OVER 100m of IMPRESSIVE COPPER BEARING BRECCIA DRILLED at SOUTHERN EXTENSION of MT CANNINDAH WITH FURTHER MINERALISED BRECCIA DOWNHOLE. CAE has intersected 110m of mineralised copper breccia from 156m to 267m in Hole 19. Visual estimates are in the order of 2% - 4% chalcopyrite, with some individual metres greater than 5% chalcopyrite. Although laboratory assay results are awaited, preliminary data suggest this zone is expected to return a copper intersection of around 110m downhole with copper values in the range 0.8%-1.2% Cu*. This estimate is based on visual comparisons with similarly copper mineralised intervals from previous drilling at Mt Cannindah, as well as utilizing PXRF analyses of 3m sludge samples of representative diamond drill cuttings. Sludge sampling has proved to be highly effective at determining Cu grades at Mt Cannindah. Final Cu, Ag, Au grades will be reported upon receipt of lab results. Copper bearing breccia also continues further downhole in CAE #19, a lower zone between 291m and 450m has visual estimates generally in the 0.5% to 1.5% chalcopyrite range, but with several metre intervals of expected higher grades. Based on assaying of adjacent holes and PXRF sludge analyses, CAE is expecting to report in the 0.25% to 0.4% Cu range over 150m downhole as a lower breccia interval (291m to 450m). High grade chalcopyrite infill in hydrothermal breccia. CAE Hole 19, 162.5m Chalcopyrite , pyrite, calcite infill in hornfels dominated hydrothermal breccia. 213.7m Semi-massive chalcopyrite, pyrite, calcite infill in breccia. CAE Hole 19, 378 .5`m **ASX Announcement** **DATE: 22 May 2023** #### **Fast Facts** Shares on Issue: 561,979,953 Market Cap (@\$0.16): \$89.92 M (As at 22/5/2023) **Board and Management** Tom Pickett - Executive Chairman Dr Simon Beams - Non Executive Director Geoff Missen - Non Executive Director Michael Hansel - Non Executive Director Garry Gill - Company Secretary ## **Company Highlights** - Exceptional exploration management - Located within existing mining lease - 100km from Gladstone Port - Significant copper intercepts at flagship Mt Cannindah project over hundreds of metres - New Gold discovery within current drill program at Mt Cannindah - Expansion of current 5.5MT resource is the focus of the current program - Large Gold portfolio with Piccadilly project 100km west of Townsville with existing mining lease and EPMs with large target areas yet to be drilled - No debt ^{*}These results are preliminary in nature and are provided to keep the market informed of significant developments at Mt Cannindah. Estimated copper grades are based on PXRF analyses of representative sludge samples supported by visual estimates of chalcopyrite content. Portable XRF values should be regarded as preliminary and subject to confirmation by laboratory analysis. There may be some variation in value between the lab analyses and those obtained by portable XRF. PXRF Details in JORC Table 1 (p-14 & 19) Cannindah Resources Limited 22 May 2023 ASX Code: CAE ## **EXECUTIVE CHAIRMAN COMMENTS** "The great work completed by our geological team continues to deliver the right outcomes for the Mt Cannindah project. The existence once again of significant copper intercepts to the southwest at Mt Cannindah opens up the new area possibly providing excellent additional tonnage to future resource calculations. The XRF numbers have traditionally correlated very well with lab assay numbers so it is very encouraging that we have had this success in hole 19. Exploration continues with hole 20 now complete and 21 already commenced at Cannindah East some 500m away from the collar of hole 20. We look forward to more high quality results in the near future once assays are received and reported." Infill in hydrothermal breccia of high grade chalcopyrite (golden) with well-formed pyrite (brassy), some quartz (light grey) in a breccia dominated by angular clasts of yellow grey hornfels, some altered porphyry. CAE Hole 19, 163m Sulphidic hydrothermal breccia at 174.8m -typical of interval 156m to 257m,CAE Hole 19 at Mt Cannindah. Drill to south south west between CAE Holes # 13 and 18, where CAE have recently announced high copper, gold and silver. Infill of golden chalcopyrite, some brassy pyrite, white calcite & light grey quartz. Angular clasts hornfels & some porphyry. Infill in hydrothermal breccia of high grade chalcopyrite (golden) with well formed pyrite (brassy), some quartz (light grey) and calcite in a breccia dominated by angular clasts of yellow grey hornfels. CAE Hole 19, 378.5m intercepts. 22 May 2023 Fig 1. Location of Mt Cannindah Project in Central Queensland. ASX Code: CAE ## Tenure EPM 14524 EPM 15261 • 9 sub-blocks • ~ 28 sq km • ~ 43.5 sq km MLs 3201-3209 (contiguous) • ~ 5.7 sq km Total of 71.5 sq km of Exploration Permits & 5.7 sq km of Mining Leases ## OWNERSHIP The Mt Cannindah Project is 100% owned by Cannindah Resources Limited ## Mt Cannindah Projects Mt Cannindah Mining Pty Ltd wholly owned subsidiary of Fig 2. Mt Cannindah Project Tenure Cannindah Resources Limited 22 May 2023 Fig 3. Mt Cannindah project Location of prospect areas and mineralised targets. 22 May 2023 ASX Code: CAE ## PRELIMINARY RESULTS COPPER MINERALISED BRECCIA CAE HOLE 19 AT MT CANNINDAH Cannindah Resources Limited ("Cannindah", "CAE") is reporting preliminary results of CAE hole # 19 at Mt Cannindah, where a significant zone of copper bearing hydrothermal breccia has been intersected. These are the latest developments from the drilling program currently underway at Mt Cannindah, copper gold silver project south of Gladstone near Monto in central Queensland (Figs 1 to 3). Core is being processed and assay lab results are awaited from the bottom of hole # 18, and hole # 19. Hole # 20 is currently being drilled. Hole 23CAEDD019 was collared to the south of the main drilled section of the Mt Cannindah mine area, targeting the extent and continuity of copper-gold -silver breccia and intrusive hosted mineralization intersected in sub-parallel CAE holes # 13 & 18. Fig 4 shows the location and key drill intercepts in these holes. CAE Hole # 19 drills between CAE Holes # 13 & 18, with the section containing the trace of CAE hole #13 some 50m to the north west, and CAE hole # 18 some 75m to south east of the trace of CAE hole # 19. Previously reported results from these holes are show in Fig 4. CAE ASX Announcement 23 March 2023. Hole # 13 (CAE ASX Announcement 30 September 2022) reported the following: - Drilled two extensive zones (approx. 