

PETRATHERM LIMITED

ACN 106 806 884 ASX: PTR

www.petratherm.com.au admin@petratherm.com.au

ASX ANNOUNCEMENT

15/02/2023

Meteor Prospect - Exceptional Rare Earth Drill Intersections

HIGHLIGHTS

- Meteor Prospect drilling has defined a continuous substantial thick blanket of high-grade rare earth mineralisation (> 1000 ppm TREO), starting from a very shallow depth.
- Mineralisation typically starts from 3 metres depth with substantial intersections up to 38 metres of thickness, averaging 11.5 metres thickness over the Prospect Area. Potential for low-cost favourable free dig mining methods.
- Significant new drill intercepts include:

0	22ACCR372 -	38m @ 967 ppm TREO & 39 ppm Sc₂O₃ from 3m inc. 12m @ 1,690 ppm TREO & 38 ppm Sc₂O₃ from 18m
0	22ACCR373 -	27m @ 1,014 ppm TREO & 49 ppm Sc ₂ O ₃ from 3m inc. 3m @ 1,962 ppm TREO & 84 ppm Sc ₂ O ₃ from 6m
0	22ACCR374 -	24m @ 1,594 ppm TREO & 34 ppm Sc ₂ O ₃ from 6m inc. 6m @ 2,495 ppm TREO & 42 ppm Sc ₂ O ₃ from 6m
0	22ACCR379 -	24 m @ 1,030 ppm TREO & 46 ppm Sc ₂ O ₃ from 6m inc. 3m @ 2,144 ppm TREO & 54 ppm Sc ₂ O ₃ from 9m
0	22ACCR381 -	20m @ 921 ppm TREO & 35 Sc ₂ O ₃ from 3m inc. 9m @ 1,050 ppm TREO & 38 ppm Sc ₂ O ₃ from 9m
0	22ACCR386 -	21m @ 1,071 ppm TREO & 55 ppm Sc ₂ O ₃ from 3m inc. 3m @ 1,716 ppm TREO & 61 ppm Sc ₂ O ₃ from 6m
0	22ACCR393 -	21m @ 1,018 ppm TREO & 46 ppm Sc ₂ O ₃ from 3m inc. 3m @ 2,086 ppm TREO & 54 ppm Sc ₂ O ₃ from 3m
0	22ACCR395 -	18m @ 1,121 ppm TREO & 37 ppm Sc ₂ O ₃ from 6m inc. 3m @ 2,340 ppm TREO & 69 ppm Sc ₂ O ₃ from 9m
0	22ACCR396 -	21m @ 1,266 ppm TREO & 43 ppm Sc ₂ O ₃ from 3m inc. 3m @ 1,947 ppm TREO & 61 ppm Sc ₂ O ₃ from 12m
0	22ACCR404 -	21m @ 1,143 ppm TREO & 58 ppm Sc ₂ O ₃ from 9m inc. 3m @ 2,200 ppm TREO & 84 ppm Sc ₂ O ₃ from 12m

- Mineralisation is open laterally with significant potential for additional mineralisation discoveries.
- High-value magnet rare earths up to 746 ppm MREO and average 242 ppm MREO (26% of TREO's).
- PTR has begun metallurgical leach optimisation trials to test feasibility of using simple heap leach extraction process.

OVERVIEW

Petratherm Limited (ASX: **PTR**) is pleased to report rare earth (REE) drill results from the Meteor Prospect, located in the Comet Project Area of the Northern Gawler Craton of South Australia (Figure 1). Drilling was undertaken in December 2022 over the central portion of the prospect and comprised infill grid drilling to 100 metre spacing. 47 vertical air-core holes were drilled through the clay weathering profile with an average hole depth of 26 metres.

A continuous blanket of high-grade, >1000 ppm Total Rare Earth Oxide (TREO), mineralisation starting from shallow depths (3-6 metres), and over substantial vertical thicknesses downhole (up to 38 metres) has been defined.

