DATELINE RESOURCES LIMITED

(ACN 149 105 653) **ASX Code: DTR**

CAPITAL STRUCTURE

Share Price (9/6/23) \$0.032 Shares on issue 842.6 million Market Cap \$27 million

MAJOR SHAREHOLDERS

Mark Johnson14.40%Southern Cross Exploration NL11.40%HSBC Custody Nominees8.30%Stephen Baghdadi5.60%

DIRECTORS & MANAGEMENT

Mark Johnson AO Chairman

Stephen Baghdadi Managing Director

Greg Hall Non-Executive Director

Tony Ferguson Non-Executive Director

Bill Lannen Non-Executive Director

John Smith Company Secretary

CONTACT
John Smith
Phone: +61 2 9375 2353
Postal Address: P.O. Box 553
South Hurstville NSW 2221
Email: info@datelineresources.com.au

BONANZA INTERCEPT AT COLOSSEUM 63.2 metres at 10.28g/t Au

Highlights

- 63.2m @ 10.28g/t Au intercepted in diamond drill hole CM23-08, the first in the current diamond drill program
- This intercept includes a higher-grade section of 23.5m @ 21.8g/t Au.
- Average grade of the intersection is significantly greater than overall resource grade.
- Second hole, CM23-11a, currently underway with results expected in 2-3 weeks.
- A total of eight diamond drill holes planned.
- Drilling the rare earth targets is planned for the September quarter.

Dateline Resources Limited (Dateline or the Company) is pleased to announce it has received initial assay results from the upper part of the first diamond drill hole, CM23-08, drilled at the Colosseum Mine in San Bernardino County, California, USA that includes a 63.2 metre intersection of 10.28 g/t gold from 91.15m downhole.

The current drill program builds on the success of the drilling in mid-2022, where drillhole CM22-05 intercepted **100.6m** @ **4.16g/t Au** from 79.24m downhole¹.

Pleasingly, higher grades intersected in both this year and last years drill holes, are significantly higher than the average Mineral Resource² grade of 1.2g/t Au (813,000oz)

Mineralisation at Colosseum is hosted within two near vertical breccia pipes, with historical drilling intersecting the West pipe at ~1,000m vertical depth below the starting surface. The existing open pit is at 1,621mRL (208m below the starting surface), the Mineral Resource estimate extends to 1,493mRL (128m below the pit), whilst this current drill program proposes to test targets down to 1,417mRL, ~75m below the base of the Mineral Resource estimate.

The drilling program comprises eight diamond drillholes targeting areas within the mineral resource model that have low drill density as well as below the Mineral Resource model to add additional tonnes and ounces. The results of this program will be used to update the Mineral Resource estimate.

Commenting on the results, Managing Director, Stephen Baghdadi, commented:

"This is a bonanza result. The curent drilling program is designed to increase the overall gold resource size, both in terms of tonnage and grade. The results from the first hole have yielded a materially higher gold grade than the resource average and bodes well for when the resource is recalculated at the conclusion of the program."

"We recently announced the sale of Gold Links Mine to focus on the Colosseum Mine, and drill intercepts such as this validate the strategy."

"A resource upgrade could significantly increase the value of the Colosseum Mine. This is the first partial result of eight holes in the program. Progress and results from the other holes keenly awaited."

¹ ASX Announcement 6 June 2022 – 100m @ 4.16g/t Au Colosseum Gold Project

 $^{^2}$ ASX Announcement 6 July 2022 – 813,000 ounce Mineral Resource estimate for Colosseum Gold Project

Diamond Drilling Details

Drillhole CM23-08 was drilled at a dip of -50° towards Azimuth 218°, testing the West breccia pipe inside and below the current Mineral Resource envelope. The hole was drilled to 179.7m, before being terminated due to unstable drilling conditions. Notably, the hole ended in mineralisation, adding to the potential of this zone.

