

7 July 2023

30% INCREASE IN MINERAL RESOURCES LA DEMAJAGUA GOLD, SILVER, ANTIMONY MINE, CUBA

Antilles Gold Limited ("Antilles Gold" or the "Company") (ASX Code: AAU, OTCQB: ANTMF, FSE Code: PTJ) advises that the Mineral Resource Estimate ("MRE") for the proposed La Demajagua open pit mine in Cuba has increased by approximately 30% to 905,000 oz Au Equivalent.

The MRE set out below was calculated from results from 29,000m of cored drilling undertaken by joint venture company, Minera La Victoria SA, and selective results from ~50,000m of historic drilling, and revised after the receipt of additional antimony assays.

Classification	Tonnes (Mt)	Au (g/t)	Au (ounces)	Ag (g/t)	Ag (ounces)	Sb (%)	AuEq. (g/t)	AuEq. (ounces)
Indicated	6.57	2.80	591,000	29.9	6,313,000	0.41	3.31	700,000
Inferred	3.0	1.9	180,000	19	1,840,000	0.18	2.2	205,000
Total	9.55	2.5	771,000	26.6	8,155,000	0.33	2.95	905,000

TABLE 1 - REVISED MINERAL RESOURCE ESTIMATE FOR LA DEMAJAGUA OPEN PIT MINE

The MRE has been prepared in accordance with JORC Code Edition 2012

- Mineral Resources are reported at a block cut-off grade of 0.8 g/t Au
- The bulk density is 1.8 t/m³ for oxide ore, and 2.64 t/m³ for sulphide ore
- Mineral Resources are reported inside a US\$2,000/oz Au optimisation shell using applicable cost and recovery factors, and have demonstrated reasonable prospects for eventual economic extraction
- Figures may not add up due to rounding

Gold equivalent (AuEq.) calculations are based on two concentrate products (a gold concentrate, and a gold/silver/antimony concentrate) split for oxide and sulphide material using the criteria listed in Table 2.

Product	Product Metals		Bulk Concentrate Recovery (%)		Metal Distribution (%)		Payables(%)
	rictuis	Price	Oxide	Sulphide	Oxide	Sulphide	Oxide/Sulphide
	Au	US\$1,700/oz	70.0	92.7	89.8	89.4	75.0
Au Concentrate	Ag	US\$20/oz	86.0	97.7	35.0	58.3	0.0
	Sb	US\$10,000/t	30.0	97.1	48.6	61.8	0.0
	Au	US\$1,700/oz	70.0	92.7	10.2	10.6	60.0
Au/Ag/Sb Concentrate	Ag	US\$20/oz	86.0	97.7	65.0	41.7	65.0
	Sb	US\$10,000/t	30.0	97.1	51.4	38.2	57.0

TABLE 2 – GOLD EQUIVALENT (AUEQ.) CALCULATION PARAMETERS

- Following receipt of the revised MRE, the final mine plan can now be established, and incorporated in the Definitive Feasibility Study ("DFS") for the first stage of the La Demajagua project.
- The DFS for the open pit mine has been delayed while waiting on additional antimony assays and should now be completed within three months.
- Metallurgical test work aimed at optimising recoveries and metal grades is nearing completion for the two products to be produced, a gold arsenopyrite concentrate, and a gold, silver, antimony concentrate.
- Recoveries and grades to date indicate that at metal prices offered by buyers interested in concentrate off-take, revenue will be in excess of the US\$100 million per year forecast in the Revised Scoping Study results advised to ASX on 30 March 2023.
- The Revised Scoping Study indicated that Antilles Gold's estimated share of surplus cash generated by the proposed mine would average approximately A\$45 million per year at a gold price of US\$1,800 per oz, and current exchange rates, and the Life of Mine could now be extended from 9 to 11 years based on the increased MRE.
- This would be an excellent return for the Company which is only committed to investing A\$20 million (US\$13.5 million) of equity for its 50% share of the joint venture company developing the La Demajagua open pit mine.

- The Company will have invested A\$15 million for shares in the joint venture for expenditure on pre-development activities by the time the DFS is completed.
- The A\$5 million balance will be expended on mine infrastructure in Q1 and Q2 2024, subject to project financing being finalised.
- Negotiations have commenced on two potential sources of project funding;
 - advance payments for concentrate
 - deferred payments to Chinese suppliers of plant and equipment, backed by guarantees from the China Ex-Im Bank
- The joint venture's aim is to commence the construction of mine infrastructure in February 2024, and commission the mine in mid July 2025.

END

This announcement has been authorised by the Chairman of Antilles Gold Limited. For further information, please contact:

Brian Johnson,
Executive Chairman,
Antilles Gold Limited
T: +61 (02) 4861 1740
E: brianjohnson@antillesgold.net

The following is a summary of material information used to estimate the Mineral Resource, as required by Listing Rule 5.8.1 and JORC 2012 Reporting Guidelines.

