

SIGNIFICANT DRILL TARGET DEFINED AT WEBBS CONSOL SILVER PROJECT

Highlights

- A substantial drill ready geochemical anomaly has been defined at Lode Resources Webbs Consol Silver Project. The anomaly footprint is <u>the largest surface occurrence at Webbs</u> <u>Consol</u> and is <u>one order of magnitude greater</u> than the surface expression of Tangoa West, the largest mineralised lode drilled to date at Webbs Consol resulting in multiple thick highgrade silver-base metal intercepts down to a depth of 300m.
- The latest assay results have significantly enhanced the Webbs Consol North Prospect anomaly definition resulting in a decision to commence a first pass RC drill programme. The Webbs Consol North Prospect anomaly is defined by very high Silver (Ag) and Lead (Pb) assay values returned from both systematic soil and subcrop chip sampling over a 300m strike length.
 - Assay of soil samples have returned:
 - > 16 samples >1 g/t Ag with a maximum of 6.5 g/t Ag
 - > 19 samples >500 ppm Pb with a maximum of 3,410 ppm Pb
 - Assay of subcrop chip samples have returned:
 - > 10 samples >10 g/t Ag with a maximum of 252 g/t Ag
 - > 11 samples >5,000 ppm Pb with a maximum of 12.95 % Pb
 - ➢ 6 samples >2,000 ppm Zn with a maximum of 0.84 % Zn
- Plans for a minimum 1,500m reverse circulation drill programme at Webbs Consol North are now well advanced. The main aim is to test the Webbs Consol North Prospect down to approximately 100m depth as well as other targets still in advanced development.
- A follow-up diamond drill programme is expected of this and other targets, testing mineralisation below 100m depth.
- Having raised capital in February, LDR remains fully funded for the upcoming drilling program and further exploration work.

Managing Director, Ted Leschke, commented: "The Webbs Consol North prospect is defined by an intense geochemical anomaly and as such is an extremely attractive drill target owing to its large footprint and strong metal values. This prospect has the potential for serious tonnage that could see the Webbs Consol Silver Project advance towards a stand-alone development. We are genuinely excited about the upcoming drilling programme".

Webbs Consol Silver Project's Exciting New Drill Target

Lode Resources Ltd (**ASX:LDR**) ("Lode", or the "Company") is pleased to provide an exploration update on the Company's 100% owned Webbs Consol Silver-Base Metals Project ("Webbs Consol") located in the New England Fold Belt in north-eastern New South Wales.

A significant amount of surface work by Lode's exploration team has defined a substantial geochemical anomaly located at the northern reaches of the Webbs Consol Silver Project where no historical workings exist. As previously reported a Loupe TEM (Time Domain Electromagnetic) survey has revealed multiple new targets of which the Loupe #1 target was the strongest and follow-up geochemical work has shown this anomaly to be highly mineralised.

This newly discovered anomaly, named Webbs Consol North is defined by very high Ag and Pb assay values returned from both systematic soil and subcrop chip sampling over a 300m strike length. Whilst some of the assay values have been previously reported the latest results have further enhanced anomaly definition resulting in a decision to commence a first pass RC drill programme.

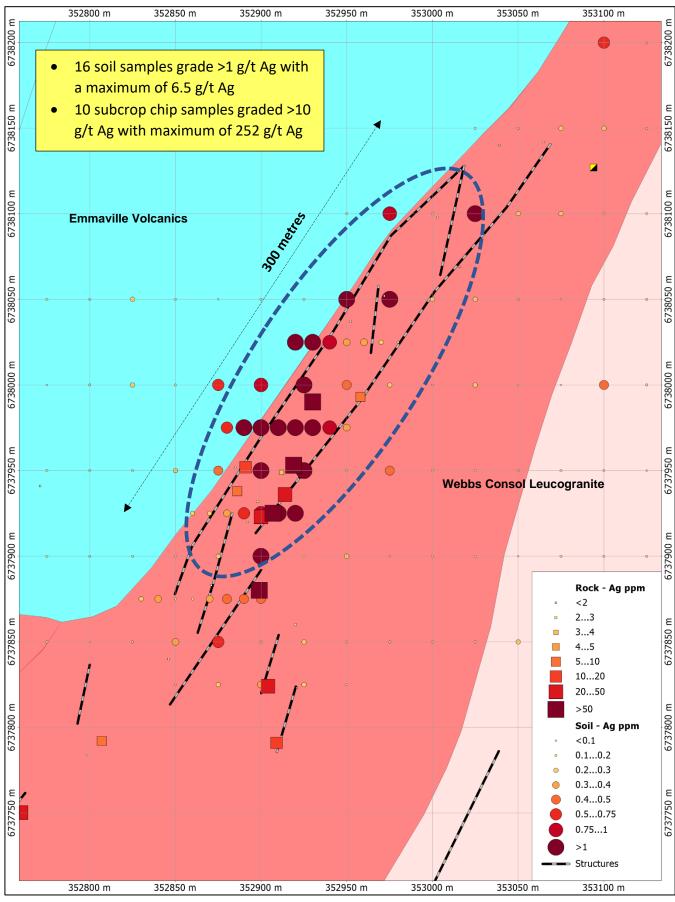
The geochemical anomaly has NE-SW orientation coincidental with the Webbs Consol Leucogranite and Emmaville Volcanics contact. It is quite possible that superimposition of sinistral strike slip structures semi-parallel to the primary contact structure between the Webbs Consol Leucogranite and Emmaville Volcanics is an import mineral emplacement factor, especially where contact structure undulations create tension regimes within secondary structures due to differing competency of the two rock units.