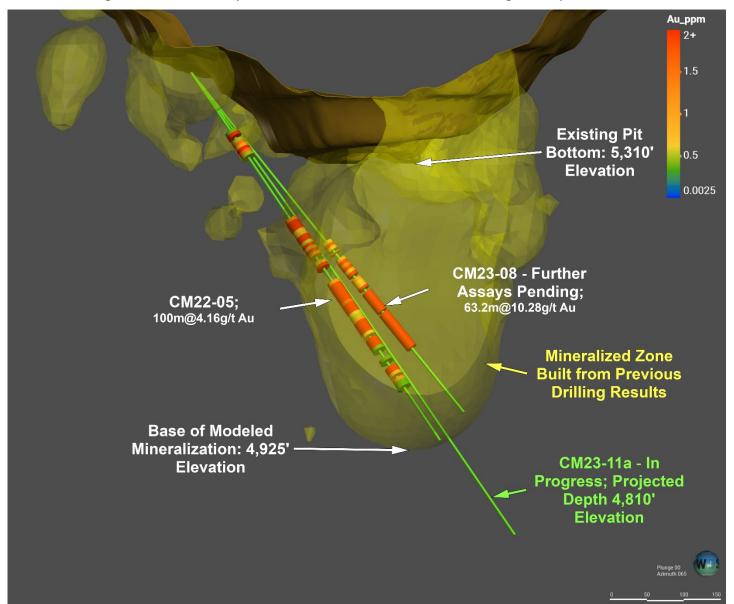
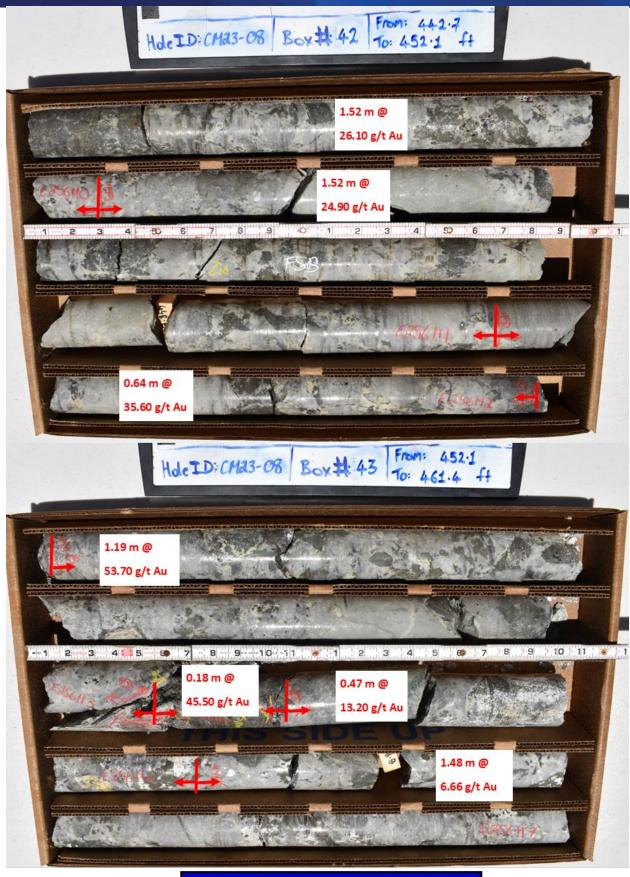



Figure 1: Cross section showing the existing pit, mineral resource blocks and new drill intercept. Elevation numbers are in feet. Hole CM23-08 still has assays pending for bottom section of drillhole.

Second Drillhole – CM23-11a

The second hole in the current drill program, CM23-11a, is nearly completed drilling and intersected over 36 metres of the same rock type with favourable looking mineralisation that resembles that of CM22-05 and sections of CM23-08 (see Figure 3). These favourable zones are currently being processed by the laboratory with results expected in 2-3 weeks time.