Mineral Tenement and Land Tenure Status

The La Demajagua Gold Project is located on the Isle of Youth in southwest Cuba. The La Demajagua concession #5655-0 is registered to Minera La Victoria SA, which is a 49:51 JV between Antilles Gold Inc (a 100% subsidiary of Antilles Gold Limited) and Gold Caribbean Mining SA, which is a subsidiary of the Cuban State owned mining company Geominera SA, and comprises an area of 900ha (Figure 1). All licences are in good standing with no known impediments.

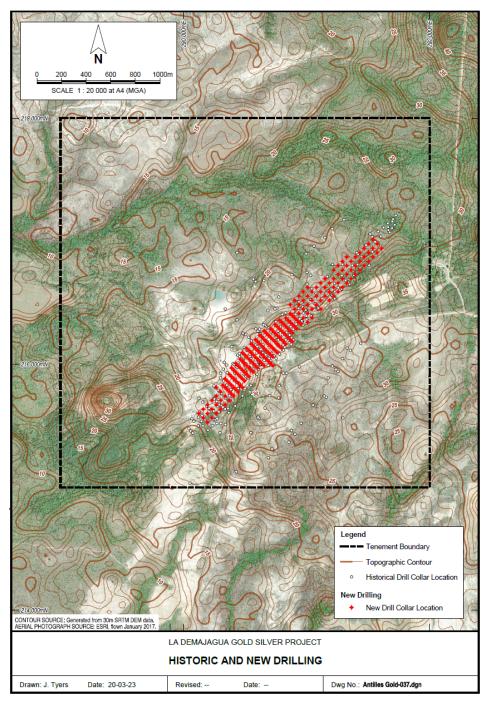


Figure 1: Drillhole Location Plan with Resource Estimation Areas and Project Mineral Licences

In October 2018 Antilles Gold Inc (a 100% subsidiary of Antilles Gold Limited) was selected by the Cuban Government's mining company, GeoMinera S.A. ("GMSA"), as its proposed 49% joint venture partner for the development of GMSA's La Demajagua refractory gold/silver property on the Isle of Youth in Southwest Cuba.

The terms of a Joint Venture Agreement were subsequently negotiated and finalised in December 2019, with the Joint Venture company, Minera La Victoria SA ("MLV"), approved by the Council of Ministers, and registered on 14 August 2020.

Antilles Gold will contribute a total of US\$13.0 million of equity for a 49% shareholding in MLV over a three-year period from December 2020. Of this amount, approximately US\$9.0 million has been spent on the drilling program, feasibility studies, project management, and administration, with the balance on mine infrastructure when construction commences. The company will increase its shareholding in MLV to 50% with an additional US\$500,000 of expenditure on infrastructure.

Geology

The La Demajagua Project displays the characteristics of a low sulphidation epithermal gold deposit. The geology of the deposit area is dominated by schistose units (quartz-graphite schists, quartz-sericite schists, and quartzites), rich in gold-bearing arsenopyrite, typically metamorphosed to greenschist facies.

The lithologies alternate between packages of graphite rich and relatively graphite poor, with package thickness of 20-200m, though increased graphite content occurs in almost all cases of fault brecciation, and so in turn mineralisation is almost always found with areas of elevated graphite content.

Alteration indicates low temperature formation and occurs as rare bleaching of rocks (only occurring in the vicinity of quartz veins over tens of cm in thickness), pervasive sericitisation, graphitisation, and silicification either as a saturation of the entire rock mass with silica or by the formation of a network of quartz veinlets.

Vein quartz is grey, white-grey or clear and is finely crystalline. Evidence of several episodes of remobilisation can be found in the quartz, and finely disseminated sulphides occur in all areas of silicification and partly outside. Hydrothermal flow is assumed to have been aided by hydraulic pumping from fault movement, with the average sulphide content in the order of 4-6% and increasing up to 15% in enriched areas.

The gold is refractory and primarily held within arsenopyrite and associated with boulangerite. Ore texture is disseminated, laminated, massive, brecciated or forms as a sulphide cement, while its structure is cataclastic, hypidomorphic, grainy or allotriomorphic.

The mineralisation strikes approximately 45 degrees and dips \sim 70 degrees towards the northwest. The main zone of identified mineralisation extends for \sim 2.2km along strike and extends from surface to \sim 400m down dip, though the thickness varies from 3-35m. The mineralisation within this zone is veiny, discontinuous and high grade, with lower grade disseminated mineralisation evident in the surrounding brecciated region. In addition to the main mineralised zone, additional hanging wall and footwall zones have been modelled over a portion of the mineralised zone.