Commenting on these results, Petratherm's Chief Executive Officer Mr Peter Reid said:

"The Meteor Prospect results are highly encouraging, demonstrating excellent clay hosted rare earth grades, intercept thicknesses and continuity between drill holes. The mineralisation starts at just a few metres below surface in the soft weathering profile allowing the potential for low-cost free dig mining.

The shallow clay hosted mineralisation has formed over a layered mafic complex and potential remains for additional rare earths in the basement rock below.

The Company intends to advance the high-quality emerging Meteor Prospect and in parallel extend exploration out into new areas with currently only 10% of the project area tested. Excellent upside potential remains to uncover additional REE mineralisation"

Results

In all, 43 drill holes from the current program at the Meteor Prospect (91% of holes drilled) returned significant mineralised REE intercepts. These results are presented in Table 1. As currently defined, the REE mineralisation spans an approximate 2,000 metre by 1,000 metre area and remains open in several directions (Figure 1).

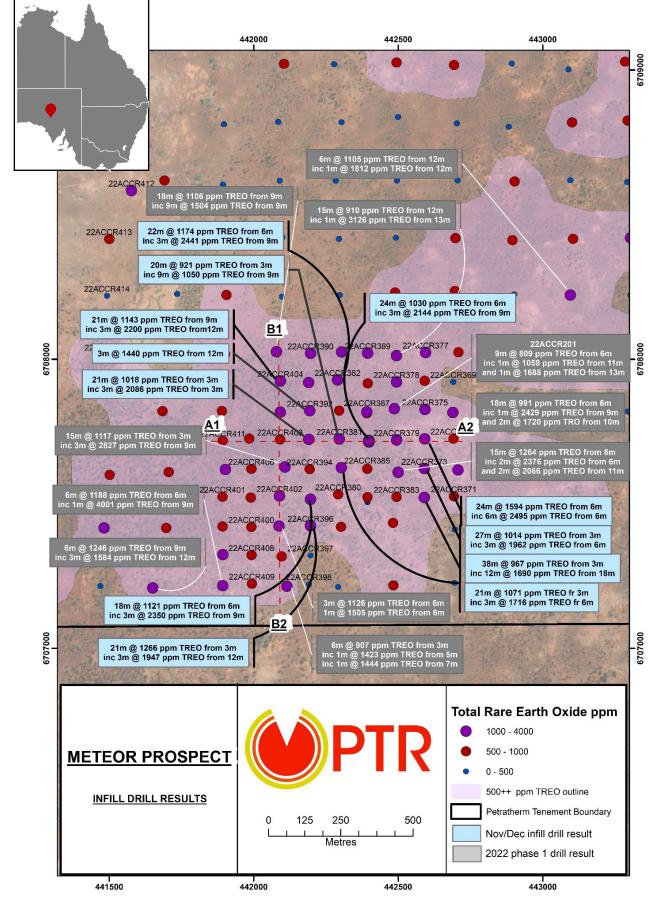
Mineralisation has proven to be highly continuous and several zones contain adjacent drill holes assaying >1000 ppm TREO intervals over thicknesses greater than 20 metres. Three metre composite drill samples were assayed and grades up to 2,829 ppm TREO were reported. Meteor contains good concentrations of high-value magnet rare earths (MREO) averaging 26% of TREO (Table 1), with a highest MREO composite sample returning 746 ppm. Across the prospect the average MREO drill intercept grade is 242 ppm.

