

Cannindah Resources Limited

HIGH GRADE GOLD DISCOVERY IN HOLE 18 (18m@6.3g/tAu) OPENS UP SOUTHERN EXTENSION AT MT CANNNINDAH (171m @ 0.9g/t Au, 0.3% Cu,8 g/t Ag) Overall interval within polymetallic sulphidic breccia still

open at depth with further results pending.

Highlights include:

67m @ 1.96 g/t Au (195m-262m) , which includes :

41m @ 3.07 g/t Au, 0.34%Cu,14,4g/t Ag (2.32%CuEq*) (221m-262m), with high grade zone

18m @ 6.34 g/t Au, 0.18%Cu, 17.2g/t Ag (4.18%CuEq) (244m-262m) includes grades up to 23.93 g/t Au, 61g/t Ag.

Significant intercept length of 171m @ 0.89 Au, 0.31% Cu, 8.1 g/t Ag, (0.91 %CuEq) 103m-274m

Strong copper zone 138m – 159m:

21m @ 0.98%CuEq, 0.75% Cu, 0.22 g/t Au,11.0g/t Ag

High grade gold section of sulphidic hydrothermal infill breccia CAE hole# 18,255.3m. Interval 255m-256m : 1m @ 22.93g/t Au ,0.61 g/t Au,61.0 g/t Ag with elevated Zn.

Hydrothermal infill breccia CAE hole # 18, : 244m depth. Grey hornfels clasts , infill white calcite, clear quartz, brassy pyrite, black sphalerite. Interval 244m-245m : 1m @ 3.99 g/t Au, 0.24% Cu ,16.1 g/t Ag.

*Copper Equivalent calculation is based on metal prices using 30 day average prices in USD for Q4 2021. Further details are provided in the calculation table at page 18 of the text and in the JORC Table 1 at p-39.

Sector Sector

ASX Announcement

DATE: 23 March 2023

Fast Facts

Shares on Issue: 561,979,953

Market Cap (@\$0.16): \$89.92 M (As at 22/3/2023)

Board and Management

Tom Pickett - Executive Chairman

Dr Simon Beams - Non Executive Director

Geoff Missen - Non Executive Director

Michael Hansel - Non Executive Director

Garry Gill - Company Secretary

Company Highlights

- Exceptional exploration management
- Located within existing mining lease
- 100km from Gladstone Port
- Significant copper intercepts at flagship Mt Cannindah project over hundreds of metres
- New Gold discovery within current drill program at Mt Cannindah
- Expansion of current 5.5MT resource is the focus of the current program
- Large Gold portfolio with Piccadilly project 100km west of Townsville with existing mining lease and EPMs with large target areas yet to be drilled
- No debt

ASX RELEASE 23 March 2023 ASX Code: CAE

EXECUTIVE CHAIRMAN COMMENTS

"The gold numbers in Hole 18 are extremely impressive with a high grade hit of 41m at 3.07g/t Au including 18m at 6.3g/t Au. We started hole 18 with a strategy to link up some areas of interest from hole 13 and make an impact on the resource size. Hole 18 definitely accomplished everything we could ask for so far and we have more results to come. We have now delivered new intersections of gold, copper, silver and associated discoveries of mineralised breccia and high-grade gold bearing structures in the south-west extension of Mt Cannindah."

High grade gold section of sulphidic hydrothermal infill breccia CAE hole# 18, Interval 255m-256m : 1m @ 22.93g/t Au ,0.61 g/t Au,61.0 g/t Ag with elevated Zn

Strong copper zone in hydrothermal infill breccia CAE hole # 18, : 145.5m depth. Infill golden chalcopyrite, brassy pyrite, white calcite. Interval 145m-146m: 1m @ 1.38% CuEq, 1.14% Cu ,0.14 g/t Au,17.1 g/t Ag.

23 March 2023

ASX Code: CAE

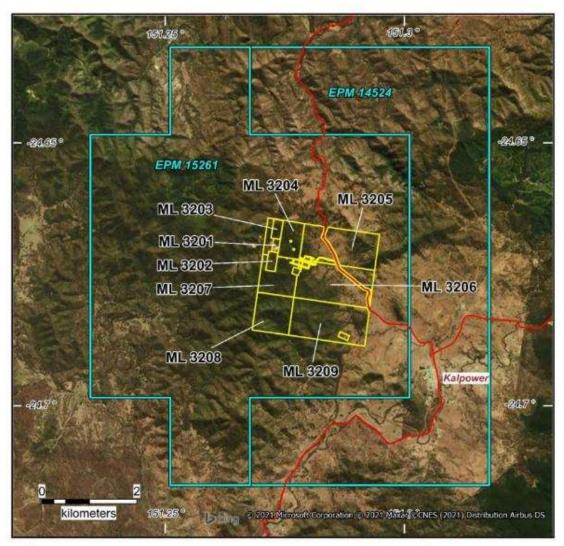


Fig 1. Location of Mt Cannindah Project in Central Queensland.

23 March 2023

ASX Code: CAE

Tenure

- EPM 14524 • 9 sub-blocks • ~ 28 sq km
- EPM 15261 • 14 sub-blocks • ~ 43.5 sq km
- MLs 3201-3209 (contiguous) • ~ 5.7 sq km

Total of 71.5 sq km of Exploration Permits & 5.7 sq km of Mining Leases

OWNERSHIP The Mt Cannindah Project is 100% owned by Cannindah Resources Limited

Mt Cannindah Projects

Mt Cannindah Mining Pty Ltd wholly owned subsidiary of

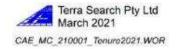


Fig 2. Mt Cannindah Project Tenure

Cannindah Resources Limited **ASX RELEASE**

23 March 2023

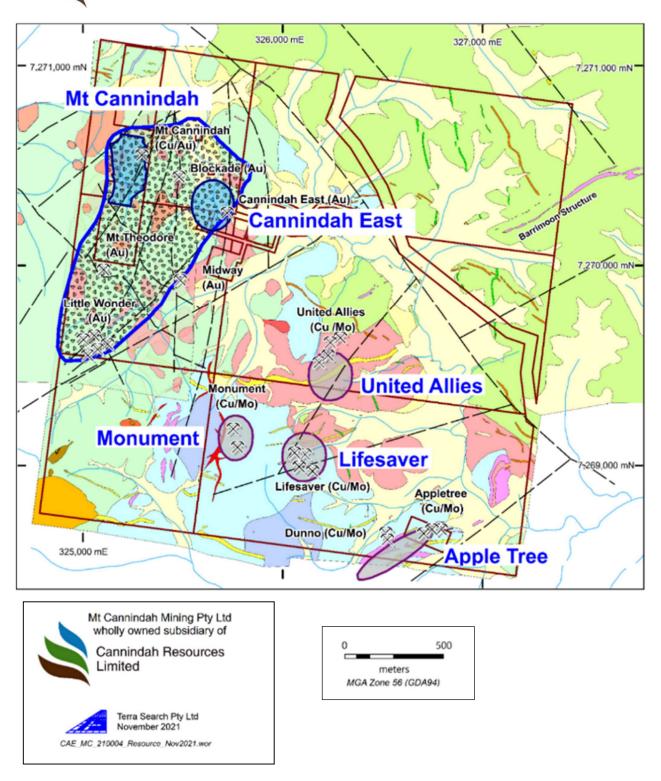


Fig 3. Mt Cannindah project Location of prospect areas and mineralised targets.

23 March 2023 ASX Code: CAE

TECHNICAL DETAILS & RESULTS OF TOP OF CAE HOLE 18 AT MT CANNINDAH

Cannindah Resources Limited ("Cannindah", "CAE") is pleased to announce the next set of completed assay results from the drilling program currently underway at Mt Cannindah, copper gold silver project south of Gladstone near Monto in central Queensland (Figs 1 to 3) pertaining to the top of hole 23CAEDD018. Interval 0m to 274m is reported here, with assay lab results awaited from the remainder of the hole from 274m to final depth 627.6m.

Hole 23CAEDD018 was collared to the south of the main drilled section of the Mt Cannindah mine area, targeting the extent and continuity of copper-gold -silver breccia and intrusive hosted mineralization that sub-parallel CAE hole # 13 intersected across section some 60m to the north-west see Fig 4.

Hole 13 (CAE ASX Announcement 30th September, 2022) reported the following:

- Drilled two extensive zones (approx. 100m downhole widths of 1% CuEq) within the primary zone of infill hydrothermal breccia.
 - (1) 36m to 140m: 104m @ 1.0% CuEq, (0.63% Cu, 0.41g/t Au, 14.1g/t Ag).
 - (2) 229m to 337m: 108m @ 1.01% CuEq, (0.57% Cu, 0.58g/t Au, 9.8g/t Ag.
- CAE Hole #13 also intersected some significant intervals of gold which are also prominent in other CAE drilling at Mt Cannindah (see ASX Announcement 21st March 2023 and Fig 5).
 - (1) **Om to 24m, 24m@ 2.11 g/t Au, 10.9 g/t Ag, 0.52 % Cu** a high grade oxidised gold zone from surface within gossanous hydrothermal infill breccia
 - (2) 314m to 329m: 15m @ 2.78g/t Au, which include 4m @ 6.50 g/t Au 9.8g/t Ag. The core of the system here is a prominent semi-massive sulphide infill zone, containing high grade gold with grades up to 22.98 g/t Au, 60.0 g/t Ag, with high Zn, Pb, elevated Bi.

The large downhole widths of mineralized breccia intersected in CAE hole #13 in September 2022, confirmed the potential of the Mt Cannindah breccia as CAE extends drilling to the south-west and south. The discovery of wide zones of mineralized breccia and high-grade gold structures in CAE Hole # 13 was highly significant, as previous, scattered, wide spaced, west to east, historic exploration drilling had only located patchy mineralised intersections to the south. CAE's drilling was designed to test the general geometry and extent of geological units such as breccias and mineralised structures and hopefully obtain better data through higher grade intercepts of copper, gold and silver grades. If CAE was able to discover new mineralization that links with intercepts such as those from CAE hole 13 and subsequent holes, then the new knowledge gained would create a great opportunity to expand the Mt Cannindah resource and understand the geological units to the south and south-west.