Drilling Techniques and Hole Spacing

Drilling at the La Demajagua Project has been completed in various phases. Historical drilling was completed across five programs commencing in 1973, with the most recent completed in 1997, with approximately 50,000 metres completed. Historical drilling was primarily open hole prior to switching

to diamond core for sampling within the mineralised zones. Additional details on historical drilling are limited and no historical core is available for review.

Recent drilling used a HQ triple tube size (\sim 61.1 mm diameter) with the triple tube techniques used to maximise core recovery. All diamond holes are drilled from surface and orientated towards the southeast at a dip of \sim 60 degrees to intersect the mineralisation as close to perpendicular as possible. Recent drilling used to support the MRE includes 214 diamond core (DDH) holes for a total of 25,567 m. Drill core was collected from a core barrel and placed in appropriately marked core trays. Down hole core run depths were measured and marked with core blocks. Core was measured for core loss and core photography and geological logging completed.

Drilling has been typically completed on a spacing of 40 m along strike and 20 m across strike, with the drilling aimed to broadly twin historical drilling to validate historical results and aid in improving estimation confidence. At the extensional limits of known mineralisation, the drill spacing extends to 40 m along strike by 40 m across strike (Figure 2).

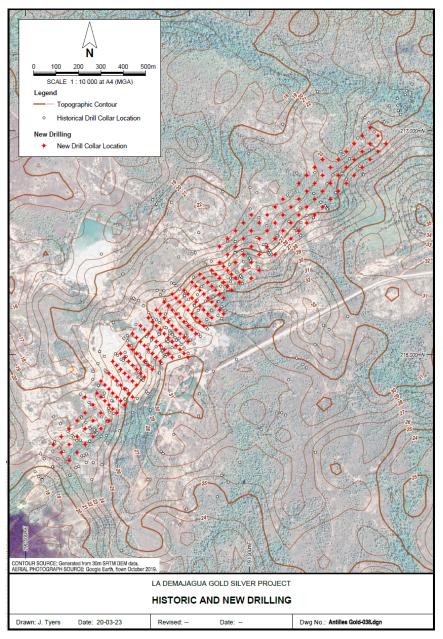


Figure 2: Historic and New Drill Collars

Sampling

Sample lengths were determined by geological boundaries with a nominal sample length of 1 metre. Core is cut using an electric saw with half core submitted for analysis.

Certified reference materials (CRM), analytical blanks, and coarse reject duplicates were used as part of the QAQC procedures and were each inserted at a rate of 2, 1 and 2 per batch respectively.

Sample preparation and sub-sampling is completed at LACEMI in Havana to generate a 400 g sample following drying, crushing and splitting via Jones splitter for submission to the analytical laboratory in Canada or Peru depending on analysis methods.

Details for historical sub-sampling methods are variably available, however most involve coarse crushing and homogenising via quartering to generate a suitable sample and duplicates for analysis.

Sample Analysis

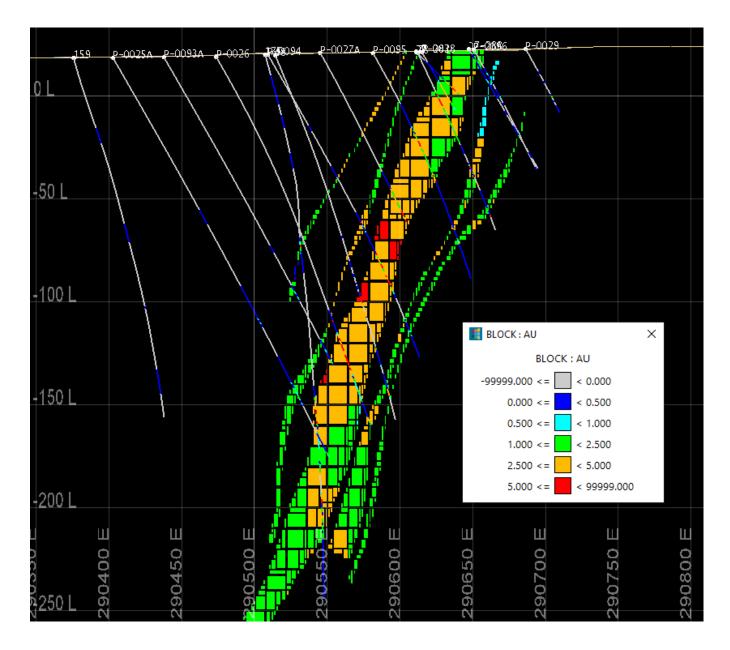
Details relating to the analytical methods employed for the historic drilling are not available. Review of assay results suggests detection limits for Au and Ag in the earlier programs are relatively high compared to modern techniques and demonstrate limited precision in reported results. Detection limits for the more recent historical drilling are much improved and demonstrate higher precision reflecting what is assumed to be more appropriate analysis methods.