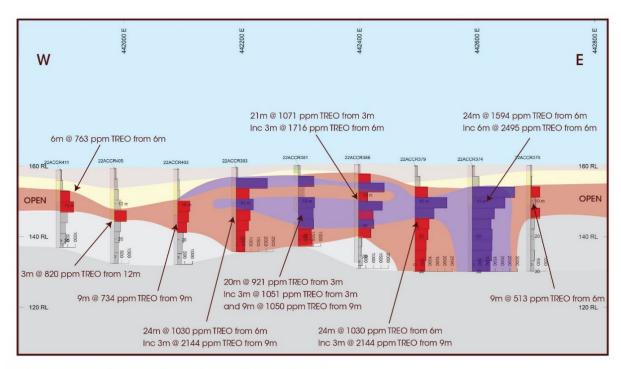
These latest results build on the initial drilling at Meteor (refer to PTR ASX releases 20/4/2022 & 28/10/2022) and demonstrate encouraging grades and continuity over the prospect. This new drill data will be used to aid future JORC Resource estimation.

Meteor Prospect Cross-Sections

The drill results presented are 3 metre composite samples from the 100-metre spaced air core drilling program. West-East and North-South cross-sections over the Meteor Prospect show an upper high-grade (1,000 to 2,800 ppm TREO) zone of enrichment within the saprolite clay (Figure 2). This is surrounded by a broader mineralised envelope ranging between 500 to 1000 ppm TREO which often extends below the high-grade pod into the saprolite zone below.

A potentially important feature shown in the West-East cross-section (Figure 2, section A1-A2) is a possible subvertical zone of rare earth enrichment located on the eastern edge of the currently defined mineralised area. Drill hole 22ACCR374 intersected 24m @ 1594ppm TREO from 6m to end of hole. This may be an indication of a primary rare earth zone in the basement rock below or a mineralised structure (fault), providing a possible source for the rare earths. PTR will investigate this further as a potential primary source of rare earths.




Figure 1 Meteor Prospect - Summary Drill Results.

