OAR IDENTIFIES RARE-EARTH ELEMENTS IN WESTERN EYRE PENINSULA TENURE

ASX ANNOUNCEMENT 17 August 2023

HIGHLIGHTS

- Prospectivity analysis of historic exploration data has identified multiple alkaline intrusives, a
 potential host of Rare Earth Element (REE) mineralisation and pegmatites
- A total of 666 holes have been drilled historically for a total of 46,226m, targeting discrete magnetic features
- Relogging and sampling of the first available historic drillhole (SHDD01) from the Conical Hill prospect has identified carbonate altered kimberlite from 122-158m, with wide intersections of REE anomalism
- Assay results from this intersection returned 36m @ 638.88ppm TREO from 122m, including 14m @ 993ppm TREO from 135m
- Historic data has revealed 11 holes were found to have intersected alkaline intrusives and 8 intersected pegmatites

Oar Resources Limited (ASX: OAR) ("OAR" or **"the Company"**) is pleased to announce the initial results from the data analysis of historical exploration drill core samples from the Company's 100 per cent-owned Western Eyre Peninsula (WEP) project in South Australia.

OVERVIEW

A total of 666 holes were drilled by previous explorers in South Australia for a total of 46,226m targeting discrete magnetic features which were interpreted as kimberlites. Kimberlites are a form of alkaline intrusive which is the rock type that most commonly hosts REE deposits.

Nearly 80 per cent of these historic drillholes have been catalogued and stored in Adelaide which are available to the Company for logging and resampling.

This review found 11 drillholes intersected lithologies consistent with alkaline intrusives. The Company has also identified 8 pegmatites from historical drill logs, which have never been sampled.

Preliminary petrographic work on one of the historic drillholes, SHDD01, confirmed the intrusion is kimberlitic in nature.

NEXT STEPS

OAR intends to follow up these highly encouraging initial results by expanding the current sampling program to focus on the entire tenement package.

The Company will prepare drilling proposals in anticipation of testing a number of anomalies within the WEP tenure, beginning with the Company's newest target, Hill 55.

An initial 21-hole RC program at Conical Hill will also be planned to effectively test the revised geophysical model and delineate the mineralisation at the site's intrusive.

OAR Resources Managing Director Paul Stephen said:

"This area of South Australia hasn't been explored with today's exploration technologies or standards. It's also never been assessed for pegmatites or REE elements before and these initial results are very encouraging. There is huge potential in this underexplored part of Australia."

"The quality and quantity of the drill core samples that has been retained by the South Australian Government is truly remarkable and provides an invaluable source of data for OAR to work with. This has enabled us to efficiently and cost-effectively assess the REE potential of the intrusions within the Western Eyre Peninsula."

"The work of our geology team, in collaboration with the South Australian Department of Energy and Mining, Terra Resources, and Challenger Geological Services has been excellent, and we look forward to completing the next phase of exploration with their assistance."

"The OAR team is continuing to advance our exploration effort for REE's and critical minerals across the Company's tenement package in South Australia, while simultaneously assessing new opportunities."

Figure 1: OAR Resource's 100 per cent owned Tenement Holdings in the Western Eyre Peninsula (WEP) South Australia showing locations of logged alkaline intrusives, pegmatites and identified magnetic anomalies which may be additional alkaline intrusives.

HISTORIC DATA REVIEW

OAR has completed a detailed review and compilation of available drilling data across its entire South Australian tenure, consisting of the digitisation of historical drill logs from 556 historic drill holes. The data compilation was undertaken by an independent geological consulting firm, Terra Resources.

The review of the recently compiled geological logs from historic drilling is ongoing, initial analysis has identified that 11 holes intersected lithologies consistent with those of alkaline intrusives which is the rock type that most commonly hosts REE deposits. Additionally, 8 drill holes were noted to have intersected pegmatites (figure 1). Previous explorers were solely focussed on kimberlites, as this was their exploration target lithology. As such other non-kimberlitic lithologies may have been logged with less acuity.

Geophysical work conducted by the previous explorer identified 203 geophysical anomalies (figure 1) which they interpreted to be kimberlite intrusions. Drilling of these magnetic targets was conducted in the 1980's, over several years and estimated to cost \$4 million in the current exploration climate. Of the magnetic anomalies drilled, nearly 80% have been catalogued and stored at the South Australian Department of Energy and Mining's state-of-the-art Core Library in Adelaide and have been made available to the company for logging and resampling (figure 2 and 3).

Figure 2: Retained pre collar samples from SHDD02 (left) and AC holes MH2-DH56K, L and P (right) stored at DEM Drill core Library in Adelaide

17 August 2023

Figure 3: OAR Resources Exploration Manager Ross Cameron inspecting SHDD02 drill core at DEM drill core library

ENCOURAGING RESULTS FROM CONICAL HILL

SHDD01 is a historic diamond drillhole drilled in the early 2000's by Lymex Tenements Pty Ltd, co-funded by the South Australian Government. SHDD01 was drilled to test a magnetic anomaly (Conical Hill) identified by Stockdale Prospecting in the 1980's, and subsequently drilled in the same period with 20 Aircore (AC) holes. Stockdale drilled these 20 AC holes as they were looking for diamondiferous kimberlite pipes. SHDD01 was drilled to a depth of 168.3m. Figure 4 shows the location of Conical Hill, and other regional targets identified by Stockdale in the 1980's and is included in the 556 holes under ongoing review.

SHDD01 returned encouraging TREO values from 122-158m. This interval corresponds to the depth at which it intersected an alkaline intrusive (kimberlite), which is one of the host rocks for REE enrichment. SHDD01 represents the first of many historic holes tested by OAR.

17 August 2023

Figure 4: Location of Conical Hill anomaly.

Hole ID	Sample ID	From(m)	To(m)	Interval(m)	TREO-Y(ppm)	Ce2O3(ppm)	Dy2O3(ppm)	La2O3(ppm)	Nd2O3(ppm)	Pr6O11(ppm)	Sc2O3(ppm)	Sm2O3(ppm)	Y2O3(ppm)
SHDD01	BV200502	122	123	1	414.4	115.3	5.2	183.0	51.1	13.8	15.3	9.7	30.6
SHDD01	BV200503	123	124	1	259.8	103.3	6.0	48.6	47.9	12.6	13.8	9.4	37.1
SHDD01	BV200504	124	125	1	197.2	78.9	4.7	38.0	36.2	9.6	9.2	6.6	30.5
SHDD01	BV200505	125	126	1	598.0	262.4	6.7	143.1	101.6	28.6	16.9	16.0	34.5
SHDD01	BV200506	126	127	1	591.6	258.9	6.9	145.4	99.7	27.5	15.3	14.8	34.3
SHDD01	BV200507	127	128	1	425.2	186.2	4.6	100.4	70.7	20.3	15.3	11.0	26.7
SHDD01	BV200508	128	129	1	209.1	86.1	5.7	38.5	36.9	10.2	7.7	7.1	37.2
SHDD01	BV200509	129	130	1	762.8	344.4	6.0	188.8	127.1	36.2	19.9	17.3	28.1
SHDD01	BV200510	130	131	1	278.0	117.0	5.1	56.2	50.3	13.8	10.7	9.3	28.2
SHDD01	BV200511	131	132	1	345.9	147.6	5.0	77.4	61.1	17.0	12.3	10.0	28.6
SHDD01	BV200512	132	133	1	469.4	194.4	7.9	103.9	83.2	22.2	19.9	13.3	43.3
SHDD01	BV200513	133	134	1	732.7	326.8	6.9	188.8	116.4	34.1	19.9	16.5	34.9
SHDD01	BV200514	134	135	1	972.2	438.1	7.2	267.4	148.1	44.1	21.5	20.4	34.9
SHDD01	BV200515	135	136	1	1031.0	469.7	6.7	278.0	161.0	48.0	21.5	20.5	28.2
SHDD01	BV200516	136	137	1	799.0	354.9	7.1	207.6	128.3	36.6	21.5	18.1	34.9
SHDD01	BV200517	137	138	1	1035.9	468.5	8.6	263.9	168.0	47.8	27.6	22.3	38.4
SHDD01	BV200518	138	139	1	999.1	456.8	6.8	258.0	159.8	46.9	24.5	20.3	31.2
SHDD01	BV200519	139	140	1	999.7	453.3	6.9	261.5	158.6	47.4	26.1	20.3	33.1
SHDD01	BV200520	140	141	1	1003.7	452.1	7.3	272.1	148.1	46.5	30.7	20.6	32.4
SHDD01	BV200521	141	142	1	950.6	425.2	10.1	245.1	144.6	43.7	27.6	22.7	42.4
SHDD01	BV200522	142	143	1	988.6	445.1	7.5	267.4	147.0	45.5	27.6	21.5	37.8
SHDD01	BV200523	143	144	1	1044.1	473.2	7.4	281.5	152.8	48.1	32.2	22.0	33.7
SHDD01	BV200524	144	145	1	1012.0	454.5	7.2	275.6	150.5	46.3	29.1	22.0	35.8
SHDD01	BV200525	145	146	1	1054.5	480.2	7.1	282.6	157.5	48.7	29.1	22.8	31.1
SHDD01	BV200526	146	147	1	997.6	452.1	7.0	269.7	148.1	45.9	29.1	21.0	31.0
SHDD01	BV200527	147	148	1	1025.9	463.8	7.1	282.6	150.5	46.4	27.6	21.2	31.6
SHDD01	BV200528	148	149	1	731.9	328.0	5.6	198.2	107.7	33.1	21.5	17.0	27.8
SHDD01	BV200529	149	150	1	598.0	265.9	3.8	161.8	85.7	26.7	27.6	11.7	1.8
SHDD01	BV200530	150	151	1	587.1	256.5	6.0	154.8	89.1	27.1	19.9	14.3	32.5
SHDD01	BV200531	151	152	1	214.5	86.0	4.2	42.8	36.7	10.1	13.8	7.0	28.2
SHDD01	BV200532	152	153	1	298.3	121.8	5.5	60.2	50.5	14.1	19.9	9.6	28.3
SHDD01	BV200533	153	154	1	258.6	103.7	4.3	53.7	44.0	12.2	18.4	8.1	26.7
SHDD01	BV200534	154	155	1	258.5	108.1	4.3	54.3	43.3	12.4	13.8	8.3	25.5
SHDD01	BV200535	155	156	1	299.9	124.2	4.9	57.9	55.2	15.2	15.3	11.0	24.6
SHDD01	BV200536	156	157	1	310.7	130.0	4.6	65.6	53.9	15.2	15.3	10.7	25.4
SHDD01	BV200537	157	158	1	244.2	100.7	4.0	50.5	42.0	11.8	13.8	8.0	23.0

Table 1: Returned assays from SHDD01 with REE value reported in oxide form (TREO).

SAMPLING FOR REE'S AND CRITICAL MINERALS

The process for relogging and resampling of the stored drill core and samples has been streamlined by the South Australian Government's recent commitment to advancing critical minerals exploration within the state, and OAR's access to a large catalogue of available holes stored at the DEM Drill Core library.

OAR has submitted 304 samples to the lab for REE, lithium and critical metal analysis, including the pre collar of SHDD01 (0-83.4m), to assess the potential for REE and other minerals enrichment within the saprolitic zone.

The submitted samples come from the following holes:

- MH2-DH56J
- MH2-DH56L
- MH2-DH56P
- MH14-DH16
- MH2-DH56C
- SHDD01
- SHDD02
- SHDD03

Results will be reported to the market when available.

Figure 5: Assay status and drillhole location of historical Conical Hill drillholes.

Oar Resources Limited Unit 3, 32 Harrogate St West Leederville, WA 6007 PH +61 8 6117 4797

17 August 2023

Figure 6: SHDD01 Historic kimberlite intercepts from 129.30m to 150.70m. No visual REE mineralisation is present in this interval. Assay results for this interval are included in table 1. Historic core was stored at the Department of Energy and Mining (DEM) Drill core library in Adelaide.