Assay of soil samples have returned:

- > 16 samples grading >1 g/t Ag with a maximum of 6.5 g/t Ag
- > 19 samples grading >500 ppm Pb with a maximum of 3,410 ppm Pb

Assay of subcrop chip samples have returned:

- > 10 samples grading >10 g/t Ag with a maximum of 252 g/t Ag
- > 11 samples grading >5,000 ppm Pb with a maximum of 12.95 % Pb
- ➢ 6 samples grading >2,000 ppm Zn with a maximum of 0.84 % Zn


It should be noted that chip sampling is a selective technique and thus not necessarily representative of the underlying mineralisation.

The Webbs Consol North Prospect anomaly footprint is <u>the largest surface occurrence discovered to</u> <u>date at Webs Consol</u> and is <u>one order of magnitude greater</u> than the surface expression of Tangoa West, the largest mineralised lode drilled to date at Webbs Consol resulting in multiple thick high-grade silverbase metal intercepts down to a depth of 300m including:

- > 116.1m @ 1,003 g/t AgEq from 90.5m (WCS0450
- > 149.2m @ 627 g/t AgEq from 98.0m (WCS052A)
- 65.8m @ 904 g/t AgEq from 104.4m (WCS050)
- > 24.5m @ 1,450 g/t AgEq from 144.7m (WCS047)
- 40.2m @ 804 g/t AgEq from 279.0m (WCS052B)
- > 33.2m @ 569 g/t AgEq from 270.0m (WCS065)

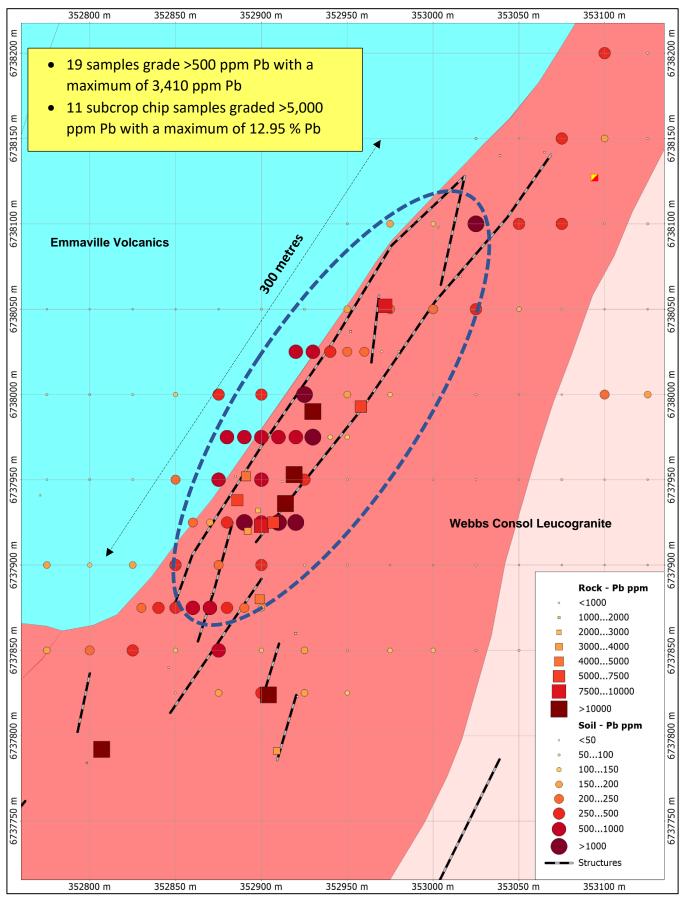

Plans for a 1,500m reverse circulation drill programme at Webbs Consol North are well advanced. The main aim of the RC drill programme is to test mineralisation below Webbs Consol North Prospect anomaly down to approximately 100m depth. It is anticipated that RC drilling will commence mid-November. Surface work will continue prior and post this drill campaign. A followed-up diamond drill programme is also expected, testing mineralisation below 100m.

Figure 1. Webbs Consol North Prospect – High silver assay values in subcrop and soils

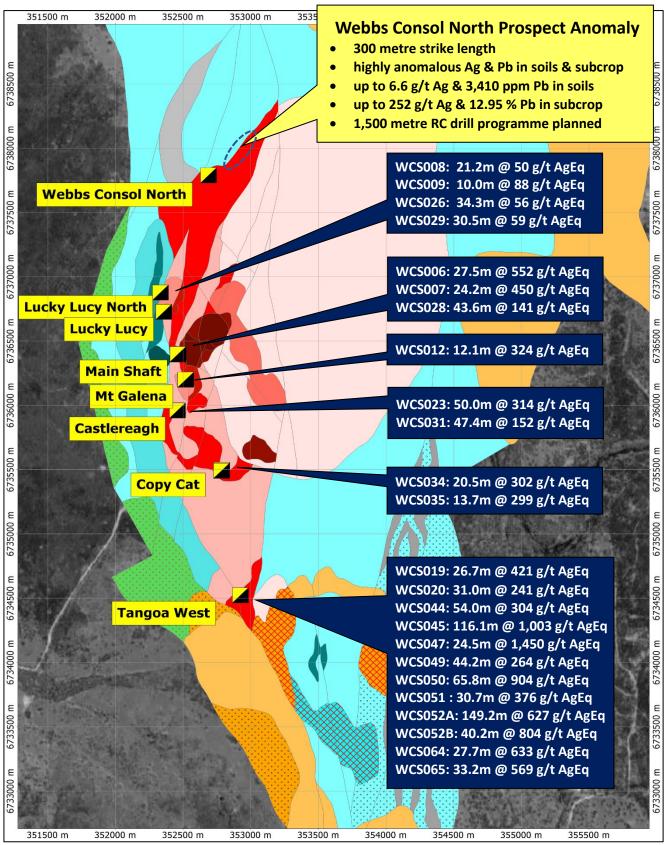
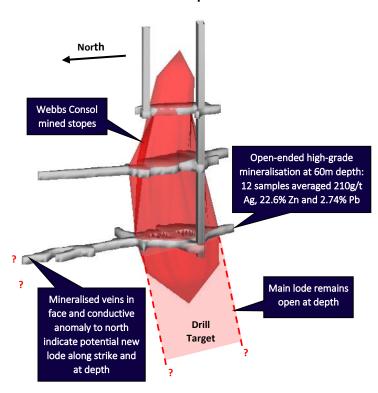