М	eteor	Pros	pect - :	1 Met	re Split S	Signif	icant	REE Ir	nterce	pts Ta	able (>500	ppm 1	reo)	
Drill Hole	From	То	Interval	TREO	Scandium	Praseo	dumin.	-	Value · /mium	· Magne Terb			(MREO) osium	Total	MPEO
Drill Hole					Sc ₂ O ₃	Pr ₆	0 ₁₁	Nd	₂ O ₃	Τb	07	Dy	۲O ₃		
22ACCR370	metres 6	metres 15	metres 9	_{ppm} 513	28	_{ppm} 24	% TREO 5	^{ppm} 92	% TREO 18	2.4	% TREO 0.5	_{ppm} 12.4	% TREO	_{ppm} 131	%TREO 25
22ACCR370	9	12	3	600	61	30	5	135	23	2.4	0.4	12.4	2.1	180	30
22ACCR372	3	41	38	967	39	54	6	202	21	2.0	0.2	8.5	0.9	267	28
inc	18	30	12	1690	38	95	6	345	20	2.7	0.2	11.3	0.7	454	27
22ACCR373	3	30	27	1014	49	60	6	221	22	2.4	0.2	10.7	1.1	294	29
inc inc	6 18	9 24	3	1962	84	127 66	6	478 232	24 21	4.1	0.2	17.2 10.9	0.9	626 312	32
inc 22ACCR374	6	30	6 24	1125 1594	50 34	89	6	299	19	3.2	0.2	10.9	0.9	406	28 25
inc	6	12	6	2495	42	146	6	490	20	5.3	0.2	24.3	1.0	666	27
inc	6	9	3	2829	38	170	6	550	19	4.7	0.2	20.7	0.7	745	26
22ACCR375	9	18	9	922	36	49	5	173	19	2.7	0.3	13.4	1.5	238	26
inc	10	17	7	1289	72	74	6	260	20	3.5	0.3	16.1	1.2	354	27
22ACCR376	6	15	9	623	49	31	5	120	19	2.6	0.4	14.3	2.3	168	27
22ACCR377	6 9	15 12	9 3	833 1186	28 31	45 63	5 5	161 227	19 19	2.8 4.1	0.3	13.8 20.7	1.7 1.7	223 315	27 27
inc 22ACCR378	3	24	21	765	54	39	5	143	19	2.6	0.3	14.0	1.7	199	27
inc	9	15	6	1057	73	48	5	183	17	4.1	0.4	25.8	2.4	261	25
22ACCR379	6	30	24	1030	46	52	5	186	18	3.1	0.3	16.4	1.6	257	25
inc	9	12	3	2144	54	108	5	392	18	7.1	0.3	35.0	1.6	542	25
22ACCR380	6	9	3	516	31	30	6	103	20	1.7	0.3	8.0	1.6	143	28
22ACCR381	3	23 6	20 3	921 1051	35 31	52 62	6 6	178 210	19 20	2.0 2.4	0.2	8.9 10.3	1.0 1.0	241 285	26 27
inc inc	3 9	6 18	3	1051	31 38	62 58	6	210	19	2.4	0.2	10.3	1.0	285	27
22ACCR382	6	28	22	1174	51	66	6	202	19	2.4	0.2	11.4	1.0	304	26
inc	9	12	3	2441	92	138	6	474	19	5.9	0.2	23.0	0.9	641	26
22ACCR383	3	15	12	681	40	33	5	128	19	1.9	0.3	9.5	1.4	172	25
22ACCR384	12	15	3	848	61	39	5	152	18	2.9	0.3	16.6	2.0	211	25
22ACCR385	9	12	3	555	38	30	5	110	20	1.8	0.3	8.0	1.4	150	27
22ACCR386	3	24 9	21 3	1071	55	52	5	159	15	3.3	0.3	16.2 24.1	1.5	231	22 29
inc 22ACCR387	6 9	9 24	3 15	1716 744	61 44	92 40	5 5	384 150	22 20	5.3 2.4	0.3	24.1 11.5	1.4 1.5	505 204	29
inc	12	15	3	1423	54	83	6	325	23	4.7	0.3	19.5	1.4	432	30
22ACCR388	12	15	3	820	77	36	4	159	19	3.5	0.4	20.1	2.5	219	27
22ACCR389	9	18	9	926	56	44	5	173	19	3.1	0.3	16.8	1.8	237	26
inc	9	12	3	1731	46	85	5	336	19	5.9	0.3	29.2	1.7	456	26
22ACCR390	9	18	9	880	54	43	5	159	18	2.0	0.2	8.6	1.0	212	24
inc 22ACCR391	9 9	12 18	3 9	1201 931	54 66	54 46	4 5	190 160	16 17	2.4 2.7	0.2	9.2 12.6	0.8	256 221	21 24
inc	12	18	3	1328	92	40 65	5	252	17	3.5	0.3	12.0	1.4	338	24
and	27	29	2	743	15	37	5	135	18	1.2	0.2	5.2	0.7	178	24
22ACCR392	12	15	3	1440	61	65	5	257	18	3.5	0.2	18.4	1.3	344	24
22ACCR393	3	24	21	1018	46	51	5	195	19	2.4	0.2	11.5	1.1	260	26
inc	3	6	3	2086	54	111	5	416	20	4.1	0.2	20.1	1.0	551	26
22ACCR394	12	15	3	874	38	45	5	170	19	2.4	0.3	12.6	1.4	230	26
and 22ACCR395	21 6	24 24	3 18	870 1121	31 37	42 57	5 5	152 211	17 19	1.8 2.5	0.2	8.0 10.0	0.9	204 280	23 25
inc	9	12	3	2350	69	120	5	458	19	4.7	0.2	18.9	0.9	601	25
22ACCR396	3	24	21	1266	43	64	5	250	20	2.9	0.2	13.9	1.1	331	26
inc	12	15	3	1947	61	92	5	390	20	6.5	0.3	36.8	1.9	525	27
22ACCR399	3	9	6	716	31	31	4	127	18	2.7	0.4	63.7	16.1	224	31
22ACCR400	6	9	3	519	69	16	3	70	13	3.5	0.7	23.5	4.5	113	22
22ACCR401 22ACCR402	6 6	15 12	9 6	661 813	46 61	29 36	4	119 148	18 18	3.3 3.8	0.5 0.5	18.7 20.4	2.8 2.5	170 208	26 26
inc	6	9	3	813 1113	54	36 53	4 5	210	18	3.8 4.7	0.5	20.4	2.5	208	26
22ACCR403	9	18	9	734	28	37	5	130	19	2.0	0.4	10.1	1.4	179	24
22ACCR404	9	30	21	1143	58	62	5	230	20	3.4	0.3	15.1	1.3	310	27
inc	12	15	3	2200	84	124	6	464	21	5.9	0.3	25.2	1.1	619	28
22ACCR405	12	15	3	820	23	42	5	157	19	2.9	0.4	12.6	1.5	215	26
22ACCR406	6	18	12	709	33	38	5	140	20	2.2	0.3	9.8	1.4	190	27
22ACCR407	6	27	21	688	28	34	5	122	18	1.9	0.3	8.9	1.3	167	24
22ACCR408	6 9	13 15	76	813 762	43 50	39 37	5 5	146 148	18 19	3.2 3.8	0.4	16.6 20.7	2.0 2.7	205 210	25 27
22ACCR409 22ACCR410	9 6	24	18	657	33	37	5	148	19	3.8	0.5	20.7	2.7	160	24
inc	9	12	3	1242	53 54	53	4	213	17	4.1	0.3	26.4	2.1	297	24
22ACCR411	6	12	6	763	15	42	6	148	19	2.7	0.3	8.6	1.1	201	26
22ACCR412	9	18	9	688	41	38	6	143	21	2.2	0.3	10.1	1.5	193	28
inc	12	15	3	1000	54	58	6	223	22	2.9	0.3	13.8	1.4	298	30
22ACCR413	6	9	3	801	8	41	5	145	18	1.8	0.2	6.3	0.8	194	24
22ACCR415	6	12	6	591	38	24	4	100	17	3.2	0.5	17.8	3.0	145	25