GEOPHYSICAL REVIEW

The Conical Hill intrusion was remodelled by Terra Resources, using modern geophysical algorithms. This remodel suggested that SHDD01 was ineffective at testing the centre and most magnetic part of the anomaly (figure 7 and 8). Review of the historic core supports this, as the core intersected was oxidized and friable in nature to EOH at 168.3m.

Figure 7: Revised magnetic model (inversion) looking west, displaying pXRF TRE values, geology and magnetic susceptibility

Oar Resources Limited Unit 3, 32 Harrogate St West Leederville, WA 6007 PH +61 8 6117 4797

Figure 8: Revised magnetic model (inversion) looking north, displaying pXRF TRE values, geology and magnetic susceptibility

Reinterpretation of the geophysical data has highlighted numerous anomalies similar in tenor to those identified by previous explorers as potential intrusions. OAR is working with Terra Resources to identify additional targets.

The successful review of current digitised data has led to another target (Hill 55) being identified on EL6700, which is ~15km northwest of Conical Hill. This target has 27 historic drill holes drilled into it, with four having intercepted alkaline intrusives or kimberlites and two having pegmatites from historic drill logs (figure 4). OAR is still reviewing the digitised geological data from EL6700 and hopes to identify further instances of logged alkaline intrusives and pegmatites.

PETROGRAPHY

Preliminary petrographic work conducted on a sample from SHDD01, taken from 145m has confirmed that the intrusion is kimberlitic in nature. This work consisted of mineral identification by reflected light microscopy, with further work by scanning electron microscope (SEM) is still ongoing.

The report noted: "The presence of relict polyhedral forms, after original phyric olivine plus platy phlopgopite and accessory chromite (chrome spinel) supported by the presence of garnet xenoblasts in a carbonated matrix support a probably kimberlite classification for the sample."

Sample 145 A coarse garnet (ga) xenoblast has been incipiently fractured and rimmed by fibrous micafuchsite (fu) in the kimberlite host containing relict polyhedral phyric olivine, now altered to serpentinite (serp) and carbonate (carb). The dark matrix is largely indeterminate. Crossed polars. Broad field of view – 8.6 mm.

Figure 9: Petrographic sample from SHDD01 taken from 145m

The sample was classified as a slightly weathered, altered and carbonated kimberlite, containing evidence of phyric olivine altered to serpentinite and carbonate, platy phlogopite and Cr-Spinel (chromite) as well as distinctive garnet xenoblasts. This classification is highly encouraging for OAR's exploration rationale within the WEP, as we continue to explore the REE prospectivity of the significant number of intrusions within our tenure.

ALKALINE INTRUSIVES-REE POTENTIAL

REE's present in these intrusions occur as clusters and are often highly fractionated. Kimberlites, carbonatites, lamprophyres and other alkaline intrusives can occur within the same mineral system due to the nature in which these intrusives form. The geochemistry of each individual intrusion is generally unique to that intrusion and isn't representative of the entire system. Additionally, discrete zones of enrichment can be present within each individual intrusion. OAR intends to systematically assess all 11 currently identified alkaline intrusives, whilst continuing to investigate all 203 magnetic targets (figure 1).

PEGMATITES-LITHIUM POTENTIAL

OAR has identified 8 pegmatites from historical drill logs in holes drilled within the WEP (figure 10). None of the pegmatites drilled by historic explorers has ever been sampled or tested for lithium. Pegmatites have been observed in SHDD02 and SHDD03. All samples of pegmatite from SHDD02 and SHDD03 have been sent for laboratory analysis. The market will be updated as soon as results have been reported expected in 5 to 6 weeks.

17 August 2023

Figure 10: Regional occurrences of logged pegmatites in historic drillholes

OAR is pleased to be exploring a previously unknown pegmatite field within the Gawler Craton and is testing the hypothesis that the pegmatites present within our tenure may be Lithium-Caesium-Tantalum (LCT) pegmatites, Niobium-Yttrium-Fluorine (NYF) pegmatites or a hybrid of both. Work is underway to accurately classify the pegmatites that have been identified within OAR's tenure and assess their prospectivity for lithium and REE enrichment.

530000

Figure 11: SHDD02 Historic pegmatite intercepts from 105.30m to 117.70m(left), and pegmatite sample from SHDD02 from 107.3m(right) No visual spodumene is present in this interval.

OAR intends to follow up these highly encouraging initial results by expanding the current sampling program which focused on the Conical Hill prospect, to the entire tenement package. OAR's next steps include:

- Completion of the historic data digitisation, review and compilation.
- Assessment and ranking of the prospectivity of the magnetic anomalies, firstly based on availability of core/samples available for resampling for laboratory analysis.
- Reprocessing of historic geophysical data to identify anomalies previously obscured by poor quality data and processing techniques.
 - RC program to delineate the mineralisation at the Conical Hill Intrusive and effectively test the revised geophysical model.
 - RC program designed to test similar magnetic anomalies within close proximity to Conical Hill.
- Continue to review REE and Critical Mineral opportunities in South Australia and abroad utilising Oar's expanding expertise.

-Ends-

This announcement has been authorised for release to ASX by the Board of Oar Resources Limited.

For further information please contact:

Paul Stephen	Luke Derbyshire
Managing Director	SPOKE
Oar Resources Limited	luke@hellospoke.com.au
P: +61 8 6117 4797	P: +61 488 664 246

About Oar Resources Limited

Oar Resources Limited (ASX: OAR) is an exploration and development company focused on building and developing a portfolio of fully-owned battery and critical minerals assets. OAR holds a range of precious mineral assets including the Crown Nickel-Copper-PGE Project in the Julimar district of Western Australia, near Chalice Mining's world-class Julimar discovery, and a portfolio of 100%-owned gold exploration projects in the highly prospective gold province of Nevada, United States, which hosts several multi-million-ounce deposits. Oar subsidiary Ozinca Peru SAC owns a recently upgraded gold lixiviation plant located close to thousands of small gold mining operations in Southern Peru.

Forward Looking Statement

This ASX announcement may include forward-looking statements. These forward-looking statements are not historical facts but rather are based on Oar Resources Ltd's current expectations, estimates and assumptions about the industry in which Oar Resources Ltd operates, and beliefs and assumptions regarding Oar Resources Ltd's future performance. Words such as "anticipates", "expects", "intends", "plans", "believes", "seeks", "estimates", "potential" and similar expressions are intended to identify forward-looking statements. Forwardlooking statements are only predictions and are not guaranteed, and they are subject to known and unknown risks, uncertainties, and assumptions, some of which are outside the control of Oar Resources Ltd. Past performance is not necessarily a guide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward-looking statements or other forecast. Actual values, results or events may be materially different to those expressed or implied in this ASX announcement. Given these uncertainties, recipients are cautioned not to place reliance on forward looking statements. Any forward-looking statements in this announcement speak only at the date of issue of this announcement. Subject to any continuing obligations under applicable law and the ASX Listing Rules, Oar Resources Ltd does not undertake any obligation to update or revise any information or any of the forward-looking statements in this announcement or any changes in events, conditions, or circumstances on which any such forward looking statement is based.

Cautionary statement:

Visual estimates of mineral abundance should never be considered a proxy or substitute for laboratory analyses where concentrations or grades are the factor of principal economic interest. Visual estimates also potentially provide no information regarding impurities or deleterious physical properties relevant to valuations. The company notes that all references to geological observations are from historic data. OAR has reviewed the geological descriptions and has determined them to be accurate. The company wished to clarify that the geological description does not necessarily relate to lithium, rare earth element or other mineralisation until confirmed through laboratory analysis. The results from the holes sent for assay will be reported in the next four weeks.

Competent Person's Statement

The information in this ASX Announcement for Oar Resources Limited was compiled by Mr Ross Cameron, a Competent Person, who is a member of the Australasian Institute of Mining and Metallurgy. Mr Cameron is an employee of Oar Resources Limited. Mr Cameron has sufficient experience, which is relevant to the style of mineralisation and types of deposits under consideration and to the activity to which he is undertaking to qualify as a "Competent Person" as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.' Mr Cameron consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

All references to original source information are included as footnote and endnote references as indicated throughout the presentation where required.

APPENDIX 1

TABLE 2: LOCATION DATA OF HISTORIC RARE EARTH ELEMENT AND PEGMATITE DRILLHOLES

HoleID	EAST (mE)	NORTH (mN)	ELEVATION (mASL)	DIP	AZI	DEPTH	Target Lithology
MH14 DH16	531816	6261598	21	-90	0	55.6	Alkaline Intrusive
SH14 DH21	527825	6271265	64	-90	0	63	Alkaline Intrusive
SH14 DH22	528000	6271461	65	-90	0	60	Alkaline Intrusive
SH14 DH24	528130	6271313	64	-90	0	51	Alkaline Intrusive
SH4 DH28	512163	6267279	16	-90	0	53	Alkaline Intrusive
SH13 DH29	510223	6275139	27	-90	0	97	Alkaline Intrusive
SH9 DH30	508607	6274988	27	-90	0	94.1	Alkaline Intrusive
SH8 DH31	509131	6273742	19	-90	0	60	Alkaline Intrusive
SH3 DH38	514556	6264633	28	-90	0	41	Alkaline Intrusive
MH108 DH52	547537	6262914	28	-90	0	43	Alkaline Intrusive
MH1 DH55A	518067	6265185	32	-90	0	60	Alkaline Intrusive
MH1 DH55E	518117	6265185	32	-90	0	30	Alkaline Intrusive
MH1 DH55F	518017	6265184	32	-90	0	26	Alkaline Intrusive
MH1 DH55H	518067	6264834	32	-90	0	30	Alkaline Intrusive
MH1 DH55I	518067	6264934	32	-90	0	21	Alkaline Intrusive
MH1 DH55K	517447	6264935	32	-90	0	30	Alkaline Intrusive
MH1 DH55R	517717	6264884	32	-90	0	18	Alkaline Intrusive
MH1 DH55Z	518017	6264819	32	-90	0	103	Alkaline Intrusive
MH111 DH7	564475	6252293	35	-90	0	94	Pegmatite
MH13 DH14	529179	6258738	20	-90	0	36	Pegmatite
MH13 DH15	529179	6258788	20	-90	0	28	Pegmatite
MH53 DH23	533929	6211841	20	-90	0	27	Pegmatite
MH13 DH26	529179	6258758	20	-90	0	30	Pegmatite
MH13 DH27	529279	6258783	20	-90	0	20	Pegmatite
MH58 DH48	530529	6227871	20	-90	0	32	Pegmatite
MH1 DH55C	518067	6265235	32	-90	0	18	Pegmatite
MH1 DH55X	517967	6264845	32	-90	0	11	Pegmatite
SHDD01	531730	6261526	21	-60	20	168.3	Alkaline Intrusive
MH2-DH56L	531867	6261635	21	-90	0	66	Alkaline Intrusive
MH2-DH56P	531717	6261510	21	-90	0	66	Alkaline Intrusive
MH2-DH56J	531817	6261584	21	-90	0	156	Alkaline Intrusive
MH2-DH56C	531767	6261559	21	-90	0	80	Alkaline Intrusive
MH2-DH56B	531767	6261610	21	-90	0	79	Alkaline Intrusive
MH2-DH56G	531717	6261560	21	-90	0	78	Alkaline Intrusive
SHDD02	519829	6258684	30	-60	100	252.5	Pegmatite
SHDD03	520001	6258559	30	-60	270	160	Pegmatite
MH1-55A	518067	6265185	38	-90	0	60	Alkaline Intrusive
MH1-55Y	518017	6264835	38	-90	0	15	Alkaline Intrusive
MH1-55Z	518017	6264819	38	-90	0	99	Alkaline Intrusive
MH13 DH14	529050	6258567	20	-90	0	36	Pegmatite
MH13 DH15	529050	6258617	20	-90	0	28	Pegmatite

Table 2: Collar data from 41 historic drill holes within OAR's tenure identified to have historically logged lithologies prospective for rare earth elements, lithium and other critical metals. OAR notes that these observations are from historical drill logs and a proxy or substitute for laboratory analysis.