100m downhole widths of 1% CuEq*) within the primary zone of infill hydrothermal breccia. - (1) 36m to 140m : 104m @ 1.0% CuEq,(0.63% Cu, 0.41g/t Au, 14.1g/t Ag). - (2) 229m to 337m : 108m @ 1.01% CuEq,(0.57% Cu, 0.58g/t Au, 9.8g/t Ag. - CAE Hole #13 also intersected some significant intervals of gold : - (1) **Om to 24m**, **24m@ 2.11 g/t Au**, **10.9 g/t Ag**, **0.52** % **Cu** a high grade oxidised gold zone from surface within gossanous hydrothermal infill breccia - (2) 314m to 329m: 15m @ 2.78g/t Au, which include 4m @ 6.50 g/t Au 9.8g/t Ag. The core of the system here is a prominent semi-massive sulphide infill zone, containing high grade gold with grades up to 22.98 g/t Au, 60.0 g/t Ag, with high Zn, Pb, elevated Bi. **Hole # 18** drills in a south south westerly direction (magnetic direction at collar of 206 degrees). CAE reported results in CAE ASX Announcements 23rd March,2023, and 3rd April, 2023. Hole # 18 was collared in flinty hornfels, which is cut by an extensive vein fracture network as the Hydrothermal Infill Breccia is approached downhole, crossing the contact at 138.6m. Copper and gold bearing sulphidic breccia occurs below 138m, cut by some bleached altered, argillized porphyry and thin post mineral andesite dykes. Results reported from the top of CAE Hole # 18 (ASX Announcement, 23March 2023) are highly significant with: a high copper breccia zone of 21m @ 0.98%CuEq, 0.75% Cu,0.22 g/t Au,11.0g/t Ag occurring 138m – 159m. and two high grade gold zones: • 18m @ 6.34 g/t Au, 0.18%Cu, 17.2g/t Ag (4.18CuEq) (244m-262m) up to 23.93 g/t Au, 61g/t Ag. 22 May 2023 ASX Code: CAE • 20m @ 5.5 g/t Au, 0.81%Cu, 23g/t Ag (4.34CuEq) (355m-375m) up to 23.93 g/t Au, 61g/t Ag, with 1m of 96.16 g/t Au, 1.46% Cu, 123.2 g/t Ag. The intervals in CAE hole # 18 aggregate to: - 275m @ 1.03% CuEq, 0.29%Cu, 1.11 g/t Au ,7.9 g/t Ag,4.33 % S (103m-378m) which includes a more sulphidic , higher gold zone of : - 104m @ 1.22% CuEq, 0.27%Cu, 1.46 g/t Au ,7.5 g/t Ag, (274m-378m) **Hole # 19** is located in the southern section of Mt Cannindah Mine area (see Fig 5) and drills in a south westerly direction (magnetic direction at collar of 216 degrees) with an inclination at the drill collar of -55 degrees. Fig 6 is a cross section showing simplified geology over the trace of Hole # 19 traverses. Similar geology to Hole # 18, is noted: collaring in flinty hornfels, which is cut by an extensive vein fracture network, which grades into an hornfels dominated shatter breccia at 131m. At 156m, there is a faulted contact with hydrothermal sulphidic infill breccia which is clast supported, dominated by angular blocks and fragments of hornfels, some porphyry clasts , with prominent infill of calcite, quartz , pyrite and chalcopyrite. (see Fig 4) Fig. 4. Photo full HQ core Hole #19, oriented in core oriented frame, hole drilling to south south west, view looking west north west, hole at 163.25m inclined at -44.5 degrees toward 206 degrees mag: Hydrothermal Infill Breccia. Clasts of light brown grey sericite altered hornfels, minor porphyry with infill of abundant chalcopyrite (golden), pyrite (brassy), minor calcite (white), quartz (glassy), dark green chlorite, fine rock flour. 22 May 2023 ASX Code: CAE Chlorite is dominant in some of the uphole sections of the breccia, sericite alteration becomes more prominent down hole and dominates from 175m or so. The infill breccia is cut by some bleached altered,
argillized porphyry and thin late and post mineral andesite/trachy-andesite dykes, which are often argillized. Sulphide content is generally high throughout the hydrothermal infill breccia, although there is a variation in chalcopyrite content. Sulphide content can build up to semi-massive levels either side of dykes. Logged sulphide ranges checked against PXRF analyses are: | | | | Visual Estimate | Visual Estimate | |----------|--------|--|-----------------|----------------------| | From (m) | To (m) | Rock Type | Pyrite Range % | Chalcopyrite Range % | | 131 | 157 | Shattered Hornfels breccia & porphyry | 3%-5% | 0.1% - 0.3% | | 157 | 192 | Hydrothermal Infill Breccia | 3% - 5% | 3% - 5% | | 192 | 198 | Fine grained andesite | 0.5% - 1% | 0.2% - 0.5% | | 198 | 251 | Hydrothermal Infill Breccia (HFL) | 3% - 5% | 3% - 4% | | 251 | 267 | Hydrothermal Infill Breccia | 3% - 5% | 0.5% - 1% | | 267 | 289 | Hornfels Shatter Breccia | 1%-3% | 0.1%-0.2% | | 289 | 299 | Hydrothermal Infill Breccia | 3% - 5% | 0.2% - 1% | | 299 | 307 | Hydrothermal Infill Breccia | 10% - 15% | 3% - 5% | | 307 | 311 | Argillized Trachyandesite/andesite | | | | 311 | 319 | Argillized Porphyry | 2% - 3% | 0.1% - 0.2% | | 319 | 350.3 | Hydrothermal Infill Breccia (HFL-PHY) | 3% - 5% | 0.5% - 2% | | 350.3 | 352.31 | Argillized Trachyandesite/andesite | 1%-2% | | | | | Argillized Hydrothermal Infill Breccia | | | | 352.31 | 383.7 | (HFL-PHY) | 5% - 10% | 1% - 2% | | 383.7 | 385 | Argillized Trachyandesite/andesite | 5% | 0.50% | | | | Argillized pyritic Hydrothermal Infill | | | | 385 | 401.94 | Breccia (HFL-PHY) | 15% | 2% - 3% | | 401.94 | 403.1 | Argillized Trachyandesite/andesite | 1%-2% | 1% - 3% | | | | Argillized pyritic Hydrothermal Infill | | | | 403.1 | 450 | Breccia (HFL-PHY) | 15% | 1% - 2% | | | | Sericitic altered bleached Clast supported | | | | 450 | 542 | Breccia | 4% - 5% | | | | 794.77 | Hornfelsed siltstone & feldspathic | | | | 542 | EOH | sandstone interbeds | 1%-3% | | Figs 5 is a plan view of the simplified geology trace of CAE Hole # 19 in relation to 2021-2023 CAE drillholes at Mt Cannindah. The same data is plotted in Appendix 2 with CAE holes in relation to historical holes. Fig 6 is a cross section showing down hole simplified geology for CAE Hole # 19. Figs 7 to 11 illustrate aspects of the mineralised copper rich breccias. Photos in this report are good examples of the distribution of copper from 163m to 378m in Hole 19. 