig 18 HQ Full Core photos hole 22CAEDD0013, 212.2m, Structural preparation evident with multi-directional & multi-generational quartz pyrite vein stockwork with alteration selvedges cutting & bleaching biotite hornfels.

Fig 19HQ Full Core photos hole 22CAEDD0013, 276.1m, Clast of quartz pyrite stockworked veined altered hornfels (RHS) occurring within infill hydrothermal breccia. Evidence of porphyry mineralisation at depth.

30 September 2022

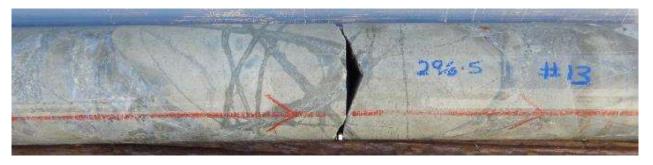


Fig 20 HQ Full Core photos hole 22CAEDD0013, 296.5m, Clast of quartz pyrite stockworked veined altered hornfels occurring within infill hydrothermal breccia. Evidence of porphyry style mineralisation at depth.

Fig 21. HQ Full Core oriented in Core Orienting Frame, hole drilling south-west (hole bearing 219 degrees mag) inclined at 61 degrees, view looking south-east. Hole 22CAEDD013 at 322.6m: brecciated high-grade gold bearing massive sulphide infill within strongly sericite-silica altered and veined fault zone. Measured dip of sulphide vein - 45 degrees towards 030 (north north-east). Interval 322m-323m 1m grading 0.22% Cu, 22.98 g/t Au,60 g/t Ag, 7.62% S, 0.54% Pb, 94 ppm Bi.

30 September 2022

ASX Code: CAE

Fig 22 HQ Full Core photos hole 22CAEDD0013, 496.05m ,514.9m. Quartz - Molybdenite as veins & fracture coatings within clasts of carbonate (+/- K feldspar? altered diorite & porphyry in clast supported breccia. Prominent matrix infill of quartz, and coarse calcite. Evidence of a higher temperature core of intrusive mineral system (porphyry style?) as hole drills to south-west. Intervals **496m-497m 1m grading 138 ppm Mo. 514m-515m 1m grading 117 ppm Mo.**

Fig 23 HQ Full Core photos hole 22CAEDD0013, 526.7m, Close up of infill between clasts of strongly altered diorite & porphyry.

Perfectly formed hexagonal quartz, cubic pyrite, white calcite.

30 September 2022

ASX Code: CAE

COMPETENT PERSON STATEMENT

The information in this report that relates to exploration results is based on information compiled by Dr. Simon D. Beams, a full-time employee of Terra Search Pty Ltd, geological consultants employed by Cannindah Resources Limited to carry out geological evaluation of the mineralisation potential of their Mt Cannindah Project, Queensland, Australia. Dr Beams is also a non-Executive Director of Cannindah Resources Limited. Dr. Beams has BSc Honours and PhD degrees in geology; he is a Member of the Australasian Institute of Mining and Metallurgy (Member #107121) and a Member of the Australian Institute of Geoscientists (Member # 2689). Dr. Beams has sufficient relevant experience in respect to the style of mineralization, the type of deposit under consideration and the activity being undertaken to qualify as a Competent Person within the definition of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("JORC Code).

Dr. Beams consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

Disclosure:

Dr Beams' employer Terra Search Pty Ltd and Dr Beams personally hold ordinary shares in Cannindah Resources Limited.

For further information, please contact:

Tom Pickett Executive Chairman Ph: 61 7 55578791

30 September 2022

ASX Code: CAE

Appendix 1 Table 1 Cu, Au, Ag, S assays, chalcopyrite, pyrite visual estimates CAE hole 13

Appendix 2 Plan views recent drill results, Mt Cannindah.

Appendix 3 JORC Table 1,

Appendix 4 - JORC Table 2

Formula for Copper Equivalent calculations

Copper equivalent has been used to report the wider copper bearing intercepts that carry Au and Ag credits, with copper being dominant. eg have confidence that existing metallurgical processes would recover copper, gold and silver from Mt Cannindah. We have confidence that the Mt Cannindah ores are amenable to metallurgical treatments that result in equal recoveries. This confidence is reinforced by some preliminary metallurgical test work by previous holders, geological observations and our geochemical work which established a high correlation between Cu, Au, Ag.

The full equation for Copper Equivalent is:

CuEq/% = (Cu/% * 92.50 * Cu Recovery + Au/ppm * 56.26 * Au Recovery + Ag/ppm * 0.74 * Ag Recovery)/ (92.5* Cu Recovery)

When recoveries are equal this reduces to the simplified version: CuEq/% = (Cu/% * 92.50 + Au/ppm * 56.26 + Ag/ppm * 0.74)/ 92.5

We have applied a 30 day average prices in USD for Q4,2021, for Cu, Au, Ag , specifically copper @ USD\$9250/tonne, gold @ USD\$1750/oz and silver @ USD\$23/oz. This equates to USD\$92.50 per 1 wt %Cu in ore, USD\$56.26 per 1 ppm gold in ore, USD\$0.74 per 1 ppm silver in ore. We have conservatively used equal recoveries of 80% for copper, 80% for gold, 80% for Ag and applied to the CuEq calculation. CAE are planning Metallurgical test work to quantify these recoveries.

Appendix 1 Table 1 Cu, Au, Ag, S assays and chalcopyrite/pyrite visual estimates 22CAEDD013. All assays are reported. or those intervals containing mineralisation. Lesser mineralised sections are grouped and summarized along geological unit lines.

Decodes: HBX = Hydrothermal Infill Breccia (Infill of quartz-calcite-pyrite-chalcopyrite); Clast supported, quartz-K feldspar-calcite infill breccia = CLBXQCK; Pyritic clast supported breccia = PYCLBX.

Breccia Clast codes: (DRT = Diorite; HFL=Hornfels, PHY = bleached diorite porphyry)

Appendix 2 Plans & Sections of CAE and Historical Drilling Mt Cannindah

30 September 2022

22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD013	0	0.5	0.127	0.47	2.2	0.03	5 PYOX		Oxidised HBX
DD013	0.5	1	0.08	0.61	2.6	0.02	5 PYOX		Oxidised HBX
DD013	1	1.5	0.07	0.79	3.8	0.02	5 PYOX		Oxidised HBX
DD013	1.5	2	0.05	2.01	8.2	0.08	5 PYOX		Oxidised HBX
DD013	2	2.5	0.05	1.13	11.5	0.11	5 PYOX		Oxidised HBX
DD013	2.5	3	0.09	0.96	23.8	0.39	5 PYOX		Oxidised HBX
DD013	3	3.5	0.11	0.36	11.1	0.12	5 PYOX		Oxidised HBX
DD013	3.5	4	0.12	0.71	8.1	0.14	5 PYOX		Oxidised HBX
DD013	4	4.5	0.09	0.40	5.5	0.11	5 PYOX		Oxidised HBX
DD013	4.5	5	0.07	0.51	3.6	0.06	5 PYOX		Oxidised HBX
DD013	5	5.5	0.09	0.31	6.1	0.05	5 PYOX		Oxidised HBX
DD013	5.5	6	0.10	1.06	4.8	0.07	5 PYOX		Oxidised HBX
DD013	6	6.5	0.10	0.49	4.4	0.04	5 PYOX		Oxidised HBX
DD013	6.5	7	0.16	2.76	26.1	0.07	5 PYOX		Oxidised HBX
DD013	7	7.5	0.16	2.16	25.1	0.09	5 PYOX		Oxidised HBX
DD013	7.5	8	0.15	10.81	18.1	0.03	5 PYOX		Oxidised HBX
DD013	8	8.5	0.07	4.42	17.7	0.31	3 PYOX		Oxidised HBX
DD013	8.5	9	0.08	1.57	28.1	0.94	3 PYOX		Oxidised HBX
DD013	9	9.5	0.94	0.51	9.5	0.18			Oxidised post mineral andesite dyke
DD013	9.5	10	1.67	0.05	8.4	0.02			Oxidised hydrothermal infill breccia
DD013	10	10.5	1.57	0.02	19.1	0.01			Oxidised post mineral andesite dyke
DD013	10.5	11	1.04	0.02	12.2	0.01			Oxidised post mineral andesite dyke

30 September 2022

22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD013	11	11.5	1.06	0.01	10.2	0.01			Oxidised post mineral andesite dyke
DD013	11.5	12	1.82	0.00	6.2	0.01			Oxidised post mineral andesite dyke
DD013	12	12.5	1.56	0.01	4.3	0.01			Oxidised malachite stained andesite dyke
DD013	12.5	13	1.32	0.01	2.8	0.01			Oxidised malachite stained andesite dyke
DD013	13	13.5	0.39	0.00	0.8	0.01			Oxidised malachite stained andesite dyke
DD013	13.5	14	0.99	0.01	1.7	0.01			Oxidised malachite stained andesite dyke
DD013	14	14.5	1.25	0.00	2.5	0.01			Oxidised fractured andesite dyke
DD013	14.5	15	1.55	8.85	37.1	0.02			Oxidised HBX (HFL)
DD013	15	15.5	0.68	1.87	17.1	0.15	1		Oxidised HBX (HFL)
DD013	15.5	16	0.69	0.10	6.1	1.24	1		Oxidised HBX (HFL)
DD013	16	16.5	0.68	0.01	1.1	0.62	1		Oxidised HBX (HFL)
DD013	16.5	17	0.72	0.69	6.5	0.76	1		Oxidised HBX (HFL)
DD013	17	17.5	0.52	22.70	10.7	1.88	1	2	Oxidised HBX (HFL) supergene
DD013	17.5	18	0.54	0.93	9.1	1.66	1	2	Oxidised HBX (HFL) supergene
DD013	18	18.5	0.06	0.02	1.1	1.52	1		Hydrothermal infill breccia, HFL clasts
DD013	18.5	19	0.06	0.04	0.8	0.59	1		Hydrothermal infill breccia, HFL clasts
DD013	19	19.5	0.02	0.00	0.00	0.38	1		Oxidised HBX (HFL) supergene chalcocite
DD013	19.5	20	0.32	0.16	5.6	3.58	5		Oxidised HBX (HFL) supergene chalcocite
DD013	20	20.5	0.73	1.52	17.8	2.32	2	2	Oxidised HBX (HFL) supergene chalcocite
DD013	20.5	21	1.90	3.61	66.2	4.66	5	3	Oxidised HBX (HFL) supergene chalcocite
DD013	21	21.5	0.22	0.95	6.8	1.32	1	2	Oxidised HBX (HFL) minor chalcocite
DD013	21.5	22	0.29	15.40	13.3	2.34	1	2	Oxidised HBX (HFL) minor chalcocite
DD013	22	22.5	0.11	4.22	4.7	2.05	1	0.5	Oxidised HBX (HFL) minor chalcocite
DD013	22.5	23	0.13	4.56	7.2	1.30	1	0.5	Oxidised HBX (HFL) minor chalcocite
DD013	23	23.5	0.41	3.15	22.9	1.63	1	0.5	Oxidised HBX (HFL) minor chalcocite