For the current drilling, the prepared coarse samples are dispatched to Activation Laboratories in Canada. The samples are pulverised to 95% passing 75µm prior to gold analysis by Fire Assay using a 30g charge, with ICP. Over range gold results are reassayed with a gravimetric finish. Geochemical analysis of a 35-element suite is via 4 acid digest with ICP-OES finish. Over range silver results are reassayed using Fire Assay with gravimetric finish. The Sb analysis employed sodium peroxide fusion with ICP at both Activation Laboratories and SGS Peru. Over range values reported from SGS were redone using AAS. Each of the Fire Assay, 4 acid digest, and peroxide fusion methods are considered a total analysis for the elements of interest.

Estimation Methodology

The geological interpretation utilised historical mapping and level development data together with assay data to guide and control the Mineral Resource estimation. Leapfrog[™] implicit modelling software was utilised to generate three-dimensional wireframes of the applicable mineralisation domains.

Drill hole sample data was flagged using domain codes generated from three-dimensional mineralisation domains. Sample data was composited to 1 m downhole lengths using a best fit-method. Statistical analysis was carried out on data from all estimated domains, with hard boundary techniques employed within each estimation domain.


Analysis of the composite data indicated the presence of outlier values indicating grade capping was required for Au and Ag. Capped values varied between 7 g/t and 40 g/t for Au, between 35 g/t and 650 g/t for Ag and between 800 and 60,000 ppm for Sb.

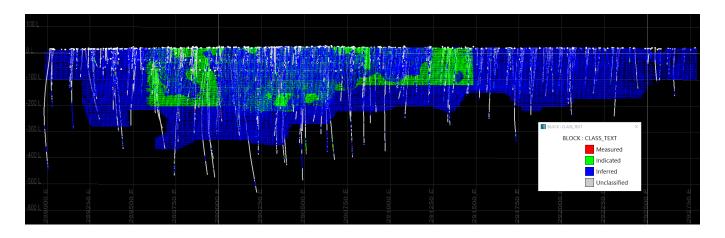
Grade estimation was completed for Au, Ag, Sb, As and S. The grade estimation process was completed using Maptek Vulcan software using Ordinary Kriging (OK) together with dynamic anisotropy to guide the grade interpolation parallel to the domain boundaries. For estimation domains with insufficient sample data a variogram model from a comparable domain was assigned.

Interpolation parameters were derived using standard exploratory data analysis techniques of statistical and continuity analysis. Appropriate interpolation strategies were developed on a domain basis using kriging neighbourhood analysis (KNA) with a minimum number of 8 composites and maximum numbers of composites between 20 and 22 depending on variable. An octant search is applied with a restriction

on the number of composites per octant set to four. Blocks were estimated in a two-pass strategy with first pass maximum search distances of 140 metres. The second pass increased the search distance by a factor of 2 with all other parameters unchanged. A cross section looking northeast with estimated Au block grades is presented in Figure 3.

Figure 3 La Demajagua Project - Cross Section (looking northeast) with Au (g/t) block grades

The model is rotated to 045° and has a block size of 10 m (X) by 20 m (Y) by 10 m (Z) with sub-celling of 2.5 m (X) by 5 m (Y) by 2.5m (Z). Grades were estimated into the parent cells. The block model was validated using a combination of visual and statistical techniques including global statistics comparisons and trend plots.


Resource Classification

A range of criteria was considered by Cube when addressing the suitability of the classification boundaries. These criteria include:

- Geological confidence and volume;
- Drill spacing and drill data quality;
- Modelling technique; and
- Estimation properties, including search strategy, number of informing composites, average distance of composites from blocks and kriging quality parameters.

Blocks have been classified in both the Indicated (72%) and Inferred (28%) categories, primarily based on drill data spacing in combination with other model estimate quality parameters.

Figure 4: La Demajagua Project – Long Section looking Northwest showing Indicated and Inferred Resources

Cut-off Grade

The Mineral Resource has been reported above a 0.8 g/t Au cut-off. Selection of the cut-off has considered expected metallurgical recoveries and distribution of payable elements within the proposed concentrate products. Together with other cost inputs, an indicative marginal cut-off grade has been defined. The applied cut-off is considered appropriate for the style and nature of mineralisation at La Demajagua.

Reporting of Mineral Resources have been assessed against a resource limiting optimisation shell using appropriate cost, metallurgical recovery, and price assumptions. Material within the optimised pit shell has, in the opinion of the Competent Person, met the conditions for reporting of a Mineral Resource with reasonable prospects of economic extraction.

Mining and Metallurgy

Development of this Mineral Resource assumes mining using standard equipment and methods. The assumed mining method is conventional truck and shovel, open pit mining at an appropriate bench height.