440-463 feet; 7.01 meters @ 26.92 g/t Au

Figure 2: Photo of high-grade core with gold grades outlined

Figure 3: Photo comparing core from holes CM23-08 (top) to CM23-11a (bottom) demonstrating comparable core intersected in both drillholes

Forward Program

The diamond drilling program comprises eight (8) holes with the second hole currently planned to reach total depth in the coming days. Core will be logged, cut, sampled and assayed with results expected from this hole in 2-3 weeks.

The Company has also developed a drill plan for an initial test of the rare earth targets developed by the Company's expert advisors in 2022. Depending on the rate of drilling of the gold targets, these may be drilled either with diamond or reverse circulation (RC) with current planning that the holes will be drilled in the September'23 quarter.

This announcement has been authorised for release on ASX by the Company's Board of Directors.

For more information:

Stephen Baghdadi **Managing Director** +61 2 9375 2353 www.datelineresources.com.au

Andrew Rowell **White Noise Communications** +61 400 466 226 andrew@whitenoisecomms.com

Follow Dateline on Twitter:

https://twitter.com/Dateline DTR

About Dateline Resources Limited

Dateline Resources Limited (ASX: DTR) is an Australian publicly listed company focused on mining and exploration in North America. The Company owns 100% of the Colosseum Gold-REE Project in California.

The Colosseum Mine is located in the Walker Lane Trend in East San Bernardino County, California. On July 6, 2022, the Company announced to the ASX that the Colosseum Gold mine has a JORC-2012 compliant Mineral Resource estimate of 20.9Mt @ 1.2g/t Au for 813,000oz. Of the total Mineral Resource, 258koz @1.2g/t Au (32%) are classified as Measured, 322koz @1.2g/t Au (39%) as Indicated and 235koz @1.3g/t Au (29%) as Inferred.

The Colosseum is located less than 10km north of the Mountain Rare Earth mine. Work has commenced on identifying the source of the mantle derived rocks that are associated with carbonatites and are located at Colosseum. A comprehensive mapping, sampling and gravity survey has located several REE targets that are ready to be drill tested.

Competent Person Statement

Sample preparation and any exploration information in this announcement is based upon work reviewed by Mr Greg Hall who is a Chartered Professional of the Australasian Institute of Mining and Metallurgy (CP-IMM). Mr Hall has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to quality as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Hall is a Non-Executive Director of Dateline Resources Limited and consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

Forward-Looking Statements

This announcement may contain "forward-looking statements" concerning Dateline Resources that are subject to risks and uncertainties. Generally, the words "will", "may", "should", "continue", "believes", "expects", "intends", "anticipates" or similar expressions identify forward-looking statements. These forward-looking statements involve risks and uncertainties that could cause actual results to differ materially from those expressed in the forward-looking statements. Many of these risks and uncertainties relate to factors that are beyond Dateline Resources' ability to control or estimate precisely, such as future market conditions, changes in regulatory environment and the behaviour of other market participants. Dateline Resources cannot give any assurance that such forward-looking statements will prove to have been correct. The reader is cautioned not to place undue reliance on these forwardlooking statements. Dateline Resources assumes no obligation and does not undertake any obligation to update or revise publicly any of the forward-looking statements set out herein, whether as a result of new information, future events or otherwise, except to the extent legally required.

Appendix 1: Drill Collar Information

Hole ID	Easting	Northing	Elevation	Total Depth (m)
CM23-08	11245	21173	5433	179.7
CM23-11	11245	21173	5433	75.2
CM23-11a	11245	21173	5433	in progress