30 September 2022

22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD013	23.5	24	0.06	0.39	2.2	1.14	1	0.1	Oxidised HBX (HFL) tr chalcocite
DD013	24	25	0.04	0.17	1.8	1.12	1	0.2	Oxidised HBX (HFL) tr chalcocite
DD013	25	26	0.13	0.48	3.3	1.41	1	0.3	Oxidised HBX (HFL) tr chalcocite
DD013	26	27	0.03	0.11	1.4	1.14	1	0.1	HBX (HFL)
DD013	27	28	0.03	0.06	1.2	1.47	1	0.1	HBX (HFL)
DD013	28	29	0.02	0.04	0.8	1.81	1	0.1	HBX (HFL ,DRT), tr sph
DD013	29	30	0.03	0.08	2.5	1.17	1	0.1	HBX (HFL ,DRT), tr sph
DD013	30	31	0.09	0.14	4.7	1.91	1	0.2	HBX (HFL ,DRT), tr sph
DD013	31	32	0.02	0.32	2.8	1.19	1	0.1	HBX (HFL ,DRT), tr sph
DD013	32	33	0.04	0.27	2.1	1.20	1	0.1	HBX (HFL ,DRT), tr sph
DD013	33	34	0.04	0.26	6.1	2.80	2	0.1	HBX (HFL ,DRT), tr sph
DD013	34	35	0.04	0.13	4.5	1.23	1	0.1	HBX (HFL ,DRT), tr sph
DD013	35	36	0.06	0.34	4.3	1.27	0.5	0.3	HBX (HFL ,DRT)
DD013	36	37	0.65	1.80	20.5	5.03	5	1	HBX (HFL ,DRT), tr sph
DD013	37	38	0.36	0.37	18.1	2.68	2	1	HBX (HFL ,DRT), tr sph
DD013	38	39	0.44	0.63	18.2	3.83	2	1	HBX (HFL ,DRT), tr sph
DD013	39	40	0.09	0.25	7.6	5.21	8	0.3	HBX (HFL ,DRT), tr sph
DD013	40	41	0.32	0.88	10.6	6.14	8	1	HBX (HFL ,DRT), tr sph
DD013	41	42	0.04	0.23	4.6	6.08	8	0.1	HBX (HFL ,DRT), tr sph
DD013	42	43	0.33	0.83	6.2	4.54	8	1	HBX (HFL ,DRT), tr sph
DD013	43	44	1.24	3.12	48	10.67	10	3	HBX (HFL ,DRT), tr sph
DD013	44	45	0.94	2.44	30	13.76	15	3	HBX (HFL ,DRT), tr sph
DD013	45	46	0.86	0.18	19	7.53	10	2	HBX (HFL ,DRT), tr sph
DD013	46	47	0.79	1.28	21.9	10.04	10	2	HBX (HFL ,DRT), tr sph
DD013	47	48	0.09	0.62	6.6	11.65	10	0.3	HBX (HFL ,DRT), tr sph
DD013	48	49	0.05	0.12	2.6	7.70	10	0.1	Sulphidic HBX (HFL-DRT)
DD013	49	50	0.05	0.45	3.2	13.17	15		Sulphidic HBX (HFL-DRT)
DD013	50	51	0.03	0.09	1.7	6.24	10		Sulphidic HBX (HFL-DRT)
DD013	51	52	0.61	0.87	19.7	6.76	8	2	Sulphidic HBX (HFL-DRT)
DD013	52	53	0.51	0.25	10.8	5.95	5	1	Sulphidic HBX (HFL-DRT), tr sph
DD013	53	54	0.03	0.07	2.8	5.72	5	0.1	HBX (HFL ,DRT)
DD013	54	55	0.03	0.06	1.2	1.99	2	0.1	HBX (HFL ,DRT)
DD013	55	56	0.05	0.11	2.2	6.53	5	0.2	HBX (HFL ,DRT)
DD013	56	57	0.03	0.04	1.3	3.57	4	0.2	HBX (HFL ,DRT)

30 September 2022

22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD013	57	58	0.06	0.02	1.8	2.14	3	0.2	HBX (HFL ,DRT)
DD013	58	59	0.05	0.04	1.5	2.10	3	0.2	HBX (HFL ,DRT)
DD013	59	60	0.04	0.05	1.5	2.47	3	0.2	HBX (HFL ,DRT)
DD013	60	61	0.03	0.04	1.8	2.18	3	0.2	HBX (HFL ,DRT)
DD013	61	62	0.06	0.08	2.2	3.94	3	0.3	HBX (HFL ,DRT)
DD013	62	63	1.76	1.01	28.4	4.09	3	4	Sulphidic HBX (HFL-DRT)
DD013	63	64	0.76	0.31	17.1	2.42	3	3	Sulphidic HBX (HFL-DRT)
DD013	64	65	0.53	0.09	10.5	1.89	2	2	Sulphidic HBX (HFL-DRT), tr sph
DD013	65	66	1.12	1.17	18.5	8.57	5	3	Sulphidic HBX (HFL-DRT), tr sph
DD013	66	67	0.94	1.90	34.8	6.52	3	3	Sulphidic HBX (HFL-DRT)
DD013	67	68	1.61	0.74	33	4.20	3	5	Sulphidic HBX (HFL-DRT)
DD013	68	69	1.30	1.27	31.2	6.22	3	4	Sulphidic HBX (HFL-DRT)
DD013	69	70	1.36	1.29	27.3	4.87	3	3	Sulphidic HBX (HFL-DRT)
DD013	70	71	1.47	2.04	37.3	4.37	3	5	Sulphidic HBX (HFL-DRT)
DD013	71	72	2.02	2.06	44.7	7.21	3	5	Sulphidic HBX (HFL-DRT)
DD013	72	73	0.64	1.38	17.6	3.87	2	2	Sulphidic HBX (HFL-DRT)
DD013	73	74	1.54	1.57	28.8	4.96	3	3	Sulphidic HBX (HFL-DRT)
DD013	74	75	2.07	0.47	48.3	5.26	3	5	Sulphidic HBX (HFL-DRT)
DD013	75	76	3.47	1.36	62.4	8.54	2	5	Sulphidic HBX (HFL-DRT)
DD013	76	77	0.78	0.44	14.9	3.77	2	1	Sericitic Fault Zone
DD013	77	78	0.56	0.92	80.7	7.74	5	2	Sericitic Fault Zone,tr sph
DD013	78	79	0.05	0.49	4.6	6.67	5	0.1	Hornfels Crackle Breccia,tr sph
DD013	79	80	0.05	0.09	1.6	2.14	1	0.1	Hornfels Crackle Breccia
DD013	80	81	0.03	0.04	1.1	1.24	0.5		Hornfels Crackle Breccia
DD013	81	82	0.03	0.03	1.4	1.40	0.5	0.2	Hornfels Crackle Breccia
DD013	82	83	0.05	0.37	3.9	6.40	5		Hornfels Crackle Breccia
DD013	83	84	0.14	0.02	2.4	0.74	0.2	0.4	Hornfels Crackle Breccia
DD013	84	85	0.00	0.00	0.25	0.05			Post Mineral Andesite
DD013	85	86	0.30	0.17	8.5	3.35	1	1	HBX (HFL ,DRT)
DD013	86	87	0.57	0.48	18	5.06	1	2	HBX (HFL ,DRT), tr sph
DD013	87	88	1.32	0.45	32.5	5.84	2	3	HBX (HFL ,DRT)
DD013	88	89	1.05	1.02	38.6	8.22	1	3	HBX (HFL ,DRT), tr sph
DD013	89	90	0.35	0.12	8.3	2.60	0.3	1	HBX (HFL ,DRT), tr sph
DD013	90	91	0.13	0.16	3.7	1.70	1	0.2	HBX (HFL ,DRT), tr sph
DD013	91	92	0.23	0.10	5.1	1.75	1	0.5	HBX (HFL ,DRT), tr sph

30 September 2022

200454	From Depth	To Depth	Lab Cu	Lab Au	Lab Ag	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	
22CAE#	m O2	m O2	%	g/t	g/t			4	Lithology HBX (HFL ,DRT), tr sph
DD013	92	93	0.61	0.18	15.7	2.36	1	1	HBX (HFL ,DRT), tr sph
DD013 DD013	93 94	94 95	1.22 0.75	0.20	26.8 13.3	2.24 1.78	1	3	HBX (HFL ,DRT), tr sph
DD013	95	96	0.39	0.12	7	1.55	1	<u>2</u> 1	HBX (HFL ,DRT), tr sph
DD013	96	97	0.62	0.10	10.8	2.84	1	2	HBX (HFL ,DRT), tr sph
DD013	97	98	1.06	0.10	17	4.18	2	3	HBX (HFL ,DRT)
DD013	98	99	0.90	0.21	14.7	3.00	1	<u> </u>	HBX (HFL ,DRT)
DD013	99	100	0.46	0.18	9	0.83	2	3 2	HBX (HFL ,DRT), tr sph
DD013	100	101	0.70	0.07	12.9	2.81		2	HBX (HFL ,DRT), tr sph
DD013	101	101	0.70	0.04	3.6	0.76	1	<u>∠</u> 1	HBX (HFL ,DRT), tr sph
DD013	102	102	1.27	0.04	22.2	1.84		3	HBX (HFL ,DRT), tr sph
DD013	103	103	0.40	0.12	7.2	5.68	3	3 2	HBX (HFL ,DRT), tr sph
DD013	104	104	0.40	0.14	2.7	2.14		0.2	HBX (HFL ,DRT), tr sph
DD013	104	106	0.10	0.07	2.7	5.58	3	3	HBX (HFL ,DRT), tr sph
DD013	106	107	0.40	0.19	6.8	1.59	1	<u>3</u> 1	HBX (HFL ,DRT), tr sph
DD013	107	107	0.40	0.08		2.16			HBX (HFL ,DRT), tr sph
DD013	107	109	0.53	0.08	7.4 9.6	2.61	1	<u>1</u> 2	HBX (HFL ,DRT), tr sph
DD013	109	110	0.12	0.07	4.1	1.53		0.5	HBX (HFL ,DRT), tr sph
DD013	110	111	0.12	0.04	4.7	1.58	1	0.5	HBX (HFL ,DRT), tr sph
DD013	111	112	0.20	0.04	5.1	2.45	2	0.5	HBX (HFL ,DRT)
DD013	112	113	0.22	0.05	5.6	2.89	2	0.5	HBX (HFL ,DRT)
DD013	113	114	0.22	0.03	7	5.93	5	1	HBX (HFL ,DRT)
DD013	114	115	0.06	0.07	0.8	0.76	0.5	0.2	HBX (HFL ,DRT)
DD013	115	116	0.21	0.01	3.9	4.62	3	0.2	HBX (HFL ,DRT)
DD013	116	117	0.09	0.09	2.8	4.19	3	0.3	HBX (HFL ,DRT)
DD013	117	118	0.11	0.06	2.5	4.47	3	0.1	HBX (HFL ,DRT)
DD013	118	119	0.15	0.09	2.8	4.61	3	0.5	HBX (HFL ,DRT), tr sph
DD013	119	120	0.32	0.08	5.2	3.94	3	1	HBX (HFL ,DRT), tr sph
DD013	120	121	0.34	0.07	5.7	4.46	3	<u>'</u> 1	Sulphidic HBX (HFL-DRT)
DD013	121	122	0.50	0.07	7	3.66	3	<u>'</u> 1	Sulphidic HBX (HFL-DRT)
DD013	122	123	0.36	0.12	7	4.35	3	<u>'</u> 1	Sulphidic HBX (HFL-DRT)
DD013	123	124	0.47	0.12	10.1	4.98	3	2	Sulphidic HBX (HFL-DRT)
DD013	124	125	0.47	0.14	12.2	18.99	15	<u></u> 1	Sulphidic HBX (HFL-DRT)
DD013	125	126	0.59	0.14	9.2	4.90	5	2	Sulphidic HBX (HFL-DRT)
DD013	126	127	2.53	0.14	35.7	6.19	5	5	Sulphidic HBX (HFL-DRT)
DD013	127	128	1.86	0.48	22.3	7.32	5	<u>5</u> 5	Sulphidic HBX (HFL-DRT)
DD013	128	129	0.65	0.27	9.8	10.02	10	2	Sulphidic HBX (HFL-DRT)