This exploration strategy has been successfully vindicated with the drilling of hole 18. CAE is pleased to announce new intersections of gold, copper, silver and associated discoveries of mineralised breccia and high grade gold bearing structures. In addition to results from Hole # 18 reported here, CAE is drilling Hole # 19 at the time of reporting, which traverses between

23 March 2023

ASX Code: CAE

Hole #13 and # 18. Geological observations and logging to date of Hole # 19 indicate intersections over 10s of metres of sulphidic, chalcopyrite bearing hydrothermal breccia dominated by clasts of hornfels with some porphyry diorite. Processing and assaying of material from the bottom of hole 18 and also hole 19 is underway. Results are awaited and will be reported in due course.

Hole # 18 drills in a south south westerly direction (magnetic direction at collar of 206 degrees). The highlights and details of the top of CAE hole # 18 are set out below. Table 1 lists the most significant aggregate intercepts from the top of Hole 18. Table 2 summarizes hole geology. A full listing of results 0m to 274m of hole 18 is presented in Appendix 1 to this report. The remainder of hole 18 from 274m to final depth 627.6m is still to be reported.

Down Hole Mineralized Zones Hole 23CAEDD018	From	То	m	CuEq %	Cu %	Au g/t	Ag g/t	S %
Aggregate Interval (Cut off 0.15% CuEq, allow 15m waste)	103	274	171	0.91	0.30	0.89	8.1	3.07
Includes Following Primary zones of sulphidic breccia. (Cut off 0.5% CuEq, allow 5m waste)	195	262	67	1.65	0.36	1.96	12.3	4.33
Includes sulphidic breccia. (Cut off 0.5% CuEq, allow 3m waste)	221	262	41	2.32	0.34	3.07	14.4	5.08
Includes high grade gold ,sulphide breccia. (Cut off 1.5% CuEq, allow 1m waste)	244	262	18	4.18	0.18	6.34	17.2	7.27
Includes Copper Zones :								
High Copper breccia section (Cut off 0.5% CuEq, allows 5m waste)	138	159	21	0.98	0.75	0.22	11.0	3.52
Copper breccia section (Cut off 0.5% CuEq, allows 5m waste)	170	187	17	0.63	0.40	0.23	10.9	1.70
Includes Bottom of assayed section (274m)								
Bottom Breccia with Au - still open at depth, results awaited, (Cut off 0.5% CuEq, allows 5m waste)	269	274	5	1.18	0.07	1.74	5.9	4.11

Table 1. Assay Highlights from Drillhole 23CAEDD018

Figs 4 to 6 present plans views of CAE Hole # 18 in relation to 2021-2023 CAE drillholes at Mt Cannindah, plotting respectively down hole traces of Cu, Au, Ag. The same data is plotted in Appendix 2 with CAE holes in relation to Historical holes, for Cu, Au, Ag (Fig App2.1 to Fig App 2.3).

Figs 7 to 9 present cross section of down hole assays of CAE Hole # 18, plotting respectively traces of Cu, Au, Ag.

CAE_MC_230006

ASX RELEASE

23 March 2023

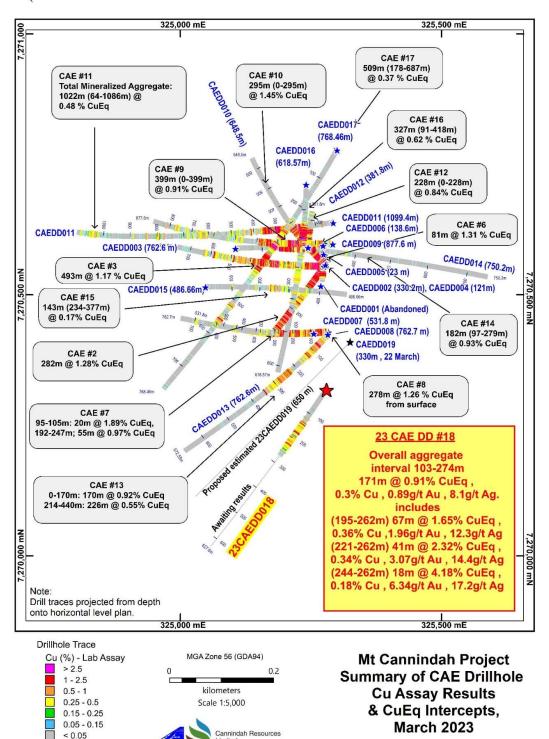
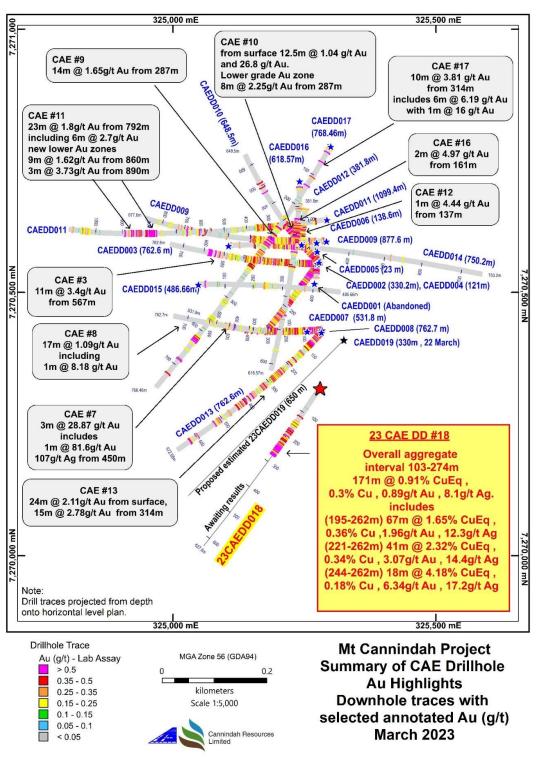



Fig 4. Plan view CAE Hole # 18 in relation to 2021-2023 CAE Drillholes Mt Cannindah. Downhole lab Cu plotted, CuEq intercepts annotated.

23 March 2023

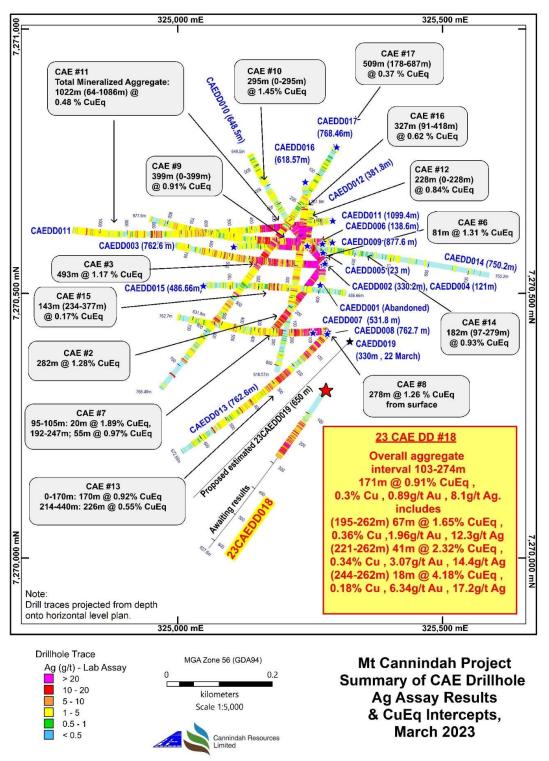

CAE_MC_230006

Fig 5. Plan view CAE Hole # 18 in relation to 2021-2023 CAE Drillholes Mt Cannindah. Downhole lab Au plotted, Selected gold results annotated.

23 March 2023

ASX Code: CAE

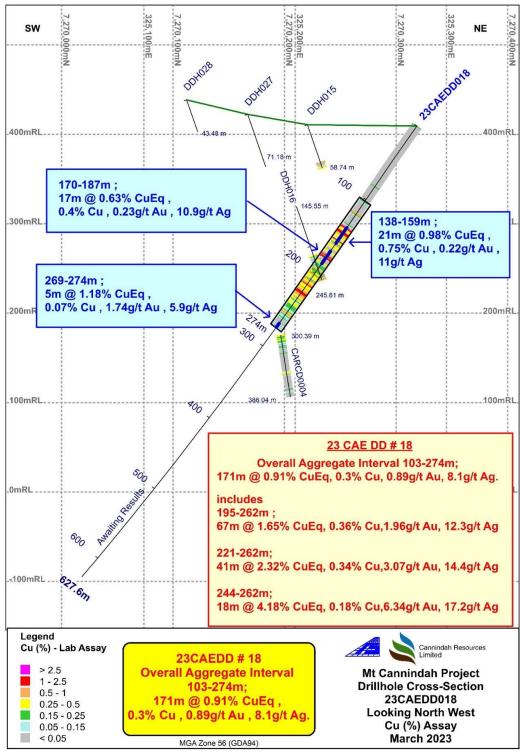

CAE_MC_230006

Fig 6 Plan view CAE Hole # 18 in relation to 2021-2023 CAE Drillholes Mt Cannindah. Downhole lab Ag plotted, CuEq intercepts annotated.