17 August 2023

TABLE 3: HISTORICAL LOGGING INTERVALS OF PROSPECTIVE HOLES

ESOURCES

Hole ID	From(m)	To(m)	Interval	Description
MH1 DH55A	0	3	3	Bridgewater Formation - Upper Member. Calcrete chips and Calcarenites.
MH1 DH55A	3	10	7	Bridgewater Formation - Lower Member. Clayey Calcrete.
MH1 DH55A	10	20	10	Undifferentiated varicoloured gravelly clay and sand.
MH1 DH55A	20	24	4	Kimberlite - weathered clays and minor rock fragments.
MH1 DH55A	24	60	36	Kimberlite, becoming fresher with depth
MH1 DH55B	0	7	7	Bridgewater Formation. Calcrete, Calcarenites and surface soil.
MH1 DH55B	7	14	7	Weathered Basement. Clayey fine sandy clay and very minor mica.
MH1 DH55B	14	15	1	Granite
MH1 DH55C	0	8	8	Bridgewater Formation. Calcrete, Calcarenites and surface soil.
MH1 DH55C	8	16	8	Weathered Basement. Clayey calcarenites grading into clayey fine sands.
MH1 DH55C	16	18	2	Granite/Pegmatite
MH1 DH55D	0	9	9	Bridgewater Formation. Calcrete, Calcarenites and surface soil.
MH1 DH55D	9	14	5	Weathered Basement. Clayey with minor sand and qtz chips.
MH1 DH55D	14	15	1	Granite.
MH1 DH55E	0	10	10	Bridgewater Formation. Calcrete and Calcarenites.
MH1 DH55E	10	14	4	Undifferentiated Sand and Clay
MH1 DH55E	14	30	16	Weathered Kimberlite. Clay and Mica. Becoming fresher with depth.
MH1 DH55F	0	8	8	Bridgewater Formation. Surface soils and clays, Calcrete and Calcarenites.
MH1 DH55F	8	13	5	Undifferentiated Sand and Clay
MH1 DH55F	13	24	11	Weathered Basement. Clayey with minor fine sand and mica.
MH1 DH55F	24	26	2	Granite Gneiss.
MH1 DH55G	0	8	8	Bridgewater Formation. Calcrete and Calcarenites.
MH1 DH55G	8	13	5	Undifferentiated clay and sand
MH1 DH55G	13	28	15	Weathered Bedrock. Clay and quartz sand with chips of qtz and weathered schist.
MH1 DH55G	28	29	1	Granite
MH1 DH55H	0	6	6	Bridgewater Formation. Calcrete, Calcarenites and surface soil.
MH1 DH55H	6	11	5	Undifferentiated clay and sand
MH1 DH55H	11	30	19	Weathered Kimberlite. Clay and Mica. Becoming fresher with depth.
MH1 DH55I	0	10	10	Bridgewater Formation. Calcarenites and Calcrete.
MH1 DH55I	10	16	6	Undifferentiated Sand and Clay
MH1 DH55I	16	19	3	Weathered Basement. Clay with minor mica and quartz.
MH1 DH55I	19	20	1	Granite Gneiss.
MH1 DH55J	0	7	7	Bridgewater Formation. Calcarenites and Calcrete and surface soils.
MH1 DH55J	7	13	6	Undifferentiated Sand and Clay
MH1 DH55J	13	17	4	Weathered Basement. Clay with biotite and quartz sand.
MH1 DH55J	17	21	4	Granite Gneiss.
MH1 DH55k	0	7	7	Bridgewater Formation. Calcarenites and Calcrete and surface soils.
MH1 DH55k	7	9	2	Undifferentiated Sand and Clay
MH1 DH55k	9	28	19	Weathered Basement. Clay with micas.
MH1 DH55k	28	30	2	Micaceous schist.
MH1 DH55L	0	6	6	Bridgewater Formation. Calcrete and Calcarenite and surface soil.

Oar Resources Limited Unit 3, 32 Harrogate St West Leederville, WA 6007 PH +61 8 6117 4797

17 August 2023

MH1 DH55L	6	11	5	Undifferentiated clay and sand
MH1 DH55L	11	20	9	Weathered Bedrock. Clay, micas and quartz sand.
MH1 DH55L	20	21	1	Granite
MH1 DH55M	0	8	8	Bridgewater Formation. Calcrete and Calcarenite.
MH1 DH55M	8	10	2	Undifferentiated clay and sand
MH1 DH55M	10	14	4	Weathered Bedrock. Clay and micas.
MH1 DH55M	14	16	2	Schist - Biotite
MH1 DH55N	0	8	8	Bridgewater Formation. Calcrete and Calcarenite and surface soil.
MH1 DH55N	8	15	7	Weathered Bedrock. Clay and micas with minor qtz sand
MH1 DH55N	15	17	2	Schist - Quartz-Biotite
MH1 DH550	0	8	8	Bridgewater Formation. Calcrete and Calcarenite and surface soil.
MH1 DH550	8	9	1	Leached Ironstone. Iron oxide cemented Qtz grit grading into micas and clays.
MH1 DH550	9	12	3	Schist - Quartz-Biotite
MH1 DH55P	0	8	8	Bridgewater Formation. Calcrete and Calcarenite and surface soil.
MH1 DH55P	8	10	2	Weathered Basement. Clay with sand and mica.
MH1 DH55P	10	12	2	Granitic Gneiss
MH1 DH55Q	0	9	9	Bridgewater Formation. Calcarenite.
MH1 DH55Q	9	10	1	Ferruginous Sand
MH1 DH55Q	10	12	2	Weathered Basement. Clay with qtz sand and mica.
MH1 DH55Q	12	13	1	Granitic Gneiss
MH1 DH55R	0	5	5	Bridgewater Formation. Calcarenite.
MH1 DH55R	5	7	2	Undifferentiated clay and sand
MH1 DH55R	7	9	2	Weathered Bedrock. Clay and micas with chips of weathered schist.
MH1 DH55R	9	15	6	Schist - Quartz-Biotite
MH1 DH55R	15	18	3	Granitic Gneiss
MH1 DH55S	0	5	5	Bridgewater Formation. Calcrete and Calcarenite.
MH1 DH55S	5	7	2	Undifferentiated clay and sand
MH1 DH55S	7	11	4	Weathered Bedrock. Clay and micas with chips of weathered schist grading into fresh.
MH1 DH55S	11	12	1	Schist - Quartz-Biotite-mica
MH1 DH55T	0	4	4	Bridgewater Formation. Calcarenite to calcic clay.
MH1 DH55T	4	8	4	Undifferentiated clay and sand
MH1 DH55T	8	13	5	Weathered Basement. Clay and micas with chips of weathered schist grading into fresh.
MH1 DH55T	13	15	2	Schist - Quartz-Mica-Feldspar-Biotite
MH1 DH55U	0	5	5	Bridgewater Formation. Calcarenite.
MH1 DH55U	5	7	2	Undifferentiated clay and sand
MH1 DH55U	7	8	1	Weathered Basement. Clay and weathered schist grading into fresh.
MH1 DH55U	8	12	4	Schist - Quartz-Biotite
MH1 DH55V	0	7	7	Bridgewater Formation. Calcarenite with minor calcrete.
MH1 DH55V	7	11	4	Undifferentiated clay and sand
MH1 DH55V	11	17	6	Weathered Basement. Clay and micas with qtz sand and minor qtz fragments and schist chips.
MH1 DH55V	17	22	5	Schist - Quartz-Biotite-muscovite-white mica.
MH1 DH55W	0	8	8	Bridgewater Formation. Calcarenite with minor calcrete.
MH1 DH55W	8	10	2	Undifferentiated clay and sand
MH1 DH55W	10	17	7	Weathered Basement. Clay and micas with qtz fragments grading to fresh schist.
MH1 DH55W	17	18	1	Schist - Biotite-Quartz-white mica-white mica (?)
			Mr.	

Oar Resources Limited Unit 3, 32 Harrogate St West Leederville, WA 6007 PH +61 8 6117 4797

 \wedge

RESOURCES

R

17 August 2023

MH1 DH55X	0	7	7	Bridgewater Formation. Calcarenite with minor calcrete.		
MH1 DH55X	7	10	3	Weathered Basement. Calcic clays grading into micaceous clays and chips of weathered schist.		
MH1 DH55X	10	11	1	Schist - Quartz-Biotite-white mica-white mica-feldspar (?) and tourmaline.		
MH1 DH55Y	0	6	6	Bridgewater Formation. Calcarenite with minor calcrete.		
MH1 DH55Y	6	8	2	Ferruginous Sand and clays		
MH1 DH55Y	8	13	5	Weathered Basement. Clays and mica with chips of weathered schist.		
MH1 DH55Y	13	15	2	Granitic Gneiss		
MH1 DH55Z	0	7	7	Bridgewater Formation. Calcarenite with calcrete.		
MH1 DH55Z	7	12	5	Undifferentiated clay and fine sands.		
MH1 DH55Z	12	32	20	Weathered Kimberlite. Clay and minor Mica and fine sand.		
MH1 DH55Z	32	99	67	Kimberlite.		
MH1 DH55Z	99	103	4	Gneiss and Schist. Qtz-biotite-feldspar Gneiss and qtz-biotite schist.		
SHDD02	0	3	3	Calcareous and partly calcrete fine sand.		
SHDD02	3	16	13	Fine grained, weakly geothitic calcareous and partly calcrete sand.		
SHDD02	16	25	9	Clay - Geothitic		
SHDD02	25	33	8	Clay - Variably geothitic sandy clay		
SHDD02	33	42	9	Sand, qtz rich, goethitic, partly hematitic fine to medium grained sand.		
SHDD02	42	47	5	Very coarse qtz rich sand.		
SHDD02	47	50	3	Chloritic and sericitic saprock		
SHDD02	50	60	10	Saprolite - Chloritic and sericitic clay.		
SHDD02	60	67	7	Chloritic and sericitic saprock		
SHDD02	67	76.3	9.3	Saprolite - Muscovitic and partly chloritic?. Weathered granite or granitic gneiss.		
SHDD02	76.3	79.85	3.5	Biotite rich immature pegmatite.		
SHDD02	79.85	86.15	6.3	Amphibolite - partly bleached, foliated garnet/amphibole/plag.		
SHDD02	86.15	89.2	3.0	Gneiss - Biotite/qtz/plag/sillimanite		
SHDD02	89.2	105.3	16.1	Amphibolite - hornblende/plag. Strongly biotitic and partly chloritic.		
SHDD02	105.3	117.7	12.4	Pegmatite, very coarsely biotitic.		
SHDD02	117.7	239	121.3	Gneiss - qtz/feld/biotite. Minor pyrite in sections. Thin brecciated units and strongly deformed and folded in sections.		
SHDD02	239	252.5	13.5	Pegmatite - sporadic sterilisation, granitic.		
SHDD01	0	7	7	Variously calcrete calcareous sand.		
SHDD01	7	10	3	Clay, partly sand		
SHDD01	10	22	12	Mottled clay. Minor sand		
SHDD01	22	26	4	Sand, clavey at top. Qtz rich sand to gravel.		
SHDD01	26	37	11	Sand, partly lignitic with minor clay.		
SHDD01	37	38	1	Muscovite rich saprolite.		
SHDD01	38	42	4	Clayey lignite, varying qtz sand content.		
SHDD01	42	47	5	Lignitic, partly clayey sand.		
SHDD01	47	58	11	Clay, minor muscovites, weakly ferruginous.		
SHDD01	58	83.4	25.4	Saprolite, Clayey, muscovitic and chloritic.		
SHDD01	83.4	95.4	12	Gneiss, strongly foliated, Qtz/Kfeld/biotite/sillimanite		
SHDD01	95.4	100.5	5.1	Amphibolite, biotitic, fine grained, foliated.		
SHDD01	100.5	112.2	11.7	Gneiss, strongly foliated, Qtz/Kfeld/biotite/sillimanite		
SHDD01	112.2	113.05	0.9	Amphibolite, Sillimanite-bearing, hornblende-plag +/- biotite		
SHDD01	113.05	115.2	2.1	Gneiss, kfeldspar augen		