22 May 2023 ASX Code: CAE Fig 5. Plan view CAE Hole # 19 simplified geology in relation to 2021-2023 CAE Drillholes Mt Cannindah. Downhole lab Cu plotted, CuEq intercepts annotated for previous CAE holes. **22 May 2023**ASX Code: CAE Fig 6. Cross section CAE Hole # 19, section line oriented south south west to nnrth north east, looking north west, showing simplified geology and extent of mineralised breccia. 22 May 2023 Fig 7. Photo - full HQ core Hole #19, oriented in core oriented frame, hole drilling to south south west, view looking west north west, hole at 162.7m to 163m inclined at -53 degrees toward 217 degrees mag: Hydrothermal Infill Breccia. Clasts of grey, light brown grey hornfels, light grey where sericite altered, minor diorite porphyry clasts with infill of abundant chalcopyrite (golden), pyrite (brassy), minor calcite (white), quartz (glassy), dark green chlorite, fine rock flour. 22 May 2023 Fig 8. Photo Half HQ Core . Sulphidic hydrothermal breccia at 190.9m -. Angular clasts fine grained hornfelsed siltstone with feldspathic sandstone interbeds, Infill of golden chalcopyrite, some brassy pyrite, white calcite & light grey quartz. Fig 9. Photo Half HQ Core . Sulphidic hydrothermal breccia at 245m -. Angular clasts grey fine hornfels, feldspar porphyry, infill of golden chalcopyrite, brassy pyrite, white calcite & light grey well formed quartz. Fig 10. Photo Half HQ Core . Sulphidic hydrothermal breccia at 325.7m -. Dominated by angular clasts grey fine hornfels, infill of golden chalcopyrite, brassy pyrite, white calcite & light grey well formed quartz. 22 May 2023 Fig 11. Photo full HQ core Hole #19, oriented in core oriented frame, hole drilling to south south west, view looking west north west, hole at 221m inclined at -51 degrees toward 218 degrees mag: Hydrothermal Infill Breccia. Clasts dominated of yellow grey, sericite altered hornfels, with infill of chalcopyrite (golden), pyrite (brassy), minor calcite (white), quartz (glassy). Fig 12. Photo full HQ core Hole #19, oriented in core oriented frame, hole drilling to south south west, view looking north east, hole at 162.7m to 378m inclined at -45 degrees toward 222 degrees mag: Hydrothermal Infill Breccia. Clasts of grey, light brown grey hornfels, light grey where sericite altered, minor diorite clasts with infill of semi-massive sulphide, abundant chalcopyrite (golden), pyrite (brassy), minor calcite (white), quartz (glassy), 22 May 2023 ASX Code: CAE The information in this report that relates to exploration results is based on information compiled by Dr. Simon D. Beams, a full-time employee of Terra Search Pty Ltd, geological consultants employed by Cannindah Resources Limited to carry out geological evaluation of the mineralisation potential of their Mt Cannindah Project, Queensland, Australia. Dr Beams is also a non-Executive Director of Cannindah Resources Limited. Dr. Beams has BSc Honours and PhD degrees in geology; he is a Member of the Australasian Institute of Mining and Metallurgy (Member #107121) and a Member of the Australian Institute of Geoscientists (Member # 2689). Dr. Beams has sufficient relevant experience in respect to the style of mineralization, the type of deposit under consideration and the activity being undertaken to qualify as a Competent Person within the definition of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("JORC Code). Dr. Beams consents to the inclusion in the report of the matters based on this information in the form and context in which it appears .Disclosure: Dr Beams' employer Terra Search Pty Ltd and Dr Beams personally hold ordinary shares in Cannindah Resources Limited. ## For further information, please contact: Tom Pickett. Executive Chairman Ph: 61 7 55578791 ## Formula for Copper Equivalent calculations Copper equivalent has been used to report the wider copper bearing intercepts that carry Au and Ag credits, with copper being dominant e.g. have confidence that existing metallurgical processes would recover copper, gold and silver from Mt Cannindah. We have confidence that the Mt Cannindah ores are amenable to metallurgical treatments that result in equal recoveries. This confidence is reinforced by some preliminary metallurgical test work by previous holders, geological observations and our geochemical work which established a high correlation between Cu, Au, Ag. The full equation for Copper Equivalent is: CuEq/% = (Cu/% * 92.50 * CuRecovery + Au/ppm * 56.26 * AuRecovery + Ag/ppm * 0.74 * AgRecovery)/(92.5* CuRecovery) When recoveries are equal this reduces to the simplified version: CuEq/% = (Cu/% * 92.50 + Au/ppm * 56.26 + Ag/ppm * 0.74)/ 92.5 We have applied a 30 day average prices in USD for Q4,2021, for Cu, Au , Ag , specifically copper @ USD\$9250/tonne, gold @ USD\$1750/oz and silver @ USD\$23/oz. This equates to USD\$92.50 per 1 wt %Cu in ore, USD\$56.26 per 1 ppm gold in ore, USD\$0.74 per 1 ppm silver in ore . We have conservatively used equal recoveries of 80% for copper, 80% for gold, 80% for Ag and applied to the CuEq calculation. CAE are conducting Metallurgical test work to quantify these recoveries. ASX Code: CAE ## **Appendix 1 Plan View with Historic Drillholes** Fig App1.1. Plan view CAE Hole # 19 simplified geology in relation to 2021-2023 CAE and Historic Drillholes, Mt Cannindah. Downhole lab Cu plotted, CuEq intercepts annotated for previous CAE holes. 