23 March 2023

ASX Code: CAE

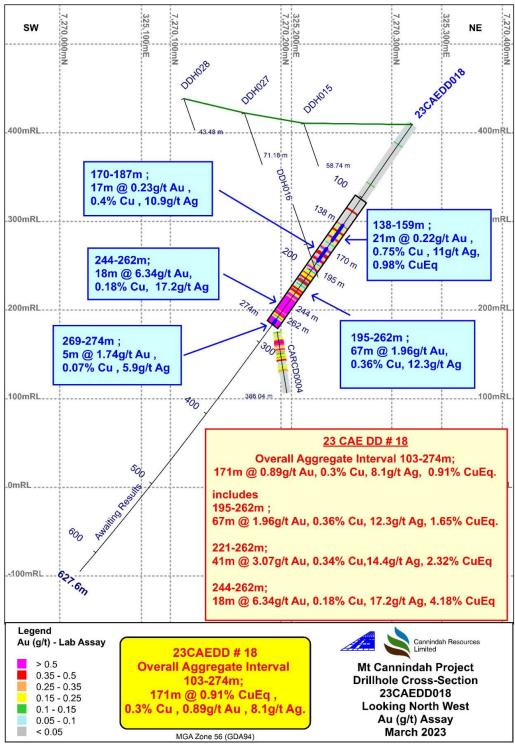

CAE_MC_230005

Fig 7. Cross section CAE Hole # 18 in relation to 2021-2023 CAE Drillholes and assayed historical holes at Mt Cannindah. Downhole lab Cu plotted, CuEq intercepts annotated.

23 March 2023

ASX Code: CAE

CAE_MC_230005

Fig 8. Cross section CAE Hole # 18 in relation to 2021-2023 CAE Drillholes and assayed historical holes at Mt Cannindah. Downhole lab Au plotted Au & Cu intercepts annotated.

23 March 2023

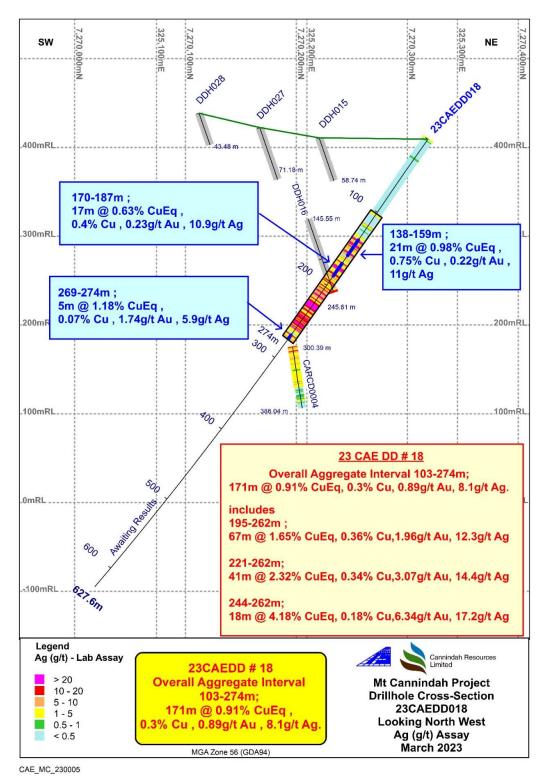


Fig 9. Cross section CAE Hole # 18 in relation to 2021-2023 CAE Drillholes and assayed historical holes at Mt Cannindah. Downhole lab Ag plotted, CuEq intercepts annotated.

23 March 2023

ASX Code: CAE

Summary geology for CAE hole 22CAEDD018, colour coded according to geological unit is presented in Table 2.

From Depth (m)	To Depth (m)	Summary Geology Hole 22CAEDD018
0	18	Oxidised high;y fractured, flinty hornfels.
18	38.7	Flinty hornfelsed siltstone, strongly fractured in places, cut by minor pyrite veins (0.5-1%).
38.70	39.40	Post Mineral andesite dyke
39.4	40.3	Flinty hornfelsed siltstone, fractured, low pyrite.
40.30	41.40	Post Mineral andesite dyke
41.4	41.95	Flinty hornfelsed siltstone, fractured, low pyrite.
41.95	44.17	Post Mineral andesite dyke
44.17	100.92	Heavily fractured, flinty hornfelsed siltstone, variable pyrite veins ,minor tuffaceous sandstone bands
100.92	104.65	Bleached, sericite-chlorite altered hornblende-plagioclase phyric porphyry. Pyrite 0.5%, 0.1% disseminated chalcopyrite.
104.65	126.2	Fractured hornfelsed siltstone,& feldspathic sandstone minor pyrite, trace chalcopyrite

Table 3. Summary Geology Drillhole 22CAEDD018, colour coded according to geological unit

44.17	100.92	tuffaceous sandstone bands
100.92	104.65	Bleached, sericite-chlorite altered hornblende-plagioclase phyric porphyry. Pyrite 0.5%, 0.1% disseminated chalcopyrite.
104.65	126.2	Fractured hornfelsed siltstone,& feldspathic sandstone minor pyrite, trace chalcopyrite
126.2	127.75	Strongly sericite-pyrite altered, bleached porphyry.
127.75	138.5	Hornfelsed, feldspathic sandstone interlayered with flinty siltstone.Cut by sheeted veins of quartz-pyrite, minor chalcopyrite. Sharp contact at 138.5m with infill hydrothermal breccia (HBX).
138.5	159.95	Infill hydrothermal breccia (HBX). Angular clasts dominated by hornfels, strong sericite alteration abundant infill quartz-calcite-pyrite-chalcopyrite.
159.95	162.80	Post Mineral andesite dyke
162.8	166.3	Infill hydrothermal breccia (HBX). Angular clasts dominated by hornfels, strong sericite alteration abundant infill quartz-calcite-pyrite-chalcopyrite.
166.30	169.80	Post Mineral andesite dyke
169.8	186.27	Infill hydrothermal breccia (HBX). Angular clasts dominated by hornfels, strong sericite alteration abundant infill quartz-calcite-pyrite-chalcopyrite.
186.27	190.59	Strongly sericite-pyrite altered, bleached porphyry.Overall 2% pyrite, 0.2-0.5% chalcopyrite
190.59	230.7	Infill hydrothermal breccia (HBX). Angular clasts dominated by hornfels, strong sericite alteration abundant infill quartz-calcite-pyrite-chalcopyrite. Some shear & crus zones.
230.70	235.40	Argillised Post Mineral andesite dyke, Some HBX
235.4	260.2	Yellow grey infill hydrothermal breccia (HBX). Some large infill patches of pyrite 5-10cm with chalcopyrite, calcite, quartz, sphalerite. Some hornfels extensively cut by multidirectional quartz-pyrite stockwork ("B veins"). Hihghly pyritic.
260.2	260.7	Light grey, argillised fault zone/fault breccia.
260.7	264.55	Grey yellow, fine grained, argillised andesite. No discernible sulphide.
264.55	274	Yellow grey, infill hydrothermal breccia (HBX).

ASX RELEASE 23 March 2023 ASX Code: CAE

Hole # 18 was collared in flinty hornfels, which is cut by an extensive vein fracture network as the Hydrothermal Infill Breccia is approached downhole, crossing the contact at 138.6m (Fig 10). Copper and gold bearing sulphidic breccia occurs predominantly from 138m to 274m (Figs 10-15), cut by some bleached altered, argillized porphyry and thin post mineral andesite dykes. The general porphyry style mineralizing environment is illustrated by the common presence of quartz pyrite stockwork veins and fracture vein networks evident in some of the hornfels and porphyry clasts, (Figs 13, 15). Structures noted include steep argillized faults, infilled with quartz and semi-massive sulphide and argillized dykes cutting the breccia. (Fig 17)

Fig 10 Contact at 138. 6m of flinty hornfels uphole and hydrothermal infill breccia (downhole) dominated by angular hornfels clasts with calcite-quartz-pyrite-chalcopyrite infill. Full HQ core, Hole 18 :138m-142m returned 4m @ 1.79g/t CuEq%,1.50 % Cu,0.25 g/t Au,16.6 g/t Ag

Fig 11 Full HQ Core. Copper rich hydrothermal infill breccia ,140m, with clasts hornfels, infill chalcopyrite , pyrite, quartz ,calcite, minor chlorite. 139m-140m returned 1m @ 4.43% CuEq%, 3.73% Cu,0.64 g/t Au,38 g/t Ag, 6.37% S.

Fig 12.Full HQ Core : Hydrothermal breccia 148.5m,dominated by clasts hornfels, infill quartz ,calcite, minor pyrite, chalcopyrite . Clasts are extensively cut by thin porphyry style pyrite veins with quartz sericite alteration selvedges. 148m-149m: 1m @ 0.35% Cu,0.04 g/t Au,4.3 g/t Ag, 1.77% S.

23 March 2023

ASX Code: CAE

Fig 13. Full HQ Core : Hydrothermal breccia porphyry affinities 148.8m,close up clast with thin porphyry style veining with median hairline quartz-pyrite vein and quartz sericite alteration selvedges.

Fig 14 Hydrothermal infill breccia CAE hole # 18: 245.3m depth. Grey hornfels clasts, infill white calcite, clear quartz, brassy pyrite, black sphalerite. Interval 245m-246m: 1m @ 8.83 g/t Au, 0.24% Cu ,26.2 g/t Ag.13.22% S.

Fig 15. Full HQ Core : Hydrothermal breccia 258m,dominated by clasts of hornfels, infill quartz ,calcite, minor pyrite, chalcopyrite . Some clasts are quartz-pyrite "porphyry style" stockwork veining. 257m-258m: 1m @ 3.69 g/t Au, 0.20% Cu ,15.5 g/t Ag, 6.78% S.

Fig 16. Photo full HQ core Hole #18, oriented in core oriented frame, hole drilling to south south west, view looking north east, hole at 260.7m inclined at -54 degrees toward 208 degrees mag. Quartz sulphide vein infill within sericitic argillized fault zone. Structure striking 050 (NE-SW), dipping -58 degrees to 140 (south east). 260m-261m : returned 1m @ 3.87 g/t Au, 0.08% Cu, 7.3 g/t Ag, 5.82% S.

23 March 2023

ASX Code: CAE

Fig 17. Photo full HQ core Hole #18 oriented in core oriented frame, hole drilling to south south west, view looking east south east. Hole at 268m inclined at -54 degrees toward 208 degrees mag. Contact of light coloured, strongly argillised andestite (uphole) with grey hornfels clast supported infill breccia (downhole). . Dyke contact is steep, dipping -80 degrees and trending WSW-ENE (strike 248 degrees mag), dip direction 338 mag (NW) . Many of the dykes measured in Hole # 18 are trending in a general east west to **ESE-WNW** direction.