Preliminary metallurgical test work on mineralisation at the Project (see ASX release on 27 January 2022) has reported the ability to generate a concentrate product from the La Demajagua project using flotation. These results are considered adequate to achieve reasonable expectations of economic metallurgical processing of the project mineralisation.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 <u>Historic Drilling (pre 2021)</u> Historic drilling (pre-2021) was completed using open hole techniques prior to switching to diamond core at various sizes depending on hole depth, although typically HQ, prior to mineralised intervals. Sample intervals were variable based on geological features however the majority range from 1m to 2m in length <u>Recent Drilling (2021 onwards)</u> Recent drilling has been completed using diamond drilling at HQ core size. Samples are typically collected at 1m intervals although adjusted for geological features as required.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 <u>Historic Drilling (pre 2021)</u> Specific details on drilling techniques employed in historic programs is not available. <u>Recent Drilling (2021 onwards)</u> Recent drilling was completed exclusively using diamond drilling methods using HQ triple tube techniques (HQ3) with a core diameter of ~61mm.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 <u>Historic Drilling (pre 2021)</u> Detailed records on drill core recovery are not available. Review of selected hard copy logs suggest core recoveries in mineralised zones range from 17% to 93%, averaging approximately ~67%. <u>Recent Drilling (2021 onwards)</u> Sample recovery is monitored by the Geologists and calculated per meter. Drilling is undertaken at a pace to

Criteria	JORC Code explanation	Commentary
		 maximise core recovery, but a softer oxide/transitional cap that extends to ~20m results in reduced sample recovery near surface, which is typically unmineralized. The mineralized zone is hosted within a shear, and this sometimes also results in significant broken material occurring within the core and some core losses.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a	Historic Drilling (pre 2021)
	 geologically and geolecrifically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or 	 Hard copy drill logs are available only for a small number of historical drill holes, and include detailed lithological and alteration information
	quantitative in nature. Core (or costean, channel, etc) photography.	Recent Drilling (2021 onwards)
	 quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All core has been geologically logged by qualified geologists under the direct daily supervision of a consulting geologist engaged through DJS Consulting in Canada to a level to support reporting of Mineral Resources. Core logging is qualitative and all core trays have been digitally photographed and stored to a server.
Sub-	If core, whether cut or sawn and whether quarter, half or all core taken.	Historic Drilling (pre 2021)
sampling techniques and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Records on the nature of sub-sampling techniques associated with the historical drilling are not available for review. Information available regarding the sample preparation techniques are dependent on the various drilling phases. 1973-1980 Sample batches of 9-18kg were coarse ground, weighed and screened at 3mm, before homogenisation, finer crushing and screening to 1mm. They then are passed through three stages of homogenisation and quartering before fine grinding to pass through a final 70 micron screen, before one final homogenisation, quartering, and splitting into duplicate samples. Smaller batch sizes crushed to 1mm passing before various stages of homogenisation and

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 <u>Historic Drilling (pre 2021)</u> Details relating to the analytical methods employed for the historic drilling are not available. Review of assay results suggests detection limits for Au and Ag in the earlier programs are relatively high compared to modern techniques and demonstrate limited precision in reported results. Detection limits for the more recent historical drilling are much improved and demonstrate higher precision reflecting what is assumed to be more appropriate analysis methods. <u>Recent Drilling (2021 onwards)</u> On receipt of the prepared coarse crush material at Activation Laboratories in Canada from LACEMI in Havana, the sample is dried again at 60 deg C for 24 hrs, pulverized to 95% passing 75 microns. Analysis for gold is via 30g fire assay with ICP finish. Over range gold assays (+30g/t) are repeated with Fire Assay and a gravimetric finish. 35 element suite analysis is via 4 acid digest with ICP-OES finish. Over-range silver (+100g/t) is repeated using Fire Assay with gravimetric finish Subsequnet analysis for antimony was completed at Activation Laboratories in Canada and SGS Peru using sodium peroxide fusion with ICP. Over range values reported from SGS were redone using AAS Fire Assay, 4 acid digest and peroxide fusion are considered total assay methods for the elements of interest. Certified reference materials are inserted at a rate of two per batch, with a reference blank inserted within each batch. Coarse field duplicates are submitted to a umpire laboratory on a regular basis with acceptable results reported
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections are reviewed by multiple personnel. Recent drilling has been designed in part to twin historic drilling as part of a sample verification process in generation of the Mineral Resource. In general, the new drilling has reflected the results presented in the historical holes, however individual examples with poor alignment are observed. Assay values below detection are replaced with half the detection limit, while

