

July 18, 2023

Koppamurra Rare Earths Project, South Australia-Victoria

Strong assays continue to extend mineralisation ahead of Resource update

- Latest assays extend the known eastern boundary of rare earths mineralisation
- Results come from regional drilling comprising more than 1300 holes for 16,000m
- Assays support AR3's strategy to establish a world-scale ionic clay-hosted rare earths province at Koppamurra
- Mineralisation now extended to the eastern edge of AR3's tenement boundary
- Koppamurra mineralisation remains open to the north and south
- Results will form part of the Resource update set for later this year

Australian Rare Earths Limited (ASX: AR3) is pleased to announce strong drilling results which extend the known mineralisation at its Koppamurra ionic clay-hosted rare earths project spanning the South Australian-Victorian border.

The regional drilling campaign, conducted from February to June 2023, consisted of 1,317 holes for 16,394m generating, ~8,500 assays which were submitted to Bureau Veritas (BV) in Adelaide.

The program was successful in extending mineralisation near the currently defined Koppamurra Mineral Resource Estimate of **101 million tonnes at 818ppm TREO (total rare earth oxide)** (see ASX announcement April 3, 2023) and more regionally within Victoria.

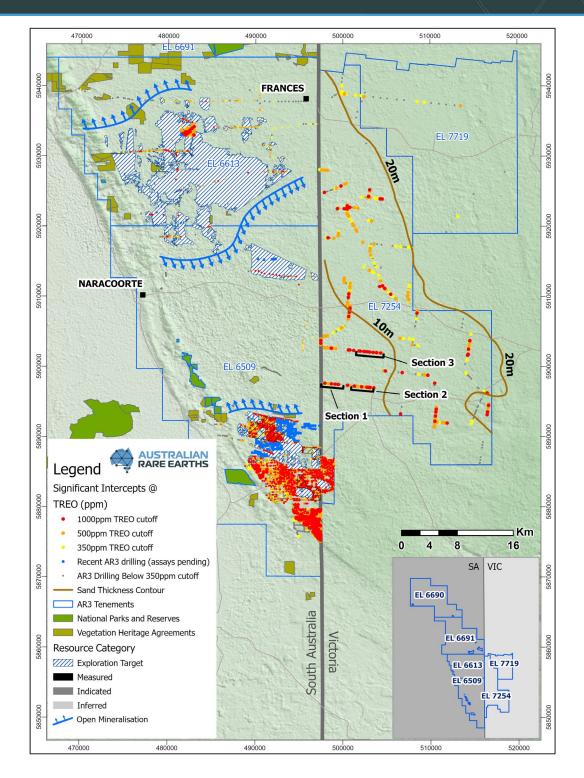
Chief Executive Officer Travis Beinke said: "These are strong results which support our strategy to continue growing the highly valuable Koppamurra Resource.

"The mineralisation remains open to the north and south, providing immense scope for ongoing inventory growth. This is central to our strategy to establish a world-scale ionic clay-hosted rare earths Province in the heart of a tier-one location.

"With the remaining assay results expected by the end of July, we look forward to updating our existing 101Mt Mineral Resource Estimate and significant Exploration Target of 330 million to 1.4 billion tonnes later this year.

"The team is working diligently to plan our next drilling program, which will commence in Q4 2023 and will be focused on continuing to build our understanding of the province potential at Koppamurra."

All assays have now been received aside from the last sample dispatch of \sim 1200 samples from a portion of the South Australian drilling which are expected to be received later this month.


The Victorian roadside drilling campaign across EL7254 and EL7719 targeted the eastern strike extension of Koppamurra mineralisation. The Victorian drilling intersected mineralised clays underlain by relatively shallow Mt. Gambier limestone. The eastern extent of shallow mineralisation was characterised by increasing thickness of cover combined with lower grade intersections as drilling progressed eastwards. Figure 1 roughly defines the eastern extent of prospective ground for Koppamurra style mineralisation. This eastern boundary will guide future exploration efforts defining a prospective province corridor which will be mapped more regionally across AR3's tenure.

Significant Intercepts from the Victorian drilling include:

- KM4455, 3m @ 2,033 ppm TREO from 7m, with 26.2% combined Neodymium/Praseodymium (Nd/Pr) and 2.7% Dysprosium (Dy) Section 1
- KM4444, 2m @ 1,569 ppm TREO from 6m, with 19.7% combined Nd/Pr and 2.3% Dy Section 2
- KM4435, 2m @ 1,779 ppm TREO from 6m, with 19.8% combined Nd/Pr and 2.6% Dy- Section 3
- KM4651, 2m @ 1,208 ppm TREO from 4m, with 23.6% combined Nd/Pr and 2.5% Dy
- KM4448, 1m @ 2,218 ppm TREO from 8m, with 23.8% combined Nd/Pr and 2.3% Dy

ANNOUNCEMENT

Figure 1 - Drillhole and Section Location Plan. New drilling and Significant Intersection identified with larger circles than existing drilling and Significant Intersections overlaying the current resource outlines. Sand thickness contours shown within EL7254, progressively thickening to the east.

ANNOUNCEMENT

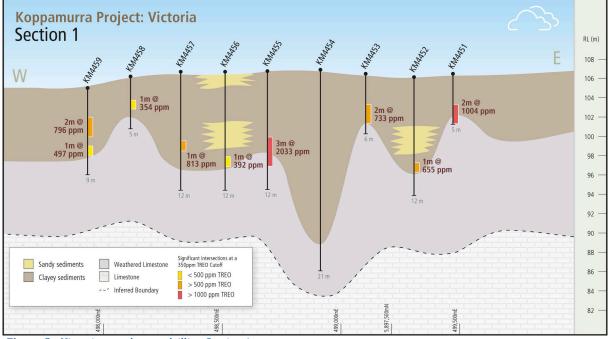
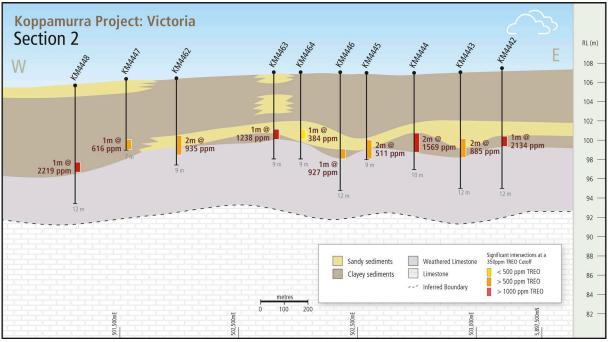



Figure 2 - Victorian road verge drilling Section 1.

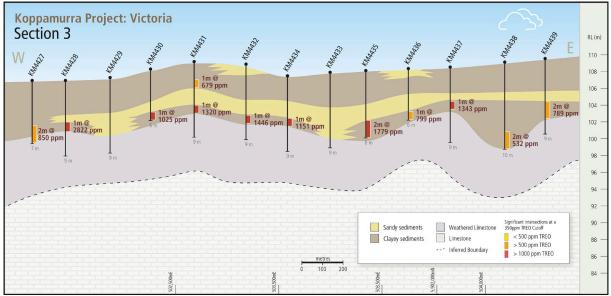


Figure 4 - Victorian road verge drilling Section 3.

The announcement has been authorised for release the by the Board of AR3 Limited.

For further information please contact:

AR3 Limited Travis Beinke Chief Executive Officer T: 1 300 646 100 Media Enquiries Nicholas Read / Paul Armstrong Read Corporate T: 08 9388 1474

Competent Person Statement

The information in this report that relates to Exploration results is based on information compiled by Australian Rare Earths Limited and reviewed by Mr Rick Pobjoy who is the Technical Director of the Company and a member of the Australian Institute of Mining and Metallurgy (AusIMM). Mr Pobjoy has sufficient experience that is relevant to the style of mineralisation, the type of deposit under consideration and to the activities undertaken to qualify as a Competent person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Pobjoy consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

About Australian Rare Earths Limited

Australian Rare Earths is committed to the timely exploration and development of its 100% owned, flagship Koppamurra Project, located in South Australia and Victoria. Koppamurra is a prospective ionic clay hosted rare earth deposit, uniquely rich in all the elements required in the manufacture of rare earth permanent magnets which are essential components in electric vehicles, wind turbines and domestic appliances.

Appendix 1 – JORC Tables

	submarine nodules) may warrant disclosure of detailed information.	in 9 into the sample sequence.
Drilling techniques	Drill type (e.g., core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face- sampling bit, or other type, whether core is oriented and if so, by what method, etc).	 McLeod Drilling used a Toyota Land air core rig and support vehicle for the aircore drilling. Aircore drilling is a form of reverse circulation drilling where the sample is collected at the face and returned inside the inner tube. The drill cuttings are removed by injection of compressed air into the hole via the annular area between the inner tube and the drill rod. Aircore drill rods used were 3 m long. NQ diameter (76 mm) drill bits and rods were used. All aircore drill holes were vertical with depths varying between 2 m and 36 m.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Drill sample recovery for aircore is monitored by recording sample condition descriptions where 'Poor' to 'Very Poor' were used to identify any samples recovered which were potentially not representative of the interval drilled. A comment was included where water injection was required to recover the sample from a particular interval. The use of water injection can potentially bias a sample and very little water injection was required during this drilling programme. No significant loses of samples were observed due to the shallow drilling depths (<36 m). The rotary splitter was set to an approximate 20% split, which produced approximately 1.5 kg sample for each meter interval. The 1.5 kg sample was collected in a prenumbered calico bags and the remaining 80% (5 kg to 8 kg) was collected in plastic UV bags labelled with the hole number and sample interval. At the end of each drill rod, the drill string is cleaned by blowing down with air to remove any clay and silt potentially built up in the sample pipes and cyclone.

		• No relationship exists between sample recovery and grade.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 All aircore samples collected in calico bags were logged for lithology, colour, cement type, hardness, percentage rock estimate, sorting, and any relevant comments such as moisture, sample condition, or vegetation. Geological logging data for all drill holes was qualitatively logged onto Microsoft Excel spreadsheet using a Panasonic Toughbook with validation rules built into the spreadsheet including specific drop- down menus for each variable. The data was uploaded to the Australian Rare Earths Azure Data Studio database. Every drill hole was logged in full and logging was undertaken with reference to a drilling template with codes prescribed and guidance to ensure consistent and systematic data collection
Sub-sampling techniques and sample preparation	If core, whether cut orsawn and whetherquarter, half or all corestaken.If non-core, whetherriffled, tube sampled,rotary split, etc andwhether sampled wet ordry.For all sample types, thenature, quality, andappropriateness of thesample preparationtechnique.Quality controlprocedures adopted forall sub-sampling stages tomaximise representivityof samples.Measures taken to ensurethat the sampling isrepresentative of the in-situ material collected,including for instanceresults for fieldduplicate/second-half	 1 m aircore sample interval were homogenised within the cyclone and the rotary splitter was set to an approximate 20% split producing around 1.5 kg sample for each metre interval. The 1.5 kg sample was collected in a pre- numbered calico bag and the 80% (5 kg to 8 kg) portion was collected in plastic UV bags labelled with hole identity and interval. Duplicates were generally taken within the clay lithologies above the basement as this is the likely zone of REE enrichment. These duplicate samples were normally collected by using a second calico bag and placing it under the rotary splitter collecting a 20% split but due to the difficulties of placing a second calico bag under the rotary splitter during sample collection, some duplicates were collected by hand from the plastic UV bags which captured the other 80% of the material recovered from any particular interval. The material in the plastic UV bags was mixed up and every attempt to take as

	 completed at a frequency of 1 in 38 samples Field standards were inserted into the sample sequence at a frequency of 1:59. Standard reference Material (SRM) samples were inserted into the sample batches at a frequency rate of 1 per 10 samples by the laboratory and a repeat sample was taken at a rate of 1 per 21 samples. A rig geologist oversaw the sampling and logging process while a second geologist selected samples for analysis based on the logging descriptions and Pxrf analysis. Clay rich sample and those adjacent to the limestone basement contact were selected for assay. REEs are known to be contained within the clay component of the sediment package based on analysis of XRF data and previous exploration work.
ature, quality and priateness of the ing and laboratory dures used and	• The detailed geological logging of samples provides lithology (clay component) and proximity to the limestone basement which is sufficient for the purpose of determining
lered partial or total. cophysical tools, cometers, handheld struments, etc, the	 the mineralised zone. The 1.5 kg aircore samples were assayed by Bureau Veritas laboratory in Wingfield, Adelaide, South Australia, which is considered the Primary laboratory.
mining the analysis ling instrument make nodel, reading times, ations factors ed and their	• The samples were initially oven dried at 105 degrees Celsius for 24 hours. Samples were secondary crushed to 3 mm fraction and the weight recorded. The sample was then pulverised to 90% passing 75 µm. Excess residue was maintained for storage while
	priateness of the ing and laboratory dures used and her the technique is lered partial or total. tophysical tools, cometers, handheld struments, etc, the heters used in mining the analysis ing instrument make hodel, reading times, ations factors

and assay techniques used are industry standard and provide a total analysis.VerificationThe verification of• All results are checked by the company's		Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established.	• • • The	and sent to the central weighing laboratory. All weighed samples were then analysed using the Multiple Elements Fusion/Mixed Acid Digest analytical method; ICP Scan (Mixed Acid Digest – Lithium Borate Fusion) Samples are digested using a mixed acid digest and also fused with Lithium Borate to ensure all elements are brought into solution. The digests are then analysed for the following elements (detection Limits shown): Al (100) As (1) Ba (1) Be (0.5) Ca(100) Ce (0.1) Co (1) Cr (10) Dy (0.05) Er (0.05) Eu(0.05) Fe(100) Gd (0.2) Ho (0.02) K (100) La (0.5) Lu (0.02) Mg (100) Mn (2) Na (100) Nd (0.05) Ni (2) Pr (0.2) S (50) Sc (1) Si (100) Sm(0.05) Sr (0.5) Th (0.1) Ti (50) Tm (0.2) U (0.1) V (5) Y (0.1) Yb (0.05) Zr (1) Field duplicates were collected and submitted at a frequency of 1 per 36 samples. Bureau Veritas completed its own internal QA/QC checks that included a Laboratory repeat every 21st sample and a standard reference sample every 9 th sample prior to the results being released. Analysis of QA/QC samples show the laboratory data to be of acceptable accuracy and precision; Australian Rare Earths submitted field standards at a frequency of 1:59 samples. Australian Rare Earths requested BV insert blank washes at a frequency of 1:40 samples. These blank washes were inserted in the sample sequence behind samples which were thought to be mineralized to ensure that no contamination from higher grade samples was occurring. Frequency of blank samples totaled 1 in 24 samples.
and provide a total analysis.				
	Verification	The verification of		All results are checked by the company's
of sampling significant intersections by Technical Director.	-			
and assaying either independent or • Field based geological logging for drill			•	

alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 holes was entered directly into an Excel spreadsheet format with validation rules built into the spreadsheet including specific drop-down menus for each variable. This digital data was then uploaded to the Australian Rare Earths Azure Data Studio database. Assay data was received in digital format from the laboratory and was uploaded Australian Rare Earths Azure Data Studio database. Field and laboratory duplicate data pairs of each batch are plotted to identify potential quality control issues. Standard Reference Material sample results are checked from each sample batch to ensure they are within tolerance (<3SD) and that there is no bias. The field and laboratory data was exported and imported into Datamine by IHC Robbins which is appropriate for this stage in the program. Data validation criteria are included to check for overlapping sample intervals, end of hole match between 'Lithology', 'Sample', 'Survey' files and other common errors. Assay data yielding elemental concentrations for rare earths (REE) within the sample are converted to their stoichiometric oxides (REO) in a calculation performed within the database using the conversion factors in the below table. Rare earth oxide is the industry accepted form for reporting rare earths. The following calculations have been used for reporting throughout this report: Note that Y2O3 is included in the TREO, HREO and CREO calculation. TREO = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Eu2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Eu2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + CeO3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + CeO3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + CeO3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + CeO3 + CeO2 + Pr6O11 + Nd2O3 + S
---	---