Appendix 2: Assay Results

Sample_ID	Hole_ID	Drill Type	From (m)	To (m)	Length (m)	Au ppm	Au opt
E256001	CM23-08	Core	1.5	3.0	1.5	0.014	0.0004
E256002	CM23-08	Core	3.0	4.6	1.5	0.02	0.0006
E256003	CM23-08	Core	4.6	6.1	1.5	0.023	0.0007
E256004	CM23-08	Core	6.1	7.6	1.5	0.023	0.0007
E256005	CM23-08	Core	7.6	9.1	1.5	0.017	0.0005
E256007	CM23-08	Core	9.1	10.7	1.5	0.072	0.0021
E256008	CM23-08	Core	10.7	12.2	1.5	0.027	0.0008
E256009	CM23-08	Core	12.2	13.7	1.5	0.11	0.0032
E256010	CM23-08	Core	13.7	15.0	1.3	0.186	0.0054
no sample	CM23-08	Core	15.0	16.5	1.5		
E256011	CM23-08	Core	16.5	17.0	0.5	0.094	0.0027
E256013	CM23-08	Core	17.0	18.3	1.3	0.334	0.0097
E256014	CM23-08	Core	18.3	19.8	1.5	0.259	0.0076
E256015	CM23-08	Core	19.8	20.7	0.9	0.38	0.0111
E256016	CM23-08	Core	20.7	21.9	1.1	0.336	0.0098
E256017	CM23-08	Core	21.9	22.0	0.2	22.08	0.644
E256019	CM23-08	Core	22.0	23.3	1.3	0.47	0.01
E256020	CM23-08	Core	23.3	23.9	0.5	0.12	0.00
E256021	CM23-08	Core	23.9	24.1	0.2	0.15	0.00
E256022	CM23-08	Core	24.1	25.3	1.2	0.28	0.01
E256023	CM23-08	Core	25.3	26.2	0.9	0.07	0.00
E256025	CM23-08	Core	26.2	26.8	0.6	0.21	0.01
E256026	CM23-08	Core	26.8	28.3	1.5	0.06	0.00
E256027	CM23-08	Core	28.3	29.9	1.5	0.28	0.01
E256028	CM23-08	Core	29.9	31.1	1.2	0.12	0.00
E256029	CM23-08	Core	31.1	31.4	0.3	0.01	0.00
E256030	CM23-08	Core	31.4	32.9	1.5	0.59	0.02
E256032	CM23-08	Core	32.9	34.4	1.5	0.30	0.01
E256033	CM23-08	Core	34.4	36.0	1.5	0.14	0.00
E256034	CM23-08	Core	36.0	37.5	1.5	0.07	0.00
E256035	CM23-08	Core	37.5	38.0	0.5	0.50	0.01
E256036	CM23-08	Core	38.0	39.5	1.5	0.15	0.00

