DATELINE RESOURCES LIMITED

(ACN 149 105 653) ASX Code: DTR

CAPITAL STRUCTURE

Share Price (19/7/23)\$0.022Shares on issue856.9 millionMarket Cap\$18.85 million

MAJOR SHAREHOLDERS

Mark Johnson	14.19
Southern Cross Exploration NL	11.18
HSBC Custody Nominees	6.26%
Stephen Baghdadi	5.47%

DIRECTORS & MANAGEMENT

Mark Johnson AO Chairman

Stephen Baghdadi Managing Director

Greg Hall Non-Executive Director

Tony Ferguson Non-Executive Director

Bill Lannen Non-Executive Director

John Smith Company Secretary

CONTACT John Smith Phone: +61 2 9375 2353 Postal Address: P.O. Box 178 Neutral Bay NSW 2089 Email: info@datelineresources.com.au

DATELINE RESOURCES

WIDE GOLD INTERCEPT AT COLOSSEUM 81.35 metres at 2.57g/t Au

Highlights

- 81.35m @ 2.57g/t Au intercepted in diamond drill hole CM23-11a.
 - Including 36m @ 3.97g/t Au
- Average grade of the intersection is greater than overall mineral resource grade (1.2g/t Au).
- A total of **eight** diamond drill **holes planned**.
- Third drillhole, CM23-09, still in breccia pipe at over 306 metres downhole.
- Drilling of the rare earth targets is planned for the September quarter.

Dateline Resources Limited (Dateline or **the Company)** is pleased to announce it has received final assay results for its second diamond drill hole, CM23-11a, drilled at the Colosseum Mine in San Bernardino County, California, USA that includes an intersection of **81.35 metres at 2.57 g/t** gold from 81.01m downhole.

Mineralisation at Colosseum is hosted within two near vertical breccia pipes, with historical drilling continuing to intersect the West pipe at ~1,000m vertical depth below the starting surface. The existing open pit is at 1,621mRL (208m below the starting surface). The Mineral Resource estimate extends to 1,493mRL (128m below the pit). This current drill program proposes to test targets down to 1,417mRL, ~75m below the base of the Mineral Resource estimate. The Colosseum is known to contain at least 813,000oz of gold at a grade of 1.2g/t Au (813,000oz)¹, of which 71% is in the Measured and Indicated category.

The current drill program builds on the success of the previous drilling including CM22-05, which intercepted **100.6m @ 4.16g/t Au** from 79.24m downhole² and CM23-08, which has a revised intercept of **76.2m @ 8.62g/t Au** (previously 63.2m @ 10.28g/t Au³) once final assays were received and analysed.

The drilling program comprises eight diamond drillholes targeting areas of high grade sedimentary breccia within the mineral resource model. This area has low drill density and lies within and extends below the Mineral Resource model and should add additional tonnes and ounces. The results of this program will be used to update the Mineral Resource estimate.

Commenting on the results, Managing Director, Stephen Baghdadi, commented:

"The curent drilling program continues to deliver. We now have results from two holes and are are drilling the third hole, CM23-09 which is has reached a length that is beyond the original design and is still in the breccia pipe. This indicates that the actual breccia pipe is wider than was previously known.

"It is very encouraging to see mineralisation that is wider than we expected, with excellent consistency. Our last three holes have had intersections of 100, 75 and 81 metres of a gold bearing zone comprising several rock types within the breccia pipe. All three holes intersect gold grades that are greater than the current average mineral resource grade

"In addition to increasing the mineral resource size, at the end of this eight hole drilling program, we expect to know a lot more about the shape of the high grade zone within the breccia pipe. This knowledge will allow us to better target our ongoing drilling program."

¹ ASX Announcement 6 July 2022 – 813,00oz Gold Maiden Resource at Colosseum ² ASX Announcement 6 June 2022 – 100m @ 4.16g/t Au Colosseum Gold Project ³ ASX Announcement 19 June 2023 – 63.2m @ 10.28g/t gold at Colosseum mine

Diamond Drilling Details

Drillhole CM23-11a was drilled at a dip of -50° towards azimuth 230°, testing the West breccia pipe inside and below the current Mineral Resource envelope. The hole was drilled to 260.2m and intersected the sedimentary breccia as planned and also intersected12.2m @1.6g/t Au at the end of the hold near the breccia and granite contact.

Figure 1: Cross section showing the existing pit, mineral resource shell in yellow, Leapfrog software interpolated shape of the higher grade sedimentary breccia unit, end location of drill hole 11a outside and below the resource shell.

Third Drillhole – CM23-09

The third hole in the current drill program, CM23-09, is in progress with approximately 306 metres completed thus far. The drillhole is within the breccia pipe, demonstrating the breccia pipe is bigger than what has been previously modelled.

Figure 2: Photo of high-grade core in CM23-11a with gold grades outlined

Forward Program

The diamond drilling program comprises eight (8) holes. The third drillhole, CM23-09, is ongoing. Some core has already been sent to the laboratory for analysis and the balance will be sent when the hole is complete. Laboratory assay turnaround times can vary and the market will be advised of any material results as soon as they become available.

The Company has developed a drill plan for an initial test of the rare earth targets developed by the Company's expert advisors in 2022. Depending on the rate of drilling of the gold targets, these holes may be drilled either with diamond or reverse circulation (RC). Current planning is the holes will be drilled in the September '23 quarter.