		Dy20. Lu203 TREO	3 + Ho2O3 + Er	2O3 + Gd2O3 + Tb4O7 + 2O3 + Tm2O3 + Yb2O3 + = Nd2O3 + Pr6O11 PO2 0xide Factor 1.2284 1.1477 1.1435 1.1579 1.1526 1.1455 1.1728 1.1371 1.1664 1.2082 1.5338 1.1596 1.1762 1.1379 1.1421 1.1793 1.2699 1.1387
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	aircore The dr. GPS ur holes i accura The da Topoge the res Inferre areas) survey using t LiDAR minim	e drill holes are ill hole collars v nit to identify th n the field. The ncy of +/-5m in tum used is GE raphic data ove source (includin ed/Indicated/M is derived from flown in May 2 their RIEGL VQ- survey data wo um 25 points p	vere located using a ne positions of the drill handheld GPS has an the horizontal. DA2020/MGA Zone 54. er the southern area of

Data spacing	Data spacing for reporting	 accuracy. Topographic DTM surface over the northern area of the resource (Frances Exploration Target area) is derived from DGPS drill collar positions at this stage of exploration and the RL has been corrected using An Australian wide SRTM. The 1 second SRTM Level 2 Derived Smoothed Digital Elevation Model (DEM-S) is derived from the 2000 SRTM. The DEM-S has a ~30m grid which has been adaptively smoothed to improve the representation of the surface shape and is the preferred method for shape and vertical accuracy from STRM products. The smoothing process estimated typical improvements in the order of 2-3 m. This would make the DEM-S accuracy to be of approximately 5 m. The accuracy of the locations is sufficient for this stage of exploration. The holes were largely drilled at between
and distribution	of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 100 m and 400 m spacings along accessible road verges. Drill spacing within paddocks and forested areas was largely completed at 100 m to 120 m spacings, with a small portion of holes drilled at 60 m spacings. The drilling of aircore holes was conducted to determine the regional prospectivity of the wider Koppamurra Project area and for the purposes of generating a mineral resource estimate. No sample compositing has been applied.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is	 The Koppamurra mineralisation is interpreted to be hosted in flay lying clays that are horizontal. All drill holes are vertical which is appropriate for horizontal bedding and regolith profile. The Koppamurra drilling was oriented perpendicular to the strike of mineralisation defined by previous exploration and current geological interpretation.

	considered to have introduced a sampling bias, this should be assessed and reported if material.	 The strike of the mineralisation is north south, and the high grades follow a northwest-southeast trend. All drill holes were vertical, and the orientation of the mineralisation is relatively horizontal. The orientation of the drilling is considered appropriate for testing the lateral and vertical extent of mineralisation without any bias.
Sample security	The measures taken to ensure sample security.	• After logging, the samples in calico bags were tied and placed into polyweave bags, labelled with the drill hole and sample numbers contained within the polyweave and transported to the base of operations, Naracoorte, at the end of each day.
		• The samples were then placed on pallets ready for transport and remained in a secure compound until transport had been arranged. Pallets were labelled and then 'shrink-wrapped' by the transport contractor prior to departure from the Naracoorte base to the analytical laboratory.
		• Samples for analysis were logged against pallet identifiers and a chain of custody form created.
		• Transport to the analytical laboratory was undertaken by an agent for the TOLL Logistics Group, and consignment numbers were logged against the chain of custody forms.
		• The laboratory inspected the packages and did not report tampering of the samples and provided a sample reconciliation report for each sample dispatch.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Internal reviews were undertaken by AR3's Exploration Manager and Technical Director during the drilling, sampling, and geological logging process and throughout the sample collection and dispatch process to ensure AR3's protocols were followed. A review of the database was also undertaken by Wallbridge Gilbert Aztec (WGA) – Consulting Engineers.

Section 2 Reporting of Exploration Results			
Criteria	Explanation	Comment	
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Koppamurra Project comprises of a granted South Australian Exploration Licences (EL), EL6509, EL6613, EL6690 and EL6691, along with Victorian EL007254 and EL7719 covering a combined area of ~4,000 km2 which is in good standing.EL6509 is within 100m of a Glen Roy Conservation Park and the Naracoorte Caves National Park, the latter of which is excised from the tenement. The License area contains several small Extractive Mineral Leases (EML) held by others, Native Vegetation Heritage Agreement areas, as well as the Deadman's Swamp Wetlands which are wetlands of national importance.A Native Title Claim by the First Nations of the South East #1 has been registered but is yet to be determined. The claim area includes the areas covered by EL's 6509, 6613, 6690 and 6691.The exploration work was completed on the tenements (EL 6509 and EL6613) in South Australia and EL007254 and EL7719 which are 100% owned by the company Australian Rare Earths Ltd.The Exploration License EL6509 original date of grant was 07/07/2021 with an expiry date of 14/09/2028.The Exploration License EL007254 original date of grant was 29/04/2021 with an expiry date of 28/04/2022.The Exploration License EL007719 original date of grant was 29/08/2022 with an expiry date of 28/04/2021.	

Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Exploration activities by other exploration companies in the area have not previously targeted or identified REE mineralisation.
		Historical exploration activities in the vicinity of Koppamurra include investigations for coal, gold and base metals, uranium, and heavy mineral sands.
		Historical exploration by other parties is detailed in Chapter 7 of Australian Rare Earths Prospectus dated 7 May 2021.
Geology	Deposit type, geological setting and style of mineralisation.	The ionic clay hosted REE mineralisation at Koppamurra is hosted by clayey sediments interpreted to have been deposited onto a limestone base (Gambier Limestone) and accumulated in an interdunal, lagoonal or estuarine environment which has been extensively mapped east of the Kanawinka fault in SE SA. A dedicated post-doctoral research program investigating the source of the REE at Koppamurra is ongoing, with no definitive source of the REE confirmed to date although preliminary results of this study have ruled out the alkali volcanics in south-eastern Australia which was originally considered. Mineralogical test work conducted on clay samples from the project area established that the dominant clay minerals are smectite and kaolin, and that the few REE-rich minerals detected during the scanning electron microscope (SEM) investigation were not considered inconsistent with the suggestion that a significant proportion of REE are distributed in the material as adsorbed elements on clay and iron oxide surfaces.
Drill hole	A summary of all	
Information	information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar - elevation or RL	The material information for drill holes relating to this report are contained within Appendices of this release.

Data aggregation methods	elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth - hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents have been used. Significant intercepts are calculated using downhole sample length weighted averages and a lower cut-off grade of 325 ppm TREO. A full list of drill holes with significant intercepts >325 ppm TREO can be found in the appendices of this release.
Relationship between mineralisatio	be clearly stated. These relationships are particularly important in the reporting of	All intercepts reported are down hole lengths.

n widths and intercept lengths	Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not	The mineralisation is interpreted to be flat lying. Morphology of the mineralised unit is influenced by the morphology of the undulating limestone basement below. Drilling is vertical perpendicular to mineralisation. Any internal variations to REE distribution within the horizontal layering was not defined, therefore the true width is considered not known.
Diagrams	known'). Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Diagrams are included in the body of this release.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	This release contains all drilling results that are consistent with the JORC guidelines. Where data may have been excluded, it is considered not material.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock	All known relevant exploration data has been reported in this release.

	characteristics; potential deleterious or contaminating substances.	
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	AR3 intend to continue to define the Koppamurra resource during 2023. This will include (but not limited to) drilling, assay, ground based geophysical surveys and further metallurgical testwork.

Appendix 2 – Drill Hole Collars

						Total		
					Down Hole	Depth EOH		
Hole ID	East (m)	North (m)	RL (m ASL)	Drill Method	Width (mm)	(m)	Azimuth	Dip Direction
KM4281	514631	5904617	139	Aircore	76	12	0	-90
KM4282	514606	5904413	138.4	Aircore	76	9	0	-90
KM4283	514445	5903389	137.8	Aircore	76	9	0	-90
KM4284	514362	5902504	136.7	Aircore	76	15	0	-90
KM4285	513964	5900364	132.4	Aircore	76	15	0	-90
KM4286	514077	5899064	131.3	Aircore	76	18	0	-90
KM4287	514244	5898854	131.9	Aircore	76	18	0	-90
KM4288	514339	5898735	132.7	Aircore	76	18	0	-90
KM4289	514459	5898585	133.7	Aircore	76	18	0	-90
KM4290	514586	5898407	133.8	Aircore	76	18	0	-90
KM4291	514671	5898231	133.5	Aircore	76	15	0	-90
KM4292	515391	5897029	138.7	Aircore	76	18	0	-90
KM4293	515542	5896914	139.9	Aircore	76	18	0	-90
KM4294	516113	5896495	145.1	Aircore	76	18	0	-90
KM4295	516299	5896367	144.7	Aircore	76	15	0	-90
KM4296	516468	5896248	143.3	Aircore	76	18	0	-90
KM4297	516627	5896127	144.1	Aircore	76	12	0	-90
KM4298	516792	5896006	146.2	Aircore	76	11	0	-90
KM4299	516658	5894671	146	Aircore	76	24	0	-90
KM4300	516634	5894475	145.3	Aircore	76	24	0	-90
KM4301	516608	5894275	143.8	Aircore	76	18	0	-90
KM4302	516584	5894090	144.2	Aircore	76	15	0	-90
KM4303	516519	5893550	144.9	Aircore	76	18	0	-90
KM4304	516495	5893356	143.8	Aircore	76	21	0	-90
KM4305	516468	5893156	143	Aircore	76	15	0	-90
KM4306	515824	5895348	140.5	Aircore	76	27	0	-90
KM4307	515746	5895176	141.1	Aircore	76	24	0	-90
KM4308	515677	5894997	141.7	Aircore	76	21	0	-90
KM4309	515454	5894420	144.8	Aircore	76	27	0	-90
KM4310	515387	5894225	143.2	Aircore	76	24	0	-90
KM4311	515242	5893805	140	Aircore	76	27	0	-90
KM4312	515176	5893616	138.9	Aircore	76	27	0	-90
KM4313	515137	5893427	137.4	Aircore	76	30	0	-90
KM4314	515071	5893232	137.9	Aircore	76	27	0	-90
KM4315	514948	5892851	139.2	Aircore	76	21	0	-90
KM4316	514884	5892612	139.5	Aircore	76	13	0	-90
KM4317	514835	5892471	142	Aircore	76	21	0	-90
KM4318	514763	5892256	140	Aircore	76	18	0	-90
KM4319	514666	5891899	138.2	Aircore	76	17	0	-90
KM4320	510678	5894223	124.7	Aircore	76	18	0	-90
KM4321	510648	5893920	123.9	Aircore	76	18	0	-90
KM4322	510650	5893922	123.9	Aircore	76	18	0	-90
KM4323	510631	5893729	123.6	Aircore	76	18	0	-90
KM4324	510618	5893552	122.2	Aircore	76	18	0	-90
KM4325	510599	5893346	122.2	Aircore	76	18	0	-90
KM4326	510584	5893158	121.9	Aircore	76	18	0	-90
KM4320	510566	5892985	120.4	Aircore	76	18	0	-90
KM4328	510562	5892980	120.6	Aircore	76	13	0	-90
KM4328	510551	5892980	120.8	Aircore	76	18	0	-90