 $\bigcirc \land$

RESOURCES

17 August 2023

SHDD01	115.2	118.63	3.43	Gneiss, Biotite/sillimanite/k-spar/qtz +/- plag
SHDD01	118.63	125.65	7.0	Gneiss, biotite rich, kfeldspar augen
SHDD01	125.65	127.15	1.5	Carbonatite, carbonate and plagioclase rich.
SHDD01	127.15	129.3	2.2	Gneiss, augen, metamorphosed.
SHDD01	129.3	129.9	0.6	Carbonatite close to contact with gneiss.
SHDD01	129.9	132.5	2.6	Carbonatite
SHDD01	132.5	150.7	18.2	Carbonatite. Quite weathered in parts. Abundant clasts.
SHDD01	150.7	165.7	15	Brecciated, oxidised, highly fractured Gneiss
SHDD01	165.7	166.75	1.1	Oxidised Carbonatite
SHDD01	166.75	168.3	1.6	Brecciated Gneiss
MH14 DH16	0	14	14	Bridge Water Formation, Calcarenites.
MH14 DH16	14	23	9	Bridge Water Formation, Calcarenites and clay.
MH14 DH16	23	37	14	Clay + qtz pebbles and grains.
MH14 DH16	37	49	12	Carbonaceous clay, including coal fragments towards the base.
MH14 DH16	49	55 5	65	Carbonaceous clays, metamorphic rock fragments, rich in blue/grey micas. Decreasing coal fragments towards the base
MH14 DH16	55 5	55.6	0.5	
	0	S.0	0.1	Bridgewater Formation Calcrete and soil
	9	20	11	Indifferentiated varicoloured clay and sand
	20	20	11	Indifferentiated variable and and ant
	20	36	12	Top of Poelpena Formation Risck carbonaceous fine sand and clay with minor mica
	36		5	Carbonaceous "oily" sand silicified in parts
		57	16	Weathered Resement Dark green blue/green clays and mice
	57	70	22	Micaceous schict with foldenar rich in sections
MH2 DH56C	0	12	12	Bridgewater Formation Calcarenite minor Calcrete
MH2 DH56C	12	24	12	Indifferentiated varicoloured clav and sand
MH2 DH56C	24	40	16	
MH2 DH56C	40	43	3	Top of Poelpena Formation, Black green/black clay, carbonaceous, minor mica and fine sand
MH2 DH56C	43	76	33	Weathered Basement Dark green hlue/green clavs and mica with minor sand
MH2 DH56C	76	80	4	Silicified and calcified Kimberlite
MH2 DH56G	,,,	10	10	Bridgewater Formation Calcarenite Calcrete and soil
MH2 DH56G	10	22	12	Undifferentiated varicoloured clav and sand
MH2 DH56G	22	25	3	
MH2 DH56G	25	34	9	Top of Poelpena Formation Black Green/Black Carbonaceous Sand minor Clav
MH2 DH56G	34	39	5	Brown/black_green/black_slightly micaceous carbonaceous clay and fine sand.
MH2 DH56G	39	72	33	Weathered Basement. White/Brown/Grey clay and mica with minor sand
MH2 DH56G	72	72	6	Granitic Gneiss
MH2 DH56I	0	11	11	Bridgewater Formation, Calcrete, Calcarenite,
MH2 DH56I	11	21	10	Undifferentiated varicoloured clav and sand
MH2 DH56I	21	26	5	Undifferentiated sand and grit.
MH2 DH56I	26	38	12	Ton of Poelnena Formation Green/Black Carbonaceous Clay and Sand Minor Mica
MH2 DH561	20	<u></u> Л5	7	Black Brown/Black "Oily" clay and sand
MH2 DH561	72	156	111	Weathered Kimberlite Clay and Mica. Becoming fresher with denth
MH2 DH56I	45	12	111	Bridgewater Formation Calcrote Calcarenite
	12	20	- 13	Indifferentiated varicoloured clav and sand

RESOURCES

()

17 August 2023

MH2 DH56L	20	22	2	Undifferentiated sand and grit.
MH2 DH56L	22	36.5	14.5	Top of Poelpena Formation. Grey/Green Clay and Sand. Minor Mica.
MH2 DH56L	36.5	38	1.5	Black, Brown/Black "Oily" sand and clay.
MH2 DH56L	38	40	2	Black, Brown/Black carbonaceous clay and fine sand.
MH2 DH56L	40	46	6	Black, Brown/Black "Oily" sand and clay.
MH2 DH56L	46	49	3	Weathered Basement. Brown, green, grey clay and mica.
MH2 DH56L	49	66	17	Green, Grey Serpentinite (Kimberlite?)
MH2 DH56P	0	10	10	Bridgewater Formation. Calcrete, Calcarenite.
MH2 DH56P	10	19	9	Undifferentiated varicoloured clay and sand.
MH2 DH56P	19	24	5	Undifferentiated sand and grit.
MH2 DH56P	24	34	10	Top of Poelpena Formation. Black, Green/Black Carbonaceous, micaceous clays and fine sands.
MH2 DH56P	34	40	6	Chocolate brown, black lignite, clay and fine sand, minor mica. "oily".
MH2 DH56P	40	65	25	Weathered Basement. Light Green/Grey, white, clays, micas and quartz sand.
MH2 DH56P	65	68	3	Quartz-Biotite Gneiss.
SHDD03	0	4	4	Calcrete
SHDD03	4	16	12	Qtz Sand, variably calcrete and calcareous.
SHDD03	16	26	10	Clay - partly goethitic
SHDD03	26	36	10	Clay with some sand and calcrete intervals
SHDD03	36	43	7	Sand - fine to medium grained, qtz rich and goethitic.
SHDD03	43	43.6	0.6	Saprock - micaceous.
SHDD03	43.6	78.1	34.5	Gneiss - strongly foliated qtz/feld/biotite +/- sillimanite
SHDD03	78.1	110	31.9	Gneiss - less biotite rich qtz/feld
SHDD03	110	114.05	4.1	Gneiss - poorly layered, biotite rich, plagioclase-biotite +/- qtz +/- garnet +/- hornblende +/- py and pyrrhotite
SHDD03	114.05	114.77	0.7	Amphibolite - Hornblende-biotite-plag +/- pyroxene "gabbro".
SHDD03	114.77	122.06	7.3	Gneiss - plag-biotite +/- garnet +/- qtz
SHDD03	122.06	122.37	0.3	Amphibolite - small mafic intrusive running up one side of core. Hornblende-plag-biotite.
SHDD03	122.37	123	0.6	Gneiss - plag-biotite +/- garnet +/- qtz
SHDD03	123	123.2	0.2	Amphibolite - plag-Hornblende-biotite. Laver parallel
SHDD03	123.2	126.16	3.0	Gneiss - plagioclase-biotite. Strongly sheared in some areas.
SHDD03	126.16	126.5	0.3	Amphibolite - plag-Hornblende-biotite. Layer parallel
SHDD03	126.5	128.7	2.2	Gneiss - plag-biotite +/- garnet +/- qtz
SHDD03	128.7	129.5	0.8	Amphibolite - plag-Hornblende-biotite. Garnet rich at margins.
SHDD03	129.5	132.5	3	Gneiss - plag-biotite
SHDD03	132.5	139.45	6.9	Gabbro. Coarse grained, non-deformed plag-hornblende-cpx + garnet.
SHDD03	139.45	160	20.6	Gneiss - siliceous qtz-plag-biotie gneiss. Folded and sheared.
SH9 DH30	0.00	10.00	10.00	Calcarenite and sandy calcrete
SH9 DH30	10.00	14.00	4.00	Sandy Clay
SH9 DH30	14.00	40.00	26.00	Clay (micaceous in sections), Ferricrete and occasional Qtz gravel. Lignite and pyrite also present.
SH9 DH30	40.00	64.00	24.00	Black carbonaceous and micaceous clays. Sandy with lignite and pyrite in sections and qtz gravels present.
6110 01120		90.00	26.00	Grey green silts with Kimberlitic clays.
2H9 DH30	64.00	50.00		
SH9 DH30	64.00 90.00	92.00	2.00	Kimberlite - Chips, phlogopite rich, Gneissic + Basaltic xenoliths
SH9 DH30 SH9 DH30 SH9 DH30	64.00 90.00 92.00	92.00 93.75	2.00	Kimberlite - Chips, phlogopite rich, Gneissic + Basaltic xenoliths Kimberlite with Gneissic xenoliths
SH9 DH30 SH9 DH30 SH9 DH30 SH9 DH30 SH9 DH30	64.00 90.00 92.00 93.75	92.00 93.75 94.10	2.00 1.75 0.35	Kimberlite - Chips, phlogopite rich, Gneissic + Basaltic xenoliths Kimberlite with Gneissic xenoliths Gneiss Basement

 \wedge

RESOURCES

R

17 August 2023

SH13 DH29	6.00	14.00	8.00	Calcrete and Clayey Sands	
SH13 DH29	14.00	28.00	14.00	Clayey Sands and qtz gravels	
SH13 DH29	28.00	58.00	30.00	Sandy Clay with well rounded qtz gravels and occasional feldspar and pyrite nodules. Moving towards carbonaceous clay.	
SH13 DH29	58.00	96.00	38.00	Sandy clay, micaceous, weathered Kimberlite	
SH13 DH29	96.00	97.00	1.00	Fresh, dark green Kimberlite, feldspar xenoliths, last 20cm Gneissic Basement with Kimberlitic stringers.	
SH8 DH31	0.00	6.00	6.00	Calcarenite	
SH8 DH31	6.00	14.00	8.00	Nodular calcrete and clayey sands	
SH8 DH31	14.00	18.00	4.00	Clayey sands with pyrite balls and Lignite.	
SH8 DH31	18.00	30.00	12.00	Micaceous clay (kimberlitic?) with lignite and pyrite.	
SH8 DH31	30.00	34.00	4.00	Kimberlite with tuffaceous breccia and large gneissic fragments.	
SH8 DH31	34.00	38.00	4.00	Chips/sands of Gneiss, vein qtz, muscovite and feldspars. Kimberlite stringers.	
SH8 DH31	38.00	60.00	22.00	Weathered Gneiss, feldspar rich + muscovite. Fresh Gneissic Basement at 60m.	
MH13 DH26	0.00	4.00	4.00	Calcarenite	
MH13 DH26	4.00	10.00	6.00	Clays + Calcrete chips	
MH13 DH26	10.00	18.00	8.00	Clay + Qtz	
MH13 DH26	18.00	20.00	2.00	Clay with large qtz fragments + weathered feldspar.	
MH13 DH26	20.00	28.00	8.00	Clay - Qtz-mica-feldspar	
MH13 DH26	28.00	30.00	2.00	Pegmatitic Granite. Tourmaline, qtz, mica, feldspar + sulphides.	
MH13 DH27	0.00	4.00	4.00	Calcarenite	
MH13 DH27	4.00	12.00	8.00	Calcarenite + Clay	
MH13 DH27	12.00	16.00	4.00	Clay	
MH13 DH27	16.00	18.00	2.00	Clay + minor qtz and mica	
MH13 DH27	18.00	20.00	2.00	Course grained quartz	
SH14 DH21	0.00	2.00	2.00	Calcarenite	
SH14 DH21	2.00	4.00	2.00	Calcrete and muds + silts	
SH14 DH21	4.00	8.00	4.00	Clay + Kimberlite	
SH14 DH21	8.00	63.00	55.00	Kimberlite	
SH14 DH22	0.00	4.00	4.00	Calcarenite + Clay	
SH14 DH22	4.00	6.00	2.00	Clay and Calcrete	
SH14 DH22	6.00	60.00	54.00	Kimberlite	
SH14 DH24	0.00	4.00	4.00	Calcarenite and Calcrete	
SH14 DH24	4.00	6.00	2.00	Calcrete and Sandy Clay	
SH14 DH24	6.00	32.00	26.00	Kimberlite - Weathered	
SH14 DH24	32.00	40.00	8.00	Kimberlite - Fresh	
SH14 DH24	40.00	51.00	11.00	Kimberlite - Weathered with Gneissic Xenoliths.	
MH13 DH14	0	7	7	Bridgewater Formation. Calcarenites and Fe rich surface soils.	
MH13 DH14	7	13	6	Clay, Fe pisolites and calcarenites	
MH13 DH14	13	25	12	Clay + qtz pebbles. Poorly sorted qtz sands and fragments.	
MH13 DH14	25	36	11	Metamorphic rock frags. Qtz composes 90% of sample + mica and feldspar.	
MH13 DH15	0.00	7.00	7.00	Bridgewater Formation. Calcarenites and Fe rich surface soils.	
MH13 DH15	7.00	17.00	10.00	Calcarenite, Clay, Fe pisolites	
MH13 DH15	17.00	27.00	10.00	Clays + qtz pebbles + poorly sorted qtz frags and Fe rich frags + grains.	
MH13 DH15	27.00	28.00	1.00	Metamorphic basement. Qtz rich + mica and feldspar.	