COMPETENT PERSON STATEMENT

The information in this report that relates to exploration results is based on information compiled by Dr. Simon D. Beams, a full-time employee of Terra Search Pty Ltd, geological consultants employed by Cannindah Resources Limited to carry out geological evaluation of the mineralisation potential of their Mt Cannindah Project, Queensland, Australia. Dr Beams is also a non-Executive Director of Cannindah Resources Limited. Dr. Beams has BSc Honours and PhD degrees in geology; he is a Member of the Australasian Institute of Mining and Metallurgy (Member #107121) and a Member of the Australian Institute of Geoscientists (Member # 2689). Dr. Beams has sufficient relevant experience in respect to the style of mineralization, the type of deposit under consideration and the activity being undertaken to qualify as a Competent Person within the definition of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("JORC Code).

Dr. Beams consents to the inclusion in the report of the matters based on this information in the form and context in which it appears

.Disclosure:

Dr Beams' employer Terra Search Pty Ltd and Dr Beams personally hold ordinary shares in Cannindah Resources Limited.

For further information, please contact:

Tom Pickett. Executive Chairman Ph: 61 7 55578791

23 March 2023

ASX Code: CAE

Appendix 1Table 1 Cu, Au, Ag,S assays , chalcopyrite, pyrite visual estimates CAE hole 18, -**Appendix 2** JORC Table 1, **Appendix 3** – JORC Table 2

Formula for Copper Equivalent calculations

Copper equivalent has been used to report the wider copper bearing intercepts that carry Au and Ag credits, with copper being dominant. eg have confidence that existing metallurgical processes would recover copper, gold and silver from Mt Cannindah. We have confidence that the Mt Cannindah ores are amenable to metallurgical treatments that result in equal recoveries. This confidence is reinforced by some preliminary metallurgical test work by previous holders, geological observations and our geochemical work which established a high correlation between Cu, Au, Ag.

The full equation for Copper Equivalent is:

CuEq/% = (Cu/% * 92.50 * CuRecovery + Au/ppm * 56.26 * AuRecovery + Ag/ppm * 0.74 * AgRecovery)/(92.5* CuRecovery)

When recoveries are equal this reduces to the simplified version: CuEq/% = (Cu/% * 92.50 + Au/ppm * 56.26 + Ag/ppm * 0.74)/92.5

We have applied a 30 day average prices in USD for Q4,2021, for Cu, Au , Ag , specifically copper @ USD\$9250/tonne, gold @ USD\$1750/oz and silver @ USD\$23/oz. This equates to USD\$92.50 per 1 wt %Cu in ore, USD\$56.26 per 1 ppm gold in ore, USD\$0.74 per 1 ppm silver in ore. We have conservatively used equal recoveries of 80% for copper, 80% for gold, 80% for Ag and applied to the CuEq calculation. CAE are planning Metallurgical test work to quantify these recoveries.

Appendix 1 Cu, Au, Ag, S assays and chalcopyrite/pyrite visual estimates 22CAEDD018 (Table 1.) All assays are reported for those intervals containing significant mineralisation. Lesser mineralized sections are grouped and summarized along geological unit lines. Lithology colour coded according to geological unit.

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	0	1	0.24	0.05	1.8	0.02	0.0	0.5	Oxidised fractured, hornfels.
	1	18	0.01	0.03	0.3	0.02	0.1	0.1	Oxidised fractured, hornfels.
DD018	18	27	0.01	0.02	0.3	0.96	1.5	0.0	fractured, hornfels.
DD018	27	28	0.05	0.15	0.6	1.04	2.0	0.1	fractured, hornfels.
DD018	28	29	0.04	0.05	0.3	2.14	4.0	0.1	fractured, hornfels.
DD018	29	30	0.02	0.02	0.3	2.09	4.0	0.1	fractured, hornfels.
DD018	30	39	0.01	0.01	0.3	1.54	3.0	0.0	fractured, hornfels.
DD018	39	40	0.01	0.00	0.3	0.64	1.0	0.0	Post Mineral andesite dyke
DD018	40	41	0.00	0.00	0.3	0.24	0.5	0.0	fractured, hornfels.
DD018	41	44	0.01	0.00	0.3	0.22	0.1	0.0	Post Mineral andesite dyke
DD018	44	52	0.01	0.01	0.3	1.02	1.8	0.0	Hornfels & tuff sandstone.
DD018	52	72	0.01	0.01	0.3	1.63	3.0	0.0	Hornfels & tuff sandstone.
DD018	72	82	0.03	0.01	0.3	2.07	4.0	0.1	Hornfels & tuff sandstone.

23 March 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	82	83	0.17	0.12	0.3	8.79	15.0	0.5	Hornfels & tuff sandstone.
DD018	83	101	0.01	0.01	0.3	2.10	4.0	0.0	Hornfels & tuff sandstone.
									Bleached, sericite-chlorite altered
DD018	101	102	0.02	0.01	0.3	0.46	1.0	0.1	porphyry.
									Bleached, sericite-chlorite altered
DD018	102	103	0.08	0.02	0.8	0.29	0.4	0.2	porphyry.
00010	102	104	0.17	0.02	1.0	0.90	1 Г	0.5	Bleached, sericite-chlorite altered
DD018	103	104	0.17	0.03	1.8	0.86	1.5	0.5	porphyry.
									Bleached, sericite-chlorite altered
DD018	104	105	0.13	0.03	1.2	1.77	3.0	0.4	porphyry.
									Hornfels with vein fracture
DD018	105	118	0.02	0.01	0.3	1.75	3.0	0.0	network
00019	118	110	0.07	0.03	0.7	4.00	7.0	0.2	Hornfels with vein fracture
DD018	110	119	0.07	0.03	0.7	4.00	7.0	0.2	network Hornfels with vein fracture
DD018	119	120	0.53	0.45	8.3	4.11	7.0	1.5	network
DD010	115	120	0.55	0.45	0.5	4.11	7.0	1.5	Hornfels with vein fracture
DD018	120	121	0.18	0.06	2.5	7.58	15.0	0.5	network
									Hornfels with vein fracture
DD018	121	122	0.08	0.07	0.7	3.35	6.0	0.2	network
									Hornfels with vein fracture
DD018	122	126	0.02	0.02	0.3	2.10	4.0	0.1	network
									Sericite-pyrite altered, bleached
DD018	126	127	0.01	0.01	0.9	3.44	6.0	0.0	porphyry.
55040	407	100		0.00		2.22	6.0		Sericite-pyrite altered, bleached
DD018	127	128	0.04	0.02	0.3	3.32	6.0	0.1	porphyry. Hornfels with vein fracture
DD018	128	134	0.03	0.02	0.3	2.58	5.0	0.1	network
00010	120	134	0.03	0.02	0.5	2.50	5.0	0.1	Hornfels with vein fracture
DD018	134	135	0.20	0.04	1.5	1.78	3.0	0.5	network
		100	0.20				0.0		Hornfels with vein fracture
DD018	135	136	0.14	0.05	1.2	2.19	4.0	0.4	network
									Hornfels with vein fracture
DD018	136	137	0.05	0.01	0.3	1.97	4.0	0.1	network
									Hornfels with vein fracture
DD018	137	138	0.03	0.01	0.3	2.43	4.0	0.1	network
									Hydrothermal Breccia, Infill quartz
DD018	138	139	0.67	0.10	6.3	2.12	2.5	2.0	calcite,pyrite ,chalcopyrite
									Hydrothermal Breccia, Infill quartz
DD018	139	140	3.73	0.64	38.0	6.37	5.0	10.0	calcite,pyrite ,chalcopyrite

23 March 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	140	141	1.16	0.20	15.4	5.83	9.0	3.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	141	142	0.44	0.06	6.5	3.69	6.0	1.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
									Hydrothermal Breccia, Infill quartz
DD018	142	143	0.09	0.03	1.9	1.14	2.0	0.2	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill quartz
DD018	143	144	0.31	0.04	5.4	2.37	4.0	1.0	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill quartz
DD018	144	145	0.57	0.08	8.7	4.03	6.0	1.5	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill guartz
DD018	145	146	1.14	0.16	17.1	5.11	7.0	3.0	calcite,pyrite ,chalcopyrite
DD018	146	147	1.26	0.31	21.5	7.86	10.0	4.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	147	148	1.39	0.35	24.8	3.80	4.0	4.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	148	149	0.28	0.04	4.3	1.77	3.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	149	150	0.75	0.18	13.2	2.67	4.0	2.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
									Hydrothermal Breccia, Infill quartz
DD018	150	151	0.29	0.05	2.9	1.75	2.5	1.0	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill quartz
DD018	151	152	0.37	0.04	5.9	1.97	3.0	1.0	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill guartz
DD018	152	153	0.48	0.24	8.1	2.60	4.0	1.5	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill guartz
DD018	153	154	0.08	0.02	1.0	2.91	5.0	0.2	calcite,pyrite ,chalcopyrite
DD018	154	155	0.09	0.02	1.0	2.21	4.0	0.3	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	155	156	0.25	0.10	2.8	3.07	5.0	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	156	157	1.28	0.45	22.9	5.59	8.0	4.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
									Hydrothermal Breccia, Infill quartz
DD018	157	158	0.85	1.25	15.5	5.14	8.0	2.5	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill quartz
DD018	158	159	0.37	0.27	8.2	1.98	3.0	1.0	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill quartz
DD018	159	160	0.21	0.16	6.5	1.83	3.0	0.5	calcite,pyrite ,chalcopyrite