Sample_ID	Hole_ID	Drill Type	From (m)	To (m)	Length (m)	Au ppm	Au opt
E256038	CM23-08	Core	39.5	42.5	3.0	0.21	0.01
E256039	CM23-08	Core	51.4	52.9	1.5	0.03	0.00
E256040	CM23-08	Core	52.9	54.5	1.5	0.06	0.00
E256041	CM23-08	Core	54.5	57.5	3.0	0.19	0.01
E256042	CM23-08	Core	57.5	57.8	0.3	0.15	0.00
E256044	CM23-08	Core	57.8	58.4	0.5	0.57	0.02
E256045	CM23-08	Core	58.4	59.1	0.8	0.01	0.00
E256046	CM23-08	Core	59.1	60.7	1.5	0.34	0.01
E256047	CM23-08	Core	60.7	62.2	1.5	0.27	0.01
E256048	CM23-08	Core	62.2	63.7	1.5	0.61	0.02
E256050	CM23-08	Core	63.7	65.2	1.5	1.52	0.04
E256051	CM23-08	Core	65.2	66.7	1.5	0.19	0.01
E256052	CM23-08	Core	66.7	67.6	0.8	0.25	0.01
E256053	CM23-08	Core	67.6	68.9	1.3	0.01	0.00
E256054	CM23-08	Core	68.9	70.4	1.5	<0.01	<0.0003
E256056	CM23-08	Core	70.4	71.9	1.5	0.01	0.00
E256057	CM23-08	Core	71.9	73.5	1.5	0.01	0.00
E256058	CM23-08	Core	73.5	75.0	1.5	0.03	0.00
E256059	CM23-08	Core	75.0	76.5	1.5	0.03	0.00
E256060	CM23-08	Core	76.5	78.0	1.5	0.03	0.00
E256062	CM23-08	Core	78.0	79.0	1.0	<0.01	<0.0003
E256063	CM23-08	Core	79.0	80.5	1.5	0.15	0.00
E256064	CM23-08	Core	80.5	82.0	1.5	0.05	0.00
E256065	CM23-08	Core	82.0	83.5	1.5	0.01	0.00
E256067	CM23-08	Core	83.5	85.0	1.5	0.04	0.00
E256068	CM23-08	Core	85.0	86.6	1.5	0.15	0.00
E256069	CM23-08	Core	86.6	86.8	0.3	0.13	0.00
E256070	CM23-08	Core	86.8	88.3	1.4	0.11	0.00
E256071	CM23-08	Core	88.3	89.6	1.3	0.45	0.01
E256073	CM23-08	Core	89.6	91.1	1.5	0.19	0.01
E256074	CM23-08	Core	91.1	92.7	1.5	0.68	0.02
E256075	CM23-08	Core	92.7	94.2	1.5	3.73	0.11
E256076	CM23-08	Core	94.2	95.7	1.5	0.77	0.02
E256077	CM23-08	Core	95.7	97.1	1.4	0.48	0.01
E256078	CM23-08	Core	97.1	97.5	0.4	1.52	0.04
E256080	CM23-08	Core	97.5	98.8	1.3	1.49	0.04
E256081	CM23-08	Core	98.8	100.3	1.5	4.11	0.12
E256082	CM23-08	Core	100.3	101.8	1.5	1.02	0.03
E256083	CM23-08	Core	101.8	103.3	1.5	2.33	0.07
E256084	CM23-08	Core	103.3	104.8	1.5	1.50	0.04
E256086	CM23-08	Core	104.8	106.4	1.5	2.65	0.08
E256088	CM23-08	Core	106.4	107.9	1.5	0.85	0.25
E256089	CM23-08	Core	107.9	109.4	1.5	9.99	0.29
E256090	CM23-08	Core	109.4	110.9	1.5	0.44	0.01

Sample_ID	Hole_ID	Drill Type	From (m)	To (m)	Length (m)	Au ppm	Au opt
E256091	CM23-08	Core	110.9	112.5	1.5	1.14	0.03
E256092	CM23-08	Core	112.5	114.0	1.5	0.76	0.02
E256093	CM23-08	Core	114.0	115.5	1.5	0.86	0.03
E256095	CM23-08	Core	115.5	116.6	1.1	16.00	0.47
E256096	CM23-08	Core	116.6	118.3	1.6	21.85	0.64
E256097	CM23-08	Core	118.3	119.8	1.5	11.90	0.35
E256098	CM23-08	Core	119.8	121.3	1.5	17.45	0.51
E256099	CM23-08	Core	121.3	122.8	1.5	12.10	0.35
E256100	CM23-08	Core	122.8	124.4	1.5	10.60	0.31
E256102	CM23-08	Core	124.4	125.9	1.5	36.10	1.06
E256103	CM23-08	Core	125.9	127.4	1.5	20.00	0.58
E256104	CM23-08	Core	127.4	128.6	1.2	16.30	0.48
E256105	CM23-08	Core	128.6	129.6	1.0	42.19	1.23
E256106	CM23-08	Core	129.6	131.1	1.4	9.16	0.27
E256107	CM23-08	Core	131.1	132.6	1.5	16.35	0.48
E256109	CM23-08	Core	132.6	134.1	1.5	18.70	0.55
E256110	CM23-08	Core	134.1	135.6	1.5	26.10	0.76
E256111	CM23-08	Core	135.6	137.2	1.5	24.90	0.73
E256112	CM23-08	Core	137.2	137.8	0.6	35.60	1.04
E256113	CM23-08	Core	137.8	139.0	1.2	53.70	1.57
E256114	CM23-08	Core	139.0	139.2	0.2	45.50	1.33
E256116	CM23-08	Core	139.2	139.6	0.5	13.20	0.39
E256117	CM23-08	Core	139.6	141.1	1.5	6.66	0.19
E256118	CM23-08	Core	141.1	142.6	1.5	4.36	0.13
E256119	CM23-08	Core	142.6	144.2	1.5	6.97	0.20
E256120	CM23-08	Core	144.2	145.7	1.5	15.30	0.45
E256121	CM23-08	Core	145.7	147.2	1.5	11.55	0.34
E256123	CM23-08	Core	147.2	148.4	1.2	2.40	0.07
E256124	CM23-08	Core	148.4	150.0	1.6	0.35	0.01
E256125	CM23-08	Core	146.9	151.5	4.6	0.13	0.00