Table 3: Geological logging records from prospective holes identified within OAR's tenure within the Western Eyre Peninsula

ESOURCES

17 August 2023

TABLE 4: TABLE OF PXRF DATA

Hole ID	Depth (m)	To (m)	TRE (PPM)
SHDD01	0	1	0
SHDD01	1	2	0
SHDD01	2	3	0
SHDD01	3	4	174
SHDD01	4	5	6
SHDD01	5	6	5
SHDD01	6	7	7
SHDD01	7	8	84
SHDD01	8	9	11
SHDD01	9	10	11
SHDD01	10	11	159
SHDD01	11	12	20
SHDD01	12	13	70
SHDD01	13	14	10
SHDD01	14	15	14
SHDD01	15	16	174
SHDD01	16	17	54
SHDD01	17	18	3
SHDD01	18	19	5
SHDD01	19	20	361
SHDD01	20	21	261
SHDD01	21	22	10
SHDD01	22	23	0
SHDD01	23	24	11
SHDD01	24	25	6
SHDD01	25	26	65
SHDD01	26	27	127
SHDD01	26	27	85
SHDD01	27	28	159
SHDD01	28	29	140
SHDD01	29	30	69
SHDD01	30	31	12
SHDD01	31	32	81
SHDD01	32	33	72
SHDD01	33	34	64
SHDD01	34	35	11
SHDD01	35	36	22
SHDD01	36	37	40
SHDD01	37	38	115
SHDD01	38	39	176
SHDD01	39	40	31

17 August 2023

	- 1989 - 192895 - X.		
SHDD01	40	41	101
SHDD01	41	42	19
SHDD01	42	43	270
SHDD01	43	44	102
SHDD01	44	45	30
SHDD01	45	46	26
SHDD01	46	47	28
SHDD01	47	48	240
SHDD01	48	49	139
SHDD01	49	50	9
SHDD01	50	51	226
SHDD01	51	52	75
SHDD01	52	53	137
SHDD01	53	54	60
SHDD01	53	54	10
SHDD01	54	55	10
SHDD01	55	56	162
SHDD01	56	57	157
SHDD01	57	58	138
SHDD01	58	59	382
SHDD01	59	60	230
SHDD01	60	61	241
SHDD01	61	62	234
SHDD01	62	63	164
SHDD01	63	64	218
SHDD01	64	65	55
SHDD01	65	66	112
SHDD01	66	67	543
SHDD01	67	68	129
SHDD01	68	69	889
SHDD01	69	70	339
SHDD01	70	71	94
SHDD01	71	72	850
SHDD01	72	73	249
SHDD01	73	74	163
SHDD01	74	75	244
SHDD01	75	76	200
SHDD01	76	77	173
SHDD01	77	78	227
SHDD01	78	79	148
SHDD01	79	80	195
SHDD01	80	81	197
SHDD01	81	82	189
SHDD01	82	83.4	160
SHDD01	83.4	83.4	184

 \wedge

RESOURCES

R

17 August 2023

SHDD01	83.4	83.5	178
SHDD01	83.5	84	186
SHDD01	84	84.5	106
SHDD01	84.5	85	14
SHDD01	85	85.5	322
SHDD01	85.5	86	5
SHDD01	86	86.5	154
SHDD01	86.5	87	206
SHDD01	87	87.5	273
SHDD01	87.5	88	301
SHDD01	88	88.5	191
SHDD01	88.5	89	281
SHDD01	89	89.5	6
SHDD01	89.5	90	178
SHDD01	90	90.5	219
SHDD01	90.5	91	241
SHDD01	91	91.5	64
SHDD01	91.5	92	88
SHDD01	92	92.5	66
SHDD01	92.5	93	215
SHDD01	93	93.5	290
SHDD01	93.5	94	214
SHDD01	94	94.5	78
SHDD01	94.5	95	115
SHDD01	95	95.5	38
SHDD01	95.5	96	260
SHDD01	96	96.5	188
SHDD01	96.5	97	23
SHDD01	97	97.5	124
SHDD01	97.5	98	42
SHDD01	98	98.5	156
SHDD01	98.5	99	21
SHDD01	99	99.5	17
SHDD01	99.5	100	148
SHDD01	100	100.5	45
SHDD01	100.5	101	204
SHDD01	101	101.5	15
SHDD01	101.5	102	175
SHDD01	102	102.5	164
SHDD01	102.5	102.5	85
SHDD01	102.5	103	160
SHDD01	103	103.5	369
SHDD01	103.5	104	5
SHDD01	104	104.5	191
SHDD01	104.5	105	0

 \wedge

RESOURCES

R

17 August 2023

SHDD01	105	105.5	497
SHDD01	105.5	106	373
SHDD01	106	106.5	96
SHDD01	106.5	107	122
SHDD01	107	107.5	337
SHDD01	107.5	108	330
SHDD01	108	108.5	253
SHDD01	108.5	109	204
SHDD01	109	109.5	190
SHDD01	109.5	110	96
SHDD01	110	110.5	231
SHDD01	110.5	111	254
SHDD01	111	111.5	364
SHDD01	111.5	112	214
SHDD01	112	112.5	321
SHDD01	112.5	113	314
SHDD01	113	113.5	238
SHDD01	113.5	114	121
SHDD01	114	114.5	73
SHDD01	114.5	115	234
SHDD01	115	115.5	6
SHDD01	115.5	116	3
SHDD01	116	116.5	5
SHDD01	116.5	117	191
SHDD01	117	117.5	300
SHDD01	117.5	118	230
SHDD01	118	118.5	90
SHDD01	118.5	119	341
SHDD01	119	119.5	222
SHDD01	119.5	120	400
SHDD01	120	120.5	149
SHDD01	120.5	121	95
SHDD01	121	121.5	170
SHDD01	121.5	122	160
SHDD01	122	122.5	303
SHDD01	122.5	122.5	238
SHDD01	122.5	123	87
SHDD01	123	123.5	593
SHDD01	123.5	124	89
SHDD01	124	124.5	0
SHDD01	124.5	125	0
SHDD01	125	125.5	242
SHDD01	125.5	126	1143
SHDD01	126	126.5	71
SHDD01	126.5	127	1874

 \wedge

RESOURCES

R

17 August 2023

SHDD01	127	127.5	79
SHDD01	127.5	128	4
SHDD01	128	128.5	0
SHDD01	128.5	129	134
SHDD01	129	129.5	1122
SHDD01	129.5	130	254
SHDD01	130	130.5	184
SHDD01	130.5	131	26
SHDD01	131	131.5	173
SHDD01	131.5	132	424
SHDD01	132	132.5	240
SHDD01	132.5	133	1153
SHDD01	133	133.5	1248
SHDD01	133.5	134	911
SHDD01	134	134.5	1258
SHDD01	134.5	135	1227
SHDD01	135	135.5	774
SHDD01	135.5	136	833
SHDD01	136	136.5	169
SHDD01	136.5	137	292
SHDD01	137	137.5	582
SHDD01	137.5	138	1377
SHDD01	138	138.5	1195
SHDD01	138.5	139	1204
SHDD01	139	139.5	853
SHDD01	139.5	140	1600
SHDD01	140	140.5	821
SHDD01	140.5	141	1207
SHDD01	141	141.5	1492
SHDD01	141.5	142	682
SHDD01	142	142.5	656
SHDD01	142.5	142.5	1149
SHDD01	142.5	143	1137
SHDD01	143	143.5	1307
SHDD01	143.5	144	796
SHDD01	144	144.5	1499
SHDD01	144.5	145	1285
SHDD01	145	145.5	1497
SHDD01	145.5	146	1300
SHDD01	146	146.5	1113
SHDD01	146.5	147	1233
SHDD01	147	147.5	1196
SHDD01	147.5	148	1179
SHDD01	148	148.5	1277
SHDD01	148.5	149	223

 \wedge

RESOURCES

R

17 August 2023

SHDD01	149	149.5	1191
SHDD01	149.5	150	499
SHDD01	150	150.5	488
SHDD01	150.5	151	44
SHDD01	151	151.5	132
SHDD01	151.5	152	290
SHDD01	152	152.5	302
SHDD01	152.5	153	219
SHDD01	153	153.5	221
SHDD01	153.5	154	169
SHDD01	154	154.5	184
SHDD01	154.5	155	240
SHDD01	155	155.5	191
SHDD01	155.5	155.95	277
SHDD01	155.95	156.5	461
SHDD01	156.5	157	118
SHDD01	157	157.5	0
SHDD01	157.5	158	95
SHDD01	158	158.5	108
SHDD01	158.5	159	121
SHDD01	159	159.5	145
SHDD01	159.5	160	108
SHDD01	160	160.5	273
SHDD01	160.5	161	235
SHDD01	161	161.5	137
SHDD01	161.5	162	135
SHDD01	162	162.5	9
SHDD01	162.5	162.5	175
SHDD01	162.5	163	11
SHDD01	163	163.5	53
SHDD01	163.5	164	218
SHDD01	164	164.5	87
SHDD01	164.5	165	328
SHDD01	165	165.5	204
SHDD01	165.5	166	368
SHDD01	166	166.5	386
SHDD01	166.5	167	106
SHDD01	167	167.5	316
SHDD01	167.5	168	6
SHDD01	168	168.3	390
MH2-DH56L	0	2	0
MH2-DH56L	2	4	7
MH2-DH56L	4	6	11
MH2-DH56L	6	8	7
MH2-DH56L	8	10	59

RESOURCES

()

17 August 2023

MH2-DH56L	10	12	79
MH2-DH56L	12	14	140
MH2-DH56L	14	16	6
MH2-DH56L	16	18	49
MH2-DH56L	18	20	4
NO RECOVERY 20 to 22m			
MH2-DH56L	22	24	146
MH2-DH56L	24	26	73
MH2-DH56L	26	28	71
MH2-DH56L	28	30	167
MH2-DH56L	30	32	74
MH2-DH56L	32	34	207
MH2-DH56L	34	36	19
MH2-DH56L	36	38	10
MH2-DH56L	38	40	89
MH2-DH56L	40	42	12
MH2-DH56L	42	44	6
MH2-DH56L	42	44	5
MH2-DH56L	44	46	1087
MH2-DH56L	46	48	345
MH2-DH56L	48	50	865
MH2-DH56L	50	52	456
MH2-DH56L	52	52.5	138
MH2-DH56L	52.5	53	650
MH2-DH56L	53	53.5	67
MH2-DH56L	53.5	54	289
MH2-DH56L	54	54.5	387
MH2-DH56L	54.5	55	999
MH2-DH56L	55	56	190
MH2-DH56L	56	57	596
MH2-DH56L	57	58	797
MH2-DH56L	58	59	1520
MH2-DH56L	59	60	205
MH2-DH56L	60	61	106
MH2-DH56L	61	62	232
MH2-DH56L	62	63	232
MH2-DH56L	63	64	429
MH2-DH56L	64	65	627
MH2-DH56L	65	66	206
MH2-DH56L	66	67	256
MH2-DH56L	67	68	252
MH14-DH16	48	50	199
MH14-DH16	50	52	312
MH14-DH16	52	53	675
MH14-DH16	53	53.5	548