KM4330	510533	5892589	121.3	Aircoro	76	18	0	-90
KM4331	510555	5892589	121.5	Aircore Aircore	76	18	0	-90
KM4331	510513	5892217	120.2	Aircore	76	13	0	-90
KM4333	510499	5892004	120.8	Aircore	76	14	0	-90
KM4334	510480	5891544	123.8	Aircore	76	18	0	-90
KM4335	510444	5891382	123.8	Aircore	76	30	0	-90
KM4336	510415	5892111	124.5	Aircore	76	18	0	-90
KM4337	510997	5892062	121.9		76	21	0	-90
KM4338	511181	5892082	121.8	Aircore Aircore	76	21	0	-90
KM4339	511386	5892020	125.3		76	22	0	-90
KM4340	511588	5892020	125.5	Aircore	76	21	0	-90
KM4341	511398	5891992	120.2	Aircore	76	21	0	-90
KM4341	511/8/	5891964	127.5	Aircore	76	21	0	-90
KIVI4342 KM4343		5891951		Aircore	76		-	-90
	510446		125.4	Aircore		18	0	
KM4344	510462	5897448	125.5	Aircore	76	18	0	-90
KM4345	510485	5897653	126.1	Aircore	76	21	0	-90
KM4346	509712	5898781	124.9	Aircore	76	21	0	-90
KM4347	509517	5898806	124	Aircore	76	21	0	-90
KM4348	509330	5898830	123.6	Aircore	76	18	0	-90
KM4349	509113	5898861	123.8	Aircore	76	18	0	-90
KM4350	508671	5898917	125.1	Aircore	76	15	0	-90
KM4351	508313	5898956	122.9	Aircore	76	12	0	-90
KM4352	506774	5899148	116.6	Aircore	76	12	0	-90
KM4353	506351	5899198	116.4	Aircore	76	12	0	-90
KM4354	504858	5899400	111.2	Aircore	76	9	0	-90
KM4355	504672	5899423	112.1	Aircore	76	9	0	-90
KM4356	506718	5894265	116.7	Aircore	76	15	0	-90
KM4357	506584	5893253	118.8	Aircore	76	12	0	-90
KM4358	506539	5904081	118.2	Aircore	76	12	0	-90
KM4359	506930	5904031	117.3	Aircore	76	12	0	-90
KM4360	507580	5903944	121.2	Aircore	76	12	0	-90
KM4361	508016	5903891	119.7	Aircore	76	9	0	-90
KM4362	507971	5903503	119.5	Aircore	76	15	0	-90
KM4363	507918	5903099	119.6	Aircore	76	12	0	-90
KM4364	508202	5903075	121.1	Aircore	76	12	0	-90
KM4365	508603	5903021	121	Aircore	76	15	0	-90
KM4366	508533	5907966	118.9	Aircore	76	15	0	-90
KM4367	508484	5907619	115.5	Aircore	76	18	0	-90
KM4368	508460	5907375	117.9	Aircore	76	18	0	-90
KM4369	508423	5907083	111.9	Aircore	76	15	0	-90
KM4370	508391	5906803	112.2	Aircore	76	18	0	-90
KM4371	508363	5906619	110.2	Aircore	76	18	0	-90
KM4372	508338	5906374	118	Aircore	76	15	0	-90
KM4373	508271	5905837	120.5	Aircore	76	18	0	-90
KM4374	508247	5905703	120.9	Aircore	76	15	0	-90
KM4375	513610	5905582	135.1	Aircore	76	30	0	-90
KM4376	513678	5906131	133.6	Aircore	76	30	0	-90
KM4377	513763	5906807	135	Aircore	76	21	0	-90
KM4378	500617	5909871	110	Aircore	76	12	0	-90
KM4379	500630	5909971	110.4	Aircore	76	12	0	-90
KM4380	500657	5910181	109.2	Aircore	76	12	0	-90
KM4381	500680	5910372	108.8	Aircore	76	12	0	-90

KM4382	500680	5910369	108.8	Aircoro	76	12	0	-90
KIVI4382 KM4383	50080	5910369	108.8	Aircore Aircore	76	12	0	-90
KM4384	500725	5910724	109.2	Aircore	76	13	0	-90
KM4385	500755	5910955	109.1	Aircore	76	12	0	-90
KM4386	500735	5911232	109.7	Aircore	76	13	0	-90
KM4387	500788	5911232	110	Aircore	76	12	0	-90
KM4388	500811	5911455	110.9		76	17	0	-90
KM4389	500839	5911864	111.4	Aircore	76	18	-	
KIVI4389 KM4390	500839	5911864	110.7	Aircore	76	15	0	-90 -90
				Aircore	76	-	-	-90
KM4391 KM4392	500454 500329	5911914 5911930	111.1 111.3	Aircore	76	18 12	0	-90 -90
	500329	5911930		Aircore	76		0	
KM4393 KM4394	500161		111.4 112.1	Aircore	76	18 15	0	-90 -90
		5912260		Aircore		-	0	
KM4395	500156	5912444	112.1	Aircore	76	18	0	-90
KM4396	500157	5912648	111.7	Aircore	76	21	0	-90
KM4397	500843	5908652	106	Aircore	76	12	0	-90
KM4398	500816	5908466	106.1	Aircore	76	15	0	-90
KM4399	500818	5908471	106.1	Aircore	76	15	0	-90
KM4400	500789	5908247	106.7	Aircore	76	12	0	-90
KM4401	500765	5908068	107.4	Aircore	76	9	0	-90
KM4402	500761	5908015	107.7	Aircore	76	9	0	-90
KM4403	500714	5907660	106.4	Aircore	76	9	0	-90
KM4404	500692	5907469	105.3	Aircore	76	9	0	-90
KM4405	500652	5907172	105.2	Aircore	76	6	0	-90
KM4406	500634	5906980	105.2	Aircore	76	6	0	-90
KM4407	500601	5906769	104.5	Aircore	76	9	0	-90
KM4408	500198	5905817	105.1	Aircore	76	12	0	-90
KM4409	500030	5905685	105.1	Aircore	76	9	0	-90
KM4410	499863	5905571	104.6	Aircore	76	18	0	-90
KM4411	499872	5905579	104.6	Aircore	76	18	0	-90
KM4412	499650	5905418	104.6	Aircore	76	12	0	-90
KM4413	499506	5905318	103.7	Aircore	76	9	0	-90
KM4414	498228	5904396	101.2	Aircore	76	9	0	-90
KM4415	498040	5904357	101.6	Aircore	76	6	0	-90
KM4416	497869	5904378	100.7	Aircore	76	9	0	-90
KM4417	497466	5903946	101.3	Aircore	76	6	0	-90
KM4418	497468	5903751	100.9	Aircore	76	9	0	-90
KM4419	497466	5903568	101.1	Aircore	76	9	0	-90
KM4420	497471	5903344	100.9	Aircore	76	9	0	-90
KM4421	497471	5903155	100.5	Aircore	76	3	0	-90
KM4422	497909	5902738	100.1	Aircore	76	6	0	-90
KM4423	498096	5902717	100.9	Aircore	76	9	0	-90
KM4424	500614	5902396	104.7	Aircore	76	6	0	-90
KM4425	500793	5902378	106.1	Aircore	76	9	0	-90
KM4426	501020	5902346	106.6	Aircore	76	9	0	-90
KM4427	501839	5902245	106.9	Aircore	76	7	0	-90
KM4428	501998	5902227	107.2	Aircore	76	9	0	-90
KM4429	502209	5902199	107.5	Aircore	76	9	0	-90
KM4430	502395	5902181	108.4	Aircore	76	6	0	-90
KM4431	502606	5902156	109.3	Aircore	76	9	0	-90
KM4432	502860	5902121	108.9	Aircore	76	9	0	-90
KM4433	503269	5902068	108	Aircore	76	9	0	-90

KM4434	503070	5902091	107.6	Aircoro	76	9	0	-90
KM4434	503449	5902091	107.8	Aircore Aircore	76	8	0	-90
KM4435	503654	5902040	108.5	Aircore	76	6	0	-90
KM4430	503854	5901990	108.5	Aircore	76	9	0	-90
KM4437	504119	5901950	108.0	Aircore	76	10	0	-90
KM4438	504317	5901901	109.1	Aircore	76	9	0	-90
KM4440	503534	5896976	109.4	Aircore	76	11	0	-90
KM4441	503326	5897000	110.9		76	9	0	-90
KM4441 KM4442	503320	5897000	110.2	Aircore Aircore	76	 12	0	-90
KM4442	502937	5897024	109.4		76	12	0	-90
KM4445	502937	5897043	109.2	Aircore Aircore	76	12	0	-90
KM4445	502539	5897092	109		76	9	0	-90
KM4445	502539	5897092	109.1	Aircore	76	9 12	0	-90 -90
KM4440				Aircore	76	7	-	-90
	501521	5897207	108.3	Aircore			0	
KM4448	501308	5897244	107.9	Aircore	76	12	0	-90
KM4449	501099	5897261	108.7	Aircore	76	12	0	-90
KM4450	499637	5897442	106.3	Aircore	76	9	0	-90
KM4451	499483	5897464	106.3	Aircore	76	5	0	-90
KM4452	499310	5897487	106	Aircore	76	12	0	-90
KM4453	499109	5897509	106.3	Aircore	76	6	0	-90
KM4454	498918	5897537	107	Aircore	76	21	0	-90
KM4455	498692	5897562	106.9	Aircore	76	12	0	-90
KM4456	498512	5897581	106.6	Aircore	76	12	0	-90
KM4457	498326	5897595	106.6	Aircore	76	12	0	-90
KM4458	498118	5897633	105.9	Aircore	76	5	0	-90
KM4459	497941	5897654	105	Aircore	76	9	0	-90
KM4460	500521	5897344	107.5	Aircore	76	12	0	-90
KM4461	500787	5897303	108.9	Aircore	76	12	0	-90
KM4462	501728	5897194	108.7	Aircore	76	9	0	-90
KM4463	502142	5897143	109.1	Aircore	76	9	0	-90
KM4464	502251	5897133	109.2	Aircore	76	9	0	-90
KM4465	515598	5886102	137.8	Aircore	76	21	0	-90
KM4466	515620	5886299	139	Aircore	76	18	0	-90
KM4467	515622	5886294	139	Aircore	76	18	0	-90
KM4468	515670	5886689	142.2	Aircore	76	18	0	-90
KM4469	515723	5887101	143.7	Aircore	76	21	0	-90
KM4470	515890	5888439	146.9	Aircore	76	16	0	-90
KM4471	515940	5888838	143.9	Aircore	76	18	0	-90
KM4472	515988	5889230	142.5	Aircore	76	21	0	-90
KM4473	507521	5909313	115.4	Aircore	76	12	0	-90
KM4474	507535	5909435	116.3	Aircore	76	18	0	-90
KM4475	507544	5909512	116.6	Aircore	76	18	0	-90
KM4476	507563	5909678	117	Aircore	76	13	0	-90
KM4477	507379	5909948	116.3	Aircore	76	15	0	-90
KM4478	507401	5910136	115	Aircore	76	18	0	-90
KM4479	507456	5910633	115.2	Aircore	76	18	0	-90
KM4480	507478	5910816	115.1	Aircore	76	18	0	-90
KM4481	507493	5910991	115.5	Aircore	76	21	0	-90
KM4482	507575	5911479	117.6	Aircore	76	21	0	-90
KM4483	507625	5911633	117.3	Aircore	76	21	0	-90
KM4484	507692	5911836	117.3	Aircore	76	18	0	-90
KM4485	507934	5916962	120.2	Aircore	76	15	0	-90

KM4486	507819	5916971	121.1	Aircoro	76	21	0	-90
KIVI4486 KM4487	507819	5916971	121.1	Aircore	76	21	0	-90 -90
KM4487	507298	5917012	119.1	Aircore	76	15	0	-90
KM4489	507238	5917041	119.1	Aircore	76	13	0	-90
KM4490	506864	5917087	116.7	Aircore	76	21	0	-90
KM4490	506616	5917115	115.9	Aircore	76	21	0	-90
KM4491	506098	5917181	113.9	Aircore	76	21	0	-90
KM4492	505682	5917240	114.6	Aircore	76	21	0	-90
KM4495	503682	5917240	114.6	Aircore	76	18	0	-90
KM4494	503913	5917455	111.9	Aircore	76	18	0	-90
KM4495	503549	5917508	115.2	Aircore	76	21	0	-90
KM4490	503202	5917445	110.9	Aircore	76	30	0	-90
KM4497	503163	5917445	110.9	Aircore	76	21	0	-90
KM4498	503103	5916859	111.5		76	21	0	-90
KM4500	503080	5916490	112.1	Aircore	76	24	0	-90
	499513	5919201	103.4	Aircore	76	9	-	-90
KM4501 KM4502	499513	5919201		Aircore	76	9	0	-90 -90
		5918990	105.5 106.2	Aircore	76	9 12	0	-90 -90
KM4503	499449			Aircore			0	
KM4504 KM4505	498965	5918302	107.4 107.4	Aircore	76 76	12	0	-90 -90
	498963	5918308	-	Aircore	-	12	0	
KM4506	498519	5918363	107.6	Aircore	76	12	0	-90
KM4507	498292	5918390	107.4	Aircore	76	12	0	-90
KM4508	498101	5918415	107.3	Aircore	76	12	0	-90
KM4509	498104	5918414	107.3	Aircore	76	12	0	-90
KM4510	502954	5920803	108.2	Aircore	76	18	0	-90
KM4511	503137	5920779	109.6	Aircore	76	21	0	-90
KM4512	503293	5920758	110.5	Aircore	76	17	0	-90
KM4513	500798	5922722	100.9	Aircore	76	21	0	-90
KM4514	501101	5922689	101.3	Aircore	76	18	0	-90
KM4515	501320	5922658	100.4	Aircore	76	12	0	-90
KM4516	501521	5922635	100.4	Aircore	76	15	0	-90
KM4517	501720	5922601	103.1	Aircore	76	21	0	-90
KM4518	500500	5922492	104.2	Aircore	76	15	0	-90
KM4519	500331	5922508 5922533	104	Aircore	76	12	0	-90
KM4520	500140		103.3	Aircore	76	27	0	-90
KM4521 KM4522	499504	5922610 5922514	106.3	Aircore	76 76	15 15	0	-90 -90
	499371		107.5	Aircore			0	
KM4523	502098	5924181 5024124	100.8	Aircore	76 76	9	0	-90
KM4524	502591	5924124	100.8	Aircore	76 76	27	0	-90
KM4525	502773	5924095	101.7	Aircore	76	15	0	-90
KM4526	503133	5924065	101.8	Aircore	76	15	0	-90
KM4527	503686	5923996	101.3	Aircore	76	12	0	-90
KM4528	503837	5923982	101.2	Aircore	76	15	0	-90
KM4529	504270	5923928 5923898	106.4	Aircore	76 76	18	0	-90
KM4530 KM4531	504494 502945	5923898	109.8 101.5	Aircore	76	18	0	-90
				Aircore		21	0	-90
KM4532	502971	5924403	101.5	Aircore	76	17	0	-90
KM4533	503045	5925014	101.2	Aircore	76	15	0	-90
KM4534	503076	5925215	101.3	Aircore	76	12	0	-90
KM4535	500386	5926115	99.4	Aircore	76	18	0	-90
KM4536	500200	5926026	98.9	Aircore	76	15	0	-90
KM4537	500206	5926025	98.8	Aircore	76	15	0	-90