30 September 2022

22045#	From Depth	To Depth	Lab Cu	Lab Au	Lab Ag	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
22CAE# DD013	m 129	m 130	% 0.74	g/t 0.29	g/t 9	6.15	5	3	Lithology Sulphidic HBX (HFL-DRT)
DD013	130	131	2.24	0.29	30	9.28	10	5	Sulphidic HBX (HFL-DRT)
DD013	131	132	0.31	0.04	4	1.06	0.5	1	Biotite Hornfels
DD013	132	133	0.55	0.14	7.7	1.18	0.5	2	Biotite Hornfels
DD013	133	134	1.07	0.16	15.8	2.35	1	3	HBX (HFL)
DD013	134	135	0.88	0.07	14.9	2.54	1	2	HBX (HFL)
DD013	135	136	1.32	0.31	20.5	3.43	2	4	HBX (HFL)
DD013	136	137	1.36	0.29	24.6	4.25	2	4	HBX (HFL)
DD013	137	138	1.22	0.15	18.6	3.03	2	4	HBX (HFL)
DD013	138	139	0.84	0.15	12.7	3.10	2	1	HBX (HFL)
DD013	139	140	0.44	0.09	8.3	3.03	2	2	HBX (HFL)
DD013	140	141	0.17	0.06	5	1.88	1	0.5	HBX (HFL)
DD013	141	142	0.22	0.20	8.3	2.06	1	0.5	HBX (HFL)
DD013	142	143	0.24	0.22	10.3	1.73	1	0.5	Puggy Fault Zone
DD013	143	144	0.30	0.10	21.5	1.31	1	1	Puggy Fault Zone
DD013	144	145	0.07	0.05	3.5	0.92	0.5	0.1	Hornfels Shatter Breccia
DD013	145	146	0.02	0.10	0.7	1.13	0.2		Hornfels Shatter Breccia
DD013	146	147	0.02	0.01	0.6	1.10	0.7		Hornfels Shatter Breccia
DD013	147	148	0.01	0.01	0.25	0.58	0.2		Hornfels Shatter Breccia
DD013	148	149	0.06	0.03	0.7	0.62	0.1		Hornfels Shatter Breccia
DD013	149	150	0.03	0.02	0.25	1.28	0.5	0.2	Hornfels Shatter Breccia
DD013	150	151	0.02	0.01	0.25	0.75	0.3	0.1	Hornfels Shatter Breccia
DD013	151	152	0.03	0.01	0.25	0.39	0.2	0.1	Altered diorite porphyry
DD013	152	153	0.19	0.06	4.6	1.53	1	0.5	Matrix supported polymict breccia
DD013	153	154	0.14	0.06	7.8	1.25	0.5	0.3	Altered diorite porphyry
DD013	154	155	0.10	0.05	4.5	0.46	0.2	0.3	Altered diorite porphyry
DD013	155	156	0.25	0.21	6	1.12	0.5	0.3	Altered diorite porphyry
DD013	156	162	0.01	0.02	0.33	0.51	0.16	0.05	Biotite Hornfels
DD013	162	167	0.01	0.01	0.25	0.13	0.005	-	Post Mineral Andesite
DD013	167	168	0.03	0.02	0.25	1.63	1		Biotite Hornfels
DD013	168	169	0.10	0.05	1.4	4.50	2	0.1	Biotite Hornfels
DD013	169	170	0.41	0.39	3.8	2.07	1	1	Biotite Hornfels
DD013	170	176	0.03	0.03	0.35	1.55	0.57	0.1	Biotite Hornfels
DD013	176	179	0.02	0.02	0.37	1.39	0.5	0.2	Hornfels Shatter Breccia
DD013	179	181	0.01	0.01	0.25	0.51	0.1	0.1	Biotite Hornfels
DD013	181	182	0.02	0.13	0.25	0.79	0.2		Biotite Hornfels

30 September 2022

20045#	From Depth	To Depth	Lab Cu	Lab Au	Lab Ag	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lishalam
22CAE#	m	m	% 0.01	g/t	g/t				Lithology Biotite Hornfels
DD013	182 183	183 184	0.01	0.09	0.25	1.05 0.75	0.5		Biotite Hornfels
DD013	184	185	0.01	0.06	0.25	1.08	0.5		Biotite Hornfels
DD013	185	187	0.01	0.17	0.23	1.51	0.5		Hornfels Shatter Breccia
DD013	187	192	0.02	0.00	0.45	0.19	0.75		Post Mineral Andesite
DD013	192	192	0.00	0.00	0.25	1.14	0.1		Biotite Hornfels
<u> </u>		193	0.02			1.14	1		Biotite Hornfels
DD013	193			0.42	1.5		1		Biotite Hornfels
DD013 DD013	194 198	198 199	0.02	0.02	0.25	1.71	1		Post Mineral Andesite
					0.25	0.39	0.3		Post Mineral Andesite
DD013	199	200	0.00	0.01	0.25	0.17	0.1		Post Mineral Andesite
DD013	200	202	0.01	0.00	0.25	0.39	0.2		Chloritic Fault Zone
DD013			0.02	0.01		1.34	1		Post Mineral Andesite
DD013	203	204	0.01	0.01	0.25	0.47	0.5		Biotite Hornfels
DD013	204	205		0.02		0.65	0.5		Biotite Hornfels
DD013	205	210	0.01	0.01	0.25	0.81	0.5		Matrix supported polymict
DD013	210	211	0.01	0.01	0.25	1.37	1		breccia
DD013	211	212	0.02	0.01	0.25	0.79	0.5		Biotite Hornfels
DD013	212	213	0.02	0.01	0.25	1.64	1		Biotite Hornfels
DD013	213	214	0.08	0.03	1.2	4.13	5		Biotite Hornfels
DD013	214	215	0.12	0.03	1.4	4.04	5	0.3	Biotite Hornfels
DD013	215	216	0.03	0.02	0.25	1.83	2		Biotite Hornfels
DD013	216	217	0.04	0.02	0.6	2.15	1	0.1	Biotite Hornfels
DD013	217	218	0.04	0.18	0.25	2.22	1		Biotite Hornfels
DD013	218	219	0.01	0.01	0.25	1.11	1		Biotite Hornfels
DD013	219	220	0.02	0.03	1	5.60	5		Sulphidic HBX (HFL-DRT- PHY)
DD013	220	221	0.23	0.03	2.2	3.40	3	0.5	Sulphidic HBX (HFL-DRT- PHY)
DD013	221	222	0.01	0.02	0.5	5.59	5		Sulphidic HBX (HFL-DRT- PHY)
DD013	222	223	0.01	0.08	0.7	9.38	5		Sulphidic HBX (HFL-DRT- PHY)
DD013	223	224	0.01	0.03	0.25	5.60	5		Sulphidic HBX (HFL-DRT- PHY)
DD013	224	225	0.31	0.12	3.6	3.07	2	1	Sulphidic HBX (HFL-DRT- PHY)
DD013	225	226	0.22	0.02	2	1.92	1	0.5	Sulphidic HBX (HFL-DRT- PHY)
DD013	226	227	0.24	0.12	2.9	3.82	3	0.5	Sulphidic HBX (HFL-DRT- PHY)
DD013	227	228	0.08	0.09	1.2	3.20	4	0.2	Sulphidic HBX (HFL-DRT- PHY)
DD013	228	229	0.12	0.09	1.5	4.51	4	0.3	Sulphidic HBX (HFL-DRT- PHY)

30 September 2022

22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD013	229	230	1.39	0.32	18.4	7.77	10	3	Sulphidic HBX (HFL-DRT-
DD013	230	231	0.16	0.08	2.5	7.77			PHY) Sulphidic HBX (HFL-DRT-
DD013	231	232			6.3	13.77	10	0.5	PHY) Sulphidic HBX (HFL-DRT-
			0.40	0.16			15	1	PHY) Sulphidic HBX (HFL-DRT-
DD013	232	233	0.40	0.09	4.7	5.76	5	1	PHY) Sulphidic HBX (HFL-DRT-
DD013	233	234	1.77	0.42	25	7.95	10	5	PHY) Sulphidic HBX (HFL-DRT-
DD013	234	235	1.36	0.43	21.8	9.72	10	5	PHY) Sulphidic HBX (HFL-DRT-
DD013	235	236	1.98	0.64	22.8	15.40	15	6	PHY) Sulphidic HBX (HFL-DRT-
DD013	236	237	0.80	0.18	8.1	4.89	5	1	PHY) Sulphidic HBX (HFL-DRT-
DD013	237	238	1.88	0.23	21.8	5.49	5	5	PHY) Sulphidic HBX (HFL-DRT-
DD013	238	239	1.02	0.15	14.6	5.70	5	3	PHY)
DD013	239	240	0.27	0.10	5.6	7.66	5	0.5	Sulphidic HBX (HFL-DRT-PHY)
DD013	240	241	0.04	0.04	1.1	8.13	5	0.2	Sulphidic HBX (HFL-DRT- PHY)
DD013	241	242	0.81	0.21	11.4	6.33	5	3	Sulphidic HBX (HFL-DRT- PHY)
DD013	242	243	2.27	0.70	23.4	7.85	10	5	Sulphidic HBX (HFL-DRT- PHY)
DD013	243	244	0.09	0.53	2.4	5.85	5	0.2	Sulphidic HBX (HFL-DRT- PHY)
DD013	244	245	0.32	0.71	10.3	6.55	5	1	Sulphidic HBX (HFL-DRT- PHY)
DD013	245	246	0.99	1.11	18	7.01	10	3	Sulphidic HBX (HFL-DRT- PHY)
DD013	246	247	0.41	0.20	5.2	4.08	3	1	Sulphidic HBX (HFL-DRT- PHY)
DD013	247	248	1.71	0.54	21.6	8.05	5	5	Sulphidic HBX (HFL-DRT- PHY)
DD013	248	249	0.74	0.51	12.7	8.98	5	2	Sulphidic HBX (HFL-DRT- PHY)
DD013	249	250	1.49	0.42	17.1	6.56	5	5	Sulphidic HBX (HFL-DRT- PHY)
DD013	250	251	0.84	0.26	8.4	7.04	5	3	Sulphidic HBX (HFL-DRT-
DD013	251	252	0.50	0.18	5.6	4.29	3	2	PHY) Sulphidic HBX (HFL-DRT-
DD013	252	253	0.75	0.18	7.3				PHY) Sulphidic HBX (HFL-DRT-
				0.17		6.15	5	2	PHY) Sulphidic HBX (HFL-DRT-
DD013	253	254	0.14		2.6	3.65	3	0.5	PHY) Sulphidic HBX (HFL-DRT-
DD013	254	255	1.07	0.51	8.3	3.44	2	3	PHY) Sulphidic HBX (HFL-DRT-
DD013	255	256	1.65	1.06	18.8	4.27	3	5	PHY) Sulphidic HBX (HFL-DRT-
DD013	256	257	0.81	0.18	8.9	6.11	5	2	PHY) Sulphidic HBX (HFL-DRT-
DD013	257	258	0.49	0.27	6.3	4.62	5	2	PHY) Sulphidic HBX (HFL-DRT-
DD013	258	259	0.81	0.43	14.8	7.15	10	3	PHY)