22 May 2023 ASX Code: CAE ## Appendix 2: JORC Table 1. Section 1: Sampling Techniques and Data #### Criteria **Explanation** Commentary Sampling techniques Nature and quality of sampling (e.g. cut Sampling results are based on sawn half channels, random chips, or specific core samples of both PQ ,HQ and NQ specialised industry diameter diamond drill core. An orientation standard measurement tools appropriate to the line was marked along all core sections. minerals under investigation, such as One side of the core was consistently sent down hole gamma sondes, or handheld for analysis and the other side was XRF instruments, etc.) These examples consistently retained for archive purposes. should not be taken as limiting the broad The orientation line was consistently meaning of sampling. preserved. Indicative preliminary analysis to support Include reference to measures taken to the geological logging at Mt Cannindah is ensure sampling representivity and the also obtained via sludge sampling. In this appropriate calibration of method drill cuttings are collected from the water return lines while diamond drilling. measurement tools or systems used. These samples are collected over 3m intervals as fine sand & silt size material and bagged in calico bags, dried, subsampled, crushed in a mortar & pestle and analysed with a PXRF instrument. Standards and comparisons with lab results are consistent with the sludge samples being representative of the metres drilled. Caution is required in assessing the sludge results as the samples are influenced by drilling additives, muds, detergents etc and wear and tear of the drill string, rods and bits. Providing these considerations are taken into account, CAE's geological consultants Terra Search are confident of the robust nature of the sludge results at Mt Cannindah, particularly in regard to certain elements including copper, checks against the logged visual estimates also provide robust support for the sludge results.. Aspects determination of
the Half core samples were sawn up on a mineralisation that are Material to the diamond saw on a metre basis for HQ,NQ Public Report. In cases where 'industry diameter core and a 0.5m basis for PQ standard' work has been done this would diameter core. Samples were forwarded be relatively simple (e.g. 'reverse to commercial NATA standard circulation drilling was used to obtain 1m laboratories for crushing, splitting and samples from which 3kg was pulverised to grinding ,Laboratory used in this instance produce a 30g charge for fire assay'). In is Intertek Genalysis, Townsville. other cases more explanation may be Analytical sample size was in the order of required, such as where there is coarse 2.5kg to 3kg. gold that has inherent sampling problems. **Drilling techniques** Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. Drill type is diamond core. Core diameter at top of hole is PQ, below 30m core diameter is HQ and NQ.Triple tube methodology was deployed for PQ & HQ, 22 May 2023 | Criteria | Explanation | Commentary | |--|--|--| | - CANCOLO | diamond tails, face-sampling bit or other type, whether core is oriented and if so, by | which resulted in excellent core recovery throughout the hole.Core was oriented, | | | what method, etc.) | utilizing an Ace Orientaion equipment and rigorously supervised by on-site geologist. | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. | Core recovery was recorded for all drill runs and documented in a Geotechnical log. The Triple Tube technology and procedure ensured core recoveries were excellent throughout the hole. | | | Measures taken to maximise sample recovery and ensure representative nature of the samples. | Triple tube methodology ensure excellent core recoveries. Core was marked up in metre lengths and reconciled with drillers core blocks. An orientation line was drawn on the core. Core sampling was undertaken by an experienced operator who ensured that half core was sawn up with one side consistently sent for analysis and the other side was consistently retained for archive purposes. The orientation line was consistently preserved. | | | Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | Core recoveries were good. An unbiased, consistent half core section was submitted for the entire hole, on the basis of continuous 1m sampling. The entire half core section was crushed at the lab and then split, The representative subsample was then fine ground and a representative unbiased sample was extracted for further analysis. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies | Geological logging was carried out by well-trained/experienced geologist and data entered via a well-developed logging system designed to capture descriptive geology, coded geology and quantifiable geology. All logs were checked for consistency by the Principal Geologist. Data captured through Excel spread sheets and Explorer 3 Relational Data Base Management System. A geotechnical log was prepared. | | | Whether logging is qualitative or quantitative in nature. Core (or costean, channel etc.) photography. | Logging was qualitative in nature. A detailed log was described on the basis of visual observations. A comprehensive Core photograph catalogue was completed with full core dry, full core wet and half core wet photos taken of all core. | | | The total length and percentage of the relevant intersections logged. | The entire length of all drill holes has been geologically logged. | | Sub-sampling
techniques and