Figure 2. Webbs Consol North Prospect – High lead assay values in subcrop and soils

Figure 3. Webbs Consol Silver Project – Location of main lodes, significant drill intercepts and the newly defined Webbs Consol North Prospect anomaly.


Webbs Consol Project Overview

Located 16km west-south-west of Emmaville, Webbs Consol was discovered in 1890 with intermittent mining up to the mid-1950s. The Webbs Consol Project (EL8933) contains several small, high-grade, silver-lead-zinc-gold deposits hosted by the Webbs Consol Leucogranite, which has intruded the Late Permian Emmaville Volcanics and undifferentiated Early Permian sediments.

Several mine shafts were worked for the high-grade galena and silver content only, with high-grade zinc mineralisation discarded. Mineral concentration was via basic Chilean milling techniques and sluicing, with some subsequent rough flotation of galena carried out, however no attempt to recover sphalerite.

Ore mineralogy includes galena, sphalerite, marmatite, arsenopyrite, pyrite, chalcopyrite, minor bismuth, and gold. Chief minerals are generally disseminated but also high-grade "bungs" where emplacement is a combination of fracture infilling and country rock replacement. Gangue mineralogy includes quartz, chlorite and sericite with quartz occurring as veins and granular relicts.

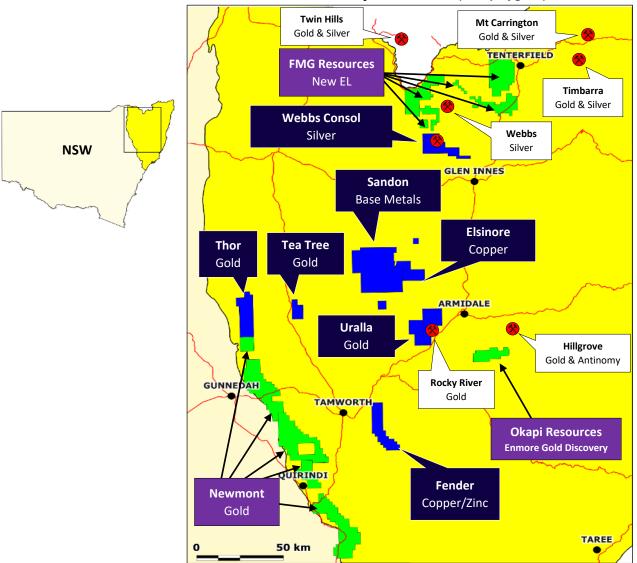
Historical sampling shows potential for high-grade silver and zinc mineralisation at Webbs Consol, and it was reported that 12 spot samples taken from the lowest level of the main Webbs Consol shaft ("205' Level" or 60m depth) averaged 210g/t silver, 22.6% zinc and 2.74% lead. Epithermal style mineralisation occurs in 'en échelon' vertical pipe like bodies at the intersection of main north-south shear and secondary northeast-southwest fractures. No leaching or secondary enrichment has been identified.

Webbs Consol Main Shaft oblique view

Webbs Consol Main Shaft specimen showing coarse galena mineralisation

This announcement has been approved and authorised by Lode Resource Ltd's Managing Director, Ted Leschke.

For more information on Lode Resources and to subscribe for our regular updates, please visit our website at <u>www.loderesources.com</u> or email <u>info@loderesoruces.com</u>


Competent Person's Statement

The information in this Report that relates to Exploration Results is based on information compiled by Mr Mitchell Tarrant, who is a Member of the Australian Institute of Geoscientists. Mr Tarrant, who is the Project Manager for Lode Resources, has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Tarrant has a beneficial interest as option holder of Lode Resources Ltd and consents to the inclusion in this Report of the matters based on the information in the form and context in which it appears.

About Lode Resources (ASX:LDR)

Lode Resources is an ASX-listed explorer focused on the highly prospective but under-explored New England Fold Belt in north-eastern NSW. The Company has assembled a portfolio of brownfield precious and base metal assets characterised by:

- 100% ownership;
- Significant historical geochemistry and/or geophysics;
- Under drilled and/or open-ended mineralisation; and
- Demonstrated high-grade mineralisation and/or potential for large mineral occurrences.

Lode's Project Locations (blue polygons)

JORC Code, 2012 Edition - Table 1.