30 September 2022

20045#	From Depth	To Depth	Lab Cu	Lab Au	Lab Ag	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	
22CAE#	m	m	%	g/t	g/t				Lithology Sulphidic HBX (HFL-DRT-
DD013	259	260	0.45	0.16	5.6	3.85	3	2	PHY) Sulphidic HBX (HFL-DRT-
DD013	260	261	0.39	0.17	8.7	3.35	3	1	PHY)
DD013	261	262	0.23	0.19	3.3	3.17	3	0.5	Sulphidic HBX (HFL-DRT- PHY)
DD013	262	263	0.92	0.19	11.8	3.66	3	3	Sulphidic HBX (HFL-DRT- PHY)
DD013	263	264	0.94	0.58	13.9	6.71	5	3	Sulphidic HBX (HFL-DRT- PHY)
DD013	264	265	0.55	0.26	15.7	7.35	10	2	Sulphidic HBX (HFL-DRT- PHY)
DD013	265	266	0.74	0.19	7.8	6.89	10	2	Sulphidic HBX (HFL-DRT- PHY)
DD013	266	267	0.76	0.32	9.2	4.62	5	2	Sulphidic HBX (HFL-DRT- PHY)
DD013	267	268	1.25	0.15	15	7.00	10	3	Sulphidic HBX (HFL-DRT- PHY)
DD013	268	269	0.77	0.21	10	6.14	5	2	Sulphidic HBX (HFL-DRT- PHY)
DD013	269	270	0.38	0.10	5.1	3.36	3	1	Sulphidic HBX (HFL-DRT- PHY)
DD013	270	271	0.68	0.25	7.6	6.03	5	2	Sulphidic HBX (HFL-DRT- PHY)
DD013	271	272	0.75	0.19	6.1	5.94	5	2	Sulphidic HBX (HFL-DRT- PHY)
DD013	272	273	0.76	0.21	10.5	9.63	10	2	Sulphidic HBX (HFL-DRT- PHY)
DD013	273	274	1.19	0.19	16.8	5.78	5	3	Sulphidic HBX (HFL-DRT- PHY)
DD013	274	275	0.26	0.14	5.1	11.02	10	1	Sulphidic HBX (HFL-DRT- PHY)
DD013	275	276	0.66	0.40	12.5	7.04	10	2	Sulphidic HBX (HFL-DRT- PHY)
DD013	276	277	0.43	0.22	7.9	4.65	3	1	Sulphidic HBX (HFL-DRT- PHY)
DD013	277	278	0.51	0.17	9.5	3.38	3	2	Sulphidic HBX (HFL-DRT- PHY)
DD013	278	279	0.94	0.34	15.1	6.14	5	3	Sulphidic HBX (HFL-DRT- PHY)
DD013	279	280	0.77	0.26	11.1	8.35	10	3	Sulphidic HBX (HFL-DRT- PHY)
DD013	280	281	1.30	0.44	17.1	7.51	10	5	Sulphidic HBX (HFL-DRT- PHY)
DD013	281	282	1.78	0.54	28.5	14.31	15	5	Sulphidic HBX (HFL-DRT- PHY)
DD013	282	283	0.56	0.11	7.3	4.64	5	2	Sulphidic HBX (HFL-DRT- PHY)
DD013	283	284	0.98	0.35	12.5	6.41	10	3	Sulphidic HBX (HFL-DRT- PHY)
DD013	284	285	1.49	0.32	18.6	9.77	10	4	Sulphidic HBX (HFL-DRT- PHY)
DD013	285	286	0.90	0.18	11.4	6.34	10	3	Sulphidic HBX (HFL-DRT- PHY)
DD013	286	287	2.22	0.36	31.8	8.76	10	5	Sulphidic HBX (HFL-DRT- PHY)
DD013	287	288	0.49	0.14	11	2.76	3	2	Sulphidic HBX (HFL-DRT- PHY)
DD013	288	289	0.11	0.10	4.5	4.99	5	0.5	Sulphidic HBX (HFL-DRT- PHY)

30 September 2022

22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD013	289	290	0.14	0.17	3.5	4.44	5	0.5	Sulphidic HBX (HFL-DRT-
								0.5	PHY) Sulphidic HBX (HFL-DRT-
DD013	290	291	0.20	0.12	7.0	7.60	10	0.5	PHY)
DD013	291	292	0.69	0.14	7.9	4.48	5	2	CLBXQCK CLBXQCK
DD013	292	293	0.50	0.05	4.9	2.36	2	2	CLBXQCK
DD013	293	294	0.57	0.02	9.8	2.68	2	2	CLBXQCK
DD013	294	295	0.30	0.05	6.2	4.35	2	1	CLBXQCK
DD013	295	296	0.06	0.08	3	2.15	3	0.1	CLBXQCK
DD013	296	297	0.05	0.02	2.9	3.07	3	0.1	
DD013	297	298	0.07	0.05	3.3	2.63	2	0.1	CLBXQCK
DD013	298	299	0.11	0.02	1.6	3.25	2	0.2	CLBXQCK
DD013	299	300	0.14	0.03	3.3	3.08	2	0.2	CLBXQCK
DD013	300	301	0.44	0.04	8	4.03	5	1	CLBXQCK
DD013	301	302	0.68	0.16	7.2	2.54	2	2	CLBXQCK
DD013	302	303	0.06	0.01	1.8	4.73	5	0.1	CLBXQCK
DD013	303	304	0.09	0.02	2.8	1.85	1	0.2	CLBXQCK
DD013	304	305	0.09	0.02	2.5	2.62	2		CLBXQCK
DD013	305	306	0.05	0.01	1.6	0.79	1	0.1	CLBXQCK
DD013	306	307	0.39	0.10	7.8	2.58	2	1	CLBXQCK
DD013	307	308	0.03	0.04	0.8	0.86	1	0.2	CLBXQCK
DD013	308	309	0.15	0.04	4.1	2.87	2	0.3	CLBXQCK
DD013	309	310	0.13	0.07	5.6	4.34	5	0.3	CLBXQCK
DD013	310	311	0.09	0.01	1.4	0.95	1	0.2	CLBXQCK
DD013	311	312	0.29	0.05	4.6	2.92	3	1	CLBXQCK
DD013	312	313	0.22	0.06	3.8	3.56	3	1	CLBXQCK
DD013	313	314	0.34	0.02	2.3	1.14	1	1	CLBXQCK
DD013	314	315	0.36	5.47	14	3.54	3	1	CLBXQCK
DD013	315	316	0.25	0.23	3.8	2.59	2	1	CLBXQCK
DD013	316	317	0.48	0.09	8.5	2.24	2	1	CLBXQCK
DD013	317	318	0.09	0.02	2.2	0.50	0.1	0.2	CLBXQCK
DD013	318	319	0.24	0.28	10.3	2.13	2	0.5	CLBXQCK
DD013	319	320	0.11	0.03	3.2	1.46	1	0.2	CLBXQCK
DD013	320	321	0.63	0.37	35.2	3.88	3	1	Sericitic Fault Zone, quartz sulphide veins
DD013	321	322	0.09	0.14	5.1	0.92	1		Sericitic Fault Zone, quartz sulphide veins
DD013	322	323	0.22	22.98	60	7.62	10	0.5	Sericitic Fault Zone, quartz sulphide veins
DD013	323	324	0.09	2.52	4.3	1.15	1		Altered diorite porphyry

30 September 2022

22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD013	324	325	0.09	0.03	3.4	0.38	0.1		Altered diorite porphyry
DD013	325	326	0.13	0.16	5.3	0.56	0.1	0.1	Altered diorite porphyry
DD013	326	327	0.12	0.04	4.3	1.20	1	0.1	Sericitic Fault Zone, quartz sulphide veins
DD013	327	328	0.04	0.04	2.9	0.87	1	0.1	Sericitic Fault Zone, quartz sulphide veins
DD013	328	329	0.34	9.24	19.9	1.29	1	1	Sericitic Fault Zone, quartz sulphide veins
DD013	329	330	0.12	0.02	5.4	1.26	1	0.5	CLBXQCK
DD013	330	331	0.36	0.16	32.5	3.33	3	1	CLBXQCK
DD013	331	332	0.11	0.16	6.4	0.90	0.2	0.2	CLBXQCK
DD013	332	333	0.13	0.69	8.2	2.36	1	0.5	CLBXQCK
DD013	333	334	0.02	0.02	0.9	0.78	0.1		CLBXQCK
DD013	334	335	0.02	0.01	3.2	0.96	0.7	0.1	CLBXQCK
DD013	335	336	0.06	0.01	1.6	0.70	0.8	0.3	CLBXQCK
DD013	336	337	0.52	0.18	10.6	3.99	3	0.5	CLBXQCK
DD013	337	338	0.05	0.02	1.6	0.84	2	0.1	CLBXQCK
DD013	338	339	0.05	0.01	1.4	0.94	1.5	0.1	CLBXQCK
DD013	339	340	0.05	0.03	1.9	1.55	1	0.1	CLBXQCK
DD013	340	341	0.12	0.02	1.9	1.18	1	0.1	CLBXQCK
DD013	341	342	0.04	0.03	1.4	0.76	0.8	0.1	CLBXQCK
DD013	342	343	0.07	0.03	2.1	0.86	0.5	0.2	CLBXQCK
DD013	343	344	0.04	0.01	0.9	1.24	1	0.1	CLBXQCK
DD013	344	345	0.04	0.02	0.6	0.40	0.2	0.1	CLBXQCK
DD013	345	346	0.06	0.01	1.1	3.52	3	0.1	CLBXQCK
DD013	346	347	0.02	0.01	0.6	0.80	0.3	0.1	CLBXQCK
DD013	347	348	0.00	0.00	0.25	0.25			Argillized felsic dyke
DD013	348	349	1.12	0.16	24.2	2.12	1	3	CLBXQCK
DD013	349	350	0.10	0.03	4.6	1.06	1	0.2	CLBXQCK
DD013	350	351	0.18	0.11	4.7	0.90	0.5	0.5	CLBXQCK
DD013	351	356	0.00	0.00	0.25	0.22	0.5		CLBXQCK
DD013	356	357	0.02	0.01	1	1.27	1		CLBXQCK
DD013	357	358	0.06	0.01	0.9	0.74	0.3		CLBXQCK
DD013	358	359	0.05	0.02	0.9	0.90	0.3	0.1	CLBXQCK
DD013	359	363	0.02	0.02	0.8	0.88	0.5	0.1	CLBXQCK
DD013	363	364	0.07	0.20	3.5	0.85	1	0.1	CLBXQCK
DD013	364	365	0.06	0.29	2.8	0.99	1	0.1	CLBXQCK
DD013	365	369	0.02	0.01	1	1.34	1	0.1	CLBXQCK

30 September 2022

22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD013	369	370	0.04	0.28	9.5	5.72	5	0.1	CLBXQCK
DD013	370	371	0.01	0.00	0.6	0.30	0.1		CLBXQCK
DD013	371	372	0.03	0.01	1.7	2.02	1	0.1	CLBXQCK
DD013	372	373	0.01	0.01	0.25	0.16	0.1		CLBXQCK
DD013	373	376	0.01	0.00	0.5	0.09	0.1		Post Mineral Andesite
DD013	376	377	0.02	0.36	1.2	0.17	0.1		CLBXQCK
DD013	377	378	0.02	0.71	1.1	1.46	1		CLBXQCK
DD013	378	379	0.03	0.10	7.1	7.96	10		CLBXQCK
DD013	379	387	0.01	0.02	1	1.47	1		CLBXQCK
DD013	387	388	0.05	0.01	2.1	1.51	1		CLBXQCK
DD013	388	389	0.02	0.01	0.8	0.66	1		CLBXQCK
DD013	389	390	0.05	0.04	2.9	1.74	1		CLBXQCK
DD013	390	391	0.07	0.38	6.6	3.89	3		CLBXQCK
DD013	391	392	0.05	0.05	1.7	1.09	1		CLBXQCK
DD013	392	393	0.02	0.05	0.6	1.36	1		CLBXQCK
DD013	393	394	0.05	0.05	6	1.73	2	0.2	CLBXQCK
DD013	394	395	0.05	0.08	4.9	1.71	2	0.2	CLBXQCK
DD013	395	402	0.02	0.01	1	1.14	1	0.1	CLBXQCK
DD013	402	403	0.10	0.07	12	1.08	1	0.5	CLBXQCK
DD013	403	404	0.02	0.01	1.4	0.73	1		CLBXQCK
DD013	404	405	0.16	0.04	3.6	1.26	1	0.5	CLBXQCK
DD013	405	406	0.08	0.89	33.3	2.91	3	0.5	CLBXQCK
DD013	406	407	0.04	0.15	12.7	1.31	1	0.2	CLBXQCK
DD013	407	408	0.10	0.10	5.5	1.17	2	0.2	CLBXQCK
DD013	408	409	0.04	0.35	2.2	1.95	3	0.1	CLBXQCK
DD013	409	410	0.22	0.37	5	1.97	3	0.5	CLBXQCK
DD013	410	411	0.02	0.01	0.8	0.54	1	0.1	CLBXQCK
DD013	411	412	0.07	0.03	6.2	0.62	1	0.1	CLBXQCK
DD013	412	413	0.02	0.01	1.2	0.66	1	0.2	CLBXQCK
DD013	413	414	0.08	0.01	2	2.40	1	0.5	CLBXQCK
DD013	414	417	0.03	0.01	0.9	0.83	1	0.1	CLBXQCK
DD013	417	418	0.04	0.05	2.1	0.74	1	0.1	CLBXQCK
DD013	418	419	0.03	0.40	1.9	1.42	2	0.3	CLBXQCK
DD013	419	420	0.05	0.17	3.9	1.04	1	0.5	CLBXQCK
DD013	420	421	0.12	0.05	8.2	0.85	1	0.1	CLBXQCK
DD013	421	422	0.09	1.86	7.8	1.00	1	0.1	CLBXQCK
DD013	422	425	0.02	0.02	1.1	0.67	1		CLBXQCK