KM4538	499775	5925752	100.7	Aircore	76	18	0	-90
KM4539	499281	5925450	100.7	Aircore	76	15	0	-90
KM4540	498898	5925278	99.1	Aircore	76	12	0	-90
KM4541	498696	5925196	99	Aircore	76	12	0	-90
KM4542	498694	5925192	99	Aircore	76	12	0	-90
KM4543	498530	5925123	99.2	Aircore	76	12	0	-90
KM4544	498244	5924998	99.8	Aircore	76	12	0	-90
KM4545	497880	5924839	102.9	Aircore	76	15	0	-90
KM4546	498075	5924915	101.9	Aircore	76	18	0	-90
KM4547	499091	5925367	102.5	Aircore	76	12	0	-90
KM4548	502275	5917748	102.3	Aircore	76	21	0	-90
KM4549	503176	5915911	112	Aircore	76	24	0	-90
KM4550	503255	5915711	113.1	Aircore	76	24	0	-90
KM4551	503360	5915464	111.2	Aircore	76	20	0	-90
KM4552	503570	5914762	115.9	Aircore	76	21	0	-90
KM4553	503689	5914398	113.7	Aircore	76	18	0	-90
KM4554	503851	5914203	112.8	Aircore	76	22	0	-90
KM4555	503948	5914181	112.7	Aircore	76	21	0	-90
KM4556	504347	5914147	113.4	Aircore	76	18	0	-90
KM4557	504097	5913012	110.6	Aircore	76	24	0	-90
KM4558	502385	5914240	115.1	Aircore	76	19	0	-90
KM4559	502385	5914239	115.1	Aircore	76	18	0	-90
KM4560	503032	5913751	111.8	Aircore	76	18	0	-90
KM4561	503356	5913528	110.9	Aircore	76	21	0	-90
KM4562	503524	5913351	110.5	Aircore	76	18	0	-90
KM4563	504258	5912411	110.7	Aircore	76	18	0	-90
KM4564	504259	5912411	110.8	Aircore	76	18	0	-90
KM4565	504314	5912213	110.9	Aircore	76	18	0	-90
KM4566	504526	5911530	113.4	Aircore	76	17	0	-90
KM4567	504652	5911306	115	Aircore	76	15	0	-90
KM4568	504784	5911156	113.7	Aircore	76	18	0	-90
KM4569	504906	5911005	113.3	Aircore	76	21	0	-90
KM4570	505226	5910623	115.6	Aircore	76	18	0	-90
KM4571	505337	5910482	116.4	Aircore	76	27	0	-90
KM4572	505464	5910321	113	Aircore	76	24	0	-90
KM4573	505599	5910161	115.8	Aircore	76	18	0	-90
KM4574	505729	5910015	118.5	Aircore	76	18	0	-90
KM4575	505956	5909790	117.1	Aircore	76	18	0	-90
KM4576	506100	5909672	117.5	Aircore	76	18	0	-90
KM4577	504445	5911408	114.4	Aircore	76	15	0	-90
KM4578	504221	5911431	112.5	Aircore	76	21	0	-90
KM4579	504048	5911454	112.3	Aircore	76	18	0	-90
KM4580	501579	5919326	108.2	Aircore	76	18	0	-90
KM4581	501483	5919541	108.2	Aircore	76	15	0	-90
KM4582	501243	5920114	105.5	Aircore	76	18	0	-90
KM4583	501138	5920339	105.6	Aircore	76	18	0	-90
KM4584	500983	5920687	105.6	Aircore	76	21	0	-90
KM4585	500744	5921219	103.3	Aircore	76	15	0	-90
KM4586	500666	5921413	102.7	Aircore	76	15	0	-90
KM4587	500582	5921607	102.5	Aircore	76	15	0	-90
KM4588	500481	5921839	103.6	Aircore	76	15	0	-90
KM4589	500482	5921835	103.6	Aircore	76	15	0	-90

KM4590	500500	5922000	104.1	Aircore	76	12	0	-90
KM4590	500550	5922373	104.1	Aircore	76	12	0	-90
KM4591	500532	5922559	102.5	Aircore	76	12	0	-90
KM4593	500332	5922888	104	Aircore	76	21	0	-90
KM4594	500523	5923081	100.3	Aircore	76	15	0	-90
KM4595	498208	5927974	100.5	Aircore	76	13	0	-90
KM4596	498135	5927973	102.0	Aircore	76	18	0	-90
KM4597	498037	5927996	103.4	Aircore	76	15	0	-90
KM4598	497842	5928021	103.4	Aircore	76	13	0	-90
KM4599	497943	5928021	104.5	Aircore	76	18	0	-90
KM4600	497747	5928033	104	Aircore	76	18	0	-90
KM4601	497654	5928033	104.2	Aircore	76	18	0	-90
KM4601	497547	5928045	103.9	Aircore	76	18	0	-90
KM4602	497450	5928072	103.8	Aircore	76	18	0	-90
KM4604	497351	5928088	105.1		76	18	0	-90
KM4605	497351	5938415	105.1	Aircore	76	21	0	-90
	498780			Aircore	76		0	
KM4606		5938650 5938794	106.4	Aircore	76	17 6	-	-90
KM4607	499219		105.9	Aircore	-	-	0	-90
KM4608	499789	5938920	107.5	Aircore	76	20	0	-90
KM4609	499962	5938897	108.3	Aircore	76	21	0	-90
KM4610	500180	5938871	110.1	Aircore	76	27	0	-90
KM4611	500369	5938846	110.5	Aircore	76	27	0	-90
KM4612	499882	5939225	110.3	Aircore	76	27	0	-90
KM4613	499878	5940038	110.1	Aircore	76	27	0	-90
KM4614	499873	5940631	112.3	Aircore	76	27	0	-90
KM4615	499916	5941133	110.5	Aircore	76	27	0	-90
KM4616	499993	5941728	114.4	Aircore	76	27	0	-90
KM4617	501452	5938706	112.3	Aircore	76	26	0	-90
KM4618	502111	5938624	113.6	Aircore	76	27	0	-90
KM4619	502521	5939072	116.1	Aircore	76	27	0	-90
KM4620	502521	5939074	116.1	Aircore	76	27	0	-90
KM4621	503496	5938437	115.3	Aircore	76	27	0	-90
KM4622	504312	5938329	118.2	Aircore	76	27	0	-90
KM4623	505073	5938239	119.3	Aircore	76	27	0	-90
KM4624	506181	5938080	120.9	Aircore	76	27	0	-90
KM4625	507024	5937986	120.9	Aircore	76	12	0	-90
KM4626	508506	5937786	121.8	Aircore	76	27	0	-90
KM4627	509335	5937681	123.2	Aircore	76	27	0	-90
KM4628	510125	5937577	124	Aircore	76	27	0	-90
KM4629	511005	5937469	124.2	Aircore	76	26	0	-90
KM4630	511846	5937383	126.8	Aircore	76	27	0	-90
KM4631	512828	5937254	127.8	Aircore	76	27	0	-90
KM4632	513496	5937180	126.8	Aircore	76	27	0	-90
KM4633	502416	5938472	113.4	Aircore	76	27	0	-90
KM4634	502174	5937818	110.1	Aircore	76	24	0	-90
KM4635	502173	5937819	110.1	Aircore	76	27	0	-90
KM4636	501637	5936335	110.1	Aircore	76	27	0	-90
KM4637	501526	5935529	107.6	Aircore	76	22	0	-90
KM4638	501524	5935523	107.6	Aircore	76	21	0	-90
KM4639	502675	5931809	107.4	Aircore	76	21	0	-90
KM4640	514967	5924595	126.9	Aircore	76	24	0	-90
KM4641	518561	5927768	134.5	Aircore	76	27	0	-90

r							1	
KM4642	513175	5921370	137.3	Aircore	76	24	0	-90
KM4643	511837	5919200	127.9	Aircore	76	26	0	-90
KM4644	514519	5903707	136.8	Aircore	76	12	0	-90
KM4645	514497	5903548	136.9	Aircore	76	9	0	-90
KM4646	514442	5903185	136.5	Aircore	76	9	0	-90
KM4647	514408	5902956	136.6	Aircore	76	9	0	-90
KM4648	514398	5902802	137.3	Aircore	76	9	0	-90
KM4649	514371	5902397	136.9	Aircore	76	12	0	-90
KM4650	514351	5902418	136.6	Aircore	76	9	0	-90
KM4651	514319	5901767	134.4	Aircore	76	9	0	-90
KM4652	514375	5901604	132.1	Aircore	76	15	0	-90
KM4653	514249	5901615	132.8	Aircore	76	12	0	-90
KM4654	514168	5900951	134.4	Aircore	76	18	0	-90
KM4655	500504	5909016	103.8	Aircore	76	12	0	-90
KM4656	500531	5909190	105.7	Aircore	76	12	0	-90
KM4657	500525	5909196	105.8	Aircore	76	12	0	-90
KM4658	500589	5909646	107.8	Aircore	76	12	0	-90
KM4659	500482	5908804	104.4	Aircore	76	12	0	-90
KM4660	500832	5908588	106	Aircore	76	18	0	-90
KM4661	500806	5908363	106.2	Aircore	76	9	0	-90
KM4662	500784	5908174	106.9	Aircore	76	12	0	-90
KM4663	500757	5907982	107.7	Aircore	76	3	0	-90
KM4664	500732	5907776	107.1	Aircore	76	12	0	-90
KM4665	500731	5907779	107.1	Aircore	76	9	0	-90
KM4666	500671	5907303	104.8	Aircore	76	9	0	-90
KM4667	500647	5907090	105.3	Aircore	76	9	0	-90
KM4668	500620	5906894	104.8	Aircore	76	9	0	-90
KM4669	499245	5905030	102.6	Aircore	76	6	0	-90
KM4670	498884	5904862	101	Aircore	76	6	0	-90
KM4671	498288	5902688	102.5	Aircore	76	6	0	-90
KM4672	498675	5902642	102.5	Aircore	76	6	0	-90
KM4673	498881	5902616	102.4	Aircore	76	9	0	-90
KM4674	499196	5902579	102	Aircore	76	6	0	-90
KM4675	499117	5902587	102.1	Aircore	76	9	0	-90
KM4676	501251	5902321	106.9	Aircore	76	9	0	-90
KM4677	481484	5932988	96.2	Aircore	76	18	0	-90
KM4678	481492	5933231	94.1	Aircore	76	27	0	-90
KM4679	481485	5933470	93.8	Aircore	76	24	0	-90
KM4680	481717	5933472	93.2	Aircore	76	12	0	-90
KM4681	481714	5933232	92.4	Aircore	76	15	0	-90
KM4682	481716	5932994	93.2	Aircore	76	27	0	-90
KM4683	481960	5932988	95.4	Aircore	76	15	0	-90
KM4684	481966	5933211	93.4	Aircore	76	12	0	-90
KM4685	481959	5933468	92.9	Aircore	76	12	0	-90
KM4686	482201	5933473	92.6	Aircore	76	15	0	-90
KM4687	482199	5933229	94.1	Aircore	76	12	0	-90
KM4688	482197	5932985	97.3	Aircore	76	12	0	-90
KM4689	482441	5933464	94.3	Aircore	76	12	0	-90
KM4690	482441	5933232	96.6	Aircore	76	15	0	-90
KM4691	482435	5932992	99	Aircore	76	27	0	-90
KM4692	482692	5932992	96.7	Aircore	76	12	0	-90
KM4693	482670	5933235	100.4	Aircore	76	12	0	-90