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 As of 10/06/2023, the Colosseum Mine, Colosseum Rare Metals, INC. has completed 440 metres of drilling in 3 drill holes. All the drilling was done from surface with a diamond drill core. Industry standard core handling and sampling procedures were employed to ensure high quality samples. Core sample boundaries were defined by changes in lithology, alteration, and mineralisation noted in logging. Collar to toe assays were taken and sent to labs for analysis. Core was cut along the long axis leaving half for assay and half to be stored in cardboard core boxes. Samples from drill holes were sent to ALS Global and Paragon Geochemical in Reno, Nevada for sample preparation and assay. Samples were dried, weighed, crushed and split to obtain 250 gm. Samples were placed in ring and puck grinder to produce 85% minus 75-micron pulp. This material was blended on clean cloth and packaged in paper pulp bags. Using a pulp balance, a 30-gm sample was weighted out for traditional fire assay. Samples were analysed using standard fire assay for gold. Over limits were analysed via gravimetric analysis. All samples followed a strict Chain of Custody. Routine QAQC samples were inserted in the sample runs at a rate of 20%, comprising Certified Reference Materials from CDN Resource Laboratories Ltd., and verified blank granitic material. Sampling practice is appropriate to the geology and mineralisation of the deposit and complies with industry best practice.
Drilling techniques	 Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 The drilling program utilizes surface core drilling. The core drilling is being conducted with an Everdigm cat 4 drill with HQTT core tooling. Triple tubes were used for the for all holes to increase recoveries. The drilling has been completed by an experienced diamond drilling core driller.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All drilling recoveries have been logged and notated each run based on 3.05-meter tooling. To maximize sample recoveries, use of triple tube and long chain polymer muds were used to increase recovery. There has been no analysis between sample recoveries and grade to date.

• Drilling, sample, and assay data is currently stored

in MX Deposit, a secured data management

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Core samples were geologically logged. Lithology, veining, alteration, mineralisation, and weathering are recorded in the appropriate tables of the drill hole database. Each core box was photographed dry and wet, after logging of unit and structures were notated on the core. Core was cut along the long axis using a diamond saw, half-core was sampled, and half stored for reference. Geological logging of core samples is qualitative and quantitative in nature.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All drill core samples were cut along the long axis. The left side when looking down hole was sampled. Samples were placed in a heavy-duty poly sample bag. Each core sample placed in heavy duty poly sample bag, noted interval width in sample book, with a sample tag with the corresponding sample number placed in the bag with the other tag stapled to the top of the bag. Sample bags were stapled along the top. Samples were sent by freight to ALS Global, or Paragon Geochemical in Reno, Nevada. Routine QAQC samples were inserted at a 20% rate into the sample batches and comprised Certified Reference Materials (CRMs) from CDN Resource Laboratories Ltd. and verified blank granitic material. Rock samples sent to ALS Laboratories and Paragon Geochemical were dried, weighed, crushed, and split, with a split pulverized to better than 85% passing 75 microns. Samples were analysed for trace elements using 4-acid digestion. Additionally, rocks samples were analysed by standard 30gm fire assay for gold and silver. Sample size assessment was not conducted but used sampling size which is typical for gold deposits.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were assayed by industry standard methods by ALS Global Laboratories, and Paragon Geochemical, in Reno, Nevada. Fire assays for gold was completed using industry standard fire assay methodology. External certified standards and blank material were added to the sample submission.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	 Sampling, documentation and sample submittal were under the guidance and care of Graham Craig, GIT (Association of Professional Engineers and Geoscientists of Manitoba).