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broadmeaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (egsubmarine nodules) may warrant disclosure of detailed information. 	 qualified geologist. 233 soil samples were collected 25 rock chip samples were collected from outcrop. The soil sample weight range is between 0.07kg to 0.15kg. This is considered appropriate for this style of sampling. The rock chip sample weight range is between 0.91kg to 3.04kg. This is considered appropriate for this style of sampling. Sample locations were surveyed with a handheld GPS (+- 5m) and marked into sample books and on sample bags.
Drilling techniques	 Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representativenature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	and characteristics of mineralisation and host rock geology, and orientation of the associated

		Photographs taken for reference.
	• Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	
	 The total length and percentage of the relevant intersections logged. 	
Sub- sampling techniques and sample preparation	rotary split, etc and whether sampled wet or dry.For all sample types, the nature, quality and	 No drilling was carried out. Samples were dry and not split in the field. Sample sizes are considered appropriate.
	 appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples are stored in a secure location and transported to the ALS laboratory in Brisbane QLD via a certified courier. Sample preparation initially comprises drying (DRY-21), weighing, crushing (CRU-31), riffle split and pulverizing of 1kg to 85% < 75µm (PUL-32). The assay methods used were ME-ICP61 and Au-AA25 (refer to ALS assay codes). ME-ICP61 is a four-acid digest with ICP-AES finish with various detection limits. Au-AA25 is a fire assayed for Au using a 30g sample, detection is 0.01-100 ppm Au. Only internal laboratory checks were used for QACQ.
<i>Verification of sampling and assaying</i>	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Laboratory results have been reviewed by Project Manager. Laboratory CSV files are merged with GPS Location data files using unique sample numbers as the key. No adjustments made to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource 	 Sample points were recorded using a handheld GPS (+- 5m). Sampling points are recorded as x, y & z coordinates. Accuracy is assumed to be +/-5m

	• (Grid sy zone 5	ystem used is GDA94 UTM 56				
Webbs Consol	North Prospe	ect Soil Assay	(S445-S478 p		orted)	1	1
SampleID	Easting	Northing	Ag ppm	Cu ppm	Pb ppm	Zn ppm	
S445	352650	6737900	0.115	5.1	45.6	31.4	
S446	352675	6737900	0.119	5.9	66.1	52.1	
S447	352700	6737900	0.220	8.9	67.4	84.6	
S448	352725	6737900	0.381	52.3	122.5	400.0	
S449	352750	6737900	0.130	11.3	144.0	123.0	
S450	352775	6737900	0.142	10.4	173.0	141.0	
S451	352800	6737900	0.137	12.7	142.0	176.5	
S452	352825	6737900	0.163	9.3	198.5	123.5	
S453	352850	6737900	0.181	10.7	310.0	151.0	
S454	352875	6737900	0.285	8.0	227.0	116.5	
S455	352900	6737900	2.620	18.1	401.0	185.5	
S456	352925	6737900	0.133	4.3	85.4	47.3	
S457	352950	6737900	0.222	4.4	55.9	49.2	
S458	352975	6737900	0.095	3.4	45.2	32.7	
S459	353000	6737900	0.113	3.9	44.3	56.6	
S460	353025	6737900	0.101	4.1	58.1	62.9	
S461	353050	6737900	0.093	3.4	37.6	34.1	
S462	352700	6738000	0.084	11.9	53.6	68.4	
S463	352725	6738000	0.297	8.9	78.7	46.9	
S464	352750	6738000	0.116	10.6	105.5	73.7	
S465	352775	6738000	0.070	5.3	84.8	44.7	
S466	352800	6738000	0.142	7.7	84.7	68.0	
S467	352825	6738000	0.215	6.0	86.9	52.4	
S468	352850	6738000	0.198	6.2	133.5	70.3	
S469	352875	6738000	0.506	13.1	372.0	171.5	
S470	352900	6738000	0.980	12.4	428.0	214.0	
S471	352925	6738000	5.020	50.3	1780.0	326.0	
S472	352950	6738000	0.437	5.7	162.5	73.7	
S473	352975	6738000	0.276	5.9	115.0	60.5	
S474	353000	6738000	0.082	4.2	30.8	29.2	
S475	353025	6738000	0.221	6.0	79.5	88.4	
S476	353050	6738000	0.062	3.4	23.2	18.1	
S477	353075	6738000	0.095	2.9	26.0	21.7	
S478	353100	6738000	0.454	6.2	220.0	100.5	
S902	353100	6738200	0.681	8.4	309.0	125.0	
S903	353125	6738200	0.099	2.4	66.4	36.7	
S904	353150	6738200	0.119	5.5	41.0	36.0	
S905	353175	6738200	0.192	4.9	37.2	40.1	