KM4694	482676	5933473	96.4	Aircore	76	12	0	-90
KM4695	482919	5933469	96.5	Aircore	76	12	0	-90
KM4696	482912	5933193	96.2	Aircore	76	9	0	-90
KM4697	482912	5932992	96.1	Aircore	76	15	0	-90
KM4698	482179	5933705	93.5	Aircore	76	9	0	-90
KM4699	482165	5933955	94.5	Aircore	76	12	0	-90
KM4700	481970	5933941	93.9	Aircore	76	12	0	-90
KM4701	481950	5933707	92.7	Aircore	76	12	0	-90
KM4701	481350	5933707	91.4	Aircore	76	27	0	-90
KM4702	481479	5933709	92.3	Aircore	76	18	0	-90
KM4703	482916	5933713	95.2	Aircore	76	12	0	-90
KM4704	482910	5933949	95.2	Aircore	76	12	0	-90
KM4705	482680	5933951	94.7	Aircore	76	12	0	-90
KM4700	482671	5933711	93.9	Aircore	76	15	0	-90
KM4707	482444	5933707	93.9		76	15	0	-90
KM4708	482440	5933951	93.0	Aircore	76	13	0	-90
				Aircore	-		-	
KM4710	482926	5934191	99.7	Aircore	76	27	0	-90
KM4711	482797	5934433	96.5	Aircore	76	12	0	-90
KM4712	482681	5934424	95.3	Aircore	76	12	0	-90
KM4713	489997	5887985	81.2	Aircore	76	11	0	-90
KM4714	490113	5887890	81.9	Aircore	76	13	0	-90
KM4715	490225	5887851	82.4	Aircore	76	10	0	-90
KM4716	490363	5887817	83.7	Aircore	76	6	0	-90
KM4717	490468	5887789	84.5	Aircore	76	9	0	-90
KM4718	490594	5887758	84.6	Aircore	76	9	0	-90
KM4719	491298	5887504	87.6	Aircore	76	6	0	-90
KM4720	491305	5887260	85.5	Aircore	76	6	0	-90
KM4721	491083	5887265	85.3	Aircore	76	6	0	-90
KM4722	491073	5887503	86	Aircore	76	18	0	-90
KM4723	490839	5887510	85.6	Aircore	76	6	0	-90
KM4724	490847	5887271	83.6	Aircore	76	18	0	-90
KM4725	490668	5887267	84	Aircore	76	9	0	-90
KM4726	490612	5887530	84.8	Aircore	76	9	0	-90
KM4727	490357	5887513	83	Aircore	76	15	0	-90
KM4728	490116	5887752	81.9	Aircore	76	9	0	-90
KM4729	489879	5887731	83.5	Aircore	76	6	0	-90
KM4730	489637	5887738	81.2	Aircore	76	18	0	-90
KM4731	490604	5888478	84.6	Aircore	76	6	0	-90
KM4732	490596	5888716	83.8	Aircore	76	18	0	-90
KM4733	490834	5888709	85.5	Aircore	76	7	0	-90
KM4734	490834	5888481	85.3	Aircore	76	8	0	-90
KM4735	491078	5888716	84.2	Aircore	76	18	0	-90
KM4736	492040	5888227	88.9	Aircore	76	12	0	-90
KM4737	491556	5888228	86	Aircore	76	7	0	-90
KM4738	491340	5888225	86.9	Aircore	76	12	0	-90
KM4739	492281	5888240	88.2	Aircore	76	10	0	-90
KM4740	492518	5888229	90.1	Aircore	76	18	0	-90
KM4741	492518	5888471	89.8	Aircore	76	6	0	-90
KM4742	492658	5888475	90.8	Aircore	76	6	0	-90
KM4743	492631	5888231	90	Aircore	76	9	0	-90
KM4744	492758	5888232	91.2	Aircore	76	14	0	-90
KM4745	492759	5888472	92.2	Aircore	76	6	0	-90

KM4746	492996	5888228	92	Aircore	76	9	0	-90
KM4740	492998	5888472	92	Aircore	76	6	0	-90
KM4747	492998	5888707	91.8	Aircore	76	18	0	-90
KM4748	492358	5888949	90.7	Aircore	76	18	0	-90
KM4750	492523	5889198	89.8	Aircore	76	6	0	-90
KM4751	492520	5888953	89.8	Aircore	76	6	0	-90
KM4751	492320	5888954	88.9	Aircore	76	12	0	-90
KM4753	492278	5889184	89.2		76	9	0	-90
KM4754	492040	5889193	87.9	Aircore Aircore	76	9 18	0	-90
KM4755	492040	5888949	88.5		76	9	0	-90
KM4755	492039	5888948	89.1	Aircore	76	9	0	-90
KM4757	491798	5889188	87.9	Aircore	76	8	0	-90
KM4758	491538	5888943	85.9	Aircore	76	5	0	-90
KM4759	491538	588943	85.9	Aircore	76	9	0	-90
				Aircore		-	-	
KM4760	491555	5889426	87.4	Aircore	76	6	0	-90
KM4761	491351	5888952	85.4	Aircore	76	6	0	-90
KM4762	491201	5889181	84.1	Aircore	76	6	0	-90
KM4763	490837	5888896	84.8	Aircore	76	6	0	-90
KM4764	491023	5888809	83.6	Aircore	76	11	0	-90
KM4765	491326	5888707	85.8	Aircore	76	7	0	-90
KM4766	491507	5888777	86.5	Aircore	76	9	0	-90
KM4767	491870	5888780	89.3	Aircore	76	9	0	-90
KM4768	492031	5888778	89	Aircore	76	8	0	-90
KM4769	492036	5888465	89.4	Aircore	76	9	0	-90
КМ4770	491862	5888458	87.9	Aircore	76	9	0	-90
KM4771	492251	5888791	88.6	Aircore	76	9	0	-90
KM4772	492520	5888800	89	Aircore	76	6	0	-90
KM4773	490595	5888943	84.2	Aircore	76	12	0	-90
KM4774	490362	5889071	83.1	Aircore	76	11	0	-90
KM4775	490124	5889071	82.4	Aircore	76	9	0	-90
KM4776	490119	5889209	81.7	Aircore	76	9	0	-90
KM4777	490362	5889188	82.4	Aircore	76	9	0	-90
KM4778	490600	5889081	84	Aircore	76	6	0	-90
KM4779	490341	5889345	81.5	Aircore	76	6	0	-90
KM4780	490119	5889419	81.6	Aircore	76	6	0	-90
KM4781	490120	5889661	81.2	Aircore	76	9	0	-90
KM4782	494438	5891827	97.8	Aircore	76	15	0	-90
KM4783	494438	5892067	97.4	Aircore	76	15	0	-90
KM4784	493720	5892069	94	Aircore	76	9	0	-90
KM4785	493719	5892305	93.6	Aircore	76	18	0	-90
KM4786	493473	5892069	92.9	Aircore	76	15	0	-90
KM4787	493470	5892286	92.5	Aircore	76	14	0	-90
KM4788	493238	5892305	91.5	Aircore	76	15	0	-90
KM4789	493244	5892077	91.9	Aircore	76	15	0	-90
KM4790	493003	5892071	91.2	Aircore	76	9	0	-90
KM4791	492998	5892301	91	Aircore	76	15	0	-90
KM4792	492768	5892307	90.7	Aircore	76	18	0	-90
KM4793	492754	5892427	90.5	Aircore	76	18	0	-90
KM4794	492521	5892544	88.3	Aircore	76	15	0	-90
KM4795	492518	5892304	87.2	Aircore	76	18	0	-90
KM4796	492524	5892074	88.1	Aircore	76	18	0	-90
KM4797	492762	5892058	90.4	Aircore	76	12	0	-90

KM4798	492528	5891224	85.9	Aircoro	76	12	0	-90
KM4798	492528	5891224	87.2	Aircore Aircore	76	9	0	-90
KM4800	492523	5890997	87.2	Aircore	76	6	0	-90
KM4801	492320	5891099	85.8	Aircore	76	9	0	-90
KM4801	492748	5891004	88.9	Aircore	76	12	0	-90
KM4802	492748	5891399	89	Aircore	76	9	0	-90
KM4804	492888	5891597	90.6	Aircore	76	15	0	-90
KM4805	492888	5891841	90.9		76	17	0	-90
KM4806	492942	5891841	90.9	Aircore	76	17	0	-90
KM4807	493233	5891896	92.8	Aircore	76	14	0	-90
KM4808	493712	5891896	92.8		76	12	0	-90
KM4809	493712	5891842	95.7	Aircore	76	6	0	-90
KM4810	493980	5891769	96.6	Aircore	76	12	0	-90
	494207		96.6	Aircore	76		-	-90
KM4811		5891593	-	Aircore	-	15	0	
KM4812	494197	5891350	95.2	Aircore	76	15	0	-90
KM4813	493957	5891355	94	Aircore	76	12	0	-90
KM4814	493967	5891586	95.8	Aircore	76	12	0	-90
KM4815	493721	5891586	94	Aircore	76	12	0	-90
KM4816	493720	5891354	93.9	Aircore	76	9	0	-90
KM4817	494439	5891106	96.6	Aircore	76	18	0	-90
KM4818	494195	5890883	94.9	Aircore	76	9	0	-90
KM4819	494209	5891112	94.3	Aircore	76	15	0	-90
KM4820	493963	5891110	92.9	Aircore	76	9	0	-90
KM4821	493958	5890869	93	Aircore	76	12	0	-90
KM4822	493716	5890867	92.4	Aircore	76	12	0	-90
KM4823	493719	5891107	92.2	Aircore	76	15	0	-90
KM4824	493482	5890838	92.2	Aircore	76	12	0	-90
KM4825	493215	5890622	92.4	Aircore	76	12	0	-90
KM4826	493715	5890608	93.2	Aircore	76	12	0	-90
KM4827	493962	5890606	94.1	Aircore	76	15	0	-90
KM4828	493705	5890376	94.4	Aircore	76	12	0	-90
KM4829	493716	5890153	94.1	Aircore	76	12	0	-90
KM4830	493962	5890394	95.4	Aircore	76	12	0	-90
KM4831	493967	5890151	96.6	Aircore	76	12	0	-90
KM4832	494198	5890390	96.5	Aircore	76	18	0	-90
KM4833	494438	5890392	97.6	Aircore	76	12	0	-90
KM4834	494549	5890269	98.9	Aircore	76	14	0	-90
KM4835	494441	5890095	99.6	Aircore	76	18	0	-90
KM4836	494441	5889674	101.5	Aircore	76	9	0	-90
KM4837	494199	5889921	99.1	Aircore	76	9	0	-90
KM4838	493960	5889892	97	Aircore	76	9	0	-90
KM4839	494442	5889431	102.5	Aircore	76	6	0	-90
KM4840	494662	5889431	104.8	Aircore	76	15	0	-90
KM4841	494917	5889431	106.1	Aircore	76	9	0	-90
KM4842	494623	5890395	99.8	Aircore	76	12	0	-90
KM4843	494918	5890511	100.4	Aircore	76	9	0	-90
KM4844	495158	5890513	102	Aircore	76	12	0	-90
KM4845	494923	5890609	100.2	Aircore	76	18	0	-90
KM4846	494437	5890609	96.6	Aircore	76	18	0	-90
KM4847	494206	5890609	95.5	Aircore	76	15	0	-90
KM4848	494625	5890632	97.7	Aircore	76	12	0	-90
KM4849	494617	5890879	97.9	Aircore	76	18	0	-90

KM4850	494614	5891069	98.2	Aircore	76	12	0	-90
KM4851	492999	5891110	89.9	Aircore	76	9	0	-90
KM4869	495640	5891824	108.3	Aircore	76	18	0	-90
KM4870	495653	5891597	106.3	Aircore	76	12	0	-90
KM4871	495638	5891356	105.6	Aircore	76	15	0	-90
KM4872	495400	5891350	105.5	Aircore	76	17	0	-90
KM4873	496120	5891826	103.8	Aircore	76	12	0	-90
KM4874	496123	5891588	105.9	Aircore	76	18	0	-90
KM4875	496351	5891595	105.6	Aircore	76	15	0	-90
KM4876	496831	5891586	104.9	Aircore	76	17	0	-90
KM4877	497323	5891594	106.7	Aircore	76	18	0	-90
KM4878	496839	5891118	107.3	Aircore	76	15	0	-90
KM4879	496602	5891120	106.7	Aircore	76	18	0	-90
KM4880	496366	5891190	108.3	Aircore	76	18	0	-90
KM4881	496116	5891347	109.5	Aircore	76	6	0	-90
KM4882	495886	5891599	106.1	Aircore	76	18	0	-90
KM4883	495873	5891827	106.4	Aircore	76	6	0	-90
KM4884	496596	5891588	105.3	Aircore	76	18	0	-90

Appendix 3 – Significant Intersections

	uix 5 - 5			TREO	Pr₀O₁₁	Pr₀O₁₁	Nd₂O₃	Nd₂O₃	Tb₄O ₇	Tb₄O ₇	Dy₂O₃	Dy ₂ O ₃
Hole ID	From (m)	To (m)	Width (m)	(ppm)	ppm	TREO %	ppm	TREO %	ppm	TREO %	ppm	TREO %
KM4281	7	8	1	360	11	3.1	48	13.4	2	0.6	13	3.5
KM4283	6	7	1	357	12	3.3	50	14.1	2	0.6	14	3.9
KM4284	8	9	1	1060	48	4.5	196	18.5	5	0.5	28	2.6
KM4286	2	3	1	410	15	3.6	57	13.8	2	0.4	9	2.2
KM4294	13	14	1	424	14	3.4	58	13.7	2	0.4	10	2.4
KM4294	11	12	1	352	12	3.5	47	13.4	1	0.3	6	1.7
KM4296	14	17	3	1050	42	4	165	15.7	4	0.4	24	2.3
KM4296	11	13	2	374	15	4.1	60	16	1	0.4	8	2.1
KM4297	8	10	2	491	20	4.1	76	15.5	2	0.4	11	2.2
KM4299	20	21	1	530	20	3.8	76	14.4	2	0.4	14	2.6
KM4299	1	2	1	386	18	4.7	63	16.4	1	0.4	8	2
KM4300	21	22	1	909	33	3.6	138	15.1	4	0.4	24	2.7
KM4300	18	19	1	494	23	4.6	86	17.4	2	0.4	9	1.9
KM4300	6	9	3	853	45	5.2	159	18.6	2	0.3	13	1.5
KM4301	13	15	2	487	16	3.4	74	15.2	3	0.6	18	3.6
KM4301	11	12	1	930	33	3.5	125	13.4	4	0.4	24	2.5
KM4302	12	13	1	772	36	4.7	154	19.9	3	0.4	15	1.9
KM4303	12	15	3	771	31	4	122	15.9	3	0.4	18	2.3
KM4304	16	18	2	658	27	4.2	98	14.9	2	0.4	13	2
KM4305	7	9	2	818	31	3.8	122	14.9	3	0.4	20	2.4
KM4318	8	9	1	380	19	4.9	65	17.1	1	0.2	4	1.1
KM4319	12	13	1	429	17	4	67	15.5	2	0.5	12	2.8
KM4319	10	11	1	368	13	3.5	50	13.5	2	0.5	12	3.2
KM4320	15	16	1	511	21	4.2	81	15.8	2	0.5	13	2.6
KM4321	15	10	2	1030	47	4.5	182	17.6	5	0.4	23	2.2
KM4322	15	16	1	543	23	4.2	86	15.8	2	0.4	11	2.1
KM4323	15	16	1	1000	42	4.2	160	10.0	5	0.5	24	2.4
KM4324	14	16	2	1204	46	3.8	177	14.7	5	0.4	26	2.2
KM4326	12	13	1	705	32	4.6	117	16.5	3	0.5	17	2.5
KM4327	12	13	1	487	22	4.5	86	17.6	2	0.5	13	2.7
KM4328	11	13	2	786	27	3.4	104	13.2	3	0.4	16	2
KM4329	16	17	1	831	38	4.6	143	17.3	4	0.5	21	2.6
KM4330	15	16	1	415	19	4.7	68	16.4	2	0.4	9	2.2
KM4330	13	14	1	589	18	3.1	69	11.7	2	0.4	11	1.9
KM4331	13	13	1	780	29	3.7	111	14.3	3	0.4	16	2
KM4332	11	12	1	1201	50	4.1	188	15.6	5	0.4	28	2.4
KM4333	14	15	1	754	36	4.8	135	17.9	4	0.5	20	2.6
KM4334	13	14	1	780	30	3.9	133	14.4	3	0.4	16	2.0
KM4335	13	15	2	702	30	4.3	112	15.9	3	0.4	15	2.2
KM4336	13	14	2	673	32	4.8	122	18.1	3	0.5	19	2.9
KM4337	13	15	2	439	16	3.7	59	13.4	2	0.4	9	2.1
KM4339	16	19	3	550	26	4.7	104	18.9	3	0.4	16	2.9
KM4340	16	15	2	616	20	4.8	104	18.1	3	0.5	16	2.5
KM4341	15	16	1	533	16	3.1	63	11.9	1	0.3	8	1.5
KM4342	15	16	1	1723	97	5.6	343	19.9	7	0.3	37	2.1
KM4342	19	20	1	1106	45	4.1	187	19.9	6	0.4	37	3.1
KM4345	19	17	1	100	43	4.1	166	16.1	4	0.3	26	2.6
KM4347	15	17	1	452	22	4.9	92	20.3	2	0.4	12	2.0
-												
KM4348	15	16	1	576	24	4.2	95	16.5	2	0.4	14	2.4