30 September 2022

	From Depth	To Depth	Lab Cu	Lab Au	Lab Ag	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	
22CAE#	m	m	%	g/t	g/t	_	۵		Lithology
DD013	425	426	0.14	0.16	3.9	3.72	3	0.2	Clast supported, quartz- Kspar-calcite infill breccia
DD013	426	427	0.04	0.10	5.9	0.52			Clast supported, quartz- Kspar-calcite infill breccia
DD013	427	430	0.01	0.00	0.25	0.03			Post Mineral Andesite
DD013	430	431	0.14	0.96	4.7	1.80	3	0.2	CLBXQCK
DD013	431	432	0.01	1.24	0.25	0.08	0.5		CLBXQCK
DD013	432	433	0.01	0.20	0.8	1.06	0.5		Post Mineral Andesite
DD013	433	434	0.00	0.00	0.25	0.16			Post Mineral Andesite
DD013	434	435	0.01	0.02	0.6	0.53	2		CLBXQCK
DD013	435	436	0.01	0.10	1.4	2.10	3	0.1	CLBXQCK
DD013	436	437	0.02	0.04	0.8	1.05	1	0.1	CLBXQCK
DD013	437	438	0.04	0.66	1.4	3.36	3	0.1	CLBXQCK
DD013	438	439	0.02	0.12	1.4	2.43	3	0.1	CLBXQCK
DD013	439	440	0.05	0.40	5.3	2.95	3		CLBXQCK
DD013	440	441	0.02	0.02	0.9	0.81	1		CLBXQCK
DD013	441	442	0.01	0.05	1	1.19	1	0.1	CLBXQCK
DD013	442	443	0.01	0.03	1.1	2.41	2	0.1	CLBXQCK
DD013	443	444	0.01	0.00	0.7	0.94	1		CLBXQCK
DD013	444	445	0.07	0.02	1.8	0.89	1		CLBXQCK
DD013	445	446	0.01	0.01	1.2	2.38	2		CLBXQCK
DD013	446	447	0.02	0.01	10.3	1.35	1		CLBXQCK
DD013	447	448	0.01	0.01	0.8	1.93	2	0.1	CLBXQCK
DD013	448	449	0.01	0.00	0.5	0.78	1		CLBXQCK
DD013	449	450	0.03	0.03	1.9	2.92	5		Pyritic clast supported breccia
DD013	450	451	0.03	0.01	1.8	1.73	5		Pyritic clast supported breccia
DD013	451	452	0.01	0.00	0.8	0.64	1		CLBXQCK
DD013	452	453	0.01	0.02	1.3	4.74	5		CLBXQCK
DD013	453	458	0.01	0.00	0.5	1.43	1		CLBXQCK
DD013	458	468	0.02	0.01	0.7	1.99	2		CLBXQCK
DD013	468	469	0.14	0.05	2.1	4.40	5	0.3	CLBXQCK
DD013	469	470	0.03	1.29	2.2	2.07	3	0.1	CLBXQCK
DD013	470	471	0.02	0.16	0.9	2.32	3		CLBXQCK
DD013	471	475	0.03	0.07	0.9	2.52	2.5	0.1	CLBXQCK
DD013	475	476	0.01	0.00	0.25	1.25	1		CLBXQCK, tr Mo
DD013	476	478	0.02	0.01	0.5	1.48	1		CLBXQCK
DD013	478	482	0.02	0.02	0.75	2.17	3	0.05	CLBXQCK
DD013	482	483	0.12	0.07	2	2.64	3	0.1	CLBXQCK

30 September 2022

22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD013	483	484	0.02	0.01	0.7	1.17	1		CLBXQCK
DD013	484	485	0.02	0.01	0.7	2.06	3		CLBXQCK
DD013	485	486	0.02	0.01	0.5	0.58	2		CLBXQCK
DD013	486	487	0.01	0.01	0.25	0.87	1		CLBXQCK
DD013	487	488	0.03	0.01	0.6	1.68	2		CLBXQCK
DD013	488	489	0.02	0.00	0.25	1.08	2		CLBXQCK
DD013	489	490	0.01	0.02	0.6	2.95	3		CLBXQCK, tr Mo
DD013	490	491	0.03	0.01	0.9	0.83	0.5	0.1	CLBXQCK, tr Mo
DD013	491	492	0.03	0.23	1	4.75	6	0.1	Pyritic clast supported breccia
DD013	492	493	0.01	0.01	0.7	3.34	5	0.1	Pyritic clast supported breccia
DD013	493	494	0.01	0.00	0.25	1.26	1		CLBXQCK
DD013	494	495	0.02	0.00	0.7	1.91	1.5		CLBXQCK
DD013	495	496	0.03	0.03	0.7	1.82	1	0.1	CLBXQCK
DD013	496	497	0.02	0.00	0.6	0.60	0.5	0.1	CLBXQCK, tr Mo
DD013	497	498	0.02	0.00	0.6	1.71	1		CLBXQCK
DD013	498	499	0.04	0.00	0.9	1.41	1		CLBXQCK
DD013	499	500	0.03	0.02	1.6	1.91	3		CLBXQCK
DD013	500	501	0.02	0.01	0.5	0.36	0.3	0.1	CLBXQCK
DD013	501	507	0.00	0.00	0.25	0.09			Post Mineral Andesite
DD013	507	508	0.05	0.03	1.7	2.84	3	0.1	CLBXQCK
DD013	508	509	0.04	1.21	2.4	5.35	10	0.1	Pyritic clast supported breccia
DD013	509	510	0.03	0.00	0.7	0.89	2		CLBXQCK
DD013	510	511	0.01	0.02	0.8	1.76	3		CLBXQCK, tr Mo
DD013	511	512	0.07	0.29	4.1	3.23	3		CLBXQCK, tr Mo
DD013	512	513	0.01	0.20	0.8	2.00	1.5		CLBXQCK
DD013	513	514	0.02	0.01	0.9	1.69	2		CLBXQCK
DD013	514	515	0.01	0.00	0.6	0.87	1		CLBXQCK, tr Mo
DD013	515	516	0.04	0.38	1.1	1.30	1		CLBXQCK
DD013	516	517	0.04	0.33	1.5	3.15	5	0.3	CLBXQCK
DD013	517	518	0.02	0.01	0.8	3.06	5		Pyritic clast supported breccia
DD013	518	519	0.05	0.01	1.2	2.93	5		Pyritic clast supported breccia
DD013	519	520	0.03	0.01	1	3.49	5		Pyritic clast supported breccia
DD013	520	521	0.02	0.04	1.1	4.51	4		Pyritic clast supported breccia
DD013	521	522	0.03	0.02	0.7	1.14	2	0.1	CLBXQCK
DD013	522	523	0.01	0.00	0.9	0.81	1		CLBXQCK
DD013	523	524	0.07	0.01	1	1.08	1	0.1	CLBXQCK
DD013	524	525	0.09	0.24	1	2.26	4	0.1	Pyritic clast supported breccia

30 September 2022

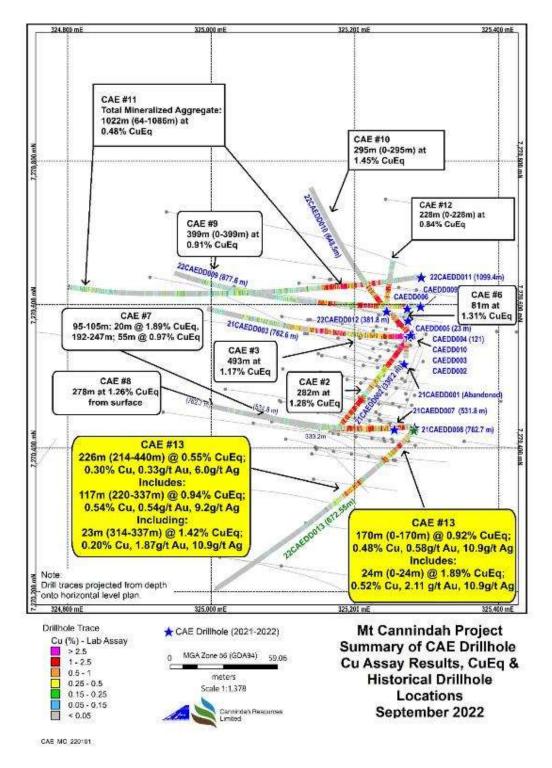
	From Depth	To Depth	Lab Cu	Lab Au	Lab Ag	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	
22CAE#	m	m	%	g/t	g/t			0.4	Lithology Pyritic clast supported breccia
DD013	525	526	0.06	0.02	1.1	2.94	4	0.1	Pyritic clast supported breccia
DD013	526	527	0.04	0.01	0.9	3.10	4		CLBXQCK
DD013	527	528	0.04	0.00	0.7	1.07	1		CLBXQCK
DD013	528	529	0.03	0.01	0.6	1.14	1	0.0	Pyritic clast supported breccia
DD013	529	530	0.03	1.11	9	5.02	8	0.2	CLBXQCK
DD013	530	531	0.08	0.01	2.1	1.98	2	0.5	CLBXQCK
DD013	531	532	0.02	0.01	0.9	1.99	2	0.0	CLBXQCK
DD013	532	533	0.05	0.04	9.8	2.48	5	0.3	
DD013	533	534	0.01	0.00	0.5	1.78	2.5		CLBXQCK
DD013	534	535	0.00	0.00	0.25	2.10	2		CLBXQCK
DD013	535	536	0.01	0.00	0.25	1.14	3	0.0	Quartz sericite fault zone
DD013	536	537	0.05	0.01	2.7	2.56	3.5	0.2	CLBXQCK
DD013	537	538	0.01	0.00	0.7	2.19	2.2		CLBXQCK
DD013	538	539	0.03	0.04	2	3.99	5	0.1	CLBXQCK
DD013	539	540	0.01	0.01	0.25	2.47	3		CLBXQCK
DD013	540	541	0.01	0.00	0.25	2.18	3		CLBXQCK
DD013	541	542	0.03	0.00	0.25	2.72	3		CLBXQCK
DD013	542	543	0.01	0.02	0.25	2.35	3		CLBXQCK
DD013	543	544	0.01	0.00	0.5	1.40	1.5		CLBXQCK
DD013	544	545	0.01	0.00	0.25	1.00	1		CLBXQCK, tr Mo
DD013	545	546	0.02	0.00	0.25	1.65	1.5	0.3	CLBXQCK, tr Mo
DD013	546	547	0.02	0.00	0.25	1.91	1		CLBXQCK, tr Mo
DD013	547	548	0.01	0.01	0.25	3.32	4		CLBXQCK, tr Mo
DD013	548	549	0.01	0.00	0.25	1.07	1		CLBXQCK
DD013	549	550	0.01	0.00	0.25	1.22	0.5		CLBXQCK
DD013	550	551	0.03	0.00	1.3	1.89	0.5	0.1	Quartz sericite fault zone
DD013	551	552	0.01	0.00	0.25	2.47	5		Quartz sericite fault zone
DD013	552	553	0.01	0.00	0.25	2.93	5		Quartz sericite fault zone
DD013	553	554	0.01	0.00	0.25	1.09	3		Quartz sericite fault zone
DD013	554	555	0.01	0.01	10.7	1.91	2		CLBXQCK, tr Mo
DD013	555	556	0.01	0.00	0.25	1.60	1.5		CLBXQCK, tr Mo
DD013	556	557	0.00	0.00	0.25	0.81	0.5		Quartz sericite fault zone
DD013	557	558	0.01	0.00	0.25	1.05	2	0.1	Quartz sericite fault zone
DD013	558	559	0.01	0.00	0.6	2.01	2		Quartz sericite fault zone
DD013	559	560	0.01	0.00	0.25	1.36	2		Quartz sericite fault zone,tr Mo
DD013	560	561	0.01	0.00	0.25	2.63	5		Quartz sericite fault zone