 $\bigcirc \land$

)/\R resources

17 August 2023

MH14-DH16	53.5	54	448
MH14-DH16	54	54.5	364
MH14-DH16	54.5	54.9	199
MH14-DH16	54.9	55.9	577
MH14-DH16	55.9	56.9	486
MH2-DH56P	0	2	8
MH2-DH56P	2	4	5
MH2-DH56P	4	6	90
MH2-DH56P	6	8	112
MH2-DH56P	8	10	152
MH2-DH56P	10	12	19
MH2-DH56P	12	14	0
MH2-DH56P	14	16	55
MH2-DH56P	16	18	7
MH2-DH56P	18	20	11
MH2-DH56P	20	22	4
MH2-DH56P	22	24	3
MH2-DH56P	24	26	109
MH2-DH56P	26	28	19
MH2-DH56P	28	30	13
MH2-DH56P	30	32	66
MH2-DH56P	32	34	136
MH2-DH56P	34	36	79
MH2-DH56P	34	36	19
MH2-DH56P	36	38	34
MH2-DH56P	38	40	21
MH2-DH56P	40	42	128
MH2-DH56P	42	44	158
MH2-DH56P	44	46	93
MH2-DH56P	46	48	274
MH2-DH56P	48	50	63
MH2-DH56P	50	52	57
MH2-DH56P	52	54	130
MH2-DH56P	54	56	325
MH2-DH56P	56	58	128
MH2-DH56P	58	60	249
MH2-DH56P	60	62	153
MH2-DH56P	62	64	349
MH2-DH56P	64	66	93
MH2-DH56P	66	68	102
MH2-DH56P	68	68.5	23
MH2-DH56P	68.5	69	297
MH2-DH56P	69	70	47
MH2-DH56J	52	53	343
MH2-DH56J	53	54	340

RESOURCES

()

17 August 2023

MH2-DH56J	54	54.5	229
MH2-DH56J	54.5	55	281
MH2-DH56J	55	55.5	182
MH2-DH56J	55.5	56	334
MH2-DH56J	56	56.5	91
MH2-DH56J	56.5	57	227
MH2-DH56J	57	58	244
MH2-DH56J	58	59	683
MH2-DH56J	59	60	140
MH2-DH56J	60	61	318
MH2-DH56J	61	62	175
MH2-DH56J	62	63	731
MH2-DH56J	63	63.5	265
MH2-DH56J	63.5	64	478
MH2-DH56J	64	64.5	212
MH2-DH56J	64.5	65	181
MH2-DH56J	65	65.5	157
MH2-DH56J	65.5	66	879
MH2-DH56J	66	66.5	299
MH2-DH56J	66.5	67	181
MH2-DH56J	67	67.5	249
MH2-DH56J	67.5	68	327
MH2-DH56J	68	68.5	270
MH2-DH56J	68.5	69	41
MH2-DH56J	69	69.5	225
MH2-DH56J	69.5	70	310
MH2-DH56J	70	70.5	210
MH2-DH56J	70.5	71	284
MH2-DH56J	71	71.5	188
MH2-DH56J	71.5	72	241
MH2-DH56J	72	72.5	249
MH2-DH56J	72.5	73	187
MH2-DH56J	73	73.5	583
MH2-DH56J	73.5	74	94
MH2-DH56J	74	74.5	171
MH2-DH56J	74.5	75	512
MH2-DH56J	75	75.5	234
MH2-DH56J	75.5	75.5	474
MH2-DH56J	75.5	76	318
MH2-DH56J	76	76.5	361
MH2-DH56J	76.5	77	184
MH2-DH56J	77	77.5	11
MH2-DH56J	77.5	78	215
MH2-DH56J	78	78.5	15
MH2-DH56J	78.5	79	307

 \wedge

RESOURCES

R

17 August 2023

MH2-DH56J	79	79.5	325
MH2-DH56J	79.5	80	306
MH2-DH56J	80	80.5	433
MH2-DH56J	80.5	81	239
MH2-DH56J	81	81.5	400
MH2-DH56J	81.5	82	312
MH2-DH56J	82	82.5	217
MH2-DH56J	82.5	83	255
MH2-DH56J	83	83.5	96
MH2-DH56J	83.5	84	456
MH2-DH56J	84	84.5	209
MH2-DH56J	84.5	85	228
MH2-DH56J	85	85.5	448
MH2-DH56J	85.5	86	279
MH2-DH56J	86	86.5	409
MH2-DH56J	86.5	87	542
MH2-DH56J	87	87.5	541
MH2-DH56J	87.5	88	195
MH2-DH56J	88	88.5	305
MH2-DH56J	88.5	89	399
MH2-DH56J	89	89.5	297
MH2-DH56J	89.5	90	257
MH2-DH56J	90	90.5	845
MH2-DH56J	90.5	91	653
MH2-DH56J	91	91.5	306
MH2-DH56J	91.5	92	222
MH2-DH56J	92	92.5	508
MH2-DH56J	92.5	93	11
MH2-DH56J	93	93.5	290
MH2-DH56J	93.5	94	167
MH2-DH56J	94	94.5	309
MH2-DH56J	94.5	95	346
MH2-DH56J	95	95.5	353
MH2-DH56J	95.5	95.5	7
MH2-DH56J	95.5	96	135
MH2-DH56J	96	96.5	273
MH2-DH56J	96.5	97	767
MH2-DH56J	97	97.5	1590
MH2-DH56J	97.5	98	939
MH2-DH56J	98	98.5	261
MH2-DH56J	98.5	99	261
MH2-DH56J	99	99.5	147
MH2-DH56J	99.5	100	155
MH2-DH56J	100	100.5	450
MH2-DH56J	100.5	101	420

 \wedge

RESOURCES

R

17 August 2023

MH2-DH56J	101	101.5	207
MH2-DH56J	101.5	102	231
MH2-DH56J	102	102.5	230
MH2-DH56J	102.5	103	480
MH2-DH56J	103	103.5	383
MH2-DH56J	103.5	104	261
MH2-DH56J	104	104.5	278
MH2-DH56J	104.5	105	226
MH2-DH56J	105	105.5	565
MH2-DH56J	105.5	106	277
MH2-DH56J	106	106.5	258
MH2-DH56J	106.5	107	304
MH2-DH56J	107	107.5	392
MH2-DH56J	107.5	108	388
MH2-DH56J	108	108.5	76
MH2-DH56J	108.5	109	110
MH2-DH56J	109	109.5	277
MH2-DH56J	109.5	110	296
MH2-DH56J	110	110.5	198
MH2-DH56J	110.5	111	301
MH2-DH56J	111	111.5	284
MH2-DH56J	111.5	112	506
MH2-DH56J	112	112.5	326
MH2-DH56J	112.5	113	315
MH2-DH56J	113	113.5	400
MH2-DH56J	113.5	114	350
MH2-DH56J	114	114.5	224
MH2-DH56J	114.5	115	356
MH2-DH56J	115	115.5	378
MH2-DH56J	115.5	115.5	87
MH2-DH56J	115.5	116	18
MH2-DH56J	116	116.5	128
MH2-DH56J	116.5	117	515
MH2-DH56J	117	117.5	435
MH2-DH56J	117.5	118	369
MH2-DH56J	118	118.5	303
MH2-DH56J	118.5	119	267
MH2-DH56J	119	119.5	119
MH2-DH56J	119.5	120	210
MH2-DH56J	120	120.5	185
MH2-DH56J	120.5	121	330
MH2-DH56J	121	121.5	265
MH2-DH56J	121.5	122	645
MH2-DH56J	122	122.5	352
MH2-DH56J	122.5	123	185

 \wedge

RESOURCES

R

17 August 2023

MH2-DH56J	123	123.5	393
MH2-DH56J	123.5	124	404
MH2-DH56J	124	124.5	564
MH2-DH56J	124.5	125	309
MH2-DH56J	125	125.5	797
MH2-DH56J	125.5	126	316
MH2-DH56J	126	126.5	289
MH2-DH56J	126.5	127	1019
MH2-DH56J	127	127.5	260
MH2-DH56J	127.5	128	435
MH2-DH56J	128	128.5	326
MH2-DH56J	128.5	129	444
MH2-DH56J	129	129.5	230
MH2-DH56J	129.5	130	721
MH2-DH56J	130	130.5	499
MH2-DH56J	130.5	131	313
MH2-DH56J	131	131.5	599
MH2-DH56J	131.5	132	400
MH2-DH56J	132	132.5	200
MH2-DH56J	132.5	133	229
MH2-DH56J	133	133.5	764
MH2-DH56J	133.5	134	853
MH2-DH56J	134	134.5	246
MH2-DH56J	134.5	135	348
MH2-DH56J	135	135.5	645
MH2-DH56J	135.5	135.5	364
MH2-DH56J	135.5	136	495
MH2-DH56J	136	136.5	100
MH2-DH56J	136.5	137	240
MH2-DH56J	137	137.5	206
MH2-DH56J	137.5	138	309
MH2-DH56J	138	138.5	769
MH2-DH56J	138.5	139	380
MH2-DH56J	139	139.5	1193
MH2-DH56J	139.5	140	396
MH2-DH56J	140	140.5	402
MH2-DH56J	140.5	141	686
MH2-DH56J	141	141.5	741
MH2-DH56J	141.5	142	483
MH2-DH56J	142	142.5	288
MH2-DH56J	142.5	143	368
MH2-DH56J	143	143.5	499
MH2-DH56J	143.5	144	409
MH2-DH56J	144	144.5	596
MH2-DH56J	144.5	145	7

 \wedge

RESOURCES

R

17 August 2023

MH2-DH56J	145	145.5	578
MH2-DH56J	145.5	146	102
MH2-DH56J	146	146.5	297
MH2-DH56J	146.5	147	385
MH2-DH56J	147	147.5	276
MH2-DH56J	147.5	148	141
MH2-DH56J	148	148.5	341
MH2-DH56J	148.5	149	599
MH2-DH56J	149	149.5	537
MH2-DH56J	149.5	150	274
MH2-DH56J	150	150.5	249
MH2-DH56J	150.5	151	350
MH2-DH56J	151	151.5	226
MH2-DH56J	151.5	152	350
MH2-DH56J	152	152.5	325
MH2-DH56J	152.5	153	345
MH2-DH56J	153	153.5	231
MH2-DH56J	153.5	154	317
MH2-DH56J	154	154.5	247
MH2-DH56J	154.5	155	87
MH2-DH56J	155	155.5	323
MH2-DH56J	155.5	156	209
MH2-DH56J	156	156.5	330
MH2-DH56J	44	46	1000
MH2-DH56J	46	48	696
MH2-DH56J	48	50	311
MH2-DH56J	50	52	189
MH2-DH56J	50	52	255
MH2 DH56C	76	76.5	1125
MH2 DH56C	76.5	77	645
MH2 DH56C	77	77.5	195
MH2 DH56C	77.5	78	20
MH2 DH56C	78	78.5	855
MH2 DH56C	78.5	79	818
MH2 DH56C	79	79.5	631
MH2 DH56C	79.5	80	580
MH2 DH56C	80	81	33
MH2-DH56B	0	2	9
MH2-DH56B	2	4	134
MH2-DH56B	4	6	459
MH2-DH56B	6	8	269
MH2-DH56B	8	10	60
MH2-DH56B	10	12	81
MH2-DH56B	12	14	4
MH2-DH56B	14	16	4

RESOURCES

()

17 August 2023

MH2-DH56B	16	18	7
MH2-DH56B	18	20	6
MH2-DH56B	20	22	5
MH2-DH56B	22	24	0
MH2-DH56B	24	26	258
MH2-DH56B	26	28	164
MH2-DH56B	28	30	25
MH2-DH56B	30	32	69
MH2-DH56B	32	34	170
MH2-DH56B	34	36	66
MH2-DH56B	36	38	59
MH2-DH56B	38	40	66
MH2-DH56B	40	42	81
MH2-DH56B	42	44	144
MH2-DH56B	44	46	134
MH2-DH56B	46	48	286
MH2-DH56B	48	50	345
MH2-DH56B	50	52	106
MH2-DH56B	52	54	190
MH2-DH56B	54	56	229
MH2-DH56B	56	58	141
MH2-DH56B	58	60	355
MH2-DH56B	60	62	201
MH2-DH56B	62	64	55
MH2-DH56B	64	66	169
MH2-DH56B	64	66	114
MH2-DH56B	66	67	91
MH2-DH56B	67	68	87
MH2-DH56B	68	69	131
MH2-DH56B	69	70	189
MH2-DH56B	70	71	120
MH2-DH56B	71	72	24
MH2-DH56B	72	73	234
MH2-DH56B	73	74	133
MH2-DH56B	74	75	56
MH2-DH56B	75	76	21
MH2-DH56B	76	77	194
MH2-DH56B	77	78	18
MH2-DH56B	78	79	19
MH2-DH56B	79	80	94
MH2-DH56G	0	2	6
MH2-DH56G	2	4	73
MH2-DH56G	4	6	5
MH2-DH56G	6	8	9
MH2-DH56G	8	10	8