Table 1 Meteor Prospect Infill Drilling (Dec 2022) - Table of Significant Results

Meteor - Cross Section A1 - A2

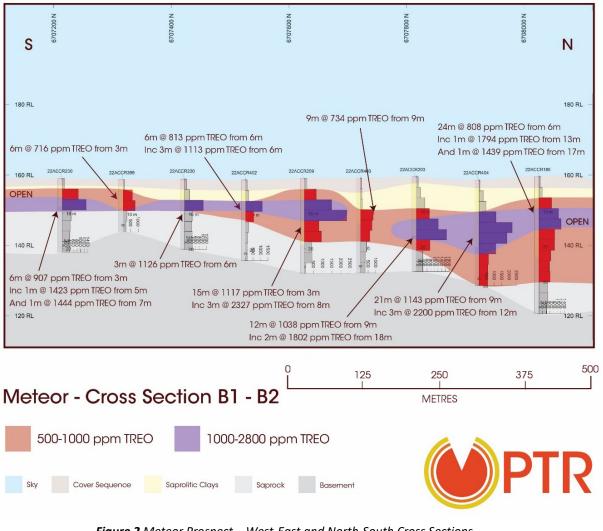


Figure 2 Meteor Prospect – West-East and North-South Cross Sections www.petratherm.com.au

Next Steps

The Company has begun early-stage metallurgical test work with a range of independent contractors and specialists to determine the nature of the REE mineralisation hosted within the clay dominated weathering profile. This work aims to develop an optimum extraction method using a heap-leach style process to produce a magnet rare earth salt. There is additionally potential to undertake beneficiation processes with simple mechanical separation of the finer clay fraction before leach extraction occurs, that may aid the overall project economics.

As part of the December drill campaign the Southern Zone REE anomaly (PTR ASX release 11/10/22) and other greenfield REE targets were tested (Figure 3). These results will become available for interpretation and reporting in the coming weeks. The Meteor Prospect results are highly encouraging and with less than 10% of its Comet Project holdings tested, there remains large up-side potential for the discovery of additional significant REE occurrences both in the clay weathering profile and the basement rock below.