30 September 2022

222.2	From Depth	To Depth	Lab Cu	Lab Au	Lab Ag	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	
22CAE#	m FC1	m FC2	%	g/t	g/t	1.00			Lithology Quartz sericite fault zone
DD013	561	562	0.01	0.00	0.25	1.06	1		Quartz sericite fault zone
DD013	562	563	0.01	0.00	0.25	1.14	2		Quartz sericite fault zone,tr
DD013	563	564	0.01	0.00	0.25	0.86	1		Mo
DD013	564	565	0.01	0.00	0.25	0.97	2		Quartz sericite fault zone
DD013	565	566	0.01	0.00	0.25	1.44	3		Quartz sericite fault zone
DD013	566	567	0.01	0.01	0.25	1.96	3		CLBXQCK
DD013	567	568	0.01	0.00	0.25	1.24	3		CLBXQCK
DD013	568	569	0.01	0.01	0.7	2.17	5		CLBXQCK
DD013	569	570	0.01	0.00	0.25	1.52	3		CLBXQCK
DD013	570	571	0.01	0.01	0.25	2.11	3		CLBXQCK
DD013	571	572	0.01	0.00	0.25	0.71	1		CLBXQCK
DD013	572	573	0.02	0.01	0.6	0.72	1		CLBXQCK, tr Mo
DD013	573	574	0.01	0.00	0.25	2.04	3.5		Pyritic clast supported breccia
DD013	574	575	0.01	0.00	0.25	1.37	1		CLBXQCK
DD013	575	576	0.01	0.01	0.5	1.39	1		CLBXQCK
DD013	576	577	0.01	0.00	0.25	0.66	1		CLBXQCK
DD013	577	578	0.01	0.00	0.25	0.75	0.1		CLBXQCK
DD013	578	579	0.01	0.00	0.25	1.11	1	0.1	CLBXQCK, tr Mo
DD013	579	580	0.05	0.01	0.6	2.04	2		CLBXQCK, tr Mo
DD013	580	581	0.02	0.01	0.25	1.91	2	0.1	CLBXQCK
DD013	581	582	0.00	0.00	0.25	3.10	3		Pyritic clast supported breccia
DD013	582	583	0.00	0.01	0.25	2.74	4		Pyritic clast supported breccia
DD013	583	584	0.00	0.01	0.25	4.20	6		Pyritic clast supported breccia
DD013	584	585	0.00	0.01	1.1	8.03	10		Pyritic clast supported breccia
DD013	585	586	0.00	0.01	0.6	4.79	5		Pyritic clast supported breccia
DD013	586	587	0.00	0.02	1.4	11.10	15		Pyritic clast supported breccia
DD013	587	588	0.02	0.01	0.6	2.46	3.5		Pyritic clast supported breccia
DD013	588	589	0.01	0.00	0.7	2.77	2.5		Pyritic clast supported breccia
DD013	589	590	0.01	0.00	0.8	1.94	3.5		Pyritic clast supported breccia
DD013	590	591	0.01	0.00	0.7	0.83	1		CLBXQCK
DD013	591	592	0.01	0.00	0.25	0.84	1		CLBXQCK
DD013	592	593	0.01	0.02	1.2	1.41	2.5	0.1	CLBXQCK
DD013	593	594	0.01	0.01	2.5	3.67	6	0.1	CLBXQCK, tr Mo
DD013	594	595	0.01	0.00	0.6	0.67	0.8	0.2	CLBXQCK
DD013	595	596	0.01	0.53	1.4	1.81	1	0.1	CLBXQCK
DD013	596	597	0.01	0.55	1.4	1.72	1.5	0.1	CLBXQCK

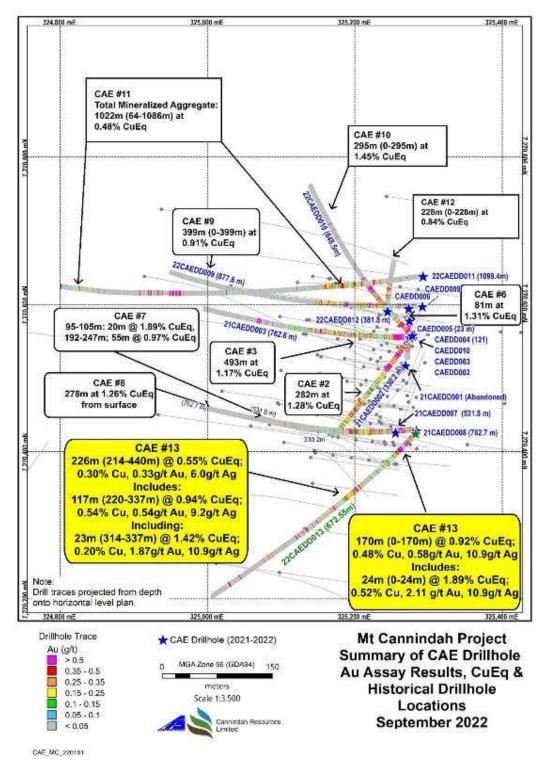
30 September 2022

22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD013	597	598	0.03	0.30	2.2	1.50	3	0.1	CLBXQCK
DD013	598	599	0.02	0.02	0.6	0.92	1.7	0.1	CLBXQCK
DD013	599	603	0.01	0.00	0.25	0.09	0.2		Post Mineral Andesite
DD013	603	604	0.01	0.01	0.5	0.99	1		CLBXQCK
DD013	604	605	0.00	0.01	0.25	1.20	1		CLBXQCK, tr Mo
DD013	605	606	0.02	0.02	0.8	3.13	4	0.1	CLBXQCK, tr Mo
DD013	606	609	0.01	0.01	0.7	1.77	1		CLBXQCK
DD013	609	610	0.01	0.01	0.25	0.90	1.5		Post Mineral Andesite
DD013	610	611	0.01	0.01	0.7	1.53	1		Post Mineral Andesite
DD013	611	612	0.01	0.01	0.6	1.54	1		Post Mineral Andesite
DD013	612	617	0.01	0.00	0.25	0.06			Post Mineral Andesite
DD013	617	618	0.04	0.16	1.5	2.26	2.5		CLBXQCK
DD013	618	619	0.04	0.05	0.7	1.17	1.5		Post Mineral Andesite
DD013	619	623	0.01	0.01	0.3	0.23	0.05		Post Mineral Andesite
DD013	623	624	0.05	0.45	1.8	1.79	1	0.2	Quartz sericite fault zone
DD013	624	625	0.05	0.35	2.6	5.73	5	0.1	Quartz sericite fault zone
DD013	625	626	0.04	1.67	4.4	3.13	3		Quartz sericite fault zone
DD013	626	627	0.00	0.01	0.5	0.82	1		Quartz sericite fault zone
DD013	627	628	0.00	0.01	0.25	3.15	5		Quartz sericite fault zone
DD013	628	629	0.01	0.01	0.25	0.85	0.8		Quartz sericite fault zone
DD013	629	630	0.02	0.03	0.5	2.33	2.5		Quartz sericite fault zone
DD013	630	631	0.01	0.06	1	5.49	8		Pyritic clast supported breccia
DD013	631	632	0.01	0.10	0.9	5.06	8		Pyritic clast supported breccia
DD013	632	633	0.01	0.02	0.25	5.55	8		Pyritic clast supported breccia
DD013	633	634	0.01	0.01	0.25	6.05	8		Pyritic clast supported breccia
DD013	634	635	0.01	0.01	0.25	5.80	9		Pyritic clast supported breccia
DD013	635	636	0.01	0.02	0.25	6.90	10		Pyritic clast supported breccia
DD013	636	637	0.01	0.01	0.25	4.53	5		Pyritic clast supported breccia
DD013	637	638	0.01	0.01	0.25	6.11	8		Pyritic clast supported breccia
DD013	638	639	0.01	0.01	0.6	6.74	8		Pyritic clast supported breccia
DD013	639	640	0.00	0.00	0.25	4.75	5		Pyritic clast supported breccia
DD013	640	641	0.00	0.00	0.25	3.91	5		Pyritic clast supported breccia
DD013	641	642	0.00	0.00	0.25	2.77	3.5		Pyritic clast supported breccia
DD013	642	643	0.00	0.03	0.25	2.60	3		Pyritic clast supported breccia
DD013	643	644	0.01	0.01	0.25	4.41	5		Pyritic clast supported breccia
DD013	644	645	0.03	0.01	0.6	4.75	5		Pyritic clast supported breccia
DD013	645	646	0.00	0.00	0.25	2.72	2		Pyritic clast supported breccia

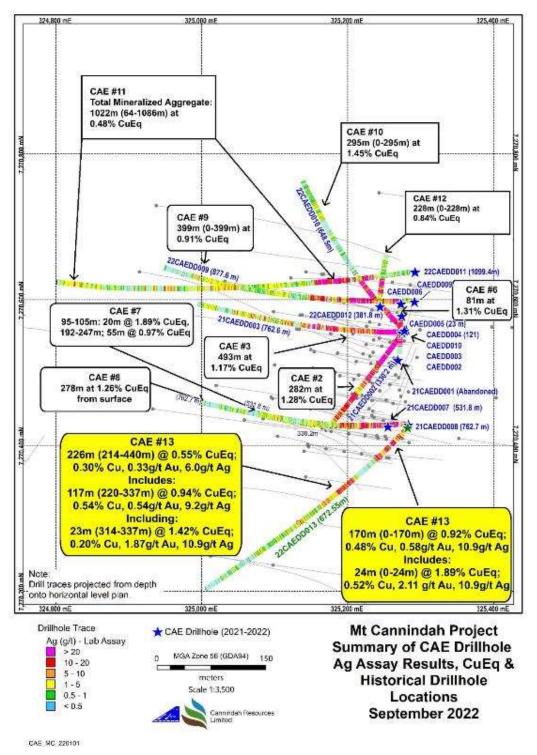


30 September 2022

22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD013	646	647	0.00	0.00	0.25	1.96	2.5		Pyritic clast supported breccia
DD013	647	648	0.00	0.02	0.25	4.15	5		Pyritic clast supported breccia
DD013	648	649	0.01	0.01	0.25	3.37	2		Pyritic clast supported breccia
DD013	649	650	0.00	0.00	0.25	3.90	3		Pyritic clast supported breccia
DD013	650	651	0.00	0.00	0.25	2.11	4		Pyritic clast supported breccia
DD013	651	652	0.00	0.00	0.25	2.17	2		Pyritic clast supported breccia
DD013	652	653	0.00	0.01	0.25	3.72	5		Pyritic clast supported breccia
DD013	653	654	0.00	0.00	0.25	2.82	2		Pyritic clast supported breccia
DD013	654	655	0.00	0.01	0.25	2.84	2.5		Pyritic clast supported breccia
DD013	655	656	0.00	0.01	0.25	4.67	5		Pyritic clast supported breccia
DD013	656	657	0.01	0.01	0.25	2.40	2.5		Pyritic clast supported breccia
DD013	657	658	0.00	0.00	0.25	3.82	3.5		Pyritic clast supported breccia
DD013	658	659	0.00	0.00	0.25	2.05	2		Pyritic clast supported breccia
DD013	659	660	0.00	0.00	0.25	3.59	3		Pyritic clast supported breccia
DD013	660	661	0.00	0.01	0.25	3.78	5		Pyritic clast supported breccia
DD013	661	662	0.00	0.01	0.25	0.65	1		Pyritic clast supported breccia
DD013	662	663	0.07	0.01	0.6	2.53	2		Pyritic clast supported breccia
DD013	663	664	0.03	0.01	0.25	3.83	5		Pyritic clast supported breccia
DD013	664	665	0.00	0.01	0.25	5.86	8		Pyritic clast supported breccia
DD013	665	666	0.00	0.02	0.25	1.91	4	0.1	Pyritic clast supported breccia
DD013	666	667	0.00	0.00	0.25	1.87	3		Pyritic clast supported breccia
DD013	667	672	0.01	0.00	0.25	0.66	0.5		Altered diorite porphyry
DD013	672	672.5	0.03	0.01	0.5	0.39	0.2		Altered diorite porphyry


30 September 2022

App2,Fig1 . Plan View of Mt Cannindah showing CAE hole traces with down hole Cu assays in relation to historical holes . Downhole lab Cu plotted for CAE holes, CuEq intercepts annotated. Assays reported for CAE hole # 13 from 0m to 672.5m.