Criteria	JORC Code explanation	Commentary
		 values above the upper limit of detection, where not reanalysed, are assigned the upper detection value. Assay data is provided digitally and merged with applicable sample intervals. An Access database is being developed for ongoing storage of drill hole data, with Excel spreadsheets being employed in the interim. A selection of original assay certificates was reviewed against the compiled assay data with no transcription errors identified.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Two datum points have been established on the site using high precision GPS. All drill collars were surveyed by total station utilizing the local survey datum, on the NAD27 Cuba Norte grid. All drill holes picked up using total station. Natural surface topography is developed from 1m contours across the project area and is sufficient for use in Mineral Resources.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The drill spacing varies from 40m spacing along strike and 20m across strike in the main mineralised zone, out to 50m by 50m at the limits of the defined structure. Approximately 50,000m of historical drilling exists in a database, together with detailed surface and underground mapping, providing guidance as to the boundaries of the La Demajagua mineralisation. The drilling data and geological information is sufficient to support reporting of Mineral Resources at the specified categories.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The orientation of structures controlling grade distribution are generally understood from historical drilling information, and holes have been planned to intersect as close as possible in a perpendicular orientation. The drilling orientation is not considered to have introduced a sampling bias.
Sample security	The measures taken to ensure sample security.	 All core is securely stored on the La Demajagua site until it has been logged and sampled, after which the core is transported by company personnel to a secure warehouse in Nueva Gerona. Samples are transported to the sample preparation laboratory in Havana in a company vehicle with Company driver. The prepared samples are collected by company personnel in a company vehicle, and driven directly to the Jose Marti

Criteria	JORC Code explanation	Commentary
		International airport, where the waybill is prepared by Air Canada. The samples are flown to Toronto via Air Canada airfreight, where they are delivered by Air Canada to Thompson Company, Ahearn and Co, who carry out customs clearance and deliver to the analytical laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have been conducted to date

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral</i> <i>tenement</i> <i>and land</i> <i>tenure status</i>	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The La Demajagua concession #5655-0 is registered to Minera La Victoria SA, which is a 49:51 JV between Antilles Gold Inc (a 100% subsidiary of Antilles Gold Limited) and Gold Caribbean Mining SA, which is a subsidiary of the Cuban State owned mining company Geominera SA. The concession comprises 900ha and is situated on Isla de la Juventud (the Isle of Youth), off the southern coast of mainland Cuba.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The La Demajagua project was a former operating underground gold mine, which produced gold bearing arsenopyrite concentrate, ceasing operations in 1959. There are a number of sublevels developed within the zone of mineralisation, which were accessed by shafts. There have been numerous exploration/resource development campaigns undertaken at La Demajagua, with the most recent being by Canadian exploration company Mirimar Mining Corporation from 1995-1997 (then known as Delita), but no historical core exists.
		Year No. Holes Meters
		1973-75 26 3,817
		1977-80 89 13,635
		1980-88 76 15,692
		1992 22 3,177
		1995-97 150 14,364
		363 50,685
		 Mirimar conducted a pre feasibility study but the low gold price at the time and refractory nature of the mineralisation meant the project wasn't developed.
Geology	Deposit type, geological setting and style	La Demajagua has the characteristics of a

Criteria	JORC Code explanation	Commentary
	of mineralisation.	 low sulphidation epithermal gold deposit. The geology of the deposit area is dominated by schistose units (quartz- graphite schists, quartz-sericite schists, and quartzites, rich in gold-bearing arsenopyrite, typically metamorphosed to greenschist facies. The lithologies alternate between packages of graphite rich and relatively graphite poor, with package thickness of 20-200m, though increased graphite content occurs in almost all cases of fault brecciation, and so in turn mineralisation is almost always found with areas of elevated graphite content. The gold is primarily held within arsenopyrite and associated with boulangerite. Ore texture is disseminated, laminated, massive, brecciated or forms as a sulphide cement, while its structure is cataclastic, hypidomorphic, grainy or allotriomorphic.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All relevant details have been previously reported, with no new drilling data included in this release.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Length weighted averaging for Au has been used to determine intercepts. A low grade cut-off of 1 g/t has been utilised with no top cut.
Relationship between	 These relationships are particularly important in the reporting of Exploration Results. 	All intercept lengths are down the hole intercepts.

Criteria	JORC Code explanation	Commentary
mineralisati on widths and intercept lengths	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Refer plans and section within this release.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 No drilling results are included in this release.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No other significant unreported exploration data for La Demajagua are available at this time.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Additional work at La Demajagua is expected to test mineralisation along strike and to provide additional information to support potential mining activities including hydrogeology, geotechnical and metallurgical testing.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Drill hole data is captured in MS Excel templates in the field. Sampling sheets and dispatches are developed from the logging. Analytical results are provided by the external laboratory in CSV format and merged with the MS Access database. The data used in the Mineral Resource was exported provided as a series of CSV files from the MS Access database. A Vulcan database was constructed from these input files and various validation checks completed including; mismatches between sample and drill end of hole depths; sample number gaps, sample overlaps, and missing samples;