• Documentation of primary data, data entry procedures, data

Criteria	JORC Code explanation	Commentary
	 verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	system through Seequent.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill hole collars are surveyed using differential GPS survey equipment. The positions are accurate to within 10 cm x-y and height (z) to +/- 20 cm. The holes are surveyed in UTM WGS 84 coordinate system. Down hole surveys will be done using a Reflex EZ-TRAC magnetic downhole survey tool on all diamond drill holes. With collars surveyed using Reflex TN-14 Azi-Aligner. Sample locations were surveyed using UTM WGS 84 coordinate system.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The spacing and location of data is currently 5-15 meter spacing according to previous Mineral Resource estimation completed by Barbara Carroll, CPG (American Institute of Professional Geologists) of GeoGRAFX Consulting, LLC. No sample compositing has been applied at this time.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes are planned to be drilled along strike due to limited areas available to drill from. Definition of structure location is the principal goal. Sample orientation is deemed to be representative for reporting purposes. No bias is considered to have been introduced by the existing sampling orientation.
Sample security	The measures taken to ensure sample security.	 All samples were taken and maintained under the constant care of Colosseum Rare Metals, INC. personnel. Samples were delivered to laboratories by a licensed transportation company.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Drill hole sampling techniques and QAQC procedures have been developed and reviewed by Dale Sketchley, M.Sc., P. Geo. of Acuity Geoscience Ltd., Graham Craig, GIT. The QAQC program has demonstrated its ability to catch errors. A QAQC review will be completed for this program. Mineral resource estimations and JORC 2022 completed by Barbara Carroll, CPG.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Colosseum Mine project is located in T17N R13E Sec 10, 11, 14, 15, 22, 23 SB&M. All tenements are 100% owned by Dateline Resources Limited or a wholly owned subsidiary and there exist production-based royalties as previously disclosed to ASX.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Historical work has been completed by various mining companies since 1972. Draco Mines (1972-1974) Placer Amex (1975-1976) Draco Mines (1980) Amselco (1982-1984 Dallhold Resources/Bond Gold (1986-1989 Lac Minerals (1989-1994) All the companies were reputable, well-known mining/exploration companies that followed the accepted industry standard protocols of the time. Review of this work was completed by GeoGRAFX Consulting, LLC in 2022. All previous work undertaken by others is non-JORC compliant.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Colosseum mine is hosted by Cretaceous aged breccia-pipe. The pipe contains aphanitic Cretaceous rhyolite flows, Pre-Cambrian granitic basement material, and Cambrian-Devonian dolomite clasts replaced by sulphide mineralisation. The gold mineralisation occurs in brecciated felsite and sediment clast replaced by sulphides.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	See Table 1 within this report for details of the drill holes and sample locations.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Drill hole intersections are reported above a lower exploration cut-off grade of 0.1 g/T Au and no upper cut off grade has been applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Drill holes are orientated along apparent strike of the breccia pipe due to limited drill pad locations. Interception angles of the mineralised structures are estimated using core drilling intercepts and existing 3D models of the pipe orientation.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Supporting figures have been included within the body of this release.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Representative reporting of both low and high grades and/or widths have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 At Colosseum, future work will include expanded drilling between the North and South pits, mapping and sampling of open pit benches; as well as infill and expanded surface soil geochemistry, geological mapping, and geophysics.