This announcement has been authorised for release on ASX by the Company's Board of Directors.

For more information:

Stephen Baghdadi				
Managing Director				
+61 2 9375 2353				
www.datelineresources.com.au				

Andrew Rowell White Noise Communications +61 400 466 226 andrew@whitenoisecomms.com

Follow Dateline on Twitter: <u>https://twitter.com/Dateline_DTR</u>

About Dateline Resources Limited

Dateline Resources Limited (ASX: DTR) is an Australian publicly listed company focused on mining and exploration in North America. The Company owns 100% of the Colosseum Gold-REE Project in California.

The Colosseum Mine is located in the Walker Lane Trend in East San Bernardino County, California. On July 6, 2022, the Company announced to the ASX that the Colosseum Gold mine has a JORC-2012 compliant Mineral Resource estimate of 20.9Mt @ 1.2g/t Au for 813,000oz. Of the total Mineral Resource, 258koz @1.2g/t Au (32%) are classified as Measured, 322koz @1.2g/t Au (39%) as Indicated and 235koz @1.3g/t Au (29%) as Inferred.

The Colosseum is located less than 10km north of the Mountain Rare Earth mine. Work has commenced on identifying the source of the mantle derived rocks that are associated with carbonatites and are located at Colosseum. A comprehensive mapping, sampling and gravity survey has located several REE targets that are ready to be drill tested.

Competent Person Statement

Sample preparation and any exploration information in this announcement is based upon work reviewed by Mr Greg Hall who is a Chartered Professional of the Australasian Institute of Mining and Metallurgy (CP-IMM). Mr Hall has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to quality as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Hall is a Non-Executive Director of Dateline Resources Limited and consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

Forward-Looking Statements

This announcement may contain "forward-looking statements" concerning Dateline Resources that are subject to risks and uncertainties. Generally, the words "will", "may", "should", "continue", "believes", "expects", "intends", "anticipates" or similar expressions identify forward-looking statements. These forward-looking statements involve risks and uncertainties that could cause actual results to differ materially from those expressed in the forward-looking statements. Many of these risks and uncertainties relate to factors that are beyond Dateline Resources' ability to control or estimate precisely, such as future market conditions, changes in regulatory environment and the behaviour of other market participants. Dateline Resources cannot give any assurance that such forward-looking statements. Dateline Resources assumes no obligation and does not undertake any obligation to update or revise publicly any of the forward-looking statements set out herein, whether as a result of new information, future events or otherwise, except to the extent legally required.

APPENDIX 1 COLLAR INFORMATION

Hole ID	Easting	Northing	Elevation	Total Depth (m)
CM23-08	11245	21173	5433	179.7
CM23-11	11245	21173	5433	75.2
CM23-11a	11245	21173	5433	260.2
CM23-09	11245	21173	5433	in-progress

APPENDIX 2 - ASSAY INFORMATION

Sample_ID	Hole_ID	Drill Type	From (m)	To (m)	Length (m)	Au ppm	Au opt
E256001	CM23-08	Core	1.5	3.0	1.5	0.014	0.0004
E256002	CM23-08	Core	3.0	4.6	1.5	0.02	0.0006
E256003	CM23-08	Core	4.6	6.1	1.5	0.023	0.0007
E256004	CM23-08	Core	6.1	7.6	1.5	0.023	0.0007
E256005	CM23-08	Core	7.6	9.1	1.5	0.017	0.0005
E256007	CM23-08	Core	9.1	10.7	1.5	0.072	0.0021
E256008	CM23-08	Core	10.7	12.2	1.5	0.027	0.0008
E256009	CM23-08	Core	12.2	13.7	1.5	0.11	0.0032
E256010	CM23-08	Core	13.7	15.0	1.3	0.186	0.0054
no sample	CM23-08	Core	15.0	16.5	1.5		
E256011	CM23-08	Core	16.5	17.0	0.5	0.094	0.0027
E256013	CM23-08	Core	17.0	18.3	1.3	0.334	0.0097
E256014	CM23-08	Core	18.3	19.8	1.5	0.259	0.0076
E256015	CM23-08	Core	19.8	20.7	0.9	0.38	0.0111
E256016	CM23-08	Core	20.7	21.9	1.1	0.336	0.0098
E256017	CM23-08	Core	21.9	22.0	0.2	22.08	0.644
E256019	CM23-08	Core	22.0	23.3	1.3	0.47	0.01
E256020	CM23-08	Core	23.3	23.9	0.5	0.12	0.00
E256021	CM23-08	Core	23.9	24.1	0.2	0.15	0.00
E256022	CM23-08	Core	24.1	25.3	1.2	0.28	0.01
E256023	CM23-08	Core	25.3	26.2	0.9	0.07	0.00
E256025	CM23-08	Core	26.2	26.8	0.6	0.21	0.01
E256026	CM23-08	Core	26.8	28.3	1.5	0.06	0.00
E256027	CM23-08	Core	28.3	29.9	1.5	0.28	0.01
E256028	CM23-08	Core	29.9	31.1	1.2	0.12	0.00
E256029	CM23-08	Core	31.1	31.4	0.3	0.01	0.00
E256030	CM23-08	Core	31.4	32.9	1.5	0.59	0.02
E256032	CM23-08	Core	32.9	34.4	1.5	0.30	0.01
E256033	CM23-08	Core	34.4	36.0	1.5	0.14	0.00
E256034	CM23-08	Core	36.0	37.5	1.5	0.07	0.00
E256035	CM23-08	Core	37.5	38.0	0.5	0.50	0.01
E256036	CM23-08	Core	38.0	39.5	1.5	0.15	0.00
E256038	CM23-08	Core	39.5	42.5	3.0	0.21	0.01
E256039	CM23-08	Core	51.4	52.9	1.5	0.03	0.00
E256040	CM23-08	Core	52.9	54.5	1.5	0.06	0.00
E256041	CM23-08	Core	54.5	57.5	3.0	0.19	0.01
E256042	CM23-08	Core	57.5	57.8	0.3	0.15	0.00
E256044	CM23-08	Core	57.8	58.4	0.5	0.57	0.02
E256045	CM23-08	Core	58.4	59.1	0.8	0.01	0.00
E256046	CM23-08	Core	59.1	60.7	1.5	0.34	0.01
E256047	CM23-08	Core	60.7	62.2	1.5	0.27	0.01