				<u> </u>		
S906	353200	6738200	0.121	3.7	18.6	22.8
S907	353225	6738200	0.074	9.3	29.5	29.5
S908	353025	6738150	0.152	6.4	62.9	105.0
S909	353050	6738150	0.112	6.2	42.3	66.3
S910	353075	6738150	0.218	8.2	386.0	101.5
S911	353100	6738150	0.296	7.8	151.0	110.0
S912	353125	6738150	0.149	5.0	85.7	44.2
S913	353150	6738150	0.220	4.1	53.3	51.7
S914	353175	6738150	0.172	3.7	52.9	36.3
S915	353200	6738150	0.193	4.6	32.3	39.1
S916	353225	6738150	0.171	13.7	35.3	97.2
S917	352950	6738100	0.180	4.9	51.8	119.5
S918	352975	6738100	0.775	9.3	152.5	172.0
S919	353000	6738100	0.188	5.9	106.0	142.5
S920	353025	6738100	1.785	37.4	1180.0	296.0
S921	353050	6738100	0.239	6.0	279.0	140.0
S922	353075	6738100	0.230	8.7	355.0	137.5
S923	353100	6738100	0.142	3.5	91.5	70.8
S924	353125	6738100	0.119	4.3	51.9	45.3
S925	353150	6738100	0.154	2.8	45.2	32.1
S926	353175	6738100	0.264	3.7	63.4	59.9
S927	353200	6738100	0.165	2.5	36.9	34.6
S928	353225	6738100	0.456	5.6	120.5	123.5
S929	352380	6738050	0.348	5.0	79.2	114.5
S930	352400	6738050	0.311	4.3	44.2	40.9
S931	352425	6738050	0.058	3.2	12.2	11.2
S932	352450	6738050	0.064	4.2	12.1	10.0
S933	352475	6738050	0.046	3.7	11.9	7.2
S934	352500	6738050	0.064	4.1	13.2	7.3
S935	352525	6738050	0.075	4.0	41.6	6.8
S936	352550	6738050	0.110	4.8	28.3	10.7
S937	352575	6738050	0.142	3.7	20.0	14.8
S938	352600	6738050	0.096	4.3	9.7	17.8
S939	352625	6738050	0.102	7.8	9.1	35.9
S940	352650	6738050	0.091	9.1	13.9	35.9
S941	352675	6738050	0.084	7.5	9.7	28.2
S942	352700	6738050	0.090	9.1	8.6	33.0
S943	352725	6738050	0.068	8.3	13.7	42.9
S944	352750	6738050	0.088	6.6	20.7	33.8
S945	352775	6738050	0.128	7.9	15.7	34.6
S946	352800	6738050	0.124	6.3	12.5	31.0
S947	352825	6738050	0.217	7.1	36.0	44.6
S948	352850	6738050	0.106	5.7	35.3	30.5