sample preparation | If core, whether cut or sawn and whether quarter, half or all core taken. | Half core samples were sawn up on a diamond saw on a metre basis for HQ, NQ diameter core and a 0.5m basis for PQ diameter core | | | If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. | All sampling was of diamond core | | | For all sample types, the nature, quality and appropriateness of the sample preparation technique. | The above techniques are considered to be of a high quality, and appropriate for the nature of mineralisation anticipated. | 22 May 2023 | Criteria | Explanation | Commentary | |---|--|--| | GIRCHA | Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples. | QA/QC protocols were instigated such that they conform to mineral industry standards and are compliant with the JORC code. Terra Search's input into the Quality Assurance (QA) process with respect to chemical analysis of mineral exploration diamond core samples includes the addition of both coarse blanks, Certified pulped Blanks, Certified and Internal matrix matched standards to each batch so that checks can be done after they are analysed. As part of the Quality Control (QC) process, Terra Search checks the resultant assay data against known or previously determined assays to determine the quality of the analysed batch of samples. An assessment is made on | | | Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half | the data and a report on the quality of the data is compiled. The lab results are checked against visual estimations and PXRF sampling of sludge and coarse crush material. | | | sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | The standard 2kg -5kg sample is more than appropriate for the grainsize of the rock-types and sulphide grainsize. The sample sizes are considered to be appropriate to represent the style of the mineralisation, the thickness and consistency of the intersections. | | Quality of assay data
and laboratory tests | The nature, quality and appropriateness of
the assaying and laboratory procedures
used and whether the technique is
considered partial or total. | After crushing splitting and grinding at Intertek/Genalysis lab Townsville samples were assayed for gold using the 50g fire assay method The primary assay method used is designed to measure both the total gold in the sample as per classic fire assay. | | | | The total amount of economic metals tied up in sulphides and oxides such as Cu, Pb, Zn, Ag, As, Mo, Bi,S is captured by the 4 acid digest method ICP finish. This is regarded as a total digest method and is checked against QA-QC procedures which also employ these total techniques. Major elements which are present in silicates, such as K, Ca, Fe, Ti, Al, Mg are also digested by the 4 acid digest Total method. The techniques are considered to be entirely appropriate for the porphyry, skarn and vein style deposits in the area. The economically important elements in these deposits are contained in sulphides which is liberated by 4 acid digest, all gold is determined with a classic fire assay. | 22 May 2023 ASX Code: CAE ## Criteria Explanation Commentary For geophysical tools, spectrometers, handheld XRF instruments, etc. the parameters used in determining the analysis including instrument make and model, reading times, calibration factors applied and their derivation, etc. Magnetic susceptibility measurements utilizing Exploranium KT10 instrument, zeroed between each measurement. PXRF analysis has been utilized to provide multi-element data for the prospect. Dried sludge samples are considered appropriate and representative samples to provide preliminary chemical analysis to guide exploration targeting, providing the shortcomings of the nature of these samples is taken into consideration. The latter applies in particular to drilling additives, muds, wear and tear on the drill string etc. PXRF Analysis is carried out in a controlled environment in air conditioned Terra Search offices in Townsville or a mobile enclosed office on site.. The instrument used is Terra Search's portable Niton XRF analyser (Niton 'trugeo'
analytical mode) analysing for a suite of 40 major and minor elements. in. The PXRF equipment is set up on a bench and the sub-sample (loose powder in a thin clear plastic freezer bag) is placed in a lead-lined stand. An internal detector autocalibrates the portable machine, and Terra Search standard practice is to instigate recalibration of the equipment every 2 to 3 hours. Readings are undertaken for 60 seconds on a circular area of approximately 1cm diameter. A higher number of measurements are taken from the centre of the circle and decreasing outwards. PXRF measures total concentration of particular elements in the sample. Reading of the X-Ray spectra is effected by interferences between different elements. The matrix of the sample eg iron content has to be taken into account when interpreting the spectra. The reliability and accuracy of the PXRF results are checked regularly by reference to known standards. There are some known interferences relevant to particular elements eg W & Au; Th & Bi, Fe & Co. Awareness of these interferences is taken into account when assessing the results. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. QAQC samples are monitored on a batchby-batch basis, Terra Search has well established sampling protocols including blanks (both coarse & pulped), certified reference material (CRM standards), and in-house standards which are matrix matched against the samples in the program. 22 May 2023 | Criteria | Explanation | Commentary | |---------------------------------------|---|--| | | | Terra Search quality control included determinations on certified OREAS samples and analyses on duplicate samples interspersed at regular intervals through the sample suite of both the commercial laboratory batchStandards were checked and found to be within acceptable tolerances. Laboratory assay results for these quality control samples are within 5% of accepted values. | | Verification of sampling and assaying | The verification of significant intersections by either independent or alternative company personnel. | Significant intersections were verified by Terra Search Pty Ltd, geological consultants who geologically supervised the drilling. Validation is checked by comparing assay results with logged mineralogy eg sulphide material in relation to copper and gold gradse. | | | The use of twinned holes. | There has been little direct twinning of holes, the hole reported here pass close to earlier drill holes, assay results and geology and assay results are