Sample_ID	Hole_ID	Drill Type	From (m)	To (m)	Length (m)	Au ppm	Au opt
E256048	CM23-08	Core	62.2	63.7	1.5	0.61	0.02
E256050	CM23-08	Core	63.7	65.2	1.5	1.52	0.04
E256051	CM23-08	Core	65.2	66.7	1.5	0.19	0.01
E256052	CM23-08	Core	66.7	67.6	0.8	0.25	0.01
E256053	CM23-08	Core	67.6	68.9	1.3	0.01	0.00
E256054	CM23-08	Core	68.9	70.4	1.5	<0.01	<0.0003
E256056	CM23-08	Core	70.4	71.9	1.5	0.01	0.00
E256057	CM23-08	Core	71.9	73.5	1.5	0.01	0.00
E256058	CM23-08	Core	73.5	75.0	1.5	0.03	0.00
E256059	CM23-08	Core	75.0	76.5	1.5	0.03	0.00
E256060	CM23-08	Core	76.5	78.0	1.5	0.03	0.00
E256062	CM23-08	Core	78.0	79.0	1.0	<0.01	<0.0003
E256063	CM23-08	Core	79.0	80.5	1.5	0.15	0.00
E256064	CM23-08	Core	80.5	82.0	1.5	0.05	0.00
E256065	CM23-08	Core	82.0	83.5	1.5	0.01	0.00
E256067	CM23-08	Core	83.5	85.0	1.5	0.04	0.00
E256068	CM23-08	Core	85.0	86.6	1.5	0.15	0.00
E256069	CM23-08	Core	86.6	86.8	0.3	0.13	0.00
E256070	CM23-08	Core	86.8	88.3	1.4	0.11	0.00
E256071	CM23-08	Core	88.3	89.6	1.3	0.45	0.01
E256073	CM23-08	Core	89.6	91.1	1.5	0.19	0.01
E256074	CM23-08	Core	91.1	92.7	1.5	0.68	0.02
E256075	CM23-08	Core	92.7	94.2	1.5	3.73	0.11
E256076	CM23-08	Core	94.2	95.7	1.5	0.77	0.02
E256077	CM23-08	Core	95.7	97.1	1.4	0.48	0.01
E256078	CM23-08	Core	97.1	97.5	0.4	1.52	0.04
E256080	CM23-08	Core	97.5	98.8	1.3	1.49	0.04
E256081	CM23-08	Core	98.8	100.3	1.5	4.11	0.12
E256082	CM23-08	Core	100.3	101.8	1.5	1.02	0.03
E256083	CM23-08	Core	101.8	103.3	1.5	2.33	0.07
E256084	CM23-08	Core	103.3	104.8	1.5	1.50	0.04
E256086	CM23-08	Core	104.8	106.4	1.5	2.65	0.08
E256088	CM23-08	Core	106.4	107.9	1.5	0.85	0.25
E256089	CM23-08	Core	107.9	109.4	1.5	9.99	0.29
E256090	CM23-08	Core	109.4	110.9	1.5	0.44	0.01
E256091	CM23-08	Core	110.9	112.5	1.5	1.14	0.03
E256092	CM23-08	Core	112.5	114.0	1.5	0.76	0.02
E256093	CM23-08	Core	114.0	115.5	1.5	0.86	0.03
E256095	CM23-08	Core	115.5	116.6	1.1	16.00	0.47
E256096	CM23-08	Core	116.6	118.3	1.6	21.85	0.64
E256097	CM23-08	Core	118.3	119.8	1.5	11.90	0.35
E256098	CM23-08	Core	119.8	121.3	1.5	17.45	0.51
E256099	CM23-08	Core	121.3	122.8	1.5	12.10	0.35
E256100	CM23-08	Core	122.8	124.4	1.5	10.60	0.31