									-			
KM4350	10	11	1	371	12	3.2	50	13.4	2	0.6	13	3.4
KM4350	3	4	1	432	16	3.6	65	15	2	0.4	11	2.5
KM4352	8	10	2	828	36	4.3	142	17.2	3	0.4	16	1.9
KM4354	6	7	1	1072	46	4.3	184	17.2	6	0.6	32	3
KM4355	6	8	2	486	18	3.8	71	14.5	2	0.4	11	2.3
KM4357	8	10	2	729	29	4	112	15.4	3	0.4	17	2.3
KM4358	3	5	2	426	20	4.6	72	16.8	2	0.4	9	2.2
KM4359	2	3	1	382	18	4.7	64	16.8	1	0.4	7	1.8
KM4360	7	8	1	359	15	4.2	59	16.3	2	0.4	8	2.3
KM4361	7	8	1	367	16	4.3	58	15.7	1	0.3	6	1.5
KM4363	9	10	1	538	21	4	85	15.8	2	0.4	12	2.2
KM4365	9	10	1	447	18	4.1	73	16.3	2	0.5	11	2.4
KM4366	3	4	1	519	19	3.7	73	14.1	2	0.3	10	1.9
KM4367	3	4	1	1525	89	5.8	320	21	5	0.3	23	1.5
KM4370	14	16	2	424	12	2.9	49	11.5	2	0.4	12	2.8
KM4378	8	10	2	1087	52	4.8	200	18.4	5	0.5	31	2.8
KM4379	10	11	1	602	31	5.1	114	19	3	0.5	16	2.7
KM4380	8	10	2	681	32	4.6	124	18.2	4	0.5	20	3
KM4381	8	9	1	1544	66	4.2	248	16.1	7	0.5	42	2.7
KM4382	8	10	2	638	25	4	99	15.6	3	0.5	18	2.9
KM4382	1	2	1	499	20	4.1	63	12.6	1	0.2	7	1.5
KM4383	11	13	2	528	24	4.6	91	17.3	2	0.5	15	2.8
KM4384	9	10	1	449	18	4	67	14.9	2	0.5	12	2.7
KM4385	10	11	1	433	21	4.7	78	18.1	2	0.4	9	2.1
KM4386	9	10	1	576	28	4.8	105	18.2	2	0.4	11	1.9
KM4387	11	13	2	478	20	4.2	83	17.3	3	0.6	19	4
KM4388	16	17	1	355	16	4.5	62	17.4	2	0.5	9	2.5
KM4389	10	11	1	544	23	4.2	88	16.3	2	0.4	13	2.4
KM4390	16	17	1	361	12	3.3	47	13.1	2	0.4	9	2.6
KM4390	14	15	1	361	19	5.2	68	18.8	2	0.5	8	2.3
KM4393	14	15	1	633	27	4.2	111	17.6	3	0.5	18	2.9
KM4394	12	13	1	751	35	4.7	140	18.6	3	0.4	13	1.7
KM4395	14	15	1	579	26	4.5	107	18.5	3	0.5	14	2.4
KM4396	17	18	1	921	38	4.2	174	18.9	5	0.5	26	2.8
KM4397	7	9	2	695	24	3.4	89	12.8	3	0.4	15	2.2
KM4398	10	12	2	546	20	3.6	75	13.7	2	0.4	12	2.3
KM4399	10	13	3	448	16	3.7	65	14.5	2	0.5	12	2.7
KM4400	6	8	2	566	23	4.1	89	15.7	3	0.5	15	2.6
KM4401	6	7	1	1063	48	4.5	180	16.9	4	0.4	24	2.2
KM4402	6	7	1	2759	133	4.8	496	18	. 11	0.4	67	2.4
KM4403	6	7	1	672	33	4.9	124	18.4	3	0.5	20	2.9
KM4404	6	7	1	811	38	4.6	141	17.4	4	0.4	20	2.6
KM4405	4	5	1	1033	44	4.3	160	15.5	4	0.4	21	2.1
KM4406	4	6	2	783	34	4.3	100	10.5	3	0.4	20	2.6
KM4407	4	5	1	954	40	4.2	148	15.5	4	0.4	20	2.0
KM4407	3	5	2	374	16	4.2	60	16.1	1	0.4	8	2.1
KM4409	13	14	1	562	27	4.3	93	16.6	2	0.4	9	1.6
KM4410 KM4410	10	14	2	459	27	4.8 5.1	83	18.0	2	0.3	9	2
KM4410 KM4411	10	12	1	459	25	5.1	98	21.6		0.3	9 10	2.2
KM4411 KM4411	6	8		455			98 79		2			2.2
KIVI4411	O	ð	2	420	22	5.1	79	18.6	2	0.4	11	2.5

	-		_	-		-			-	-		
KM4413	3	5	2	485	17	3.4	66	13.6	2	0.4	14	2.8
KM4414	3	4	1	578	23	3.9	86	14.9	2	0.4	13	2.3
KM4415	3	5	2	592	25	4.1	95	16	3	0.4	15	2.5
KM4416	3	4	1	509	19	3.8	73	14.3	2	0.4	13	2.5
KM4417	1	2	1	565	24	4.2	89	15.8	2	0.4	14	2.5
KM4418	4	5	1	1024	40	3.9	157	15.4	4	0.4	25	2.4
KM4419	7	8	1	968	45	4.6	178	18.4	4	0.4	19	2
KM4420	3	5	2	1086	44	4.1	179	16.5	5	0.5	27	2.5
KM4421	1	3	2	615	28	4.6	111	18	3	0.4	13	2.2
KM4422	2	4	2	637	11	1.7	42	6.5	1	0.2	7	1.1
KM4423	2	5	3	532	22	4.1	86	16.2	2	0.4	11	2.2
KM4424	3	5	2	836	30	3.6	119	14.2	3	0.4	19	2.3
KM4425	5	6	1	1058	24	2.3	92	8.7	2	0.2	12	1.1
KM4427	5	7	2	850	50	5.9	197	23.2	5	0.6	27	3.2
KM4428	5	6	1	2822	143	5.1	524	18.6	9	0.3	44	1.5
KM4430	5	6	1	1025	53	5.2	211	20.6	4	0.4	20	2
KM4431	5	6	1	1320	71	5.4	267	20.2	7	0.5	37	2.8
KM4431	2	3	1	679	13	2	51	7.6	1	0.2	8	1.1
KM4432	6	7	1	1446	70	4.8	266	18.4	5	0.3	24	1.7
KM4434	5	6	1	1151	63	5.4	254	22.1	5	0.5	25	2.2
KM4435	6	8	2	1779	71	4	282	15.8	8	0.4	47	2.6
KM4436	5	6	1	799	33	4.1	142	17.8	5	0.6	28	3.5
KM4437	4	5	1	1343	45	3.4	189	14.1	7	0.5	40	3
KM4438	8	10	2	532	24	4.4	93	17.4	2	0.4	13	2.5
KM4439	5	7	2	789	31	3.9	123	15.6	3	0.4	19	2.4
KM4440	7	8	1	1237	59	4.8	219	17.7	5	0.4	25	2.4
KM4441	7	8	1	466	13	2.9	54	11.7	2	0.4	12	2.6
KM4442	7	8	1	2134	119	5.6	468	21.9	13	0.4	73	3.4
KM4443	7	9	2	885	51	5.7	190	21.5	4	0.0	18	2
KM4444	6	8	2	1569	63	4	246	15.7	6	0.4	36	2.3
KM4444	7	9	2	511	20	3.9	80	15.7	2	0.4	14	2.3
KM4445	8	9	1	927	51	5.5	195	21	4	0.3	21	2.7
KM4440 KM4447	6		1	616	25	4.1	96	15.6	2	0.4	13	2.5
KM4447	8	9	1	2218	112	4.1			9	0.4	50	2.3
	3	5	2	1004	48	4.8	416 184	18.8 18.3	4	0.4	25	2.5
KM4451	-	10					79			-		
KM4452	9	-	1	655	22	3.4	-	12.1	2	0.3	10	1.5
KM4453	3	5	2	733	29	3.9	107	14.6	3	0.4	18	2.4
KM4455	7	10	3	2033	109	5.4	422	20.8	10	0.5	55	2.7
KM4456	9	10	1	392	16	4.2	63	16.2	2	0.6	15	3.8
KM4457	7	8	1	813	11	1.3	37	4.6	1	0.2	7	0.9
KM4458	2	3	1	354	16	4.5	58	16.5	1	0.4	8	2.4
KM4459	6	7	1	497	16	3.1	59	11.9	2	0.4	11	2.2
KM4459	3	5	2	796	44	5.6	162	20.4	4	0.4	20	2.5
KM4460	8	10	2	761	34	4.5	129	17	4	0.5	20	2.6
KM4461	9	10	1	632	31	4.9	119	18.8	3	0.5	20	3.2
KM4462	6	8	2	934	37	4	142	15.2	4	0.5	26	2.8
KM4463	6	7	1	1238	35	2.8	134	10.8	4	0.3	26	2.1
KM4464	6	7	1	384	12	3.1	44	11.5	1	0.4	9	2.2
KM4473	8	9	1	391	21	5.5	78	20	2	0.4	9	2.2
KM4475	2	4	2	587	24	4.1	85	14.5	2	0.4	13	2.3