S950 352900 6738050 0.155 5.2 59.5 42.0 S951 352925 6738050 0.120 5.0 89.0 56.3 S952 352956 6738050 1.405 9.2 177.0 80.0 S953 352975 6738050 0.208 5.8 218.0 124.0 S955 353025 6738050 0.207 5.2 278.0 82.7 S956 353050 6738050 0.157 5.1 144.0 111.5 S957 353075 6738050 0.117 2.0 28.8 28.8 S960 353150 6738050 0.112 3.7 117.0 69.6 S961 353175 6738050 0.157 4.0 50.4 74.4 S983 35280 6737925 0.273 11.7 194.0 80.0 S989 35280 6737925 0.555 27.0 1270.0 821.0 S989 352900 6737925<	2						
S952 352950 6738050 1.405 9.2 177.0 80.0 S953 352975 6738050 0.208 5.8 218.0 124.0 S955 353025 6738050 0.207 5.2 278.0 82.7 S956 353075 6738050 0.157 5.1 144.0 111.5 S957 353075 6738050 0.104 3.1 48.9 48.6 S959 353125 6738050 0.117 2.0 28.8 28.8 S960 353175 6738050 0.122 3.7 117.0 69.6 S961 353175 6738050 0.263 6.6 103.5 66.0 S963 35220 6738050 0.273 11.7 194.0 80.0 S984 352800 6737925 0.273 11.7 194.0 80.0 S991 352800 6737925 0.762 16.1 827.0 254.0 S993 352406 67380	S950	352900	6738050	0.155	5.2	59.5	42.0
S953 352975 6738050 1.715 8.6 208.0 98.3 S954 353000 6738050 0.208 5.8 218.0 124.0 S955 353025 6738050 0.207 5.2 278.0 82.7 S956 353050 6738050 0.157 5.1 144.0 111.5 S957 353075 6738050 0.104 3.1 48.9 48.6 S959 353125 6738050 0.117 2.0 28.8 28.8 S960 353150 6738050 0.122 3.7 117.0 69.6 S961 353175 6738050 0.157 4.0 50.4 7.4.4 S982 352300 6738050 0.157 4.0 50.4 7.4.4 S983 352800 6737925 0.273 11.7 194.0 80.0 S989 352800 6737925 0.752 16.1 827.0 251.0 S993 352910 67379	S951	352925	6738050	0.120	5.0	89.0	56.3
S954 353000 6738050 0.208 5.8 218.0 124.0 S955 353025 6738050 0.207 5.2 278.0 82.7 S956 353050 6738050 0.157 5.1 144.0 111.5 S957 353075 6738050 0.093 3.0 62.0 92.9 S958 353100 6738050 0.117 2.0 28.8 28.8 S960 353150 6738050 0.122 3.7 117.0 69.6 S961 353175 6738050 0.263 6.6 103.5 66.0 S962 353200 6737925 0.273 11.7 194.0 80.0 S988 352800 6737925 0.273 11.7 194.0 80.0 S990 352800 6737925 0.273 11.7 194.0 80.0 S991 352800 6737925 0.555 27.0 1270.0 821.0 S993 352910 67	S952	352950	6738050	1.405	9.2	177.0	80.0
S955 353025 6738050 0.207 5.2 278.0 82.7 S956 353050 6738050 0.157 5.1 144.0 111.5 S957 353075 6738050 0.093 3.0 62.0 92.9 S958 353100 6738050 0.104 3.1 48.9 48.6 S959 353125 6738050 0.117 2.0 28.8 28.8 S960 353175 6738050 0.133 2.7 81.8 45.3 S962 353200 6738050 0.157 4.0 50.4 74.4 S983 352800 6737925 0.279 15.3 241.0 123.0 S989 352800 6737925 0.762 16.1 827.0 254.0 S991 352890 6737925 0.762 16.1 827.0 254.0 S993 352910 6737925 0.753 45.0 2190.0 459.0 S994 352920 673	S953	352975	6738050	1.715	8.6	208.0	98.3
S956 353050 6738050 0.157 5.1 144.0 111.5 S957 353075 6738050 0.093 3.0 62.0 92.9 S958 353100 6738050 0.104 3.1 48.9 48.6 S959 353125 6738050 0.117 2.0 28.8 28.8 S960 353175 6738050 0.123 3.7 117.0 69.6 S961 353175 6738050 0.263 6.6 103.5 66.0 S963 353200 6738050 0.157 4.0 50.4 74.4 S988 352800 6737925 0.273 11.7 194.0 80.0 S990 352800 6737925 0.398 28.3 430.0 1090.0 S991 352800 6737925 0.555 27.0 1270.0 848.0 S992 352920 6737925 0.563 45.0 2190.0 459.0 S993 352920 6	S954	353000	6738050	0.208	5.8	218.0	124.0
Sest 353075 6738050 0.093 3.0 62.0 92.9 S958 353100 6738050 0.104 3.1 48.9 48.6 S959 353125 6738050 0.117 2.0 28.8 28.8 S960 353150 6738050 0.122 3.7 117.0 69.6 S961 353175 6738050 0.263 6.6 103.5 66.0 S962 353200 6737925 0.279 15.3 241.0 123.0 S988 352870 6737925 0.273 11.7 194.0 80.0 S990 352880 6737925 0.752 16.1 827.0 254.0 S992 352900 6737925 0.762 16.1 827.0 254.0 S993 352910 6737925 2.840 39.9 3410.0 488.0 S994 352920 6739000 0.054 4.4 15.6 8.9 S995 352450 673	S955	353025	6738050	0.207	5.2	278.0	82.7
S958 353100 6738050 0.104 3.1 48.9 48.6 S959 353125 6738050 0.117 2.0 28.8 28.8 S960 353150 6738050 0.122 3.7 117.0 69.6 S961 353175 6738050 0.263 6.6 103.5 66.0 S962 353200 6738050 0.157 4.0 50.4 74.4 S988 352860 6737925 0.279 15.3 241.0 123.0 S990 352880 6737925 0.273 11.7 194.0 80.0 S991 352800 6737925 0.762 16.1 827.0 254.0 S992 352900 6737925 2.840 39.9 3410.0 488.0 S994 352920 6737925 6.530 45.0 2190.0 459.0 S995 352475 6738000 0.054 4.4 15.6 8.9 S996 352450 67	S956	353050	6738050	0.157	5.1	144.0	111.5
\$959 353125 6738050 0.117 2.0 28.8 28.8 \$960 353150 6738050 0.122 3.7 117.0 69.6 \$961 353175 6738050 0.263 6.6 103.5 66.0 \$962 353200 6738050 0.157 4.0 50.4 74.4 \$988 352800 6737925 0.279 15.3 241.0 123.0 \$989 352870 6737925 0.273 11.7 194.0 80.0 \$990 352880 6737925 0.555 27.0 1270.0 821.0 \$991 352800 6737925 0.762 16.1 827.0 254.0 \$993 352910 6737925 6.530 45.0 2190.0 459.0 \$994 352920 6737925 6.530 45.0 2190.0 459.0 \$995 352375 6738000 0.054 4.4 15.6 8.9 \$999 352450 <t< td=""><td>S957</td><td>353075</td><td>6738050</td><td>0.093</td><td>3.0</td><td>62.0</td><td>92.9</td></t<>	S957	353075	6738050	0.093	3.0	62.0	92.9