entirely consisted with previous results. | | | Documentation of primary data, data entry procedures, data verifications, data storage (physical and electronic) protocols. | Data is collected by qualified geologists and experienced field assistants and entered into excel spreadsheets. Data is imported into database tables from the Excel spreadsheets with validation checks set on different fields. Data is then checked thoroughly by the Operations Geologist for errors. Accuracy of drilling data is then validated when imported into MapInfo. | | | | Location and analysis data are then collated into a single Excel spreadsheet. Data is stored on servers in the Consultants office and also with CAE. There have been regular backups and archival copies of the database made. Data is also stored at Terra Search's Townsville Office. Data is validated by long-standing procedures within Excel Spreadsheets and Explorer 3 data base and spatially validated within MapInfo GIS. | | | Discuss any adjustment to assay data. | No adjustments are made to the Commercial lab assay data. Data is imported into the database in its original raw format. | | Location of data
points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. | Collar location information was originally collected with a Garmin 76 hand held GPS. X-Y accuracy is estimated at 3-5m, whereas height is +/- 10m.Coordinates have been reassessed with DGPS, Accuracy is sub 0.5m in X,Y,Z. Down hole surveys were conducted on all holes using a Reflex downhole digital | 22 May 2023 | Criteria | Explanation | Commentary | |---|--|--| | GIREIIA | Explanation | camera . Surveys were generally taken | | | | every 30m downhole , dip, magnetic | | | | azimuth and magnetic field were recorded. | | | Specification of the grid system used. | Coordinate system is UTM Zone 55 (MGA) and datum is GDA94 | | | Quality and adequacy of topographic control. | Pre-existing DTM is high quality and available. | | Data spacing and distribution | Data spacing for reporting of Exploration Results. | At the Mt Cannindah mine area previous drilling program total over 100 deep diamond and Reverse Circulation percussion holes Almost all have been drilled in 25m to 50m spaced fences, from west to east, variously positioned over a strike length of 350m and a cross strike width of at least 500m Down hole sample spacing is in the order of 1m to 2m which is entirely appropriate for the style of the deposit and sampling procedures. | | | Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. | Previous resource estimates on Mt Cannindah include Golders 2008 for Queensland Ores and Helman & Schofield 2012 for Drummond Gold. Both these estimates utilised 25m to 50m fences of west to east drillholes, but expressed concerns regarding confidence in assay continuity both between 50m sections and between holes within the plane of the cross sections. The hole reported 23CAEDD018 has drilled to the south south west and is largely drilling in a direction and area where there is little previous drilling. CAE Hole # 13 is parallel in section but some 60m distance across section. Further drilling is necessary to enhance and fine tune the previous Mineral Resource. estimates at Mt Cannindah and lift the category from Inferred to Indicated and Measured and compliant with JORC 2012. | | | Whether sample compositing has been applied. | No sample compositing has been applied, Almost all sampling is of 1m downhole samples of half core | | Orientation of data in relation to geological structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. | The main objective of hole 23CAEDD019 reported here was to drill to the south west. CAE hole #19 was drilled at the southern end of the prospect in an area of little previous drilling and fragmented outcrop and subcrop. | | | | The overall geological interpretation at Mt Cannindah, built up from the CAE holes and historical drilling, is of a steeply west dipping, roughly north south oriented, tabular body of breccia, bounded on the east by hornfels and on the west by diorite and wedges of hornfels. | | | | CAE Hole #19 followed up on CAE Hole #13 & 18 as the third of CAE's holes to explore the southern & south western end of the Mt Cannindah breccia. CAE Holes # | 22 May 2023 ASX Code: CAE continuity along the north east to south west trend within the breccia zone. No sampling bias is evident in the logging, or the presentation of results on drill cross and long sections. Steep structures are evident and with steep inclined holes these are cut at oblique angles. The breccia zone at Mt Cannindah is of sufficient width and depth that drillhole 23CAEDD019 provides valuable unbiased information concerning Criteria **Explanation** Commentary 13 & 18 drilled NNE to SSW, effectively at right angles to historical drilling at Mt Cannindah. The drill direction of CAE hole #19 is particularly appropriate for east-west striking structures and geological features. Follow up results from CAE holes # 13, # 17 # 18 show that the east – west trending andesite dykes encountered in many holes are thin (mostly less than 5m true thickness) and, do not materially appear to stope out significant volumes of potential ore at Cannindah, Structural measurements on mineralised, often high