PO Box 846 Bowral NSW 2576 Australia

T 61 2 4861 1740 E admin@antillesgold.net

Criteria	JORC Code explanation	Commentary	
		replacement of negative values with half detection values; missing collar, geology, or assay data; and visual validation by section for obvious trace errors. Any identified issues were communicated to field staff who provided corrected information. If the correct details were not able to be determined the holes were excluded.	
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 The Competent Person for Mineral Resources has completed a site visit in the period 15 September 2022 to 27 September 2022 which reviewed field procedures and sample preparation laboratory. The Competent Person has as far as practicable taken steps to validate the data collection via review of drill core, verification of external data against database records, and through review of historical information. 	
Geological interpretatio n	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Confidence in the geological interpretation is good. This is supported by the presence of extensive geological mapping based on historical drilling and supported by mapping of underground level developments. Factors affecting the continuity of grade and geology relate to structural controls associated with transverse (mineralisation parallel) faulting and shear zones associated with increased graphite content 	
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	 The mineralisation strikes approximately 45 degrees and dips ~70 degrees towards the northwest. The main zone of identified mineralisation extends for ~2.2km along strike and extends from surface to ~400m down dip, though the thickness varies from 3-35m. The mineralisation within this zone is veiny, discontinuous and high grade, with lower grade disseminated mineralisation evident in the surrounding brecciated region. In addition to the main mineralised zone, additional hanging wall and footwall zones have been modelled over a portion of the mineralised zone, although represent relatively minor additional contributions to the overall mineralisation. 	
Estimation and modelling techniques	• The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method	 Estimates were completed for Au, Ag, Sb, As and S. Three-dimensional mineralisation domains were generated using Leapfrog[™] software for use in subsequent estimation, with the interpreted shapes used to generate 	

Criteria	JORC Code explanation	Commentary
	 was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 coded mineralised intervals. Drill hole sample data was flagged using domain codes generated from the modelled domains as applicable. Sample data was composited to one-metre downhole lengths using a best fit-method. Outlier analysis of the composite data using histograms and log-probability plots indicated application of top-cut values for Au and Ag were required for all estimation domains. Top-cut values varied between 7g/t and 40g/t for Au, between 35g/t and 650g/t for Ag, and between 800 and 60,000 ppm for Sb. Assessments of spatial continuity were performed for the major mineralised domain using Snowden Supervisor software. Data was transformed to normal scores prior to calculation of directional fans. Initial directions selected considered the dominant mineralisation trend as defined by the graphical review of the composite data and was refined as underlying trends were identified. The back transformed models reported relative nugget values in the order of 15% to 20%, with model ranges within the main mineralised domains varying from 70 to 85 metres. The grade estimation process was completed using Vulcan™ software. Interpolation of grades was via Ordinary Kriging (OK) for all variables. Check estimates were also completed using inverse distance to the second power (ID²).

- Interpolation parameters were selected based on kriging neighbourhood analysis with a minimum number of 8 composites and a maximum number of composites between 20 and 22 depending on the variable. An octant-based search using a maximum of four samples was employed. Blocks were estimated in a two-pass strategy with the first pass search set to approximately twice the modelled variogram range (~140m). The second pass doubled this distance and removed the octant restriction, with all other parameters remaining the same.
- The block model is rotated to a bearing of 045 to align with the strike of the mineralisation with a block size of 10 m (X) × 20 m (Y) × 10 m (Z) with sub-celling of 1.25 m (X) × 5 m (Y) × 2.5 m (Z). Grades were estimated into the parent cells. Hard boundary techniques were employed between domains
 The block model was validated using a
- The block model was validated using a

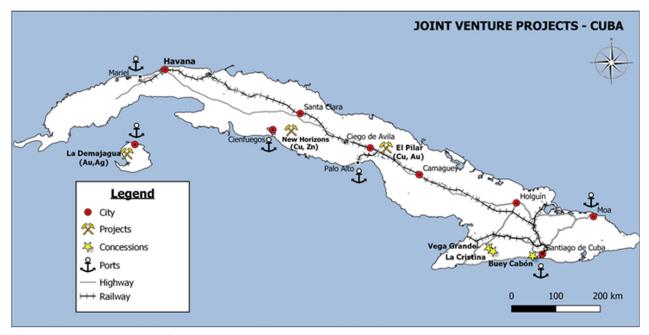
PO Box 846 Bowral NSW 2576 Australia T 61 2 4861 1740 E admin@antillesgold.net

Criteria	JORC Code explanation	Commentary
		combination of visual and statistical techniques including global statistics comparisons, and trend plots.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	 The Mineral Resource is reported on a dry basis.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	• Selection of the reporting cut-off for Mineral Resources is supported by revenue and cost parameters used to inform the resource limiting optimisation shell applied. The reporting cut-off is considered appropriate for the style and nature of mineralisation at La Demajagua.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	• The Mineral Resource is being reported assuming extraction via open pit methods using conventional drill and blast and load and haul methods. The cost and related cut-off grade parameters have been developed based on these criteria, with the reported Mineral Resource constrained within a Whittle optimisation shell employing these assumptions, and therefore has demonstrated reasonable prospects for eventual economic extraction.
<i>Metallurgica l factors or assumptions</i>	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Preliminary metallurgical test work on mineralisation at the Project (see ASX release on 27 January 2022) has reported the ability to generate a concentrate product from the La Demajagua project using flotation. These results are considered adequate to achieve reasonable expectations of economic metallurgical processing of the project mineralisation.
Environmen- tal factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 Specific investigations into relevant environmental factors have not occurred at this time. The area has been subject to historic mining operations with existing tailings and waste rock landforms existing on site.