ASX Code: CAE

	From Depth	To Depth	Lab Cu	Lab Au	Lab Ag	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	
23CAE# DD018	m 160	m 163	<mark>%</mark> 0.03	g/t 0.01	g/t 0.5	0.23	0.5	0.1	Lithology Post Mineral andesite dyke
DD018	163	164	0.34	0.14	7.2	1.93	3.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	164	165	0.13	0.03	3.6	1.08	2.0	0.4	Hydrothermal Breccia, Infill quartz calcite,pyrite,chalcopyrite
DD018	165	166	0.35	0.07	7.5	1.48	2.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	166	170	0.06	0.01	2.1	0.26	0.5	0.1	Post Mineral andesite dyke
DD018	170	171	0.58	0.17	11.1	3.15	5.0	1.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	171	172	0.33	0.63	9.6	1.60	2.5	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite, chalcopyrite
DD018	172	173	0.13	0.10	3.3	1.34	2.5	0.4	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	173	174	0.11	0.03	3.5	1.18	2.0	0.3	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	174	175	0.11	0.05	4.1	1.37	2.5	0.3	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
								1.5	Hydrothermal Breccia, Infill quartz
DD018	175	176	0.51	0.05	8.5	1.47	2.0	1.5	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill quartz
DD018	176	177	0.60	0.11	19.3	1.60	2.0	1.5	calcite,pyrite ,chalcopyrite
DD018	177	178	1.03	0.42	24.3	2.40	2.5	3.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	178	179	0.92	0.41	24.0	2.05	2.0	2.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	179	180	1.05	0.41	33.6	2.42	2.5	3.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	180	181	0.08	0.01	2.8	1.20	2.0	0.2	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	181	182	0.02	0.01	0.9	0.96	2.0	0.1	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
22010	101	102	0.02	0.01	0.5	0.50	2.0	0.1	Hydrothermal Breccia, Infill quartz
DD018	182	183	0.02	0.02	1.0	1.15	2.0	0.1	calcite,pyrite ,chalcopyrite
DD018	183	184	0.03	0.01	1.3	1.00	2.0	0.1	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	184	185	0.20	0.27	7.4	2.30	4.0	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	185	186	0.73	0.81	15.6	2.12	2.5	2.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite

Cannindah Resources Limited

23 March 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	186	187	0.34	0.42	15.6	1.53	2.0	1.0	Strongly sericite-pyrite altered, bleached porphyry
DD018	187	188	0.02	0.08	3.2	0.73	1.5	0.1	Strongly sericite-pyrite altered, bleached porphyry
DD018	188	189	0.07	0.03	5.8	1.99	4.0	0.2	Strongly sericite-pyrite altered, bleached porphyry
DD018	189	190	0.24	0.03	9.0	1.01	1.5	0.5	Strongly sericite-pyrite altered, bleached porphyry
DD018	190	191	0.22	0.12	5.8	1.60	2.5	0.5	Strongly sericite-pyrite altered, bleached porphyry
DD018	191	192	0.16	0.03	3.9	2.05	4.0	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	191	192	0.10	0.03	5.5	1.40	2.5	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
									Hydrothermal Breccia, Infill quartz
DD018	193	194	0.11	0.01	3.2	1.34	2.5	0.3	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill quartz
DD018	194	195	0.19	0.06	5.5	1.63	2.5	0.5	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill quartz
DD018	195	196	0.56	0.18	18.1	2.88	4.0	1.5	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill quartz
DD018	196	197	0.18	0.33	6.5	2.50	4.0	0.5	calcite,pyrite ,chalcopyrite
DD018	197	198	0.21	0.52	13.7	2.27	4.0	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	198	199	0.19	0.10	4.6	2.44	4.0	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	199	200	0.19	0.04	3.4	1.87	3.0	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	200	201	0.33	0.12	7.0	2.09	3.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	201	202	0.19	0.10	4.5	1.53	2.5	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	201	202	0.04	0.02	1.6	1.78	3.0	0.1	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
									Hydrothermal Breccia, Infill quartz
DD018	203	204	0.90	0.24	12.5	2.31	2.5	2.5	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill guartz
DD018	204	205	0.27	0.08	5.1	2.73	5.0	1.0	calcite,pyrite ,chalcopyrite
DD018	205	206	0.07	0.05	2.3	1.59	3.0	0.2	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite

23 March 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	206	207	0.33	0.39	11.4	3.55	6.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	207	208	0.10	0.32	5.8	2.94	5.0	0.3	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	208	209	0.20	0.17	7.2	3.05	5.0	0.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	209	210	0.09	0.18	4.2	2.37	4.0	0.3	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	205	210	0.93	0.20	14.9	4.57	7.0	2.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	210	211	0.88	0.38	24.3	5.34	8.0	2.5	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	211	212	0.88	0.09	7.5	3.78	6.0	1.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018									Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
	213	214	0.39	0.12	9.0	3.82	6.0	1.0	Hydrothermal Breccia, Infill quartz
DD018	214	215	0.52	0.09	8.2	4.61	8.0	1.5	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill quartz
DD018	215 216	216	0.52	0.79	11.9	4.55	8.0	4.0	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill quartz
		217	1.48	0.40	30.4	6.84	10.0		calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill quartz
DD018	217	218	0.35	0.13	7.4	3.68	6.0	1.0	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill quartz
DD018	218	219	0.28	0.06	5.4	2.63	4.0	1.0	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill quartz
DD018	219	220	0.12	0.07	2.9	1.99	3.0	0.3	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill quartz
DD018	220	221	0.32	0.12	6.1	3.66	6.0	1.0	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill quartz
DD018	221	222	0.56	0.08	10.1	2.41	3.0	1.5	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill quartz
DD018	222	223	0.31	0.09	4.9	2.73	5.0	1.0	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill quartz
DD018	223	224	0.12	0.03	2.9	1.33	2.5	0.3	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill quartz
DD018	224	225	0.52	0.07	10.2	3.75	6.0	1.5	calcite,pyrite ,chalcopyrite Hydrothermal Breccia, Infill quartz
DD018	225	226	0.61	0.18	11.0	3.31	5.0	2.0	calcite,pyrite ,chalcopyrite

23 March 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	226	227	1.41	0.47	23.1	7.32	10.0	4.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	227	228	1.64	0.47	34.0	4.99	6.0	5.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	228	229	1.29	0.23	20.0	4.10	5.0	4.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	229	230	0.97	0.63	36.1	4.83	7.0	3.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	230	231	0.69	0.45	25.5	4.30	7.0	2.0	Hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	230	231	0.09	0.01	0.3	0.08	0.1	0.0	Argillised Post Mineral andesite dyke,
DD018	232	233	0.27	0.20	12.8	1.49	2.5	1.0	Argillised Post Mineral andesite dyke, Some HBX
DD018	232	233	0.01	0.01	0.3	0.05	0.1	0.0	Argillised Post Mineral andesite dyke,
DD018	234	235	0.01	0.01	0.3	0.20	0.3	0.0	Argillised Post Mineral andesite dyke,
									Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	235	236	0.18	0.92	8.9	3.72	7.0	0.5	,chalcopyrite Highly pyritic hydrothermal Breccia,
DD018	236	237	0.48	1.70	18.5	6.41	10.0	1.5	Infill quartz calcite,pyrite ,chalcopyrite
									Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	237	238	0.24	1.78	10.2	6.86	10.0	0.5	chalcopyrite, Highly pyritic hydrothermal Breccia,
DD018	238	239	0.13	0.32	4.1	3.18	6.0	0.4	Infill quartz calcite,pyrite ,chalcopyrite
									Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	239	240	0.05	0.33	4.1	2.22	4.0	0.2	,chalcopyrite Highly pyritic hydrothermal Breccia,
DD018	240	241	0.04	0.50	3.3	2.61	5.0	0.1	Infill quartz calcite,pyrite ,chalcopyrite
DD018	241	242	0.38	1.40	16.3	5.51	10.0	1.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
00010	241	242	0.30	1.40	10.5	5.51	10.0	1.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite
DD018	242	243	0.45	1.28	17.0	3.77	6.0	1.5	,chalcopyrite

23 March 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
DD018	243	244	0.11	0.65	6.0	2.37	4.0	0.3	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	244	245	0.24	3.99	16.1	4.72	8.0	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	245	246	0.24	8.84	26.2	13.22	25.0	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	246	247	0.24	4.24	14.2	4.95	9.0	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	247	248	0.18	4.24	15.7	6.24	10.0	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	248	249	0.17	5.36	16.2	6.84	10.0	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	249	250	0.09	3.30	9.9	10.58	20.0	0.3	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	250	251	0.11	5.07	12.8	6.41	10.0	0.3	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	251	252	0.06	1.13	6.3	3.52	6.0	0.2	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	252	253	0.17	6.36	15.0	6.86	15.0	0.5	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	253	254	0.14	6.74	19.3	11.50	20.0	0.4	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	254	255	0.31	12.80	24.9	6.87	10.0	1.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	255	256	0.61	23.93	61.0	10.43	20.0	2.0	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite
DD018	256	257	0.12	5.45	11.3	7.76	15.0	0.4	Highly pyritic hydrothermal Breccia, Infill quartz calcite,pyrite ,chalcopyrite