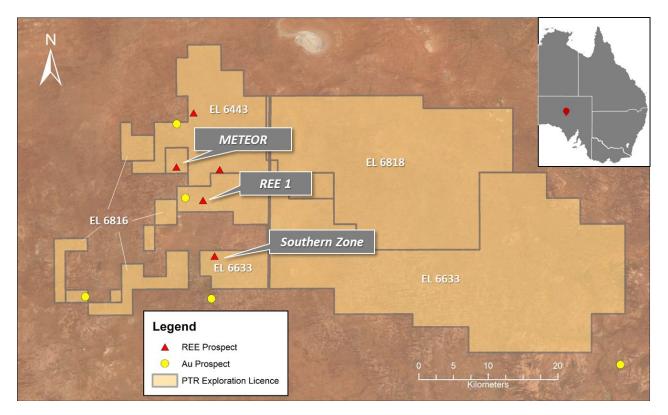


Figure 3 – Petratherm's 100% owned Comet Project Tenement Holdings, rare earth and gold prospects.

This ASX announcement has been approved by Petratherm's Board of Directors and authorised for release by Petratherm's Chairman Derek Carter.

For further information contact :

Peter Reid (Chief Executive Officer) Tel: 0435 181 705 E: preid@petratherm.com.au

Competent Persons Statement: The information in this report that relates to Exploration Targets and Exploration Results is based on information compiled by Mr Peter Reid, who is a Competent Person, and a Member of the Australian Institute of Geoscientists. Mr Reid is not aware of any new information or data that materially affects the historical exploration results included in this report. Mr Reid is an employee of Petratherm Ltd. Mr Reid has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Reid consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Hole ID	Easting MGA94	Northing MGA94	RL	Dip	Azimuth	EOH Depth
	Z53	Z53	metres	Deg.	Deg.	metres
22ACCR370	442691	6707725	160	-90	0	30
22ACCR371	442693	6707525	160	-90	0	22
22ACCR372	442590	6707521	160	-90	0	41
22ACCR373	442591	6707621	160	-90	0	30
22ACCR374	442592	6707724	160	-90	0	30
22ACCR375	442593	6707826	161	-90	0	25
22ACCR376	442592	6707925	161	-90	0	30
22ACCR377	442595	6708023	161	-90	0	27
22ACCR378	442494	6707921	161	-90	0	25
22ACCR379	442494	6707721	160	-90	0	30
22ACCR380	442292	6707532	159	-90	0	20
22ACCR381	442296	6707724	160	-90	0	23
22ACCR382	442290	6707928	161	-90	0	23
22ACCR383	442494	6707524	161	-90	0	18
22ACCR385	442393	6707529	159	-60	180	49
22ACCR384	442393	6707626	159	-60	180	23
22ACCR385	442393	6707723	160	-60	180	34
				-60	180	
22ACCR387	442391	6707824	161		180	30
22ACCR388	442394	6707923	161	-60		28
22ACCR389	442394	6708020	160	-90 -90	0	30
22ACCR390	442197 442190	6708020	160		-	30
22ACCR391 22ACCR392	442190	6707919 6707821	160 160	-90 -90	0	29 20
22ACCR392 22ACCR393	442194	6707723	160	-90	0	20
22ACCR393	442194	6707619	160	-90	0	24
22ACCR395	442196	6707515	159	-90	0	30
22ACCR396	442196		159	-90	0	26
22ACCR399	442097	6707318	159	-90	0	15
22ACCR400	441991	6707420	158	-90	0	30
22ACCR401	441892	6707524	158	-90	0	15
22ACCR402	442090	6707527	159	-90	0	23
22ACCR403	442091	6707722	159	-90	0	27
22ACCR404	442092	6707924	159	-90	0	30
22ACCR405	441984	6707725	159	-90	0	27
22ACCR406	441991	6707621	158	-90	0	22
22ACCR407	441990	6707521	159	-90	0	30
22ACCR408	441992	6707323	158	-90	0	13
22ACCR409	441993	6707224	159	-90	0	30
22ACCR410	441893	6707324	158	-90	0	30
22ACCR411	441892	6707718	159	-90	0	22
22ACCR412 22ACCR413	441577	6708583 6708415	158 157	-90	0	26 18
	441500			-90	_	18
22ACCR415	441494	6708016	156	-90	0	19