Sample_ID	Hole_ID	Drill Type	From (m)	To (m)	Length (m)	Au ppm	Au opt
E256102	CM23-08	Core	124.4	125.9	1.5	36.10	1.06
E256103	CM23-08	Core	125.9	127.4	1.5	20.00	0.58
E256104	CM23-08	Core	127.4	128.6	1.2	16.30	0.48
E256105	CM23-08	Core	128.6	129.6	1.0	42.19	1.23
E256106	CM23-08	Core	129.6	131.1	1.4	9.16	0.27
E256107	CM23-08	Core	131.1	132.6	1.5	16.35	0.48
E256109	CM23-08	Core	132.6	134.1	1.5	18.70	0.55
E256110	CM23-08	Core	134.1	135.6	1.5	26.10	0.76
E256111	CM23-08	Core	135.6	137.2	1.5	24.90	0.73
E256112	CM23-08	Core	137.2	137.8	0.6	35.60	1.04
E256113	CM23-08	Core	137.8	139.0	1.2	53.70	1.57
E256114	CM23-08	Core	139.0	139.2	0.2	45.50	1.33
E256116	CM23-08	Core	139.2	139.6	0.5	13.20	0.39
E256117	CM23-08	Core	139.6	141.1	1.5	6.66	0.19
E256118	CM23-08	Core	141.1	142.6	1.5	4.36	0.13
E256119	CM23-08	Core	142.6	144.2	1.5	6.97	0.20
E256120	CM23-08	Core	144.2	145.7	1.5	15.30	0.45
E256121	CM23-08	Core	145.7	147.2	1.5	11.55	0.34
E256123	CM23-08	Core	147.2	148.4	1.2	2.40	0.07
E256124	CM23-08	Core	148.4	150.0	1.6	0.35	0.01
E256125	CM23-08	Core	146.9	151.5	4.6	0.13	0.00
E256126	CM23-08	Core	151.5	153.0	1.5	0.27	0.01
E256127	CM23-08	Core	153.0	154.5	1.5	0.88	0.03
E256128	CM23-08	Core	154.5	156.0	1.5	0.23	0.01
E256130	CM23-08	Core	156.0	157.6	1.5	0.38	0.01
E256131	CM23-08	Core	157.6	159.1	1.5	1.24	0.04
E256132	CM23-08	Core	159.1	160.6	1.5	0.95	0.03
E256133	CM23-08	Core	160.6	161.3	0.7	1.23	0.04
E256134	CM23-08	Core	161.3	161.5	0.2	0.27	0.01
E256135	CM23-08	Core	161.5	162.5	0.9	0.24	0.01
E256137	CM23-08	Core	162.5	162.6	0.2	0.88	0.03
E256138	CM23-08	Core	162.6	163.6	0.9	0.11	0.00
E256139	CM23-08	Core	163.6	164.3	0.7	0.16	0.00
E256140	CM23-08	Core	164.3	165.8	1.5	0.32	0.01
E256141	CM23-08	Core	165.8	167.3	1.5	0.68	0.02
E256142	CM23-08	Core	167.3	168.9	1.5	0.29	0.01
E256144	CM23-08	Core	168.9	170.4	1.5	0.34	0.01
E256145	CM23-08	Core	170.4	171.9	1.5	0.30	0.01
E256146	CM23-08	Core	171.9	173.4	1.5	0.29	0.01
E256147	CM23-08	Core	173.4	174.6	1.2	0.14	0.00
E256148	CM23-08	Core	174.6	176.1	1.5	0.11	0.00
E256149	CM23-08	Core	176.1	177.2	1.1	0.06	0.00
E256150	CM23-08	Core	177.2	178.7	1.5	0.04	0.00
E256151	CM23-08	Core	178.7	179.5	0.8	0.03	0.00