30 September 2022

App2,Fig2 . Plan View of Mt Cannindah showing CAE hole traces with down hole Au assays in relation to historical holes . Downhole lab Au plotted for CAE holes, CuEq intercepts annotated. Assays reported for CAE hole # 13 from 0m to 672.5m.

30 September 2022

App2,Fig3 . Plan View of Mt Cannindah showing CAE hole traces with down hole Ag assays in relation to historical holes . Downhole lab Ag plotted for CAE holes, CuEq intercepts annotated. Assays reported for CAE hole # 13 from 0m to 672.5m.

30 September 2022

ASX Code: CAE

Appendix 3: JORC Table 1. Section 1: Sampling Techniques and Data

Criteria	Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.) These examples should not be taken as limiting the broad meaning of sampling.	. Sampling results are based on sawn half core samples of both PQ ,HQ and NQ diameter diamond drill core. An orientation line was marked along all core sections. One side of the core was consistently sent for analysis and the other side was consistently retained for archive purposes. The orientation line was consistently preserved.
	Include reference to measures taken to ensure sampling representivity and the appropriate calibration of any measurement tools or systems used.	
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Half core samples were sawn up on a diamond saw on a metre basis for HQ,NQ diameter core and a 0.5m basis for PQ diameter core. Samples were forwarded to commercial NATA standard laboratories for crushing, splitting and grinding ,Laboratory used in this instance is Intertek Genalysis , Townsville. Analytical sample size was in the order of 2.5kg to 3kg.

Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.)	Drill type is diamond core. Core diameter at top of hole is PQ, below 30m core diameter is HQ and NQ.Triple tube methodology was deployed for PQ & HQ, which resulted in excellent core recovery throughout the hole.Core was oriented, utilizing an Ace Orientaion equipment and rigorously supervised by on-site geologist.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Core recovery was recorded for all drill runs and documented in a Geotechnical log. The Triple Tube technology and procedure ensured core recoveries were excellent throughout the hole.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Triple tube methodology ensure excellent core recoveries. Core was marked up in metre lengths and reconciled with drillers core blocks. An orientation line was drawn on the core. Core sampling was undertaken by an experienced operator who ensured that half core was sawn up with one side consistently sent for analysis and the other side was consistently

30 September 2022

Criteria	Explanation	Commentary
		retained for archive purposes. The orientation line was consistently preserved.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Core recoveries were good. An unbiased, consistent half core section was submitted for the entire hole, on the basis of continuous 1m sampling. 0.5m in the case of PQ.The entire half core section was crushed at the lab and then split, The representative subsample was then fine ground and a representative unbiased sample was extracted for further analysis.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies	Geological logging was carried out by well-trained/experienced geologist and data entered via a well-developed logging system designed to capture descriptive geology, coded geology and quantifiable geology. All logs were checked for consistency by the Principal Geologist. Data captured through Excel spread sheets and Explorer 3 Relational Data Base Management System. A geotechnical log was prepared.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel etc.) photography.	Logging was qualitative in nature. A detailed log was described on the basis of visual observations. A comprehensive Core photograph catalogue was completed with full core dry, full core wet and half core wet photos taken of all core.
	The total length and percentage of the relevant intersections logged.	The entire length of all drill holes has been geologically logged.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Half core samples were sawn up on a diamond saw on a metre basis for HQ, NQ diameter core and a 0.5m basis for PQ diameter core
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	All sampling was of diamond core
	For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples.	The above techniques are considered to be of a high quality, and appropriate for the nature of mineralisation anticipated. QA/QC protocols were instigated such that they conform to mineral industry standards and are compliant with the JORC code. Terra Search's input into the Quality Assurance (QA) process with respect to chemical analysis of mineral exploration diamond core samples includes the addition of both coarse blanks, Certified pulped Blanks, Certified and Internal matrix matched standards to each batch so that checks can be done after they are analysed. As part of the Quality Control (QC) process, Terra Search checks the resultant assay data against known or previously determined assays to determine the quality of the analysed batch of samples. An assessment is made on

30 September 2022

Criteria	Explanation	Commentary
		the data and a report on the quality of the data is compiled.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	The lab results are checked against visual estimations and PXRF sampling of sludge and coarse crush material.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The standard 2kg -5kg sample is more than appropriate for the grainsize of the rock-types and sulphide grainsize. The sample sizes are considered to be appropriate to represent the style of the mineralisation, the thickness and consistency of the intersections.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	After crushing splitting and grinding at Intertek/Genalysis lab Townsville samples were assayed for gold using the 50g fire assay method The primary assay method used is designed to measure both the total gold in the sample as per classic fire assay.
		The total amount of economic metals tied up in sulphides and oxides such as Cu, Pb, Zn, Ag, As, Mo, Bi,S is captured by the 4 acid digest method ICP finish. This is regarded as a total digest method and is checked against QA-QC procedures which also emploty these total techniques. Major elements which are present in silicates, such as K, Ca, Fe, Ti, Al, Mg are also digested by the 4 acid digest Total method. The techniques are considered to be entirely appropriate for the porphyry, skarn and vein style deposits in the area. The economically important elements in these deposits are contained in sulphides which is liberated by 4 acid digest, all gold is determined with a classic fire assay.
	For geophysical tools, spectrometers, handheld XRF instruments, etc. the parameters used in determining the analysis including instrument make and model, reading times, calibration factors applied and their derivation, etc.	Magnetic susceptibility measurements utilizing Exploranium KT10 instrument, zeroed between each measurement. No PXRF results are reported here. although PXRF analysis has been utilized to provide multi-element data for the prospect and will be reported separately. The lab pulps are considered more than appropriate samples for this purpose. PXRF Analysis is carried out in an airconditioned controlled environment in Terra Search offices in Townsville. The instrument used was Terra Search's portable Niton XRF analyser (Niton 'trugeo' analytical mode) analysing for a suite of 40 major and minor elements. in. The PXRF equipment is set up on a bench and the sub-sample (loose powder in a thin clear plastic freezer bag) is placed in

30 September 2022

Criteria	Explanation	Commentary
		lead-lined stand. An internal detector autocalibrates the portable machine, and Terra Search standard practice is to instigate recalibration of the equipment every 2 to 3 hours. Readings are undertaken for 60 seconds on a circular area of approximately 1cm diameter. A higher number of measurements are taken from the centre of the circle and decreasing outwards. PXRF measures total concentration of particular elements in the sample. Reading of the X-Ray spectra is effected by interferences between different elements. The matrix of the sample eg iron content has to be taken into account when interpreting the spectra. The reliability and accuracy of the PXRF results are checked regularly by reference to known standards. There are some known interferences relevant to particular elements eg W & Au; Th & Bi, Fe & Co. Awareness of these interferences is taken into account when assessing the results.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks, and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	by-batch basis, Terra Search has well established sampling protocols including blanks (both coarse & pulped), certified
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	S Significant intersections were verified by
	The use of twinned holes.	There has been little direct twinning of holes, the hole reported here pass close to earlier drill holes, assay results and geology and assay results are entirely consisted with previous results.
	Documentation of primary data, data entry procedures, data verifications, data storage (physical and electronic) protocols.	Data is collected by qualified geologists and experienced field assistants and

30 September 2022

Criteria	Explanation	Commentary
		Data is imported into database tables from the Excel spreadsheets with validation checks set on different fields. Data is then checked thoroughly by the Operations Geologist for errors. Accuracy of drilling data is then validated when imported into MapInfo.
		Location and analysis data are then collated into a single Excel spreadsheet. Data is stored on servers in the Consultants office and also with CAE. There have been regular backups and archival copies of the database made. Data is also stored at Terra Search's Townsville Office. Data is validated by long-standing procedures within Excel Spreadsheets and Explorer 3 data base and spatially validated within MapInfo GIS.
	Discuss any adjustment to assay data.	No adjustments are made to the Commercial lab assay data. Data is imported into the database in its original raw format.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collar location information was originally collected with a Garmin 76 hand held GPS. X-Y accuracy is estimated at 3-5m, whereas height is +/- 10m.Coordinates have been reassessed with DGPS, Accuracy is sub 0.5m in X,Y,Z. Down hole surveys were conducted on all holes using a Reflex downhole digital camera. Surveys were generally taken every 30m downhole, dip, magnetic
	Specification of the grid system used.	azimuth and magnetic field were recorded. Coordinate system is UTM Zone 55 (MGA) and datum is GDA94
	Quality and adequacy of topographic control.	Pre-existing DTM is high quality and available.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	At the Mt Cannindah mine area previous drilling program total over 100 deep diamond and Reverse Circulation percussion holes Almost all have been drilled in 25m to 50m spaced fences, from west to east, variously positioned over a strike length of 350m and a cross strike width of at least 500m Down hole sample spacing is in the order of 1m to 2m which is entirely appropriate for the style of the deposit and sampling procedures.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Previous resource estimates on Mt Cannindah include Golders 2008 for Queensland Ores and Helman & Schofield 2012 for Drummond Gold. Both these estimates utilised 25m to 50m fences of west to east drillholes, but expressed concerns regarding confidence in assay continuity both between 50m sections and

30 September 2022

Criteria	Explanation	Commentary
		between holes within the plane of the cross
		sections. The hole reported here addresses some of the concerns about
		grade continuity, by linking mineralisation
		from section to section and also in the
		plane of the cross sections. Further drilling
		is necessary to enhance and fine tune the
		previous Mineral Resource. estimates at
		Mt Cannindah and lift the category from
		Inferred to Indicated and Measured and
	Whether sample compositing has been	compliant with JORC 2012 No sample compositing has been applied,
	applied.	Most are 0.5m to 1m downhole samples
Orientation of data in	Whether the orientation of sampling	The main objective of hole 22CAEDD013
relation to geological	achieves unbiased sampling of possible	reported here is to explore the southern &
structure	structures and the extent to which this is	south-western end of the Mt Cannindah
	known, considering the deposit type.	Deposit for high-grade copper bearing
		breccia. Yr 2021-2022 CAE holes in this area are 21CAEDD007, 21CAEDD008.
		Both these holes intersected thick zones
		of copper mineralised breccia. Some
		steep, south east striking gold bearing
		structures were also intersected deeper in
		hole # 7. CAE hole # 13 is collared very
		close (within 1m or so) of CAE hole #8. The azimuth of CAE #13 is 211 degrees
		magnetic, ie making a difference in drill
		direction between the trace of hole # 7 &
		8 and hole # 13 of 50 degrees (magnetic).
		Hole # 13 was planned to drill away from
		the known copper bearing breccia
		intersections in hole # 7 & 8, to the SW. It was also proposed that CAE hole #13 test
		was also proposed that CAE hole #13 test whether there are links connecting
		mineralisation in hole 8 with scattered and
		discontinuous, copper intercepts present
		in previous drilling to the south. In
		contrast to historic drilling in this section
		of the deposit, CAE # 13 was drilled to the
		south-west on a magnetic bearing at the collar of 211 degrees The hole started in
		mineralized breccia. The Infill breccia is
		massive textured , recent interpretation
		suggests the clasts are slabby and have
		an imbrication or preferred orientation,
		that is gently to moderately dipping to the
		east or north east, in the case of hole
		22CAEDD013, the alignment of slabs is west north west direction and dipping to
		the north north east. If this is the case, the
		inclination of hole # 13 suggest that it is
		drilling right angles to the fabric of the
		breccia and down the long axis of the
		breccia, ie at a right angle to the slab
		layering. Pre and post mineral dykes cut
		the drill hole , generally in two orientations , east west, and north south ,
		, cast west, and north south ,
	If the relationship between drilling	The Infill breccia is massive textured ,
	orientation and the orientation of key	recent interpretation suggests the clasts
	mineralised structures is considered to	may have an imbrication or preferred