S960 353150 6738050 0.122 3.7 117.0 69.6 S961 353175 6738050 0.133 2.7 81.8 45.3 S962 353200 6738050 0.263 6.6 103.5 66.0 S963 353230 6738050 0.157 4.0 50.4 74.4 S988 352860 6737925 0.279 15.3 241.0 123.0 S989 352870 6737925 0.273 11.7 194.0 80.0 S990 352880 6737925 0.555 27.0 1270.0 821.0 S991 352900 6737925 0.762 16.1 827.0 254.0 S993 352910 6737925 6.530 45.0 2190.0 459.0 S994 352920 6737925 6.530 45.0 2190.0 459.0 S994 352425 6738000 0.054 4.4 15.6 8.9 S998 352450 <t< td=""><td>S958</td><td>353100</td><td>6738050</td><td>0.104</td><td>3.1</td><td>48.9</td><td>48.6</td></t<>	S958	353100	6738050	0.104	3.1	48.9	48.6
S961 353175 6738050 0.133 2.7 81.8 45.3 S962 353200 6738050 0.263 6.6 103.5 66.0 S963 353230 6738050 0.157 4.0 50.4 74.4 S988 352860 6737925 0.279 15.3 241.0 123.0 S989 352870 6737925 0.273 11.7 194.0 80.0 S990 352880 6737925 0.398 28.3 430.0 1090.0 S991 352890 6737925 0.762 16.1 827.0 254.0 S993 352900 6737925 2.840 39.9 3410.0 488.0 S994 352920 6737925 6.530 45.0 2190.0 459.0 S995 352475 6738000 0.054 4.4 15.6 8.9 S997 352450 6738000 0.077 4.9 21.1 12.4 S1000 352550 <t< td=""><td>S959</td><td>353125</td><td>6738050</td><td>0.117</td><td>2.0</td><td>28.8</td><td>28.8</td></t<>	S959	353125	6738050	0.117	2.0	28.8	28.8
S962 353200 6738050 0.263 6.6 103.5 66.0 S963 353230 6738050 0.157 4.0 50.4 74.4 S988 352860 6737925 0.279 15.3 241.0 123.0 S989 352870 6737925 0.273 11.7 194.0 80.0 S990 352880 6737925 0.398 28.3 430.0 1090.0 S991 352890 6737925 0.762 16.1 827.0 254.0 S992 352900 6737925 6.530 45.0 2190.0 459.0 S993 352910 6737925 6.530 45.0 2190.0 459.0 S994 352920 67378000 0.054 3.5 15.0 11.2 S996 352400 6738000 0.077 4.9 21.1 12.4 S1000 352450 6738000 0.091 4.2 21.7 9.6 S1001 352555	S960	353150	6738050	0.122	3.7	117.0	69.6
S963 353230 6738050 0.157 4.0 50.4 74.4 S988 352800 6737925 0.279 15.3 241.0 123.0 S989 352870 6737925 0.273 11.7 194.0 80.0 S990 352880 6737925 0.398 28.3 430.0 1090.0 S991 352890 6737925 0.762 16.1 827.0 254.0 S992 352900 6737925 2.840 39.9 3410.0 488.0 S994 352920 6737925 6.530 45.0 2190.0 459.0 S995 352375 6738000 0.054 3.5 15.0 11.2 S996 352400 6738000 0.070 4.3 20.7 9.0 S997 352455 6738000 0.077 4.9 21.1 12.4 S1000 352500 6738000 0.091 4.2 21.7 9.6 S1001 352555 <td< td=""><td>S961</td><td>353175</td><td>6738050</td><td>0.133</td><td>2.7</td><td>81.8</td><td>45.3</td></td<>	S961	353175	6738050	0.133	2.7	81.8	45.3
S988 352860 6737925 0.279 15.3 241.0 123.0 S989 352870 6737925 0.273 11.7 194.0 80.0 S990 352880 6737925 0.398 28.3 430.0 1090.0 S991 352890 6737925 0.762 16.1 827.0 254.0 S992 352900 6737925 2.840 39.9 3410.0 488.0 S993 352910 6737925 6.530 45.0 2190.0 459.0 S994 352920 6737925 6.530 45.0 2190.0 459.0 S995 352375 6738000 0.054 3.5 15.0 11.2 S996 352400 6738000 0.070 4.3 20.7 9.0 S998 352450 6738000 0.077 4.9 21.1 12.4 S1000 352550 6738000 0.069 4.8 33.5 16.1 S1001 352650	S962	353200	6738050	0.263	6.6	103.5	66.0
S989 352870 6737925 0.273 11.7 194.0 80.0 S990 352880 6737925 0.398 28.3 430.0 1090.0 S991 352890 6737925 0.555 27.0 1270.0 821.0 S992 352900 6737925 0.762 16.1 827.0 254.0 S993 352910 6737925 2.840 39.9 3410.0 488.0 S994 352920 6737925 6.530 45.0 2190.0 459.0 S995 352375 6738000 0.054 3.5 15.0 11.2 S996 352400 6738000 0.054 4.4 15.6 8.9 S997 352425 6738000 0.077 4.9 21.1 12.4 S1000 352500 6738000 0.091 4.2 21.7 9.6 S1001 352550 6738000 0.069 4.8 33.5 16.1 S1002 352655 <	S963	353230	6738050	0.157	4.0	50.4	74.4
S990 352880 6737925 0.398 28.3 430.0 1090.0 S991 352890 6737925 0.555 27.0 1270.0 821.0 S992 352900 6737925 0.762 16.1 827.0 254.0 S993 352910 6737925 2.840 39.9 3410.0 488.0 S994 352920 6737925 6.530 45.0 2190.0 459.0 S995 352375 6738000 0.054 3.5 15.0 11.2 S996 352400 6738000 0.054 4.4 15.6 8.9 S997 352455 6738000 0.070 4.3 20.7 9.0 S998 352450 6738000 0.091 4.2 21.1 12.4 S1000 35250 6738000 0.091 4.2 21.7 9.6 S1001 352550 6738000 0.0145 5.2 47.1 19.8 S1002 352550	S988	352860	6737925	0.279	15.3	241.0	123.0