Sample_ID	Hole_ID	Drill Type	From (m)	To (m)	Length (m)	Au ppm	Au opt
E256152	CM23-08	Core	179.5	179.7	0.2	0.01	0.00
E256212	CM23-11a	Core	0.0	1.5	1.5	0.01	0.00
E256213	CM23-11a	Core	1.5	3.0	1.5	0.01	0.00
E256214	CM23-11a	Core	3.0	4.6	1.5	0.02	0.00
E256215	CM23-11a	Core	4.6	6.1	1.5	0.03	0.00
E256216	CM23-11a	Core	6.1	7.6	1.5	0.01	0.00
E256217	CM23-11a	Core	7.6	9.1	1.5	0.02	0.00
E256219	CM23-11a	Core	9.1	10.7	1.5	0.02	0.00
E256220	CM23-11a	Core	10.7	12.2	1.5	0.03	0.00
E256221	CM23-11a	Core	12.2	13.7	1.5	0.01	0.00
E256222	CM23-11a	Core	13.7	15.2	1.5	0.03	0.00
E256223	CM23-11a	Core	15.2	16.8	1.5	0.06	0.00
E256224	CM23-11a	Core	16.8	18.3	1.5	0.14	0.00
E256225	CM23-11a	Core	18.3	19.8	1.5	0.17	0.00
E256227	CM23-11a	Core	19.8	21.3	1.5	0.08	0.00
E256228	CM23-11a	Core	21.3	22.9	1.5	0.04	0.00
E256229	CM23-11a	Core	22.9	24.4	1.5	0.07	0.00
E256230	CM23-11a	Core	24.4	25.9	1.5	0.22	0.01
E256231	CM23-11a	Core	25.9	27.7	1.8	0.04	0.00
E256232	CM23-11a	Core	27.7	29.2	1.5	0.03	0.00
E256233	CM23-11a	Core	29.2	30.7	1.5	0.14	0.00
E256234	CM23-11a	Core	30.7	32.2	1.5	0.31	0.01
E256235	CM23-11a	Core	32.2	33.8	1.5	0.26	0.01
E256236	CM23-11a	Core	33.8	35.3	1.5	0.13	0.00
E256238	CM23-11a	Core	35.3	36.8	1.5	0.27	0.01
E256239	CM23-11a	Core	36.8	38.3	1.5	1.83	0.05
E256240	CM23-11a	Core	38.3	39.9	1.5	1.09	0.03
E256241	CM23-11a	Core	39.9	41.4	1.5	0.47	0.01
E256242	CM23-11a	Core	41.4	42.9	1.5	0.21	0.01
E256243	CM23-11a	Core	42.9	44.1	1.2	0.18	0.01
E256244	CM23-11a	Core	44.1	44.8	0.8	0.64	0.02
E256245	CM23-11a	Core	44.8	46.4	1.5	0.23	0.01
E256246	CM23-11a	Core	46.4	47.9	1.5	0.28	0.01
E256247	CM23-11a	Core	47.9	49.4	1.5	0.14	0.00
E256249	CM23-11a	Core	49.4	50.9	1.5	0.12	0.00
E256250	CM23-11a	Core	50.9	52.5	1.5	0.18	0.01
E256251	CM23-11a	Core	52.5	53.6	1.2	0.26	0.01
E256252	CM23-11a	Core	53.6	54.3	0.6	0.22	0.01
E256253	CM23-11a	Core	54.3	55.8	1.5	0.42	0.01
E256254	CM23-11a	Core	55.8	57.3	1.5	0.50	0.01
E256255	CM23-11a	Core	57.3	58.4	1.1	0.48	0.01
E256256	CM23-11a	Core	58.4	60.0	1.5	0.61	0.02
E256257	CM23-11a	Core	60.0	61.2	1.3	0.09	0.00

Sample_ID	Hole_ID	Drill Type	From (m)	To (m)	Length (m)	Au ppm	Au opt
E256258	CM23-11a	Core	61.2	61.7	0.5	0.01	0.00
E256260	CM23-11a	Core	61.7	63.1	1.4	0.06	0.00
E256261	CM23-11a	Core	63.1	64.6	1.5	0.21	0.01
E256262	CM23-11a	Core	64.6	66.1	1.5	0.08	0.00
E256263	CM23-11a	Core	66.1	67.7	1.5	0.09	0.00
E256264	CM23-11a	Core	67.7	69.2	1.5	0.04	0.00
E256265	CM23-11a	Core	69.2	69.6	0.4	0.28	0.01
E256266	CM23-11a	Core	69.6	71.0	1.4	0.04	0.00
E256267	CM23-11a	Core	71.0	72.5	1.5	0.03	0.00
E256268	CM23-11a	Core	72.5	74.0	1.4	0.02	0.00
E256269	CM23-11a	Core	74.0	75.5	1.5	0.03	0.00
E256271	CM23-11a	Core	75.5	77.0	1.5	0.05	0.00
E256272	CM23-11a	Core	77.0	78.5	1.5	0.25	0.01
E256273	CM23-11a	Core	78.5	80.1	1.5	0.10	0.00
E256274	CM23-11a	Core	80.1	81.0	0.9	0.07	0.00
E256275	CM23-11a	Core	81.0	82.5	1.5	4.89	0.14
E256276	CM23-11a	Core	82.5	83.8	1.3	0.13	0.00
E256277	CM23-11a	Core	83.8	85.3	1.5	0.33	0.01
E256278	CM23-11a	Core	85.3	85.6	0.2	0.09	0.00
E256280	CM23-11a	Core	85.6	86.9	1.3	0.49	0.01
E256281	CM23-11a	Core	86.9	88.4	1.5	0.14	0.00
E256282	CM23-11a	Core	88.4	89.9	1.5	5.50	0.16
E256283	CM23-11a	Core	89.9	90.8	0.9	2.09	0.06
E256284	CM23-11a	Core	90.8	92.3	1.5	0.48	0.01
E256285	CM23-11a	Core	92.3	93.9	1.5	0.25	0.01
E256287	CM23-11a	Core	93.9	95.4	1.5	0.15	0.00
E256288	CM23-11a	Core	95.4	96.9	1.5	0.07	0.00
E256289	CM23-11a	Core	96.9	98.4	1.5	0.15	0.00
E256290	CM23-11a	Core	98.4	100.0	1.5	0.19	0.01
E256291	CM23-11a	Core	100.0	101.5	1.5	0.22	0.01
E256292	CM23-11a	Core	101.5	102.4	0.9	31.20	0.91
E256294	CM23-11a	Core	102.4	103.0	0.6	2.03	0.06
E256295	CM23-11a	Core	103.0	104.5	1.5	0.33	0.01
E256296	CM23-11a	Core	104.5	106.1	1.5	0.09	0.00
E256297	CM23-11a	Core	106.1	107.6	1.5	0.18	0.01
E256298	CM23-11a	Core	107.6	109.1	1.5	5.07	0.15
E256299	CM23-11a	Core	109.1	110.6	1.5	0.18	0.01
E256300	CM23-11a	Core	110.6	112.2	1.5	0.36	0.01
E256301	CM23-11a	Core	112.2	113.7	1.5	0.19	0.01
E256303	CM23-11a	Core	113.7	115.2	1.5	0.06	0.00
E256304	CM23-11a	Core	115.2	116.6	1.4	0.01	0.00
E256305	CM23-11a	Core	116.6	118.1	1.5	1.95	0.06
E256306	CM23-11a	Core	118.1	119.6	1.5	0.47	0.01
E256307	CM23-11a	Core	119.6	121.2	1.5	0.13	0.00