 Table 2- Meteor Prospect Infill Drilling (Dec 2022) - Drill Hole Collars

EL 6443 & EL 6633 (Comet Project) JORC Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse Au that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 A total of 47 drill holes were drilled at the Meteor prospect and infilled previous high-grade intercepts down to 100 metres spacing. During the program, samples were collected as three metre composite intervals from one metre drill samples stored individually in green bags. Composite samples were collected using a "spear" tool to collect representative samples from green bags. Composite samples were an average weight of 1.6 kg. A Differential GPS was used to record the location of each drill hole. The accuracy of this GPS is +/- 5cm.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Drill method consisted of Aircore. Hole diameters are 78 mm.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Aircore drilling methods were utilised throughout the duration of the program. Hole diameters are 78mm. A Geologist was on site for every drill hole to ensure that sample recoveries were appropriate.
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to	All samples were geologically logged by the on-site geologist.

Criteria	JORC Code explanation	Commentary
Sub- sampling techniques and sample preparation	 support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Geological logging is qualitative. Representative chip trays containing 1 m geological sub- samples were collected. All drillholes were geologically logged. Samples averaging 1.6 kg were collected for laboratory assay. It is considered representative samples were collected. Laboratory sample preparation includes drying and pulverizing of submitted sample to target of p80 at 75 um. Duplicate samples have been introduced into the sample stream by the Company. Standard samples were introduced into the sample stream by the Company, and the laboratory also completed standard assays. Laboratory analytical charge sizes are standard sizes and considered adequate for the material being assayed.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Bureau Veritas in Adelaide was used for analytical work. Samples were analysed in the following manner: Lithium Borate Fusion assayed by Inductively Coupled Plasma Atomic emission spectroscopy (ICP-AES) and Mass Spectrometry (ICP-MS) for 23 elements. For laboratory samples, the Company has introduced QA/QC samples at a ratio of one QA/QC samples at a ratio of one QA/QC samples. The laboratory introduces additional QA/QC samples (blanks, standards, checks).
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical 	 The Company has queried the results with Bureau Veritas to verify the accuracy of the results. No twinned holes were drilled in the program.

Criteria	JORC Code explanation	Cor	mmentar	у	
	and electronic) protocols. • Discuss any adjustment to assay data.	4 5 5 5 7 7 7 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8	were origir elemental converted concentrat ndustry st IREO = La ₂ Nd ₂ O ₃ + Sm + Tb ₄ O ₇ + E Er ₂ O ₃ + Tm + Y ₂ O ₃ MREO = Pr Dy ₂ O ₃ + Tb ₄	$O_{3} + CeO_{2} + O_{2}O_{3} + Eu_{2}O_{3} + Eu_{2}O_{3}O_{2}O_{3} + HO_{2}O_{3}O_{3} + HO_{2}O_{3}O_{3} + Yb_{2}O_{3}O_{3}O_{11} + Nd_{2}O_{3}O_{7}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$	ed in ave been oxide ne $Pr_6O_{11} + B_3 + Gd_2O_3$ $O_3 + B_4 + Lu_2O_3$ $O_3 + B_4$
			Element Name Ce Dy Er Eu Gd Ho La Lu Nd Pr Sc Sm Th Tm U Yb	Element Oxide CeO2 Dy2O3 Er2O3 Eu2O3 Gd2O3 Ho2O3 La2O3 Lu2O3 Nd2O3 Pr6O11 Sc2O3 Sm2O3 Tb4O7 ThO2 Tm2O3 U3O8 Y2O3 Yb2O3	Oxide Factor 1.2284 1.1477 1.1435 1.1579 1.1526 1.1455 1.1728 1.1371 1.1664 1.2082 1.5338 1.1596 1.1762 1.1379 1.1421 1.1793 1.2699 1.1387
Location of data points Data spacing and distribution	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	•	All maps a UTM grid have beer differentia accuracy o vertical ac Drill holes 100 metre infilled ard metre spa during the drilling. The data s distributio sufficient degree of grade con	and location (GDA94 Z5: a measured al GPS with of ± 5 cm ar ccuracy ±5 c were comp e spaced gri ound previo ceed lines dr e last phase spacing and on is though to establish geological is tinuity app C mineral re	hs are in a) and by a a lateral ad a cm. bleted on ds bus 200 rilled of t to be t the and ropriate