KM4477 4 6 2 682 31 4.5 108 15.9 2 0.3 11 KM4478 7 8 1 442 21 4.8 78 17.7 2 0.5 11 KM4478 5 6 1 857 45 5.2 156 18.2 3 0.4 11 KM4479 16 18 2 472 19 4 69 14.7 2 0.5 11 KM4480 5 7 2 481 20 4.2 74 15.3 2 0.4 1 3 KM4481 1 3 1 378 9 2.3 32 8.4 1 0.3 7 KM4482 1 3 1 378 9 2.3 32 8.4 1 0.3 7 KM4487 1 3 1 378 1 3.6 56 <td< th=""><th>2 2.7 5 1.9 2 2.6 0 2.8 1 2.3 2.1 1.9 1.9 2.4 2.2</th></td<>	2 2.7 5 1.9 2 2.6 0 2.8 1 2.3 2.1 1.9 1.9 2.4 2.2
KM4478 5 6 1 857 45 5.2 156 18.2 3 0.4 11 KM4479 16 18 2 472 19 4 69 14.7 2 0.5 11 KM4479 2 3 1 374 17 4.7 62 16.6 2 0.5 11 KM480 5 7 2 481 20 4.2 74 15.3 2 0.4 11 KM482 6 9 3 397 19 4.7 65 16.3 1 0.4 48 KM483 2 3 1 378 9 2.3 32 8.4 1 0.3 9 KM4486 2 3 1 382 14 3.7 56 14.6 2 0.4 8 KM4492 16 17 1 379 14 3.6 56 14.7	5 1.9 2 2.6 0 2.8 1 2.3 2.1 1.9 1.9 2.4 2.2 2.2
KM4479 16 18 2 472 19 4 69 14.7 2 0.5 11 KM4479 2 3 1 374 17 4.7 62 16.6 2 0.5 11 KM4480 5 7 2 481 20 4.2 74 15.3 2 0.4 11 KM482 6 9 3 397 19 4.7 65 16.3 1 0.4 8 KM4483 2 3 1 378 9 2.3 32 8.4 1 0.3 7 KM4487 1 3 2 364 15 4 56 14.6 2 0.4 8 KM4492 16 17 1 379 14 3.6 56 14.7 1 0.4 8 KM4496 18 19 1 646 27 4.1 112 16.9	2 2.6 2 2.8 2 2.3 2.1 1.9 1.9 2.4 2.2
KM4479 2 3 1 374 17 4.7 62 16.6 2 0.5 11 KM4480 5 7 2 481 20 4.2 74 15.3 2 0.4 17 KM482 6 9 3 397 19 4.7 65 16.3 1 0.4 88 KM488 2 3 1 378 9 2.3 322 8.4 1 0.3 97 KM487 1 3 2 364 15 4 56 15.5 1 0.4 98 KM4491 2 3 1 379 14 3.6 56 14.7 1 0.4 88 KM4492 16 17 1 379 14 3.6 56 14.7 1 0.4 28 KM4498 16 17 1 404 17 4.3 73 18.2	2.8 2.3 2.1 1.9 2.4 2.2
KM4480 5 7 2 481 20 4.2 74 15.3 2 0.4 11 KM4482 6 9 3 397 19 4.7 65 16.3 1 0.4 88 KM4483 2 3 1 470 23 4.9 80 17.1 2 0.3 9 KM4487 1 3 2 364 15 4 56 15.5 1 0.4 9 KM4487 1 3 2 364 15 4 56 15.5 1 0.4 9 KM4492 16 17 1 379 14 3.6 56 14.7 1 0.4 88 KM4496 18 19 1 646 27 4.1 115 17.8 3 0.5 12 KM4498 16 17 1 404 17 4.3 73 18.2	L 2.3 2.1 1.9 1.9 2.4 2.2
KM4482 6 9 3 397 19 4.7 65 16.3 1 0.4 88 KM4483 2 3 1 470 23 4.9 80 17.1 2 0.3 99 KM4486 2 3 1 378 9 2.3 32 8.4 1 0.3 77 KM4487 1 3 2 364 15 4 56 15.5 1 0.4 98 KM4491 2 3 1 382 14 3.7 56 14.6 2 0.4 88 KM4492 16 17 1 379 14 3.6 56 14.7 1 0.4 88 KM4498 16 17 1 404 17 4.3 73 18.2 2 0.5 11 KM4498 16 17 1 385 16 4.2 68 17.6	2.1 1.9 1.9 2.4 2.2
KM4483 2 3 1 470 23 4.9 80 17.1 2 0.3 9 KM4486 2 3 1 378 9 2.3 32 8.4 1 0.3 77 KM4487 1 3 2 364 15 4 56 15.5 1 0.4 99 KM4491 2 3 1 382 14 3.7 56 14.6 2 0.4 88 KM4492 16 17 1 379 14 3.6 56 14.7 1 0.4 88 KM4492 16 17 1 404 17 4.3 73 18.2 2 0.5 11 KM4499 19 20 1 646 126 20.6 3 0.5 12 KM4500 19 20 1 611 28 4.6 126 20.6 3 0.5 <td>1.9 1.9 2.4 2.2</td>	1.9 1.9 2.4 2.2
KM4486 2 3 1 378 9 2.3 32 8.4 1 0.3 7 KM4487 1 3 2 364 15 4 56 15.5 1 0.4 9 KM4491 2 3 1 382 14 3.7 56 14.6 2 0.4 88 KM4492 16 17 1 379 14 3.6 56 14.7 1 0.4 88 KM4496 18 19 1 646 27 4.1 115 17.8 3 0.5 24 KM4499 19 20 1 779 32 4.1 132 16.9 4 0.5 22 KM4501 6 7 1 385 16 4.2 68 17.6 2 0.5 11 KM4503 2 3 1 516 17 3.2 67 13	1.9 2.4 2.2
KM4487 1 3 2 364 15 4 56 15.5 1 0.4 9 KM4491 2 3 1 382 14 3.7 56 14.6 2 0.4 8 KM4492 16 17 1 379 14 3.6 56 14.7 1 0.4 8 KM4492 16 17 1 646 27 4.1 115 17.8 3 0.5 22 KM4498 16 17 1 404 17 4.3 73 18.2 2 0.5 11 KM499 19 20 1 611 28 4.6 126 20.6 3 0.5 12 KM4500 6 7 1 385 16 4.2 68 17.6 2 0.5 12 KM4501 6 7 8 1 907 38 4.2 153	2.4 2.2
KM4491 2 3 1 382 14 3.7 56 14.6 2 0.4 88 KM4492 16 17 1 379 14 3.6 56 14.7 1 0.4 88 KM4496 18 19 1 646 27 4.1 115 17.8 3 0.5 22 KM4498 16 17 1 404 17 4.3 73 18.2 2 0.5 11 KM499 19 20 1 611 28 4.6 126 20.6 3 0.5 12 KM4501 6 7 1 385 16 4.2 68 17.6 2 0.5 11 KM4502 7 8 1 907 38 4.2 153 16.9 4 0.4 22 KM4503 2 3 1 516 17 3.2 67 13	2.2
KM4492 16 17 1 379 14 3.6 56 14.7 1 0.4 88 KM4496 18 19 1 646 27 4.1 115 17.8 3 0.5 20 KM4498 16 17 1 404 17 4.3 73 18.2 2 0.5 11 KM499 19 20 1 779 32 4.1 132 16.9 4 0.5 22 KM4500 19 20 1 611 28 4.6 126 20.6 3 0.5 11 KM4501 6 7 1 385 16 4.2 68 17.6 2 0.5 11 KM4503 2 3 1 516 17 3.2 67 13 2 0.3 12 KM4503 2 3 1 602 13 2.1 52 8.	
KM4496 18 19 1 646 27 4.1 115 17.8 3 0.5 22 KM4498 16 17 1 404 17 4.3 73 18.2 2 0.5 11 KM4499 19 20 1 779 32 4.1 132 16.9 4 0.5 22 KM4500 19 20 1 611 28 4.6 126 20.6 3 0.5 11 KM4501 6 7 1 385 16 4.2 68 17.6 2 0.5 11 KM4502 7 8 1 907 38 4.2 153 16.9 4 0.4 22 KM4503 2 3 1 516 17 3.2 67 13 2 0.3 12 KM4503 9 10 1 602 13 2.1 52 8	2.2
KM4498 16 17 1 404 17 4.3 73 18.2 2 0.5 11 KM4499 19 20 1 779 32 4.1 132 16.9 4 0.5 22 KM4500 19 20 1 611 28 4.6 126 20.6 3 0.5 13 KM4501 6 7 1 385 16 4.2 68 17.6 2 0.5 11 KM4502 7 8 1 907 38 4.2 153 16.9 4 0.4 22 KM4503 2 3 1 516 17 3.2 67 13 2 0.3 9 KM4504 9 10 1 602 13 2.1 52 8.7 2 0.3 11 KM4507 9 11 2 1162 51 4.4 205 17.	
KM4499 19 20 1 779 32 4.1 132 16.9 4 0.5 22 KM4500 19 20 1 611 28 4.6 126 20.6 3 0.5 13 KM4501 6 7 1 385 16 4.2 68 17.6 2 0.5 13 KM4502 7 8 1 907 38 4.2 153 16.9 4 0.4 22 KM4503 2 3 1 516 17 3.2 67 13 2 0.3 9 KM4504 9 10 1 735 18 2.4 71 9.7 3 0.4 22 KM4505 9 10 1 602 13 2.1 52 8.7 2 0.3 11 KM4507 9 11 2 1162 51 4.4 205 17.6 5 0.4 22 KM4508 2 3 1 410) 3.1
KM4500 19 20 1 611 28 4.6 126 20.6 3 0.5 11 KM4501 6 7 1 385 16 4.2 68 17.6 2 0.5 11 KM4502 7 8 1 907 38 4.2 153 16.9 4 0.4 22 KM4503 2 3 1 516 17 3.2 67 13 2 0.3 9 KM4504 9 10 1 735 18 2.4 71 9.7 3 0.4 22 KM4505 9 10 1 602 13 2.1 52 8.7 2 0.3 11 KM4507 9 11 2 1162 51 4.4 205 17.6 5 0.4 22 KM4508 2 3 1 410 15 3.7 61 14.8 2 0.4 10 KM4509 2 3 1 367 <td< td=""><td>-</td></td<>	-
KM4501 6 7 1 385 16 4.2 68 17.6 2 0.5 11 KM4502 7 8 1 907 38 4.2 153 16.9 4 0.4 21 KM4503 2 3 1 516 17 3.2 67 13 2 0.3 9 KM4504 9 10 1 735 18 2.4 71 9.7 3 0.4 22 KM4505 9 10 1 602 13 2.1 52 8.7 2 0.3 11 KM4507 9 11 2 1162 51 4.4 205 17.6 5 0.4 22 KM4508 2 3 1 410 15 3.7 61 14.8 2 0.4 10 KM4509 2 3 1 367 17 4.5 64 17.5 1 0.4 7 KM4510 14 15 1 416 1	L 2.8
KM4502 7 8 1 907 38 4.2 153 16.9 4 0.4 22 KM4503 2 3 1 516 17 3.2 67 13 2 0.3 9 KM4504 9 10 1 735 18 2.4 71 9.7 3 0.4 22 KM4505 9 10 1 602 13 2.1 52 8.7 2 0.3 11 KM4507 9 11 2 1162 51 4.4 205 17.6 5 0.4 22 KM4508 2 3 1 410 15 3.7 61 14.8 2 0.4 14 KM4509 2 3 1 416 16 3.9 66 15.8 2 0.5 11 KM4510 14 15 1 416 16 3.9 66 15.8 2 0.5 12 KM4513 17 21 4 2588 <	3 2.9
KM4503 2 3 1 516 17 3.2 67 13 2 0.3 9 KM4504 9 10 1 735 18 2.4 71 9.7 3 0.4 22 KM4505 9 10 1 602 13 2.1 52 8.7 2 0.3 11 KM4507 9 11 2 1162 51 4.4 205 17.6 5 0.4 22 KM4508 2 3 1 410 15 3.7 61 14.8 2 0.4 10 KM4509 2 3 1 367 17 4.5 64 17.5 1 0.4 7 KM4510 14 15 1 416 16 3.9 66 15.8 2 0.5 11 KM4512 13 14 1 553 21 3.7 85 15.4 2 0.5 14 KM4513 17 21 4 2588 <	L 2.8
KM4504 9 10 1 735 18 2.4 71 9.7 3 0.4 27 KM4505 9 10 1 602 13 2.1 52 8.7 2 0.3 11 KM4507 9 11 2 1162 51 4.4 205 17.6 5 0.4 22 KM4508 2 3 1 410 15 3.7 61 14.8 2 0.4 10 KM4509 2 3 1 367 17 4.5 64 17.5 1 0.4 7 KM4510 14 15 1 416 16 3.9 66 15.8 2 0.5 11 KM4512 13 14 1 553 21 3.7 85 15.4 2 0.5 14 KM4513 17 21 4 2588 122 4.7 569 22 17 0.6 99 KM4515 8 10 2 588	2 2.4
KM4505 9 10 1 602 13 2.1 52 8.7 2 0.3 11 KM4507 9 11 2 1162 51 4.4 205 17.6 5 0.4 22 KM4508 2 3 1 410 15 3.7 61 14.8 2 0.4 10 KM4509 2 3 1 367 17 4.5 64 17.5 1 0.4 7 KM4510 14 15 1 416 16 3.9 66 15.8 2 0.5 11 KM4512 13 14 1 553 21 3.7 85 15.4 2 0.5 14 KM4513 17 21 4 2588 122 4.7 569 22 17 0.6 99 KM4515 8 10 2 588 19 3.3 83 14.1 3 0.5 17 KM4516 9 10 1 375	1.8
KM4507 9 11 2 1162 51 4.4 205 17.6 5 0.4 2 KM4508 2 3 1 410 15 3.7 61 14.8 2 0.4 16 KM4509 2 3 1 367 17 4.5 64 17.5 1 0.4 7 KM4510 14 15 1 416 16 3.9 66 15.8 2 0.5 11 KM4512 13 14 1 553 21 3.7 85 15.4 2 0.5 14 KM4513 17 21 4 2588 122 4.7 569 22 17 0.6 99 KM4515 8 10 2 588 19 3.3 83 14.1 3 0.5 11 KM4516 9 10 1 375 14 3.8 57 15.2 2 0.4 99 KM4517 14 15 1 932	L 2.9
KM4508231410153.76114.820.414KM4509231367174.56417.510.47KM451014151416163.96615.820.51KM451213141553213.78515.420.51KM45131721425881224.756922170.699KM45158102588193.38314.130.51KM45169101375143.85715.220.49KM451714151932444.716717.950.633KM451810122695263.710314.840.523	2 2
KM4509 2 3 1 367 17 4.5 64 17.5 1 0.4 7 KM4510 14 15 1 416 16 3.9 66 15.8 2 0.5 1 KM4510 14 15 1 416 16 3.9 66 15.8 2 0.5 1 KM4512 13 14 1 553 21 3.7 85 15.4 2 0.5 1 KM4513 17 21 4 2588 122 4.7 569 22 17 0.6 94 KM4515 8 10 2 588 19 3.3 83 14.1 3 0.5 1 KM4516 9 10 1 375 14 3.8 57 15.2 2 0.4 9 KM4517 14 15 1 932 44 4.7 167 17.	7 2.3
KM451014151416163.96615.820.511KM451213141553213.78515.420.514KM45131721425881224.756922170.694KM45158102588193.38314.130.511KM45169101375143.85715.220.494KM451714151932444.716717.950.633KM451810122973444.518218.740.424KM451910122695263.710314.840.524) 2.5
KM4512 13 14 1 553 21 3.7 85 15.4 2 0.5 14 KM4513 17 21 4 2588 122 4.7 569 22 17 0.6 94 KM4515 8 10 2 588 19 3.3 83 14.1 3 0.5 11 KM4516 9 10 1 375 14 3.8 57 15.2 2 0.4 9 KM4517 14 15 1 932 44 4.7 167 17.9 5 0.6 33 KM4518 10 12 2 973 44 4.5 182 18.7 4 0.4 2 KM4519 10 12 2 695 26 3.7 103 14.8 4 0.5 23	2
KM45131721425881224.756922170.690KM45158102588193.38314.130.51KM45169101375143.85715.220.49KM451714151932444.716717.950.633KM451810122973444.518218.740.423KM451910122695263.710314.840.523	L 2.7
KM45158102588193.38314.130.51KM45169101375143.85715.220.49KM451714151932444.716717.950.633KM451810122973444.518218.740.423KM451910122695263.710314.840.523	1 2.5
KM4516 9 10 1 375 14 3.8 57 15.2 2 0.4 9 KM4517 14 15 1 932 44 4.7 167 17.9 5 0.6 33 KM4518 10 12 2 973 44 4.5 182 18.7 4 0.4 23 KM4519 10 12 2 695 26 3.7 103 14.8 4 0.5 23) 3.5
KM4517 14 15 1 932 44 4.7 167 17.9 5 0.6 33 KM4518 10 12 2 973 44 4.5 182 18.7 4 0.4 23 KM4519 10 12 2 695 26 3.7 103 14.8 4 0.5 23	7 2.8
KM4518 10 12 2 973 44 4.5 182 18.7 4 0.4 23 KM4519 10 12 2 695 26 3.7 103 14.8 4 0.5 23	2.5
KM4519 10 12 2 695 26 3.7 103 14.8 4 0.5 22	L 3.3
	L 2.1
KM4520 19 27 8 2077 91 4.4 383 18.5 10 0.5 50	2 3.1
	5 2.7
KM4521 12 14 2 494 16 3.3 65 13.2 2 0.5 14	1 2.8
KM4521 1 2 1 453 17 3.7 64 14.1 2 0.4 14	2 2.6
KM4522 12 13 1 1924 78 4 322 16.7 9 0.5 50) 2.6
KM4523 4 5 1 400 17 4.2 63 15.8 2 0.4 10) 2.5
KM4525 9 10 1 527 22 4.2 86 16.4 2 0.4 1	L 2.2
KM4526 9 10 1 554 22 3.9 83 15 2 0.4 1	2 2.2
KM4527 9 10 1 460 13 2.7 53 11.6 2 0.4 13	3 2.7
KM4527 7 8 1 394 18 4.7 73 18.5 1 0.4 7	1.9
KM4528 10 12 2 451 17 3.8 66 14.7 2 0.4 1	
KM4529 15 16 1 1666 81 4.9 328 19.7 8 0.5 44) 2.4
KM4530 15 17 2 796 34 4.3 129 16.2 4 0.5 2	
KM4531 16 17 1 1002 43 4.3 152 15.1 5 0.5 32	
KM4532 14 15 1 371 15 4 57 15.3 1 0.4 7	
KM4532 11 13 2 591 28 4.7 101 17.1 2 0.4 13	
KM4533 10 11 1 673 34 5.1 122 18.2 3 0.4 10	
KM4534 9 11 2 1631 88 5.4 339 20.8 6 0.4 29	
KM4535 9 11 2 563 21 3.8 83 14.8 3 0.5 11	5 2.3