23 March 2023

23CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
ZJOREN		•••	/0	5/*	<u> </u>				Highly pyritic hydrothermal Breccia,
									Infill quartz calcite, pyrite
DD018	257	258	0.20	3.69	15.5	6.78	10.0	0.5	,chalcopyrite
									Highly pyritic hydrothermal Breccia,
									Infill quartz calcite,pyrite
DD018	258	259	0.08	0.30	3.4	3.83	7.0	0.2	,chalcopyrite
									Highly pyritic hydrothermal Breccia,
DD018	259	260	0.09	4.82	11.6	8.17	15.0	0.2	Infill quartz calcite,pyrite ,chalcopyrite
00010	239	200	0.09	4.02	11.0	0.17	15.0	0.2	Light grey, argillised fault zone/fault
DD018	260	261	0.08	3.86	7.3	5.82	10.0	0.2	breccia.
DD018	261	262	0.17	10.04	23.1	6.39	10.0	0.5	Argillised andesite.
DD018	262	263	0.05	0.37	5.3	2.33	4.0	0.2	Argillised andesite.
DD018	263	264	0.04	0.25	4.2	2.52	5.0	0.1	Argillised andesite.
DD018	264	265	0.02	0.11	1.0	0.88	1.5	0.1	Argillised andesite.
									Hornfels hydrothermal breccia
DD018	265	266	0.01	0.01	0.3	0.15	0.3	0.0	(HBX).
DD018	266	267	0.01	0.01	0.3	0.14	0.2	0.0	Hornfels hydrothermal breccia (HBX).
									Hornfels hydrothermal breccia
DD018	267	268	0.01	0.08	0.3	0.22	0.4	0.0	(HBX).
									Highly pyritic hydrothermal Breccia,
00010	200	200	0.02	0.65	2.0	2 74	7.0	0.1	Infill quartz calcite,pyrite
DD018	268	269	0.03	0.65	2.9	3.74	7.0	0.1	,chalcopyrite Highly pyritic hydrothermal Breccia,
									Infill quartz calcite,pyrite
DD018	269	270	0.14	4.49	11.4	3.29	6.0	0.4	,chalcopyrite
	200					0.20	0.0		Highly pyritic hydrothermal Breccia,
									Infill quartz calcite,pyrite
DD018	270	271	0.05	1.26	7.3	3.14	6.0	0.1	,chalcopyrite
									Highly pyritic hydrothermal Breccia,
									Infill quartz calcite,pyrite
DD018	271	272	0.06	0.64	2.8	4.42	8.0	0.2	,chalcopyrite
									Highly pyritic hydrothermal Breccia,
010	272	273	0.03	0.66	2.6	2.69	7.0	0.1	Infill quartz calcite,pyrite ,chalcopyrite
DD018	212	2/3	0.05	0.00	2.0	3.68	7.0	0.1	Highly pyritic hydrothermal Breccia,
									Infill quartz calcite,pyrite
DD018	273	274	0.06	1.68	5.3	6.00	10.0	0.2	,chalcopyrite

23 March 2023

ASX Code: CAE

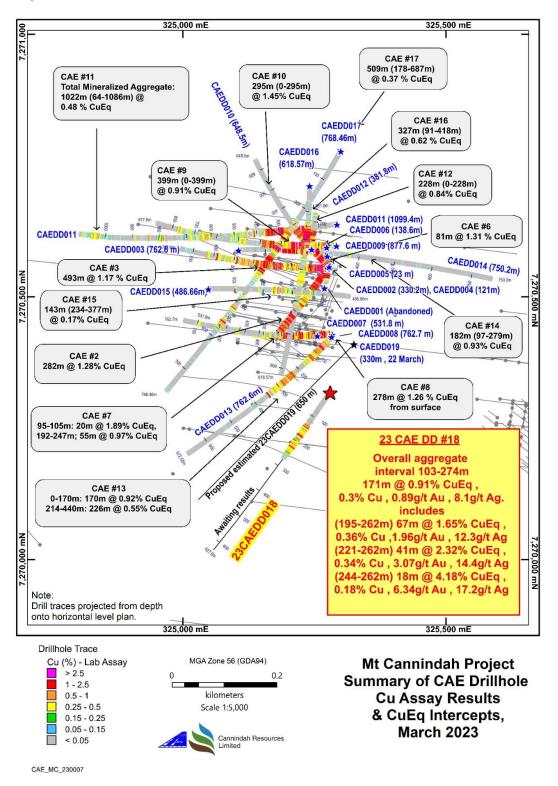


Fig App2.1 Plan view CAE Hole # 18 in relation to 2021-2023 CAE Drillholes and Historical holes at Mt Cannindah. Downhole lab Cu plotted, CuEq intercepts annotated.

CAE_MC_230007

ASX RELEASE

23 March 2023

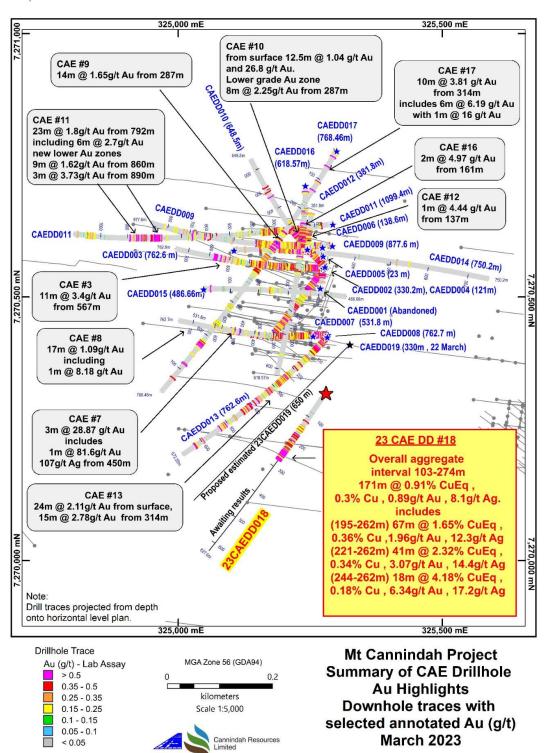


Fig App 2.2. Plan view CAE Hole # 18 in relation to 2021-2023 CAE Drillholes Mt Cannindah. Downhole lab Au plotted, Selected gold results annotated.

Cannindah Resources

Limited

ASX RELEASE

23 March 2023

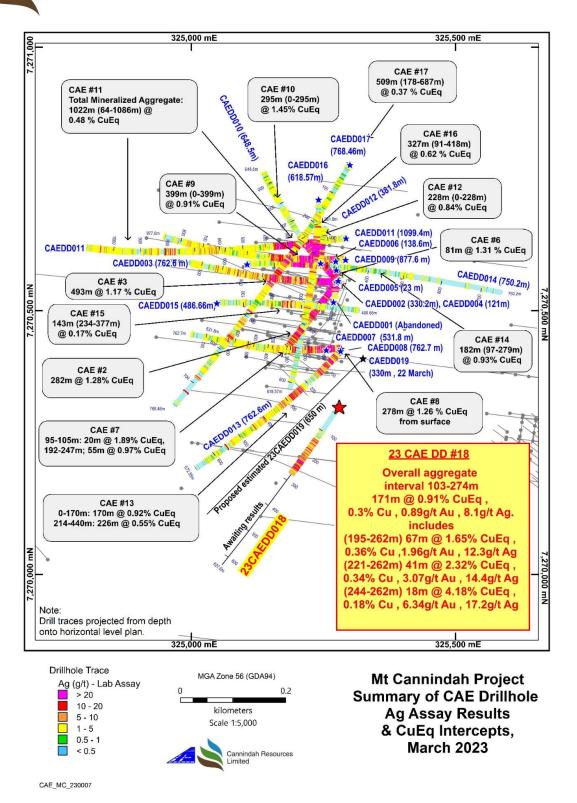


Fig App2.3. Plan view CAE Hole # 18 in relation to 2021-2023 CAE Drillholes Mt Cannindah. Downhole lab Ag plotted, CuEq intercepts annotated.

23 March 2023

ASX Code: CAE

Appendix 3: JORC Table 1. Section 1: Sampling Techniques and Data

Criteria	Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.) These examples should not be taken as limiting the broad meaning of sampling.	. Sampling results are based on sawn half core samples of both PQ ,HQ and NQ diameter diamond drill core. An orientation line was marked along all core sections. One side of the core was consistently sent for analysis and the other side was consistently retained for archive purposes. The orientation line was consistently preserved.
	ensure sampling representivity and the appropriate calibration of any measurement tools or systems used.	
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Half core samples were sawn up on a diamond saw on a metre basis for HQ,NQ diameter core and a 0.5m basis for PQ diameter core. Samples were forwarded to commercial NATA standard laboratories for crushing, splitting and grinding ,Laboratory used in this instance is Intertek Genalysis , Townsville. Analytical sample size was in the order of 2.5kg to 3kg.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.)	Drill type is diamond core. Core diameter at top of hole is PQ, below 30m core diameter is HQ and NQ.Triple tube methodology was deployed for PQ & HQ, which resulted in excellent core recovery throughout the hole.Core was oriented, utilizing an Ace Orientaion equipment and rigorously supervised by on-site geologist.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Core recovery was recorded for all drill runs and documented in a Geotechnical log. The Triple Tube technology and procedure ensured core recoveries were excellent throughout the hole.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Triple tube methodology ensure excellent core recoveries. Core was marked up in metre lengths and reconciled with drillers core blocks. An orientation line was drawn on the core . Core sampling was undertaken by an experienced operator who ensured that half core was sawn up with one side consistently sent for analysis and the other side was consistently retained for archive purposes. The

23 March 2023

Criteria	Explanation	Commentary
		orientation line was consistently preserved.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Core recoveries were good. An unbiased, consistent half core section was submitted for the entire hole, on the basis of continuous 1m sampling.The entire half core section was crushed at the lab and then split, The representative subsample was then fine ground and a representative unbiased sample was extracted for further analysis.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies	Geological logging was carried out by well- trained/experienced geologist and data entered via a well-developed logging system designed to capture descriptive geology, coded geology and quantifiable geology. All logs were checked for consistency by the Principal Geologist. Data captured through Excel spread sheets and Explorer 3 Relational Data Base Management System. A geotechnical log was prepared.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel etc.) photography.	Logging was qualitative in nature. A detailed log was described on the basis of visual observations. A comprehensive Core photograph catalogue was completed with full core dry, full core wet and half core wet photos taken of all core.
	The total length and percentage of the relevant intersections logged.	The entire length of all drill holes has been geologically logged.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Half core samples were sawn up on a diamond saw on a metre basis for HQ, NQ diameter core and a 0.5m basis for PQ diameter core
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	All sampling was of diamond core
	For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples.	The above techniques are considered to be of a high quality, and appropriate for the nature of mineralisation anticipated. QA/QC protocols were instigated such that they conform to mineral industry standards and are compliant with the JORC code.
		Terra Search's input into the Quality Assurance (QA) process with respect to chemical analysis of mineral exploration diamond core samples includes the addition of both coarse blanks, Certified pulped Blanks, Certified and Internal matrix matched standards to each batch so that checks can be done after they are analysed. As part of the Quality Control (QC) process, Terra Search checks the resultant assay data against known or previously determined assays to determine the quality of the analysed batch of samples. An assessment is made on