 \wedge

RESOURCES

R

17 August 2023

MH2-DH56G	10	12	8
MH2-DH56G	12	14	6
MH2-DH56G	14	16	0
MH2-DH56G	16	18	135
MH2-DH56G	18	20	3
MH2-DH56G	20	22	0
MH2-DH56G	22	24	117
MH2-DH56G	24	26	135
MH2-DH56G	26	28	179
MH2-DH56G	28	30	100
MH2-DH56G	30	32	58
MH2-DH56G	32	34	75
MH2-DH56G	34	36	14
MH2-DH56G	36	38	29
MH2-DH56G	38	40	126
MH2-DH56G	40	42	15
MH2-DH56G	40	42	13
MH2-DH56G	42	44	64
MH2-DH56G	44	46	83
MH2-DH56G	46	48	166
MH2-DH56G	48	50	139
MH2-DH56G	50	52	84
MH2-DH56G	52	54	91
MH2-DH56G	54	56	146
MH2-DH56G	56	58	187
MH2-DH56G	58	60	242
MH2-DH56G	60	62	98
MH2-DH56G	62	64	183
MH2-DH56G	64	66	179
MH2-DH56G	66	68	170
MH2-DH56G	68	70	107
MH2-DH56G	70	72	197
MH2-DH56G	72	74	0
MH2-DH56G	74	75	151
MH2-DH56G	75	76	465
MH2-DH56G	76	77	296
MH2-DH56G	77	78	235
MH2-DH56G	78	78	85
MH2-DH56G	78	76.3	198
SHDD02	76.3	76.5	12
SHDD02	76.5	77	167
SHDD02	77	77.5	0
SHDD02	77.5	78	0
SHDD02	78	78.5	0
SHDD02	78.5	79	116

 \wedge

RESOURCES

R

17 August 2023

SHDD02	79	79.5	0
SHDD02	79.5	80	10
SHDD02	80	80.5	156
SHDD02	80.5	81	161
SHDD02	81	81.5	267
SHDD02	81.5	82	33
SHDD02	82	82.5	148
SHDD02	82.5	83	67
SHDD02	83	83.5	242
SHDD02	83.5	84	147
SHDD02	84	85	211
SHDD02	85	86	75
SHDD02	86	87	23
SHDD02	87	88	128
SHDD02	88	89	17
SHDD02	89	90	90
SHDD02	90	91	10
SHDD02	91	92	87
SHDD02	92	93	79
SHDD02	93	94	185
SHDD02	94	95	14
SHDD02	95	96	6
SHDD02	96	97	27
SHDD02	97	98	9
SHDD02	98	99	7
SHDD02	99	100	8
SHDD02	100	101	9
SHDD02	101	102	6
SHDD02	102	103	103
SHDD02	103	104	0
SHDD02	104	105	68
SHDD02	105	106	8
SHDD02	106	107	0
SHDD02	107	107	0
SHDD02	107	108	0
SHDD02	108	109	142
SHDD02	109	110	126
SHDD02	110	111	7
SHDD02	111	112	77
SHDD02	112	113	219
SHDD02	113	114	15
SHDD02	114	115	384
SHDD02	115	116	272
SHDD02	116	117	23
SHDD02	117	118	6
1	1		1

RESOURCES

()

17 August 2023

SHDD02	118	119	181
SHDD02	119	120	0
SHDD02	120	121	0
SHDD02	121	122	0
SHDD02	122	123	4
SHDD02	123	124	4
SHDD02	124	125	178
SHDD02	125	126	79
SHDD02	126	127	0
SHDD02	127	128	79
SHDD02	128	129	8
SHDD02	129	130	7
SHDD02	130	131	0
SHDD02	131	132	68
SHDD02	132	133	202
SHDD02	133	134	80
SHDD02	134	135	176
SHDD02	135	136	230
SHDD02	136	137	73
SHDD02	137	138	293
SHDD02	138	139	98
SHDD02	139	140	200
SHDD02	140	141	270
SHDD02	141	142	371
SHDD02	142	143	197
SHDD02	143	144	8
SHDD02	144	145	142
SHDD02	145	146	79
SHDD02	146	147	338
SHDD02	147	147	592
SHDD02	149	150	130
SHDD02	150	151	320
SHDD02	151	152	234
SHDD02	152	153	147
SHDD02	153	154	204
SHDD02	154	155	234
SHDD02	155	156	385
SHDD02	156	157	67
SHDD02	157	158	9
SHDD02	158	159	175
SHDD02	159	160	3
SHDD02	160	161	162
SHDD02	161	162	4
SHDD02	162	163	0
SHDD02	163	164	255
	-		- 1

 \wedge

RESOURCES

()

R

17 August 2023

SHDD02	164	165	130
SHDD02	165	166	468
SHDD02	166	167	6
SHDD02	167	168	8
SHDD02	168	169	17
SHDD02	169	170	81
SHDD02	170	171	150
SHDD02	171	172	15
SHDD02	172	173	250
SHDD02	173	174	9
SHDD02	174	175	8
SHDD02	175	176	13
SHDD02	176	177	0
SHDD02	177	178	7
SHDD02	178	179	88
SHDD02	179	180	90
SHDD02	180	181	6
SHDD02	181	182	79
SHDD02	182	183	191
SHDD02	183	184	312
SHDD02	184	185	4
SHDD02	185	186	191
SHDD02	186	187	151
SHDD02	187	187	11
SHDD02	187	188	310
SHDD02	188	189	163
SHDD02	189	190	250
SHDD02	190	191	214
SHDD02	191	192	269
SHDD02	192	193	78
SHDD02	193	194	101
SHDD02	194	195	119
SHDD02	195	196	528
SHDD02	196	197	12
SHDD02	197	198	215
SHDD02	198	199	10
SHDD02	199	200	222
SHDD02	200	201	216
SHDD02	201	202	6
SHDD02	202	203	7
SHDD02	203	204	11
SHDD02	204	205	112
SHDD02	205	206	97
SHDD02	206	207	156
SHDD02	207	208	232

RESOURCES

()

17 August 2023

SHDD02	208	209	71
SHDD02	209	210	718
SHDD02	210	211	87
SHDD02	211	212	165
SHDD02	212	213	220
SHDD02	213	214	198
SHDD02	214	215	131
SHDD02	215	216	126
SHDD02	216	217	243
SHDD02	217	218	80
SHDD02	218	219	93
SHDD02	219	220	97
SHDD02	220	221	133
SHDD02	221	222	5
SHDD02	222	223	363
SHDD02	223	224	186
SHDD02	224	225	246
SHDD02	225	226	357
SHDD02	226	227	209
SHDD02	227	227	219
SHDD02	227	228	225
SHDD02	228	229	106
SHDD02	229	230	8
SHDD02	230	231	94
SHDD02	231	232	174
SHDD02	232	233	6
SHDD02	233	234	354
SHDD02	234	235	9
SHDD02	235	236	0
SHDD02	236	237	96
SHDD02	237	238	196
SHDD02	238	239	62
SHDD02	239	240	93
SHDD02	240	241	98
SHDD02	241	242	171
SHDD02	242	243	361
SHDD02	243	244	25
SHDD02	244	245	76
SHDD02	245	246	310
SHDD02	246	247	674
SHDD02	247	248	3
SHDD02	248	249	197
SHDD02	249	250	22
SHDD02	250	251	91
SHDD02	251	252	171

RESOURCES

()

17 August 2023

SHDD02	252	252.5	171
SHDD03	3.3	4	129
SHDD03	4	5	0
SHDD03	5	6	9
SHDD03	6	7	9
SHDD03	7	8	9
SHDD03	8	9	0
SHDD03	9	10	142
SHDD03	10	11	13
SHDD03	11	12	8
SHDD03	12	13	169
SHDD03	13	14	70
SHDD03	14	15	14
SHDD03	15	16	8
SHDD03	16	17	57
SHDD03	17	18	117
SHDD03	18	19	14
SHDD03	19	20	211
SHDD03	20	21	86
SHDD03	21	22	18
SHDD03	22	23	69
SHDD03	22	23	266
SHDD03	23	24	64
SHDD03	24	25	67
SHDD03	25	26	82
SHDD03	26	27	17
SHDD03	27	28	8
SHDD03	28	29	8
SHDD03	29	30	98
SHDD03	30	31	8
SHDD03	31	32	11
SHDD03	32	33	84
SHDD03	33	34	11
SHDD03	34	35	6
SHDD03	35	36	56
SHDD03	36	37	6
SHDD03	37	38	125
SHDD03	38	39	4
SHDD03	39	40	5
SHDD03	40	41	158
SHDD03	41	42	208
SHDD03	42	43	7
SHDD03	43	43.6	123
MH1-DH55Z	12	14	90
MH1-DH55Z	14	16	119

RESOURCES

()

17 August 2023

MH1-DH55Z	16	18	216
MH1-DH55Z	18	20	255
MH1-DH55Z	20	22	650
MH1-DH55Z	22	24	486
MH1-DH55Z	24	26	253
MH1-DH55Z	26	28	185
MH1-DH55Z	28	30	185
MH1-DH55Z	30	32	473
MH1-DH55Z	32	33	283
MH1-DH55Z	33	34	761
MH1-DH55Z	34	35	293
MH1-DH55Z	35	36	285
MH1-DH55Z	36	37	368
MH1-DH55Z	37	38	419
MH1-DH55Z	38	39	543
MH1-DH55Z	39	40	391
MH1-DH55Z	40	41	604
MH1-DH55Z	41	42	450
MH1-DH55Z	42	43	457
MH1-DH55Z	43	44	643
MH1-DH55Z	44	46	1406
MH1-DH55Z	45	47	398
MH1-DH55Z	46	48	393
MH1-DH55Z	47	49	437
MH1-DH55Z	48	50	412
MH1-DH55Z	49	51	505
MH1-DH55Z	50	51	699
MH1-DH55Z	51	52	411
MH1-DH55Z	51	53	369
MH1-DH55Z	52	54	352
MH1-DH55Z	53	55	415
MH1-DH55Z	54	56	425
MH1-DH55Z	55	57	693
MH1-DH55Z	56	58	571
MH1-DH55Z	57	59	297
MH1-DH55Z	58	60	808
MH1-DH55Z	59	61	308
MH1-DH55Z	60	62	467
MH1-DH55Z	61	63	243
MH1-DH55Z	62	64	211
MH1-DH55Z	63	65	326
MH1-DH55Z	64	66	326
MH1-DH55Z	65	68	545
MH1-DH55Z	66	70	407
MH1-DH55Z	68	72	393

RESOURCES

()