Criteria	JORC Code explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	The mineralisation is horizontal in basic form. As such, no sampling bias is introduced by the drill hole orientation.
Sample security	• The measures taken to ensure sample security.	 Company staff and contractors collected laboratory samples. Samples submitted were transported and delivered by Company staff or contractors to Bureau Veritas Adelaide.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• No independent audit of data has been completed to date.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 EL 6443 Comet and EL 6633 Gina are located 80km south south-west of Coober Pedy overlapping Ingomar and Commonwealth Hill Pastoral Stations. The tenements are located within the Woomera Prohibited Area (Amber Zone) and the Far North Prescribed Wells Area. <u>Native Title Holder:</u> SCD2011/001 Antakirinja Matu-Yankunytjatjara. The tenement is in good standing and no known impediments exist.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Previous exploration work includes; Surface Geochemical Sampling: Calcrete Airborne Geophysics: Magnetics & Radiometrics. Ground Geophysics: Magnetics and Gravity. Exploration Drilling: 202

Criteria	JORC Code explanation	Commentary
		Mechanised Auger, 103 Aircore, 9 Rotary Air, 27 Reverse Circulation & 3 Diamond.
Geology	• Deposit type, geological setting and style of mineralisation.	 The tenements are within the Northern Gawler Craton, South Australia Petratherm are exploring for gold and REE's. This release refers to REE mineralisation hosted in clays within the weathered saprolite profile.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 The type of drilling performed comprised vertical shallow holes to an approximate average depth of 30 metres. The drilling reduced the drill hole spacing from 200m completed during the previous phase to 100m spacing over the "central" part of the prospect. The drilling is designed to provide enough confidence in geochemical and geological modelling to allow for the calculation of a JORC resource by an independent party. All drillhole information pertaining to results within this release are tabulated in Table's 1 & 2 at the end of the release.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All reported drill results are true results as reported by Bureau Veritas. All results above 500 ppm TREO are reported in Table 1 of Significant Intercepts. A cut off value of 500 ppm TREO was used and values below 500pm are only included when said interval of no more than 3 metres is situated between a continuous run of samples with greater than 500 ppm + TREO.

Criteria	JORC Code explanation	Commentary
		 No assumptions of metal equivalent values were made or used.
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 47 Drill holes were drilled vertically at -90 degrees. Any relationship between mineralisation widths and intercepts lengths is not known. Five holes were drilled at -60 degrees to 180 south. TREO values reported are down hole length.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 See Figures in main body of release attached.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Results from 47 drill holes were assayed. Samples were digested using Lithium Borate Fusion and were assayed by ICP-MS and ICP- AES. All results above a cut off 500 ppm TREO are reported in the Table 1 of Significant Intercepts. All sample locations where REE grades are below 500 ppm TREO are also shown in the Figure 1 in the release.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 See attached ASX Release. Geological observations are included in that report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	See attached release.