		10		<u> </u>			100		-	<u> </u>		
KM4536	11	12	1	697	34	4.9	126	18.1	3	0.5	17	2.4
KM4537	12	14	2	417	16	3.7	62	14.8	2	0.4	10	2.3
KM4538	14	15	1	1133	57	5	217	19.2	5	0.4	24	2.1
KM4539	9	12	3	498	22	4.5	86	17.2	2	0.5	13	2.6
KM4545	9	10	1	514	19	3.7	72	14	2	0.5	14	2.8
KM4545	7	8	1	1040	55	5.3	178	17.2	4	0.3	18	1.7
KM4547	2	3	1	402	16	4.1	59	14.6	1	0.3	7	1.7
KM4548	18	20	2	666	33	5	118	17.7	3	0.4	17	2.5
KM4549	20	21	1	739	29	4	115	15.6	3	0.5	20	2.8
KM4550	18	19	1	353	16	4.7	59	16.7	1	0.4	8	2.2
KM4552	16	17	1	417	14	3.4	57	13.7	2	0.5	13	3
KM4554	21	22	1	427	20	4.8	77	18	2	0.4	9	2.1
KM4557	23	24	1	470	23	4.9	92	19.6	2	0.5	12	2.5
KM4559	15	16	1	409	19	4.7	75	18.3	2	0.5	11	2.8
KM4560	14	15	1	750	30	4	125	16.6	4	0.5	23	3
KM4561	17	19	2	461	18	3.9	70	15.2	2	0.4	11	2.4
KM4562	13	15	2	398	15	3.8	60	15.2	2	0.4	10	2.6
KM4563	15	16	1	407	19	4.6	71	17.4	2	0.4	9	2.3
KM4565	15	16	1	986	40	4.1	147	14.9	5	0.5	29	3
KM4566	13	16	3	975	40	4.1	159	16.3	5	0.5	28	2.9
KM4567	12	13	1	553	25	4.5	100	18	3	0.5	17	3
KM4568	14	15	1	1199	39	3.2	159	13.2	6	0.5	37	3.1
KM4569	18	20	2	480	22	4.5	86	18	3	0.6	17	3.6
KM4570	13	14	1	463	20	4.4	81	17.5	2	0.5	12	2.5
KM4572	18	20	2	1005	37	3.7	156	15.6	5	0.5	28	2.8
KM4574	15	16	1	410	19	4.5	71	17.4	2	0.5	12	2.9
KM4576	15	16	1	597	28	4.7	112	18.7	3	0.5	15	2.6
KM4577	12	13	1	467	20	4.3	76	16.3	2	0.4	12	2.7
KM4578	17	18	1	1124	51	4.6	210	18.7	5	0.5	30	2.6
KM4580	13	15	2	606	25	4.1	98	16.2	3	0.5	16	2.6
KM4581	13	14	1	502	24	4.8	94	18.7	2	0.5	14	2.7
KM4582	15	16	1	507	23	4.5	86	16.9	2	0.4	13	2.5
KM4583	14	16	2	602	31	5.1	123	20.4	3	0.5	15	2.5
KM4583	0	1	1	359	17	4.8	68	19.1	2	0.5	10	2.7
KM4584	17	19	2	427	18	4.3	68	16	2	0.5	11	2.6
KM4585	11	13	2	474	22	4.6	78	16.4	2	0.4	12	2.5
KM4586	11	12	1	571	28	5	112	19.7	4	0.7	22	3.8
KM4587	11	14	3	475	21	4.3	79	16.6	2	0.5	14	3
KM4588	10	11	1	598	31	5.2	119	19.9	3	0.6	17	2.9
KM4589	10	11	1	775	33	4.3	126	16.3	4	0.5	23	3
KM4590	9	10	1	463	20	4.3	75	16.3	3	0.6	17	3.6
KM4591	9	10	1	936	42	4.5	163	17.5	5	0.5	24	2.6
KM4592	13	16	3	519	27	5.3	101	19.4	3	0.5	14	2.7
KM4593	18	19	1	1241	39	3.2	168	13.5	8	0.6	48	3.9
KM4594	12	14	2	801	30	3.8	127	15.8	4	0.5	25	3.1
KM4595	10	12	2	691	23	3.4	90	13.0	3	0.4	17	2.4
KM4596	9	11	2	397	15	3.9	57	14.4	2	0.4	9	2.3
KM4597	9	10	1	633	27	4.2	94	14.9	2	0.3	10	1.6
KM4598	7	9	2	472	20	4.2	68	14.5	2	0.3	8	1.7
KM4602	7	9	2	498	20	4.4	80	14.5	2	0.4	11	2.3
1111-002	'	5	2	-50	~~~	7.7		10.1	2	0.4		2.5

		-		-		_		-			_	
KM4603	8	9	1	464	22	4.6	74	16	2	0.3	8	1.8
KM4604	9	11	2	419	18	4.2	65	15.6	2	0.5	11	2.5
KM4608	15	16	1	367	10	2.7	39	10.6	2	0.6	14	3.8
KM4609	1	2	1	449	18	4	67	15	2	0.4	10	2.3
KM4610	1	2	1	663	31	4.7	110	16.5	3	0.4	14	2.2
KM4611	22	23	1	489	28	5.7	97	19.9	2	0.3	8	1.5
KM4611	8	9	1	442	25	5.6	84	18.9	2	0.4	8	1.7
KM4612	24	25	1	375	15	4.1	59	15.7	2	0.5	11	2.8
KM4613	1	3	2	363	14	3.9	52	14.3	1	0.4	7	2
KM4617	2	3	1	380	18	4.7	63	16.5	2	0.4	9	2.4
KM4618	24	25	1	404	16	3.9	62	15.4	3	0.6	14	3.6
KM4626	23	24	1	441	15	3.5	62	14	3	0.7	18	4.1
KM4627	2	3	1	357	16	4.5	57	16	1	0.3	7	1.9
KM4632	23	27	4	522	22	4.3	81	15.5	1	0.3	8	1.5
KM4632	15	16	1	617	25	4	98	15.9	3	0.5	16	2.7
KM4633	25	26	1	488	20	4.2	84	17.1	2	0.5	14	2.8
KM4633	1	2	1	551	27	4.8	102	18.4	2	0.4	11	2
KM4642	8	9	1	370	14	3.7	53	14.3	2	0.4	9	2.5
KM4644	7	8	1	1178	51	4.3	194	16.4	4	0.4	24	2
KM4645	5	6	1	576	17	3	75	13	3	0.5	17	3
KM4646	5	6	1	797	29	3.7	116	14.6	4	0.5	22	2.7
KM4647	7	8	1	564	23	4.1	91	16.2	3	0.5	15	2.7
KM4648	6	7	1	483	19	3.9	74	15.3	2	0.4	11	2.2
KM4648	1	2	1	352	12	3.3	45	12.7	1	0.3	6	1.8
KM4649	10	11	1	457	14	3	62	13.6	3	0.6	16	3.5
KM4650	7	8	1	631	21	3.4	84	13.3	3	0.5	17	2.7
KM4651	4	6	2	1208	58	4.8	227	18.8	6	0.5	30	2.5
KM4653	6	7	1	1292	41	3.2	162	12.6	6	0.5	39	3
KM4654	14	15	1	413	16	4	63	15.3	2	0.5	13	3.1
KM4655	8	9	1	868	40	4.6	150	17.3	4	0.4	20	2.3
KM4656	8	10	2	776	24	3.1	95	12.2	3	0.4	20	2.6
KM4657	9	10	1	537	33	6.2	120	22.4	2	0.4	10	1.9
KM4659	9	11	2	623	25	4.1	100	16.1	3	0.4	15	2.4
KM4660	13	15	2	561	22	4	88	15.6	3	0.5	15	2.6
KM4661	6	9	3	862	32	3.7	125	14.5	4	0.4	22	2.5
KM4662	7	9	2	1297	58	4.4	218	16.8	5	0.4	25	1.9
KM4664	7	8	1	2171	97	4.5	364	16.8	8	0.4	47	2.2
KM4665	4	6	2	679	26	3.9	98	14.4	2	0.3	10	1.5
KM4666	5	7	2	551	22	4	86	15.7	2	0.4	13	2.4
KM4667	4	5	1	995	37	3.7	145	14.5	4	0.4	25	2.5
KM4668	5	6	1	660	28	4.3	112	16.9	3	0.4	16	2.5
KM4670	4	5	1	486	20	4.2	79	16.3	3	0.5	16	3.2
KM4671	4	5	1	595	28	4.7	107	17.9	3	0.5	15	2.4
KM4672	3	6	3	752	39	5.2	148	19.6	3	0.4	17	2.3
KM4673	3	6	3	539	21	3.9	82	15.2	2	0.4	14	2.5
KM4674	1	5	4	664	25	3.7	98	14.8	3	0.4	17	2.5
KM4675	5	6	1	500	21	4.2	84	16.7	2	0.4	12	2.4
KM4676	5	8	3	626	32	5.2	123	19.6	3	0.5	17	2.4
KM4680	11	12	1	678	29	4.3	114	16.8	3	0.4	17	2.5
KM4681	10	12	2	1077	42	3.9	176	16.3	6	0.5	33	3
1001	10		۷	10//	74	5.5	1/0	10.5	5	0.5	55	5

KM4683	9	12	3	716	33	4.6	128	17.9	3	0.4	16	2.2
KM4685	9	11	2	1473	66	4.5	262	17.8	7	0.5	38	2.6
KM4686	10	13	3	1207	52	4.3	217	18	5	0.4	29	2.4
KM4687	9	12	3	782	36	4.7	146	18.7	3	0.4	18	2.3
KM4688	8	10	2	476	16	3.3	64	13.4	2	0.4	10	2.2
KM4689	9	12	3	615	23	3.8	95	15.4	3	0.4	16	2.7
KM4690	11	12	1	595	21	3.5	85	14.3	2	0.4	13	2.2
KM4691	24	25	1	423	12	2.9	53	12.5	2	0.5	13	3.1
KM4692	9	10	1	700	30	4.4	118	16.8	3	0.4	15	2.2
KM4693	7	8	1	915	40	4.4	155	17	3	0.4	19	2.1
KM4694	7	9	2	559	22	4	87	15.6	3	0.5	15	2.7
KM4695	7	9	2	545	21	3.9	89	16.3	3	0.6	20	3.7
KM4696	4	5	1	484	20	4.2	79	16.3	3	0.5	14	2.8
KM4697	10	12	2	2882	127	4.4	463	16	10	0.3	53	1.8
KM4698	6	8	2	393	17	4.3	64	16.3	2	0.4	8	2.1
KM4699	7	9	2	714	36	5	132	18.4	2	0.3	12	1.7
KM4699	1	2	1	387	16	4.2	61	15.8	1	0.4	8	2.1
KM4700	8	10	2	440	17	3.8	68	15.5	2	0.5	13	3
KM4701	9	10	1	617	23	3.8	94	15.2	3	0.4	16	2.5
KM4703	14	17	3	558	25	4.5	89	16	2	0.3	10	1.8
KM4704	8	9	1	847	33	3.9	133	15.7	3	0.4	17	2
KM4705	10	11	1	352	16	4.5	58	16.5	1	0.3	6	1.6
KM4706	12	14	2	682	31	4.5	127	18.6	3	0.4	16	2.3
KM4707	11	12	1	722	29	4	112	15.5	3	0.4	16	2.2
KM4708	9	12	3	907	42	4.7	168	18.5	4	0.5	22	2.5
KM4709	10	11	1	573	24	4.2	88	15.4	2	0.4	14	2.4
KM4710	21	22	1	1124	59	5.3	225	20	4	0.3	17	1.5
KM4711	8	10	2	524	22	4.1	81	15.5	2	0.4	12	2.2
KM4712	8	9	1	792	38	4.8	145	18.3	3	0.4	18	2.2