grade veins and sulphidic zones have also been shown to be east-west and the southerly drill direction of CAE Hole #19 is entirely appropriate to test these structures. . Historical and CAE drill results show that there are several orientations of mineralized zones, breccia bodies and pre and post mineral dykes. The most common orientations are broadly east west, and north south. In this regard, geological consultants Terra Search have planned drill holes of various orientations to target the known range of orientations observed and measured in the mineralised structures and breccia bodies. the relationship between drilling The Infill breccia is massive textured, orientation and the orientation of key recent interpretation suggests the clasts mineralised structures is considered to may have an imbrication or preferred have introduced a sampling bias, this orientation, that is gently to moderately should be assessed and reported if dipping to the east or south east. The overall orientation of the Mt Cannindah material. breccia sheet is steeply dipping to the west , although the bounding structures are uncertain. CAE Hole # 19 was drilled in a southerly direction, at right angles to the mostly east west holes at Mt Cannindah. One of the key aims of Hole # 19 was to determine the true thickness mineralised east west structures. A further objective was to help determine grade 22 May 2023 ASX Code: CAE | Criteria | Explanation | Commentary | |-------------------|---|--| | | | grade continuity of the breccia body. Observations of core reported here in Hole 19 show an alignment of breccia clasts that is broadly at a high angle to the drill hole, indicating the hole orientation is appropriate for the broadly east west oriented structures and geological units. The complete geometry of the breccia body is unknown at this stage. Similarly, vein structures have several orientations and only in certain instances is it evident that vein orientations have introduced a sampling bias. These are well documented with oriented core. Historically, most holes at Mt Cannindah have been drilled from west to east. These can be severely hampered when encountering the similar parallel direction of east west post mineral andesite dykes and other structures. This situation was evident in CAE hole # 15 which drilled down an east west dyke for a lot of its length. This relationship did demonstrate that following the historical drill pattern at Mt Cannindah does not necessarily lead to optimum results. Analysis of these geological relationships has led geological consultants Terra Search to design drill directions both 180 degrees and 90 degrees contrary to the historical direction. This drill pattern has produced outstanding results, leading to drill intersections of considerable grade and length. From preliminary investigation of the grade model It is anticipated that there is little overall evidence of any sampling bias in the CAE drilling at Mt Cannindah. | | Sample security | The measures taken to ensure sample security. | Chain of custody was managed by Terra Search Pty Ltd. Core trays were freighted in sealed & strapped pallets from Monto were they were dispatched by Terra Search . The core was processed and sawn in Terra Search's Townsville facilities and half core samples were delivered by Terra Search to Intertek/Genalysis laboratory Townsville lab. | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | There have been numerous independent reviews carried out on the Mt Cannindah project. reviewing sampling, data sets, geological controls, the most notable ones are Newcrest circa 1996; Coolgardie Gold1999; Queensland Ores 2008;Metallica ,2008; Drummond Gold, 2011; CAE 2014. | **APPENDIX 2 – JORC Code Table 2** 22 May 2023 ASX Code: CAE ## **Section 2: Reporting of Exploration Results** #### Mineral tenement and land tenure status Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national and environmental settings. Exploration conducted on MLs 2301, 2302, 2303, 2304, 2307, 2308, 2309, EPM 14524, and EPM 15261. 100% owned by Cannindah Resources Pty Ltd. The MLs were acquired in 2002 by Queensland Ores Limited (QOL), a precursor company to Cannindah Resources Limited. QOL acquired the Cannindah Mining Leases from the previous owners, Newcrest and MIM, As part of the purchase arrangement a 1.5% net smelter return (NSR) royalty on any production is payable to MIM/Newcrest and will be shared 40% by MIM and 60% by Newcrest. An access agreement with the current landholders in in place. | | The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. | No impediments to operate are known. | |-----------------------------------|--|--| | Exploration done by other parties | Acknowledgement and appraisal of exploration by other parties. | Previous exploration has been conducted by multiple companies. Data used for evaluating the Mt Cannindah project include: Drilling & geology, surface sampling by MIM (1970 onwards) drilling data Astrik (1987), Drill, Soil, IP & ground magnetics and geology data collected by Newcrest (1994-1996), rock chips collected by Dominion (1992),. Drilling data collected by Coolgardie Gold (1999), Queensland Ores (2008-2011), Planet Metals-Drummond Gold (2011-2013). Since 2014 Terra Search Pty Ltd, Townsville QLD has provided geological consultant support to Cannindah Resources. | | Geology | Deposit type, geological setting and style of mineralisation. | Breccia and porphyry intrusive related Cu-
Au-Ag-Mo, base metal skarns and shear
hosted Au bearing quartz veins occur
adjacent to a Cu-Mo porphyry. | 22 May 2023 ASX Code: CAE #### **Drill hole information** A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - Easting and northing of the drill hole collar - Elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar - Dip and azimuth of the hole - Down hole length and interception depth - Hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. A major drill data base exists for the Mt Cannindah district amounting to over 400 holes. Selected Cu and Au down hole intervals of interest have been listed in CAE's ASX announcement, March, 2021. ## Data aggregation methods In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations be shown in detail The standard for reporting of high grade Cu zones in hole from Mt Cannindah reported over the past two years is an intersection grade of 0.5% Cu equivalent, allowing for 5m of internal waste.. The standard cut-off for reporting of total aggregate Cu mineralized zones is 0.15% CuEq% allowing for 15m of internal waste. No cut-offs have been routinely applied in reporting of the historical drill results .There has been no cutting of high grade analyses including gold. .