Sample_ID	Hole_ID	Drill Type	From (m)	To (m)	Length (m)	Au ppm	Au opt
E256308	CM23-11a	Core	121.2	122.7	1.5	0.14	0.00
E256309	CM23-11a	Core	122.7	123.5	0.9	0.22	0.01
E256310	CM23-11a	Core	123.5	125.0	1.4	0.14	0.00
E256311	CM23-11a	Core	125.0	126.2	1.2	0.35	0.01
E256312	CM23-11a	Core	126.2	127.7	1.5	1.29	0.04
E256314	CM23-11a	Core	127.7	129.2	1.5	0.40	0.01
E256315	CM23-11a	Core	129.2	130.8	1.5	7.06	0.21
E256316	CM23-11a	Core	130.8	132.2	1.4	32.90	0.96
E256317	CM23-11a	Core	132.2	133.7	1.5	2.51	0.07
E256318	CM23-11a	Core	133.7	135.2	1.5	5.30	0.15
E256319	CM23-11a	Core	135.2	136.8	1.6	1.80	0.05
E256320	CM23-11a	Core	136.8	138.3	1.5	10.95	0.32
E256322	CM23-11a	Core	138.3	139.8	1.5	0.96	0.03
E256323	CM23-11a	Core	139.8	141.3	1.5	2.85	0.08
E256324	CM23-11a	Core	141.3	142.3	0.9	0.50	0.01
E256325	CM23-11a	Core	142.3	143.0	0.7	1.07	0.03
E256326	CM23-11a	Core	143.0	144.4	1.4	4.48	0.13
E256327	CM23-11a	Core	144.4	145.9	1.5	2.03	0.06
E256328	CM23-11a	Core	145.9	147.4	1.5	1.97	0.06
E256329	CM23-11a	Core	147.4	148.9	1.5	6.07	0.18
E256330	CM23-11a	Core	148.9	150.5	1.5	0.30	0.01
E256331	CM23-11a	Core	150.5	152.0	1.5	3.02	0.09
E256333	CM23-11a	Core	152.0	153.2	1.2	4.19	0.12
E256334	CM23-11a	Core	153.2	154.7	1.5	1.92	0.06
E256335	CM23-11a	Core	154.7	156.3	1.5	2.05	0.06
E256336	CM23-11a	Core	156.3	157.8	1.5	2.17	0.06
E256337	CM23-11a	Core	157.8	159.3	1.5	0.57	0.02
E256338	CM23-11a	Core	159.3	160.8	1.5	0.05	0.00
E256340	CM23-11a	Core	160.8	162.4	1.5	1.99	0.06
E256341	CM23-11a	Core	162.4	163.9	1.5	0.09	0.00
E256342	CM23-11a	Core	163.9	165.4	1.5	0.05	0.00
E256343	CM23-11a	Core	165.4	166.9	1.5	0.05	0.00
E256344	CM23-11a	Core	166.9	168.5	1.5	0.13	0.00
E256345	CM23-11a	Core	168.5	170.0	1.5	0.09	0.00
E256347	CM23-11a	Core	170.0	171.5	1.5	0.27	0.01
E256348	CM23-11a	Core	171.5	173.0	1.5	0.08	0.00
E256349	CM23-11a	Core	173.0	174.6	1.5	0.03	0.00
E256350	CM23-11a	Core	174.6	176.1	1.5	0.09	0.00
E256351	CM23-11a	Core	176.1	177.1	1.1	0.05	0.00
E256352	CM23-11a	Core	177.1	177.9	0.8	0.03	0.00
E256354	CM23-11a	Core	177.9	179.3	1.4	0.04	0.00
E256355	CM23-11a	Core	179.3	180.9	1.5	0.02	0.00
E256356	CM23-11a	Core	180.9	182.4	1.5	0.06	0.00
E256357	CM23-11a	Core	182.4	183.9	1.5	0.02	0.00