JORC Code explanation	Commentary
 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Bulk density is applied via direct assignment using average values from 343 measurements using Archimedes method, and differentiated by weathering state, and mineralisation.
 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Classification of the Mineral Resource was completed with consideration of; the confidence in the interpretation boundaries and related mineralisation volumes related to the number, spacing, and orientation of the available drilling; the spatial continuity of respective domains based on variogram analysis; the assessment of key estimation output statistics including slope of regression and average distance to samples; and consideration of how well the underlying domain data is reflected in the estimated blocks as assessed by statistics globally and trend plots locally. The resource has been classified into the Indicated and Inferred categories. The Competent Person is satisfied that the stated Mineral Resource classification reflects the relevant factors of the deposit.
The results of any audits or reviews of Mineral Resource estimates.	There have been no audits or reviews of the Mineral Resource estimate
 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. 	 The relative accuracy of the Mineral Resource estimate is reflected in the reporting of the Mineral Resource in accordance with the guidelines of the 2012 JORC Code. A total of 72% of the Mineral Resource is reported in the Indicated category, with 28% in the Inferred category. The statement relates to a global estimation of tonnes and grade. Historical mining and associated documentation has confirmed the presence and nature of mineralisation at La Demajagua.
	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ir elative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. Whetre appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimates. Where appropriate a statement of the relative accuracy of the resource within stated confidence limits, or, if such an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedure sto quantify the relative discussion of the factors that could affect the relative accuracy and confidence within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the releative accuracy and confidence within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the releative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the releavan

PO Box 846 lia Bowral NSW 2576 Australia

Criteria	JORC Code explanation	Commentary	
	confidence of the estimate should be compared with production data, where available.		


Competent Person Statement

The information in this document that relates to Mineral Resources is based on information complied by Mr Daniel Saunders, a Competent Person who is a Member of Australasian Institute of Mining and Metallurgy. Mr Saunders is a full-time employee of Cube Consulting Pty Ltd, acting as independent consultants to Antilles Gold Inc. Mr Saunders has sufficient experience relevant to the style of mineralization and type of deposit under consideration, and to the activity being undertaken to qualify as a Competent Person as defined in 2012 Edition of the 'Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Saunders consents to the inclusion in this document of the matters based on his information in the form and context in which it appears.

ABOUT ANTILLES GOLD LIMITED:

Antilles Gold's strategy is to participate in the successive development of previously explored gold, silver, and copper deposits in mineral rich Cuba.

- The Company is at the forefront of the emerging mining sector in Cuba and expects to be involved in the development of several projects through its joint venture with the Cuban Government's mining company, GeoMinera SA.
- The near-term project of the joint venture company, Minera La Victoria SA, is the proposed development of the La Demajagua open pit mine on the Isle of Youth in south-west Cuba which, based on geological modelling and metallurgical test work, is planned to produce concentrates containing gold, silver, and antimony.

- The current pipeline of additional projects with near-term development potential includes the proposed Nuevas Sabanas mine on the El Pilar gold-copper oxide deposit which caps a large copper-gold porphyry system in central Cuba. The oxide deposit has been transferred to the existing joint venture with GeoMinera for additional exploration and studies, and anticipated development.
- The joint venture partners intend to invest part of the expected profits from the La Demajagua mine to fund future mine developments, and an extensive exploration program of major targets, including the El Pilar copper-gold porphyry system.

- Antilles Gold is comfortable operating under the applicable law on Foreign Investment in Cuba, and the realistic Mining and Environmental regulations, and has been granted a generous fiscal regime by the Government which is supportive of its objectives. Also, Antilles Gold nominates all senior management.
- The joint venture agreement includes the requirement for all funds to be held in a foreign Bank account with the only transfers to Cuba being for local expenses, which will obviate country credit risk for foreign lenders and suppliers.
- Importantly, GeoMinera's current 51% shareholding in the joint venture company reflects 0 ownership, and does not provide control of decisions at Board or Shareholder Meetings, where the two shareholders have equal votes. Documentation is in progress to increase Antilles Gold's shareholding 49% to 50% to better reflect the partnership with GeoMinera.

Exploration Director, Dr Christian Grainger Examining Drill Core – El Pilar