Laboratory repeat analyses are determined for very high grade analyses of gold in particular and these are averaged. Repeat analyses to date of highly sulphidiic samples have not shown major nugget effects even with high grade gold values. The Cu-Au-Ag breccia style mineralisation at Mt Cannindah is developed over considerable downhole lengths. breccia is generally mineralised, although copper grade and sulphide content is variable. In addition pre and post mineral dykes and intrusive bodies can mask the mineralisation .Down hole Cu-Au-Ag intercepts have been quoted both as a semi-continuous, aggregated down hole interval and also as tighter higher grade Cu-Au-Ag sections. In addition, historical results have been reported in the aggregated form displayed in the ASX Announcement for CAE, March,2021, many times previously. There are some zones of high grade which can influence the longer intercepts, All results are reported as down hole plotted 1m half core sampling intervals or tabulated with lower grade zones clearly noted. Aggregation of the longer intercepts at Mt Cannindah is advantageous for analysis and 22 May 2023 ASX Code: CAE comparison of historical and recently collected drill data. The assumptions used for any reporting of metal equivalent values should be clearly stated A copper equivalent has been used to report the wider copper bearing intercepts that carry Au and Ag credits with copper being dominant. Previous holders have undertaken preliminary metallurgical test work. We have confidence that existing metallurgical processes would recover copper, gold and silver from Mt Cannindah. We have confidence that the Mt Cannindah ores are amenable to metallurgical treatments that result in equal recoveries. This confidence is reinforced by some preliminary metallurgical test work by previous holders, geological observations and our geochemical work which established a high correlation between Cu,Au,Ag. In December, 2022, CAE initiated a Metallurgical testing program for Mt Cannindah breccia. This program is current being scoped and materially important results will be reported when available. The full equation for Copper Equivalent is: CuEq/% = (Cu/% * 92.50 * CuRecovery + Au/ppm * 56.26 * AuRecovery + Ag/ppm * 0.74 * AgRecovery)/(92.5* CuRecovery) When recoveries are equal this reduces to the simplified version: CuEq/% = (Cu/% * 92.50 + Au/ppm * 56.26 + Ag/ppm * 0.74)/ 92.5 We have applied a 30 day average prices in USD for Q4,2021, for Cu, Au, Ag, specifically copper @ USD\$9250/tonne, gold @ USD\$1750/oz and silver @ USD\$23/oz. This equates to USD\$92.50 per 1 wt %Cu in ore, USD\$56.26 per 1 ppm gold in ore, USD\$0.74 per 1 ppm silver in ore .As these prices are similar to current Q3-Q4,2022 averages, CAE has maintained these prices in order to allow consistent reporting from 2021 to 2022. We have conservatively used equal recoveries of 80% for copper, 80% for gold , 80% for Ag and applied to the CuEq calculation. 22 May 2023 ASX Code: CAE Relationship between mineralisation widths and intercept lengths The relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. down hole length, true width not known). 22CAEDD019 reported here is an angled hole, inclined 55 degrees to the south west (magnetic azimuth 216 degrees at the drill collar). The hole is collared on fractured oxidised hornfels. As the breccia geometry is still to be established, the final attitude and thickness of the mineralisation is unknown at this stage. . The Mt Cannindah Infill breccia is massive textured , recent interpretation suggests the clasts may have an imbrication or preferred orientation, that is relatively flat dipping to the east or south east. The overall orientation of the Mt Cannindah breccia sheet is steeply dipping to the west , although the bounding structures are uncertain. The south westerly drill direction of hole #18 was considered important to determine whether mineralised breccia extended in that direction.. Previous resource estimations at Mt Cannindah model the breccia body as elongated NNE-SSW and at least 100m plus thick in an east west direction. Previous estimations indicate a potentially depth extension to 350m plus.. The breccia body geometry, as modelled at surface has the long axis oriented NNE-SSW. In this context, hole 22CAEDD019 drills to the south west of the mineralised envelope previously recognized at Mt Cannindah, . raking across the strike of the overall body CAE Hole # 19 is drilling to the south south west and parallels CAE hole # 13 & 18 which intersected several breccia and dyke like bodies at high angles . Observations of core reported here in Hole 19 show an alignment of breccia clasts that is broadly at a high angle to the drill hole, indicating the hole orientation is appropriate for the broadly east west oriented structures and geological units.. In this regard, the orientation of hole # 19 was entirely appropriate for the geometry and trends of the targeted bodies and structures. CAE drilling has shown that the longest axis of the Mt Cannindah breccia is plunging to great depths, and the upper and lower contacts , effectively the hanging and footwall contacts are still to be firmly established. Further investigation is required to establish the geometry of the mineralised breccia body in the north, south and down plunges of the Mt Cannindah deposit. Further work 22 May 2023 ASX Code: CAE | Diagrams | Appropriate maps and sections (with scale) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | Preliminary sections and plans of the drillhole 22CAEDD019 reported here, are included in this report. Geological data is still being assembled at the time of this report. An update of the geological model for Mt Cannindah is underway and will be released upon completion. | |------------------------------------|---|--| | Balanced reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results. | Over the past two years, the majority of 1m Cu,Au,Ag,S assays fromdrilling at Mt Cannindah are listed with CAE's ASX reports. In some instances. These have been reported as lithological and geochemical groups or sub-sets. Significant intercepts of Cu,Au,Ag are tabulated. All holes were sampled over their entire length, Reported intercepts have been aggregated where mineralization extends over significant down hole widths. This aggregation has allowed for the order of 15m of non mineralized late dykes or lower grade breccia sections.to be incorporated within the reported intersections. In general, a lower value of 0.15% CuEq has been utilized for the aggregated results. Wider aggregations have been reported for comparative purposes, in respect of reporting assaying of the mineralized sections which extend over the entire hole length. Aggregated intersections that contain zones of internal waste are clearly identified. | | Other substantive exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | The latest drill results from the Mt Cannindah project are reported here. The report concentrates on visual estimates supported by PXRF sludge results. Lab Cu,,Au, Ag results will be reported as soon as they are available Other data, although not material to this update will be collected and reported in due course. | Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is The nature and scale of planned further work (e.g. test for lateral extensions or depth extensions or large-scale step-out not commercially sensitive. drilling). Drill targets are identified and further drilling is required. Hole 22CAEDD019 drills at the southern end of the prospect in a south westerly direction, similarly hole 19 drills sub
parallel to CAE Hole # 13. & 18. Hole 13 was drilled in 2022. Drilling is underway at Mt Cannindah for the year 2023. CAE Hole # 20 is complete and core is being processed. Hole # 21 is underway at Cannindah East and will be followed by a series of drillholes testing the extent of the Mt Cannindah breccia at the southern end. Further drilling is planned at Mt Cannindah Breccia. 22 May 2023 ASX Code: CAE ## **APPENDIX 3- JORC Code Table 2** ## Section 3: Estimation and Reporting of Mineral Resources Audits or Review The results of audits and reviews of any ore resource Estimates. There have been several resource estimations made over the various deposits at Mt Cannindah. These have been in the public domain for a number of years. The most recent resource statement by by Hellman & Schofield in 2011 is for Drummond Gold on the resource at Mt Cannindah itself. This was reported under the JORC 2004 code and has not been updated to comply with JORC 2012 on the basis that the information has not materially changed since it was last reported.