23 March 2023

Criteria	Explanation	Commentary
		the data and a report on the quality of the data is compiled.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	The lab results are checked against visual estimations and PXRF sampling of sludge and coarse crush material.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The standard 2kg -5kg sample is more than appropriate for the grainsize of the rock-types and sulphide grainsize. The sample sizes are considered to be appropriate to represent the style of the mineralisation, the thickness and consistency of the intersections.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	After crushing splitting and grinding at Intertek/Genalysis lab Townsville samples were assayed for gold using the 50g fire assay method The primary assay method used is designed to measure both the total gold in the sample as per classic fire assay.
		The total amount of economic metals tied up in sulphides and oxides such as Cu, Pb, Zn, Ag, As, Mo, Bi,S is captured by the 4 acid digest method ICP finish. This is regarded as a total digest method and is checked against QA-QC procedures which also employ these total techniques. Major elements which are present in silicates, such as K, Ca, Fe, Ti, Al, Mg are also digested by the 4 acid digest Total method. The techniques are considered to be entirely appropriate for the porphyry, skarn and vein style deposits in the area. The economically important elements in these deposits are contained in sulphides which is liberated by 4 acid digest, all gold is determined with a classic fire assay.
	For geophysical tools, spectrometers, handheld XRF instruments, etc. the parameters used in determining the analysis including instrument make and model, reading times, calibration factors applied and their derivation, etc.	Magnetic susceptibility measurements utilizing Exploranium KT10 instrument, zeroed between each measurement. No PXRF results are reported here. although PXRF analysis has been utilized to provide multi-element data for the prospect and will be reported separately. The lab pulps are considered more than appropriate samples for this purpose. PXRF Analysis is carried out in an air- conditioned controlled environment in Terra Search offices in Townsville. The instrument used was Terra Search's portable Niton XRF analyser (Niton 'trugeo' analytical mode) analysing for a suite of 40 major and minor elements. in. The PXRF equipment is set up on a bench and the sub-sample (loose powder in a thin clear plastic freezer bag) is placed in a

23 March 2023

Criteria	Explanation	Commentary
	Nature of quality control procedures	lead-lined stand. An internal detector autocalibrates the portable machine, and Terra Search standard practice is to instigate recalibration of the equipment every 2 to 3 hours. Readings are undertaken for 60 seconds on a circular area of approximately 1cm diameter. A higher number of measurements are taken from the centre of the circle and decreasing outwards. PXRF measures total concentration of particular elements in the sample. Reading of the X-Ray spectra is effected by interferences between different elements. The matrix of the sample eg iron content has to be taken into account when interpreting the spectra. The reliability and accuracy of the PXRF results are checked regularly by reference to known standards. There are some known interferences relevant to particular elements eg W & Au; Th & Bi, Fe & Co. Awareness of these interferences is taken into account when assessing the results.
	adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	established sampling protocols including blanks (both coarse & pulped), certified
		Terra Search quality control included determinations on certified OREAS samples and analyses on duplicate samples interspersed at regular intervals through the sample suite of both the commercial laboratory batchStandards were checked and found to be within acceptable tolerances. Laboratory assay results for these quality control samples are within 5% of accepted values.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections were verified by Terra Search Pty Ltd, geological consultants who geologically supervised the drilling. Validation is checked by comparing assay results with logged mineralogy eg sulphide material in relation to copper and gold gradse.
	The use of twinned holes.	There has been little direct twinning of holes, the hole reported here pass close to earlier drill holes , assay results and geology and assay results are entirely consisted with previous results.
	Documentation of primary data, data entry procedures, data verifications, data storage (physical and electronic) protocols.	Data is collected by qualified geologists and experienced field assistants and

23 March 2023

Criteria	Explanation	Commentary
		Data is imported into database tables from the Excel spreadsheets with validation checks set on different fields. Data is then checked thoroughly by the Operations Geologist for errors. Accuracy of drilling data is then validated when imported into MapInfo.
		Location and analysis data are then collated into a single Excel spreadsheet. Data is stored on servers in the Consultants office and also with CAE. There have been regular backups and archival copies of the database made. Data is also stored at Terra Search's Townsville Office. Data is validated by long-standing procedures within Excel Spreadsheets and Explorer 3 data base and spatially validated within MapInfo GIS.
	Discuss any adjustment to assay data.	No adjustments are made to the Commercial lab assay data. Data is imported into the database in its original raw format.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collar location information was originally collected with a Garmin 76 hand held GPS. X-Y accuracy is estimated at 3-5m, whereas height is +/- 10m.Coordinates have been reassessed with DGPS, Accuracy is sub 0.5m in X,Y,Z. Down hole surveys were conducted on all holes using a Reflex downhole digital camera . Surveys were generally taken every 30m downhole , dip, magnetic azimuth and magnetic field were recorded.
	Specification of the grid system used. Quality and adequacy of topographic	Coordinate system is UTM Zone 55 (MGA) and datum is GDA94 Pre-existing DTM is high quality and
Data spacing and distribution	control. Data spacing for reporting of Exploration Results.	available. At the Mt Cannindah mine area previous drilling program total over 100 deep diamond and Reverse Circulation percussion holes Almost all have been drilled in 25m to 50m spaced fences , from west to east, variously positioned over a strike length of 350m and a cross strike width of at least 500m Down hole sample spacing is in the order of 1m to 2m which is entirely appropriate for the style of the deposit and sampling procedures.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Previous resource estimates on Mt Cannindah include Golders 2008 for Queensland Ores and Helman & Schofield 2012 for Drummond Gold. Both these estimates utilised 25m to 50m fences of west to east drillholes, but expressed concerns regarding confidence in assay continuity both between 50m sections and

23 March 2023

Criteria	Explanation	Commentary
		between holes within the plane of the cross sections. The hole reported 23CAEDD018 has drilled to the south south west and is largely drilling in a direction and area where there is little previous drilling. CAE Hole # 13 is parallel in section but some 60m distance across section. Further drilling is necessary to enhance and fine tune the previous Mineral Resource. estimates at Mt Cannindah and lift the category from Inferred to Indicated and Measured and compliant with JORC 2012.
	Whether sample compositing has been applied.	No sample compositing has been applied, Almost all sampling is of 1m downhole samples of half core
<i>Orientation of data in relation to geological structure</i>	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The main objective of hole 23CAEDD018 reported here was to drill to the south west. CAE hole #18 was drilled at the southern end of the prospect in an area of very little previous drilling and fragmented outcrop and subcrop. The overall geological interpretation at Mt Cannindah, built up from the CAE holes and historical drilling, is of a steeply west
		dipping, roughly north south oriented, tabular body of breccia, bounded on the east by hornfels and on the west by diorite and wedges of hornfels.
		CAE Hole #18 followed up on CAE Hole #13 as the second of CAE's holes to explore the southern & south western end of the Mt Cannindah breccia. CAE Holes # 13 & 18 drilled NNE to SSW,effectively at right angles to historical drilling at Mt Cannindah.
		The drill direction of CAE hole #18 is particularly appropriate for east-west striking structures and geological features. Follow up results from CAE holes #13 and also Hole #17 show that the east – west trending andesite dykes encountered in many holes are thin (mostly less than 5m true thickness) and,do not materially appear to stope out significant volumes of potential ore at Cannindah, Structural measurements on mineralised, often high grade veins and sulphidic zones have also been shown to be east-west and the southerly drill direction of CAE Hole #18 is entirely appropriate to test these structures.
		Historical and CAE drill results show that there are several orientations of mineralized zones, breccia bodies and pre and post mineral dykes. The most

23 March 2023

Criteria	Explanation	Commentary
		common orientations are broadly east west, and north south . In this regard, geological consultants Terra Search have planned drill holes of various orientations to target the known range of orientations observed and measured in the mineralised structures and breccia bodies.
	If the relationship between drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The Infill breccia is massive textured , recent interpretation suggests the clasts may have an imbrication or preferred orientation, that is gently to moderately dipping to the east or south east. The overall orientation of the Mt Cannindah breccia sheet is steeply dipping to the west , although the bounding structures are uncertain. CAE Hole # 18 was drilled in a southerly direction, at right angles to the mostly east west holes at Mt Cannindah. One of the key aims of Hole # 18 was to determine the true thickness of mineralised east west structures. A further objective was to help determine grade continuity along the north east to south west trend within the breccia zone . No sampling bias is evident in the logging, or the presentation of results on drill cross and long sections. Steep structures are evident and with steep inclined holes these are cut at oblique angles. The breccia zone at Mt Cannindah is of sufficient width and depth that drillhole 23CAEDD018 provides valuable unbiased information concerning grade continuity of the breccia body. The complete geometry of the breccia body is unknown at this stage. Similarly, vein structures have several orientations and only in certain instances is it evident that vein orientations have introduced a sampling bias. These are well documented with oriented core. Historicall most holes at Mt Cannindah have been drilled from west to east . These can be severely hampered when encountering the similar parallel direction of east west post mineral andesite dykes. This situation was evident in CAE hole # 15 which drilled down an east west dyke for a lot of its length. This relationship did demonstrate that following the historical drill pattern at Mt Cannindah does not necessarily lead to optimum results. Analysis of these geological relationships has led geological consultants Terra Search to design drill directions both 180 degrees and 90 degrees contrary to the historical direction. This drill pattern has produced outstanding results , leading to

23 March 2023

ASX Code: CAE

Criteria	Explanation	Commentary
		drill intersections of considerable grade and length. From preliminary investigation of the grade model It is anticipated that there is little overall evidence of any sampling bias in the CAE drilling at Mt Cannindah.
Sample security	The measures taken to ensure sample security.	Chain of custody was managed by Terra Search Pty Ltd. Core trays were freighted in sealed & strapped pallets from Monto were they were dispatched by Terra Search . The core was processed and sawn in Terra Search's Townsville facilities and half core samples were delivered by Terra Search to Intertek/Genalysis laboratory Townsville lab.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	There have been numerous independent reviews carried out on the Mt Cannindah project. reviewing sampling, data sets, geological controls, the most notable ones are Newcrest circa 1996; Coolgardie Gold1999; Queensland Ores 2008;Metallica ,2008; Drummond Gold, 2011; CAE 2014.