Sample_ID	Hole_ID	Drill Type	From (m)	To (m)	Length (m)	Au ppm	Au opt
E256358	CM23-11a	Core	183.9	185.2	1.3	0.05	0.00
E256359	CM23-11a	Core	185.2	186.7	1.5	0.04	0.00
E256360	CM23-11a	Core	186.7	188.2	1.5	0.02	0.00
E256361	CM23-11a	Core	188.2	189.8	1.5	0.03	0.00
E256362	CM23-11a	Core	189.8	191.3	1.5	0.15	0.00
E256363	CM23-11a	Core	191.3	192.8	1.5	0.22	0.01
E256365	CM23-11a	Core	192.8	194.3	1.5	0.04	0.00
E256366	CM23-11a	Core	194.3	195.9	1.5	0.16	0.00
E256367	CM23-11a	Core	195.9	197.4	1.5	0.03	0.00
E256368	CM23-11a	Core	197.4	198.9	1.5	0.15	0.00
E256369	CM23-11a	Core	198.9	200.4	1.5	0.08	0.00
E256370	CM23-11a	Core	200.4	202.0	1.5	0.35	0.01
E256371	CM23-11a	Core	202.0	203.5	1.5	0.07	0.00
E256372	CM23-11a	Core	203.5	205.0	1.5	0.05	0.00
E256373	CM23-11a	Core	205.0	206.5	1.5	0.015	0.00
E256375	CM23-11a	Core	206.5	208.0	1.5	0.01	0.00
E256376	CM23-11a	Core	208.0	209.6	1.5	0.07	0.00
E256377	CM23-11a	Core	209.6	211.1	1.5	0.13	0.00
E256378	CM23-11a	Core	211.1	212.1	1.0	0.10	0.00
E256379	CM23-11a	Core	212.1	213.0	0.9	0.05	0.00
E256381	CM23-11a	Core	213.0	214.5	1.5	0.95	0.03
E256382	CM23-11a	Core	214.5	216.0	1.5	0.04	0.00
E256383	CM23-11a	Core	216.0	216.9	0.9	0.05	0.00
E256384	CM23-11a	Core	216.9	217.3	0.3	0.15	0.00
E256385	CM23-11a	Core	217.3	218.4	1.2	0.03	0.00
E256386	CM23-11a	Core	218.4	219.4	1.0	0.01	0.00
E256387	CM23-11a	Core	219.4	220.9	1.5	0.01	0.00
E256388	CM23-11a	Core	220.9	222.4	1.5	0.02	0.00
E256389	CM23-11a	Core	222.4	223.6	1.2	0.015	0.00
E256391	CM23-11a	Core	223.6	224.3	0.7	0.01	0.00
E256392	CM23-11a	Core	224.3	225.8	1.5	0.12	0.00
E256393	CM23-11a	Core	225.8	227.4	1.5	0.08	0.00
E256394	CM23-11a	Core	227.4	228.9	1.5	0.26	0.01
E256395	CM23-11a	Core	228.9	230.4	1.5	0.16	0.00
E256396	CM23-11a	Core	230.4	231.9	1.5	4.63	0.14
E256398	CM23-11a	Core	231.9	233.5	1.5	3.85	0.11
E256399	CM23-11a	Core	233.5	235.0	1.5	0.56	0.02
E256400	CM23-11a	Core	235.0	236.5	1.5	1.83	0.05
E256401	CM23-11a	Core	236.5	238.0	1.5	0.19	0.01
E256402	CM23-11a	Core	238.0	239.6	1.5	0.70	0.02
E256403	CM23-11a	Core	239.6	241.1	1.5	0.37	0.01
E256404	CM23-11a	Core	241.1	242.6	1.5	0.78	0.02
E256405	CM23-11a	Core	242.6	243.8	1.2	0.22	0.01
E256407	CM23-11a	Core	243.8	244.7	0.9	0.13	0.00

Sample_ID	Hole_ID	Drill Type	From (m)	To (m)	Length (m)	Au ppm	Au opt
E256408	CM23-11a	Core	244.7	245.3	0.6	0.05	0.00
E256409	CM23-11a	Core	245.3	246.8	1.5	0.04	0.00
E256410	CM23-11a	Core	246.8	248.2	1.4	0.16	0.00
E256411	CM23-11a	Core	252.3	253.5	1.2	1.22	0.04

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 As of 15/07/2023, the Colosseum Mine, Colosseum Rare Metals, INC. has completed 802.7 metres of drilling in 4 drill holes. All of the drilling was done from surface with a diamond drill core. Industry standard core handling and sampling procedures were employed to ensure high quality samples. Core sample boundaries were defined by changes in lithology, alteration, and mineralisation noted in logging. Collar to toe assays were taken and sent to labs for analysis. Core was cut along the long axis leaving half for assay and half to be stored in cardboard core boxes. Samples from drill holes were sent to ALS Global and Paragon Geochemical in Reno, Nevada for sample preparation and assay. Samples were dried, weighed, crushed and split to obtain 250 gm. Samples were placed in ring and puck grinder to produce 85% minus 75-micron pulp. This material was blended on clean cloth and packaged in paper pulp bags. Using a pulp balance, a 30-gm sample was weighted out for traditional fire assay. Samples were analyzed using standard fire assay. Samples were analyzed using standard fire assay. Samples were analyzed using standard fire assay for gold. Over limits were analyzed via gravimetric analysis. All samples followed a strict Chain of Custody. Routine QAQC samples were inserted in the sample runs at a rate of 20%, comprising Certified Reference Materials from CDN Resource Laboratories Ltd., and verified blank granitic material. Sampling practice is appropriate to the geology and mineralisation of the deposit and complies with industry best practice.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method. etc).	 The drilling program utilizes surface core drilling. The core drilling is being conducted with an Everdigm cat 4 drill with HQTT core tooling. Triple tubes were used for the for all holes to increase recoveries. The drilling has been completed by an experienced diamond drilling core driller.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All drilling recoveries have been logged and notated each run based on 3.05-meter tooling. To maximize sample recoveries, use of triple tube and long chain polymer muds were used to increase recovery. There has been no analysis between sample recoveries and grade to date.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Core samples were geologically logged. Lithology, veining, alteration, mineralisation, and weathering are recorded in the appropriate tables of the drill hole database. Each core box was photographed dry and wet, after logging of unit and structures were notated on the core. Core was cut along the long axis using a diamond saw, half-core was sampled, and half stored for reference. Geological logging of core samples is qualitative and quantitative in nature.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, 	 All drill core samples were cut along the long axis. The left side when looking down hole was sampled. Samples were placed in a heavy-duty poly sample bag. Each core sample placed in heavy duty poly sample bag, noted interval width in sample book, with a sample tag with the corresponding sample number placed in the bag with the other tag stapled to the top of the bag. Sample bags were stapled along the top. Samples were sent by freight to ALS Global, or Paragon Geochemical in Reno, Nevada. Routine QAQC samples were inserted at a 20% rate into the sample batches and comprised Certified Reference Materials (CRMs) from CDN Resource Laboratories Ltd. and verified blank granitic material. Rock samples sent to ALS Laboratories and Paragon Geochemical were dried, weighed, crushed, and split, with a split pulverized to better than 85% passing 75 microns. Samples were analyzed for trace elements using 4-acid digestion. Additionally, rocks samples were analyzed by standard 30gm fire assay for gold and silver.