17 August 2023

MH1-DH55Z	70	73	570
MH1-DH55Z	72	74	399
MH1-DH55Z	73	75	328
MH1-DH55Z	74	76	357
MH1-DH55Z	75	77	357
MH1-DH55Z	76	78	310
MH1-DH55Z	77	79	302
MH1-DH55Z	78	80	390
MH1-DH55Z	79	81	288
MH1-DH55Z	80	82	301
MH1-DH55Z	81	83	289
MH1-DH55Z	82	83	310
MH1-DH55Z	83	84	391
MH1-DH55Z	83	85	631
MH1-DH55Z	84	86	254
MH1-DH55Z	85	87	303
MH1-DH55Z	86	88	540
MH1-DH55Z	87	89	256
MH1-DH55Z	88	90	242
MH1-DH55Z	89	91	334
MH1-DH55Z	90	92	280
MH1-DH55Z	91	93	215
MH1-DH55Z	92	94	366
MH1-DH55Z	93	95	286
MH1-DH55Z	94	96	1123
MH1-DH55Z	95	97	679
MH1-DH55Z	96	98	515
MH1-DH55Z	97	99	354
MH1-DH55Z	98	99	240
MH1-DH55Z	99	100	750
MH1-DH55Z	99	100	689
MH1-DH55A	20	22	196
MH1-DH55A	22	24	430
MH1-DH55A	24	26	906
26 to 30m No Recovery			
MH1-DH55A	30	31	652
MH1-DH55A	31	32	344
MH1-DH55A	32	33	259
MH1-DH55A	33	34	472
MH1-DH55A	34	35	569
MH1-DH55A	35	36	89
MH1-DH55A	36	37	354
MH1-DH55A	37	38	296
MH1-DH55A	38	39	96
MH1-DH55A	39	40	341

RESOURCES

()

17 August 2023

MH1-DH55A	40	41	181
MH1-DH55A	41	42	427
MH1-DH55A	42	43	368
MH1-DH55A	43	44	526
MH1-DH55A	44	45	304
MH1-DH55A	45	46	304
MH1-DH55A	46	47	324
MH1-DH55A	47	48	328
MH1-DH55A	48	49	291
MH1-DH55A	49	50	368
MH1-DH55A	50	51	322
MH1-DH55A	51	52	475
MH1-DH55A	52	53	295
MH1-DH55A	53	54	346
MH1-DH55A	54	55	371
MH1-DH55A	55	56	235
MH1-DH55A	56	57	325
MH1-DH55A	57	58	425
MH1-DH55A	58	59	704
MH1-DH55A	59	60	301
MH1-DH55A	60	61	319
MH1-DH55Y	0	2	82
MH1-DH55Y	2	4	8
MH1-DH55Y	4	6	6
MH1-DH55Y	6	8	13
MH1-DH55Y	8	10	278
MH1-DH55Y	10	12	133
MH1-DH55Y	12	14	139
MH1-DH55Y	14	14.5	92
MH1-DH55Y	14.5	14.6	177
MH1-DH55Y	14.6	14.8	223
MH1-DH55Y	14.8	15	179
MH1-DH55Y	15	16	98

ESOURCES

Table 4: table of pXRF data showing Total Rare Earth Values(TRE) shown in ppm. pXRF data should never be considered a proxy or substitute for laboratory analysis.

17 August 2023

APPENDIX 2 – JORC TABLES

 R

RESOURCES

Section 1 Sampling Techniques and Data			
Criteria	Explanation	Comment	
Sampling techniques	Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg., submarine nodules) may warrant disclosure of detailed information.	 Diamond core has been sampled in intervals of 1m where possible. Otherwise, intervals less than 1m have been selected based on geological boundaries. Sample intervals have not crossed geologic boundaries. AC samples have been taken on 1m intervals where possible, otherwise sampling of retained AC samples has been done to the interval that the sample was collected at. i.e 2 or 4m composite samples. pXRF data was collected at 50cm intervals across selected holes. Care was taken to not pXRF selective zones within the lithology, and to analyze spots that represented the 50cm interval as best as possible. 	
Drilling techniques	Drill type (e.g., core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face- sampling bit, or other type, whether core is oriented and if so, by what method, etc).	 AC drilling took place to a depth of 90m. Diamond drilling was conducted using HQ sized coring equipment to a depth of 250m. All holes are historic drillholes. No data is available as to the techniques used to collect sample, or the drilling techniques used. 	
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Drill sample recovery for aircore is monitored by recording sample condition descriptions where 'Poor' to 'Very Poor' were used to identify any samples recovered which were potentially not representative of the interval drilled. All holes are historic holes retained at the Department of Energy and 	

17 August 2023

Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 Mining's (DEM) core library in Adelaide. No data exists on of sample recovery or quality All aircore and Diamond holes were historically logged by hand onto paper logging sheets. Logging captured geology, texture, structure, mineralization, sulphides, grain size, colour and weathering. Logging intervals were determined by geological observations and were quantitatively and qualitatively logged depending on field being logged. All sampled holes are digitally photographed and stored
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all cores taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in- situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 Samples were collected on 1m intervals, or to intervals appropriate for the amount of material left/retained by the DEM. Preparation of samples was undertaken by member of Challenger Geologic in Adelaide, to the appropriate specifications outlined by DEM for sampling of historic drillcore which is stored at the Drill Core library. Samples were packaged and sent to Labwest in WA for analysis. Preparation of samples at Labwest as to their PREP-02/03 procedure, depending on the nature of the samples provided. All pulps and reject are being retained for further analysis, and storage.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable	 Samples were assayed by LabWest laboratory in Malaga, Perth, Western Australia, which is considered the Primary laboratory. The samples were initially oven dried at 105 degrees Celsius for 24 hours. Samples were secondary crushed to 3 mm fraction and the weight recorded. The sample was then pulverised to 90% passing 75 μm. Excess residue was maintained for storage while the rest of the

Unit 3, 32 Harrogate St West Leederville, WA 6007 PH +61 8 6117 4797

 $\bigcirc \land$

R

RESOURCES

17 August 2023

	THUN AN THE ST	
	levels of accuracy (i.e., lack of bias) and precision have been established.	 sample placed in 8x4 packets and sent to the central weighing laboratory. All weighed samples were then analysed using Lithium Borate Fusion. ICP Scan (Mixed Acid Digest – Lithium Borate Fusion) Samples are digested using a mixed acid digest and also fused with Lithium Borate to ensure all elements are brought into solution. The digests are then analysed for the following elements (detection Limits shown): Al (100) As (1) Ba (1) Be (0.5) Ca(100) Ce (0.1) Co (1) Cr (10) Dy (0.05) Er (0.05) Eu(0.05) Fe(100) Gd (0.2) Ho (0.02) K (100) La (0.5) Lu (0.02) Mg (100) Mn (2) Na (100) Nd (0.05) Ni (2) Pr (0.2) S (50) Sc (1) Si (100) Sm(0.05) Sr (0.5) Th (0.1) Ti (50) Tm (0.2) U (0.1) V (5) Y (0.1) Yb (0.05) Zr (1). LabWest completed its own internal QA/QC checks that included a Laboratory repeat every 21St sample and a standard reference sample every 9th sample prior to the results being released. Analysis of QA/QC samples show the laboratory data to be of acceptable accuracy and precision. The adopted QA/QC protocols are acceptable for this stage of test work. The sample preparation and assay techniques used are industry standard and provide a total analysis.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 All results are checked by the company's Exploration Manager. Historic Logging is used "as is" Assay data was received in digital format from the laboratory Standard Reference Material sample results are checked from each sample batch to ensure they are within tolerance (<3SD) and

R

RESOURCES

()

17 August 2023

Oar Resources Limited Unit 3, 32 Harrogate St West Leederville, WA 6007 PH +61 8 6117 4797

R

RESOURCES

17 August 2023

		Element Oxide	Oxide Factor
		CeO2	1.2284
		Dy2O3	1.1477
		Er2O3	1.1435
		Eu2O3	1.1579
		Gd2O3	1.1526
		Ho2O3	1.1455
		La2O3	1.1728
		Lu2O3	1.1371
		Nd2O3	1.1664
		Pr6011	1.2082
		Sc2O3	1.5338
		Sm2O3	1.1596
		Tb4O7	1.1762
		ThO2	1.1379
		Tm2O3	1.1421
		U3O8	1.1793
		Y2O3	1.2699
		Yb2O3	1.1387
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 Down hole survertical airconnot required. Survey data anlocations for been digitized hand written No surface rendrillholes remcheck with a cordinates coordinates cochecked in Qa 	veys for shallow re drill holes are all drillholes has I from historic, records mnant of ains to double GPS. ed is GDA2020/MGA pric holes were had their poverted to this datum and is.
			s.
		• The accuracy (
Data spacing	Data spacing for reporting of Exploration	sufficient for a • The drilling of	this stage of exploration. ^f aircore holes was
and distribution	Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	conducted to regional pros Western Eyre and for the pu magnetic and Historic Airco holes have be targeting disc anomalies. Ad as 50m apart	determine the pectivity of the wider Peninsula Project area urposes of testing omalies. re and Diamond Drill ren drilled sporadically crete magnetic C holes can be as close from each other.

 \wedge

RESOURCES

R

17 August 2023

С)ar Resources Lir	mited	info@oarresources.com.au
	Auaits or reviews	i ne results of any audits or reviews of sampling techniques and data.	• NA
			 Samples for analysis were logged against pallet identifiers and a chain of custody form created. Transport to the analytical laboratory was undertaken by an agent for the TNT transport group, and consignment numbers were logged against the chain of custody forms. The laboratory inspected the packages and did not report tampering of the samples and provided a sample reconciliation report for each sample dispatch.
			 placed in labelled callco bags and then placed into polyweave bags. The samples were then placed on pallets ready for transport and remained in a secure compound until transport had been arranged. Pallets were labelled and then 'shrink-wrapped' by the transport contractor prior to departure from Challenger geologic to the analytical laboratory.
	security	,, , , , , , , , , , , , , , , ,	 Selected holes were transported from the DEM Drill core library to Challenger geologic for processing and photographing. Holes selected for sampling where sampled to industry best practice,
	Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 nas been applied to historic Diamond Drilling programs. The mineralisation is interpreted to be hosted in vertical intrusions. All drill holes are vertical which is appropriate for a first pass exploration program. The orientation of the historic drilling is considered appropriate for testing the lateral and vertical extent of mineralisation without any bias.
			has been applied to historic

17 August 2023

Section 2 Reporting of Exploration Results		
Criteria	Explanation	Comment
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Western Eyre Peninsula Project comprises of a granted South Australian Exploration Licences (EL) EL6393, EL6394, EL6506, EL6517, EL6558 and EL6700 covering a combined area of ~1520km ² which is in good standing. The Western Eyre Project (WEP) is
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	100% owned by the company.Exploration activities by other exploration companies in the area have not previously targeted or identified REE mineralisation.Historical exploration activities in the
		vicinity of the Western Eyre Peninsula include investigations for coal, gold and base metals, uranium, and heavy mineral sands.
Geology	Deposit type, geological setting and style of mineralisation.	The REE mineralization present within the companies Western Eyre Peninsula projects is hosted in discrete vertical/sub-vertical magnetic features, interpreted to be Kimberlites or similar Alkaline intrusives rocks. Historic work conducted by previous explorers looking for diamonds have identified a number of these intrusives and
		confirmed the Kimberlitic/Alkaline intrusive lithology through drilling.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: - easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar - dip and azimuth of the hole - down hole length and interception depth - hole length.	The material information for drill holes relating to this report are contained within Appendices of this release.
ar Resources Li nit 3, 32 Harrog H +61 8 6117 42	mited gate St West Leederville, WA 6007 797	info@oarresources.com.au ACN 009118861 www.oarresources.com.au

17 August 2023

	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents have been used.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	All intercepts reported are down hole lengths. The mineralisation is interpreted to be vertical. Morphology of the mineralised unit is influenced by the morphology of the intrusion. Drilling is vertical perpendicular to mineralisation. Any internal variations to REE distribution within the intrusion was not defined, therefore the true width is considered not known.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Diagrams are included in the body of this release.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced, avoiding misleading reporting of Exploration Results.	This release contains all drilling results that are consistent with the JORC guidelines. Where data may have been excluded, it is considered not material.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment;	Aero magnetics: Review and re processing of historic data collected by previous explorers, as well as State data was undertaken by Terra Geophysics

Unit 3, 32 Harrogate St West Leederville, WA 6007 PH +61 8 6117 4797

 $\bigcirc \land$

)/\R resources

ACN 009118861 www.oarresources.com.au

17 August 2023

$\cap \land \square$

	metallurgical test results; bulk density,	utilizing industry best practice and
	characteristics; potential deleterious or contaminating substances	standardized sojtware.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	OAR intends to continue exploring the Western Eyre Peninsula during 2023. This will include (but not limited to) drilling, assay, ground based geophysical surveys and further metallurgical testwork.