30 September 2022

ASX Code: CAE

Criteria	Explanation	Commentary
VIII VIII VIII VIII VIII VIII VIII VII	have introduced a sampling bias, this should be assessed and reported if material.	orientation, that is gently to moderately dipping to the east or south east. Many structures and lithological contacts are striking north south, or north north east, dipping east so the westerly drill direction is entirely appropriate. No sampling bias is evident in the logging, or the presentation of results or drill cross and long sections. Steep structures are evident and with steep inclined holes these are cut at oblique angles. The breccia zone at Mt Cannindah is of sufficient width and depth that drillhole 21CAEDD013 provides valuable unbiased information concerning grade continuity of the breccia body. The complete geometry of the breccia body is unknown at this stage. Similarly, vein structures have several orientations and only in certain instances is it evident that vein orientations have introduced a sampling bias. These are well documented with oriented core. From preliminary investigation of the grade model It is anticipated that there is little overall evidence of any sampling bias in the CAE drilling at Mt Cannindah.
Sample security	The measures taken to ensure sample security.	Chain of custody was managed by Terra Search Pty Ltd. Core trays were freighted in sealed & strapped pallets from Monto were they were dispatched by Terra Search . The core was processed and sawn in Terra Search's Townsville facilities and half core samples were delivered by Terra Search to Intertek/Genalysis laboratory Townsville lab.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	There have been numerous independent reviews carried out on the Mt Cannindah project. reviewing sampling, data sets, geological controls, the most notable ones are Newcrest circa 1996; Coolgardie Gold1999; Queensland Ores 2008;Metallica ,2008; Drummond Gold, 2011; CAE 2014.

APPENDIX 2 – JORC Code Table 2

Section 2: Reporting of Exploration Results

Mineral tenement and	Type, reference name/number, location	Exploration conducted on MLs 2301,
land tenure status	and ownership including agreements or	2302, 2303, 2304, 2307, 2308, 2309, EPM
	material issues with third parties such as	14524, and EPM 15261. 100% owned by
	joint ventures, partnerships, overriding royalties, native title interests, historical	Cannindah Resources Pty Ltd.
	sites, wilderness or national and	The MLs were acquired in 2002 by
	environmental settings.	Queensland Ores Limited (QOL), a
		precursor company to Cannindah
		Resources Limited. QOL acquired the
		Cannindah Mining Leases from the
		previous owners, Newcrest and MIM, As

30 September 2022

ASX Code: CAE

part of the purchase arrangement a 1.5% net smelter return (NSR) royalty on any production is payable to MIM/Newcrest and will be shared 40% by MIM and 60% by Newcrest.

An access agreement with the current landholders in in place.

<1% CuEq%. The standard cut-off for reporting of total aggregate Cu mineralized zones is 0.15% CuEq% allowing for 15m of internal waste. No cut-offs have been

		landholders in in place.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	No impediments to operate are known.
Exploration done by other parties	Acknowledgement and appraisal of exploration by other parties.	Previous exploration has been conducted by multiple companies. Data used for evaluating the Mt Cannindah project include: Drilling & geology, surface sampling by MIM (1970 onwards) drilling data Astrik (1987), Drill,Soil, IP & ground magnetics and geology data collected by Newcrest (1994-1996), rock chips collected by Dominion (1992), Drilling data collected by Coolgardie Gold (1999), Queensland Ores (2008-2011), Planet Metals-Drummond Gold (2011-2013). Since 2014 Terra Search Pty Ltd, Townsville QLD has provided geological consultant support to Cannindah Resources.
Geology	Deposit type, geological setting and style of mineralisation.	Breccia and porphyry intrusive related Cu- Au-Ag-Mo , base metal skarns and shear hosted Au bearing quartz veins occur adjacent to a Cu-Mo porphyry.
Drill hole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • Easting and northing of the drill hole collar • Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • Dip and azimuth of the hole • Down hole length and interception depth • Hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	A major drill data base exists for the Mt Cannindah district amounting to over 400 holes. Selected Cu and Au down hole intervals of interest have been listed in CAE's ASX announcement, March,2021.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high-grades) and cut-off grades are	The standard cut-off for reporting of high- grade Cu zones in hole 22CAEDD013 reported here is 1% Cu equivalent, allowing for 3m of internal waste grading

usually Material and should be stated.

30 September 2022

ASX Code: CAE

Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations be shown in detail

routinely applied in reporting of the historical drill results .

The Cu-Au-Ag breccia style mineralisation at Mt Cannindah is developed over considerable downhole lengths. The breccia is generally mineralised, although copper grade and sulphide content is variable. In addition pre and post mineral dvkes and intrusive bodies can mask the mineralisation .Down hole Cu-Au-Ag intercepts have been quoted both as a semi-continuous, aggregated down hole interval and also as tighter higher grade Cu-Au-Ag sections. In addition, historical results have been reported in the aggregated form displayed in the ASX Announcement for CAE, March, 2021, many times previously. There are some zones of high-grade which can influence the longer intercepts, All results are reported as down hole plotted 1m sampling intervals or tabulated with lower grade zones clearly noted. Aggregation of the longer intercepts at Mt Cannindah is analysis advantageous for comparison of historical and recently collected drill data.

The standard aggregate conventions for reporting of high-grade Cu zones in holes drilled by CAE since July 2021 is 1% Cu equivalent, allowing for 3m of internal waste grading <1% CuEq%. The standard cut-off for reporting of total aggregate Cu mineralized zones is 0.15% CuEq% allowing for 15m of internal waste.

The assumptions used for any reporting of metal equivalent values should be clearly restated

A copper equivalent has been used to report the wider copper bearing intercepts that carry Au and Ag credits with copper being dominant.

Previous holders have undertaken preliminary metallurgical test work. We have confidence that existing metallurgical processes would recover copper, gold and silver from Mt Cannindah.

We have confidence that the Mt Cannindah ores are amenable to metallurgical treatments that result in equal recoveries. This confidence is reinforced by some preliminary metallurgical test work by previous holders, geological observations and our geochemical work which established a high correlation between Cu,Au,Ag.

The full equation for Copper Equivalent is:

CuEq/% = (Cu/% * 92.50 * CuRecovery + Au/ppm * 56.26 * AuRecovery + Ag/ppm * 0.74 * AgRecovery)/(92.5* CuRecovery)

30 September 2022

ASX Code: CAE

When recoveries are equal this reduces to the simplified version:

CuEq/% = (Cu/% * 92.50 + Au/ppm * 56.26 + Ag/ppm * 0.74)/ 92.5

We have applied a 30 day average prices in USD for Q4,2021, for Cu, Au , Ag , specifically copper @ USD\$9250/tonne, gold @ USD\$1750/oz and silver @ USD\$23/oz. This equates to USD\$92.50 per 1 wt %Cu in ore, USD\$56.26 per 1 ppm gold in ore, USD\$0.74 per 1 ppm silver in ore .As these prices are similar to current Q1-Q2,2022 averages, CAE has maintained these prices in order to allow consistent reporting from 2021 to 2022.

We have conservatively used equal recoveries of 80% for copper, 80% for gold , 80% for Ag and applied to the CuEq calculation.

Relationship between mineralisation widths and intercept lengths

The relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported

If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. down hole length, true width not known).

22CAEDD013 reported here is an angled hole, inclined 65 degrees to the south-west (magnetic azimuth 211 degrees at the drill collar). The hole is collared on gossanous breccia and drills into the primary section of the sulphidic breccia body.

. The Mt Cannindah Infill breccia is massive textured , recent interpretation suggests the clasts may have an imbrication or preferred orientation, that is relatively flat dipping to the east or south east. If this is the case, the holes drilled vertically or from east to west , or in the case of hole 22CAEDD013 drilling SW, holes may be actually be drilling orthogonal to the layering in the breccia.. Pre and post mineral dykes cut the drill hole , generally in two orientations , east west, and north south ,

As the breccia geometry is still to be established, the true attitude and thickness of the mineralisation is unknown at this stage.

Previous resource estimations at Mt Cannindah model the breccia body as elongated NNE-SSW and at least 100m plus thick in an east west direction. Previous estimations indicate a potentially depth extension to 350m plus.. The breccia body geometry, as modelled at surface has the long axis oriented NNE-SSW. In this context hole 22CAEDD013 probes the southern boundary of the mineralised envelope interpreted around the breccia body. The potential true width of the body may be oriented at an oblique angle to inclined hole 22CAEDD013. However, geological consultants, Terra

30 September 2022

ASX Code: CAE

Search argue that the dimensions of the mineralised body are uncertain, the longest axis could well be plunging to greater depths, and the upper and lower contacts, effectively the hanging and footwall contacts are still to be firmly established. The results of CAE hole 13 confirm that the breccia system is still open as an undrilled window to the south-west. Further investigation is required to establish the geometry of the mineralised breccia body in the north, south and down plunges of the Mt Cannindah deposit.

Sections and plans of the drillhole 22CAEDD013 reported here, are included in this report. Geological data is still being assembled at the time of this report.

Diagrams

Appropriate maps and sections (with scale) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.

Balanced reporting

Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high-grades and/or widths should be practised to avoid misleading reporting of Exploration Results.

The majority of 1m Cu,Au,Ag assays from the 0m to 672m section of hole 22CAEDD013 are listed with this report. In some instances , these have been reported as lithological and geochemical groups or sub-sets. Significant intercepts of Cu,Au,Ag are tabulated. All holes were sampled over their entire length, Reported intercepts have been aggregated where mineralization extends over significant down hole widths. This aggregation has allowed for the order of 10m-20m of non mineralized late dykes or lower grade breccia sections.to be incorporated within the reported intersections. In general, a lower value of 0.15% CuEq has been utilized for the aggregated results. Wider aggregations have been reported for comparative purposes, in respect of reporting assaying of the mineralized sections which extend over the entire hole length. Aggregated intersections that contain zones of internal waste are clearly identified. .

Other substantive exploration data

Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.

Further work

The nature and scale of planned further work (e.g. test for lateral extensions or depth extensions or large-scale step-out drilling).

The latest drill results from the Mt Cannindah project are reported here. The report concentrates on the Cu,Au, Ag results. Other data, although not material to this update will be collected and reported in due course.

Drill targets are identified and further drilling is required. Hole 2CAEDD013 targets the southern and south-western potential of the deposit and drills with a south-west azimuth. Hole # 13 is complete Hole 14 & 15 are drilling at the northern end of the main Cannindah breccia. Further drilling is planned at Mt

30 September 2022

updated to comply with JORC 2012 on the basis that the information has not materially changed since it was last

reported.

ASX Code: CAE

Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.

Cannindah Breccia.

Not yet determined, further work is being conducted.

APPENDIX 4- JORC Code Table 2

Section 3: Estimation and Reporting of Mineral Resources

Audits or Review	The results of audits and reviews of any ore resource Estimates.	There have been several resource estimations made over the various deposits at Mt Cannindah. These have been in the public domain for a number of years.
		The most recent resource statement by by Hellman & Schofield in 2011 is for Drummond Gold on the resource at Mt Cannindah itself. This was reported under the JORC 2004 code and has not been