Criteria	JORC Code explanation	Commentary
	 including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	sampling size which is typical for gold deposits.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were assayed by industry standard methods by ALS Global Laboratories, and Paragon Geochemical, in Reno, Nevada. Fire assays for gold were completed using industry standard fire assay methodology. External certified standards and blank material were added to the sample submission.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Sampling, documentation, and sample submittal were under the guidance and care of Graham Craig, GIT (Association of Professional Engineers and Geoscientists of Manitoba). Drilling, sample, and assay data is currently stored in MX Deposit, a secured data management system through Seequent.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill hole collars are surveyed using differential GPS survey equipment. The positions are accurate to within 10 cm x-y and height (z) to +/- 20 cm. The holes are surveyed in UTM WGS 84 coordinate system. Down hole surveys will be done using a Reflex EZ-TRAC magnetic downhole survey tool on all diamond drill holes. With collars surveyed using Reflex TN-14 Azi-Aligner. Sample locations were surveyed using UTM WGS 84 coordinate system.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The spacing and location of data is currently 5-15 meter spacing according to previous Mineral Resource estimation completed by Barbara Carroll, CPG (American Institute of Professional Geologists) of GeoGRAFX Consulting, LLC. No sample compositing has been applied at this time.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes are planned to be drilled along strike due to limited areas available to drill from. Definition of structure location is the principal goal. Sample orientation is deemed to be representative for reporting purposes. No bias is considered to have been introduced by the existing sampling orientation.
Sample security	• The measures taken to ensure sample security.	 All samples were taken and maintained under the constant care of Colosseum Rare Metals, INC. personnel. Samples were delivered to laboratories by a licensed transportation company.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Drill hole sampling techniques and QAQC procedures have been developed and reviewed by Dale Sketchley, M.Sc., P. Geo. of Acuity Geoscience Ltd., Graham Craig, GIT. The QAQC program has demonstrated its ability to catch errors. A QAQC review will be completed for this program. Mineral resource estimations and JORC 2022 completed by Barbara Carroll, CPG.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park	 The Colosseum Mine project is located in T17N R13E Sec 10, 11, 14, 15, 22, 23 SB&M. All tenements are 100% owned by Dateline Resources Limited or a wholly owned subsidiary and there exist production-based royalties as previously disclosed to ASX.

Criteria	JORC Code explanation	Commentary
	 and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Historical work has been completed by various mining companies since 1972. Draco Mines (1972-1974) Placer Amex (1975-1976) Draco Mines (1980) Amselco (1982-1984 Dallhold Resources/Bond Gold (1986-1989 Lac Minerals (1989-1994) All the companies were reputable, well-known mining/exploration companies that followed the accepted industry standard protocols of the time.
		 Review of this work was completed by GeoGRAFX Consulting, LLC in 2022. All previous work undertaken by others is non-JORC compliant.
Geology	• Deposit type, geological setting and style of mineralisation.	 The Colosseum mine is hosted by Cretaceous aged breccia-pipe. The pipe contains aphanitic Cretaceous rhyolite flows, Pre-Cambrian granitic basement material, and Cambrian-Devonian dolomite clasts replaced by sulphide mineralisation. The gold mineralisation occurs in brecciated felsite and sediment clast replaced by sulphides.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material, and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 See Table 1 within this report for details of the drill holes and sample locations.

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cutoff grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Drill hole intersections are reported above a lower exploration cut-off grade of 0.1 g/T Au and no upper cut off grade has been applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Drill holes are orientated along apparent strike of the breccia pipe due to limited drill pad locations. Interception angles of the mineralised structures are estimated using core drilling intercepts and existing 3D models of the pipe orientation.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Supporting figures have been included within the body of this release.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	 Representative reporting of both low and high grades and/or widths have been reported.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	At Colosseum, future work will include expanded drilling between the North and South pits, mapping, and sampling of open pit benches; as well as infill and expanded surface soil geochemistry, geological mapping, and geophysics.