APPENDIX 2 – JORC Code Table 2

Section 2: Reporting of Exploration Results

Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national and environmental settings.	Exploration conducted on MLs 2301, 2302, 2303, 2304, 2307, 2308, 2309, EPM 14524, and EPM 15261. 100% owned by Cannindah Resources Pty Ltd. The MLs were acquired in 2002 by Queensland Ores Limited (QOL), a precursor company to Cannindah Resources Limited. QOL acquired the Cannindah Mining Leases from the previous owners, Newcrest and MIM, As part of the purchase arrangement a 1.5% net smelter return (NSR) royalty on any production is payable to MIM/Newcrest and will be shared 40% by MIM and 60% by Newcrest.
		An access agreement with the current landholders in in place.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	No impediments to operate are known.
Exploration done by other parties	Ácknowledgement and appraisal of exploration by other parties.	Previous exploration has been conducted by multiple companies. Data used for evaluating the Mt Cannindah project include : Drilling & geology, surface sampling by MIM (1970 onwards) drilling data Astrik (1987), Drill,Soil, IP & ground

23 March 2023

Geology	Deposit type, geological setting and style of mineralisation.	 magnetics and geology data collected by Newcrest (1994-1996), rock chips collected by Dominion (1992),. Drilling data collected by Coolgardie Gold (1999), Queensland Ores (2008-2011), Planet Metals-Drummond Gold (2011-2013). Since 2014 Terra Search Pty Ltd, Townsville QLD has provided geological consultant support to Cannindah Resources. Breccia and porphyry intrusive related Cu- Au-Ag-Mo, base metal skarns and shear hosted Au bearing quartz veins occur adjacent to a Cu-Mo porphyry.
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar Dip and azimuth of the hole Down hole length and interception depth Hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	A major drill data base exists for the Mt Cannindah district amounting to over 400 holes. Selected Cu and Au down hole intervals of interest have been listed in CAE's ASX announcement, March,2021.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	The standard for reporting of high grade Cu zones in hole 22CAEDD018 reported here is an intersection grade of 0.5% Cu equivalent, allowing for 5m of internal waste The standard cut-off for reporting of total aggregate Cu mineralized zones is 0.15% CuEq% allowing for 15m of internal waste. No cut-offs have been routinely applied in reporting of the historical drill results.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations be shown in detail	The Cu-Au-Ag breccia style mineralisation at Mt Cannindah is developed over considerable downhole lengths. The breccia is generally mineralised, although copper grade and sulphide content is variable. In addition pre and post mineral dykes and intrusive bodies can mask the mineralisation .Down hole Cu-Au-Ag intercepts have been quoted both as a semi-continuous, aggregated down hole interval and also as tighter higher grade Cu-Au-Ag sections. In addition, historical results have been reported in the aggregated form displayed in the ASX Announcement for CAE , March,2021, many times previously. There are some zones of high grade which can influence

23 March 2023

	the longer intercepts, All results are reported as down hole plotted 1m half core sampling intervals or tabulated with lower grade zones clearly noted. Aggregation of the longer intercepts at Mt Cannindah is advantageous for analysis and comparison of historical and recently collected drill data.
The assumptions used for any reporting of metal equivalent values should be clearly stated.	A copper equivalent has been used to report the wider copper bearing intercepts that carry Au and Ag credits with copper being dominant. Previous holders have undertaken preliminary metallurgical test work. We have confidence that existing metallurgical processes would recover copper, gold and silver from Mt Cannindah. We have confidence that the Mt Cannindah ores are amenable to
	metallurgical treatments that result in equal recoveries. This confidence is reinforced by some preliminary metallurgical test work by previous holders, geological observations and our geochemical work which established a high correlation between Cu,Au,Ag. In December, 2022, CAE initiated a Metallurgical testing program for Mt Cannindah breccia. This program is current being scoped and materially important results will be reported when available.
	The full equation for Copper Equivalent is: CuEq/% = (Cu/% * 92.50 * CuRecovery + Au/ppm * 56.26 * AuRecovery + Ag/ppm *
	0.74 * AgRecovery)/(92.5* CuRecovery) When recoveries are equal this reduces to the simplified version:
	CuEq/% = (Cu/% * 92.50 + Au/ppm * 56.26 + Ag/ppm * 0.74)/ 92.5
	We have applied a 30 day average prices in USD for Q4,2021, for Cu, Au, Ag, specifically copper @ USD\$9250/tonne, gold @ USD\$1750/oz and silver @ USD\$23/oz. This equates to USD\$92.50 per 1 wt %Cu in ore, USD\$56.26 per 1 ppm gold in ore, USD\$0.74 per 1 ppm silver in ore .As these prices are similar to current Q3-Q4,2022 averages, CAE has maintained these prices in order to allow consistent reporting from 2021 to 2022.
	We have conservatively used equal recoveries of 80% for copper, 80% for gold

23 March 2023

ASX Code: CAE

, 80% for Ag and applied to the CuEq calculation.

Relationship between mineralisation widths and intercept lengths The relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported

If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. down hole length, true width not known). 22CAEDD018 reported here is an angled hole, inclined 60 degrees to the south west (magnetic azimuth 205 degrees at the drill collar). The hole is collared on fractured oxidised hornfels.

As the breccia geometry is still to be established, the final attitude and thickness of the mineralisation is unknown at this stage.

. The Mt Cannindah Infill breccia is massive textured , recent interpretation suggests the clasts may have an imbrication or preferred orientation, that is relatively flat dipping to the east or south east.

The overall orientation of the Mt Cannindah breccia sheet is steeply dipping to the west, although the bounding structures are uncertain. The south westerly drill direction of hole #18 was considered important to determine whether mineralised breccia extended in that direction..

Previous resource estimations at Mt Cannindah model the breccia body as elongated NNE-SSW and at least 100m plus thick in an east west direction. Previous estimations indicate a potentially depth extension to 350m plus.. The breccia body geometry, as modelled at surface has the long axis oriented NNE-SSW. In this context, hole 22CAEDD018 drills to the south west of the mineralised envelope previously recognized at Mt Cannindah, . raking across the strike of the overall body

CAE Hole # 18 is drilling to the south south west and parallels CAE hole # 13 which intersected several breccia and dyke like bodies at high angles . Some of which have been measured and interpreted as having various trend including east west. In this regard, the orientation of hole # 18 was entirely appropriate for the geometry and trends of the targeted bodies and structures.

CAE drilling has shown that the longest axis of the Mt Cannindah breccia is plunging to great depths, and the upper and lower contacts , effectively the hanging and footwall contacts are still to be firmly established.. Further investigation is required to establish the geometry of the mineralised breccia body in the north, south and down plunges of the Mt Cannindah deposit.

23 March 2023

Diagrams	Appropriate maps and sections (with scale) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Preliminary sections and plans of the drillhole 22CAEDD018 reported here, are included in this report. Geological data is still being assembled at the time of this report. An update of the geological model for Mt Cannindah is underway and will be released upon completion.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results.	The majority of 1m Cu,Au,Ag,S assays from the upper 0m to 274m section of hole 22CAEDD018 are listed with this report. In some instances. These have been reported as lithological and geochemical groups or sub-sets. Significant intercepts of Cu,Au,Ag are tabulated. All holes were sampled over their entire length, Reported intercepts have been aggregated where mineralization extends over significant down hole widths. This aggregation has allowed for the order of 15m of non mineralized late dykes or lower grade breccia sections.to be incorporated within the reported intersections. In general, a lower value of 0.15% CuEq has been utilized for the aggregated results. Wider aggregations have been reported for comparative purposes, in respect of reporting assaying of the mineralized sections which extend over the entire hole length. Aggregated intersections that contain zones of internal waste are clearly identified.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The latest drill results from the Mt Cannindah project are reported here. The report concentrates on the Cu,Au, Ag results. Other data, although not material to this update will be collected and reported in due course.
Further work	The nature and scale of planned further work (e.g. test for lateral extensions or depth extensions or large-scale step-out drilling).	Drill targets are identified and further drilling is required. Hole 22CAEDD018 drills at the southern end of the prospect in a south westerly direction, similarly hole 18 drills sub parallel to CAE Hole # 13. Hole 13 was drilled in 2022. Drilling has recommenced at Mt Cannindah for the year 2023. CAE Hole # 18 is complete and the bottom section is awaiting assaying, Hole # 19 is underway and will be followed by a series of drillholes testing the extent of the Mt Cannindah breccia at the southern end. Further drilling is planned at Mt Cannindah Breccia.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Not yet determined, further work is being conducted.

23 March 2023

ASX Code: CAE

APPENDIX 4– JORC Code Table 2

Section 3: Estimation and Reporting of Mineral Resources

Audits or Review	The results of audits and reviews of any ore resource Estimates.	There have been several resource estimations made over the various deposits at Mt Cannindah. These have been in the public domain for a number of years.
		The most recent resource statement by by Hellman & Schofield in 2011 is for Drummond Gold on the resource at Mt Cannindah itself. This was reported under the JORC 2004 code and has not been updated to comply with JORC 2012 on the basis that the information has not materially changed since it was last reported.