S99135289067379250.55527.01270.0821.0S99235290067379250.76216.1827.0254.0S99335291067379252.84039.93410.0488.0S99435292067379256.53045.02190.0459.0S99535237567380000.0543.515.011.2S99635240067380000.0544.415.68.9S99735242567380000.0704.320.79.0S99835245067380000.0774.921.112.4S100035250067380000.0914.221.79.6S100135252567380000.0694.833.516.1S100235255067380000.0997.515.635.3S100235265067380000.0997.515.635.3S100435260067380000.09411.013.159.1S100535262567380000.11211.211.844.4S100635265067380000.1617.012.337.2S100835312567380000.1617.945.055.4S101035315067380000.2167.945.055.4S10113522567380000.2285.649.440.2S101335237567380000.2285.649.440.2S1013<	S989	352870	6737925	0.273	11.7	194.0	80.0
S992 352900 6737925 0.762 16.1 827.0 254.0 S993 352910 6737925 2.840 39.9 3410.0 488.0 S994 352920 6737925 6.530 45.0 2190.0 459.0 S995 352375 6738000 0.054 3.5 15.0 11.2 S996 352400 6738000 0.289 6.3 177.0 85.4 S997 352425 6738000 0.054 4.4 15.6 8.9 S998 352450 6738000 0.077 4.9 21.1 12.4 S1000 352500 6738000 0.091 4.2 21.7 9.6 S1001 352555 6738000 0.145 5.2 47.1 19.8 S1002 352550 6738000 0.069 4.8 33.5 16.1 S1003 352575 6738000 0.098 8.6 10.6 30.8 S1004 352600 6738	S990	352880	6737925	0.398	28.3	430.0	1090.0
\$99335291067379252.84039.93410.0488.0\$99435292067379256.53045.02190.0459.0\$99535237567380000.0543.515.011.2\$99635240067380000.2896.3177.085.4\$99735242567380000.0544.415.68.9\$99835245067380000.0704.320.79.0\$99935247567380000.0774.921.112.4\$100035250067380000.0914.221.79.6\$100135252567380000.0694.833.516.1\$100235250067380000.0694.833.516.1\$100335257567380000.0997.515.635.3\$100435260067380000.0988.610.630.8\$100535262567380000.1617.012.337.2\$100835312567380000.1617.012.337.2\$100835312567380000.16210.223.348.0\$101035317567380000.2167.945.055.4\$101135320067380000.2285.649.440.2\$10123532567379500.0666.114.912.6\$101335237567379500.0674.917.515.4\$1014352	S991	352890	6737925	0.555	27.0	1270.0	821.0
\$\S99435292067379256.53045.02190.0459.0\$\S99535237567380000.0543.515.011.2\$\S99635240067380000.2896.3177.085.4\$\S99735242567380000.0544.415.68.9\$\S99835245067380000.0704.320.79.0\$\S99935247567380000.0774.921.112.4\$\S100035250067380000.0914.221.79.6\$\S100135252567380000.0694.833.516.1\$\S100235255067380000.0997.515.635.3\$\S100435260067380000.0988.610.630.8\$\S100535262567380000.11211.211.844.4\$\S100635265067380000.1617.012.337.2\$\S100835312567380000.1617.012.337.2\$\S100835315067380000.1617.945.055.4\$\S101035317567380000.2285.649.440.2\$\S101135225567380000.2285.649.440.2\$\S101335237567379500.0666.114.912.6\$\S101435240067379500.0646.715.310.5\$\S101635245067379500.0646.715.310.	S992	352900	6737925	0.762	16.1	827.0	254.0
\$99535237567380000.0543.515.011.2\$99635240067380000.2896.3177.085.4\$99735242567380000.0544.415.68.9\$99835245067380000.0704.320.79.0\$99935247567380000.0774.921.112.4\$100035250067380000.0914.221.79.6\$100135252567380000.0694.833.516.1\$100235255067380000.0997.515.635.3\$100335257567380000.0997.515.635.3\$100435260067380000.09411.013.159.1\$100535262567380000.1617.012.337.2\$100635265067380000.1617.012.337.2\$100835312567380000.1617.945.055.4\$101035317567380000.2167.945.055.4\$10113520067380000.2285.649.440.2\$101335237567379500.0666.114.912.6\$101435240067379500.0674.917.515.4\$101535242567379500.0646.715.310.5\$101635245067379500.0823.419.69.0	S993	352910	6737925	2.840	39.9	3410.0	488.0
\$99635240067380000.2896.3177.085.4\$99735242567380000.0544.415.68.9\$99835245067380000.0704.320.79.0\$99935247567380000.0774.921.112.4\$100035250067380000.0914.221.79.6\$100135252567380000.1455.247.119.8\$100235255067380000.0694.833.516.1\$100335257567380000.0997.515.635.3\$100435260067380000.0988.610.630.8\$100535265567380000.1617.012.337.2\$100635265067380000.1617.012.337.2\$100835312567380000.1617.945.055.4\$101035317567380000.2167.945.055.4\$101135320067380000.2167.945.055.4\$101335237567380000.2285.649.440.2\$101335237567379500.0666.114.912.6\$101435240067379500.0674.917.515.4\$101535242567379500.0646.715.310.5\$101635245067379500.0646.715.310.5	S994	352920	6737925	6.530	45.0	2190.0	459.0
\$99635240067380000.2896.3177.085.4\$99735242567380000.0544.415.68.9\$99835245067380000.0704.320.79.0\$99935247567380000.0774.921.112.4\$100035250067380000.0914.221.79.6\$100135252567380000.1455.247.119.8\$100235255067380000.0694.833.516.1\$100335257567380000.0997.515.635.3\$100435260067380000.0988.610.630.8\$100535265567380000.1617.012.337.2\$100635265067380000.1617.012.337.2\$100835312567380000.1617.945.055.4\$101035317567380000.2167.945.055.4\$101135320067380000.2167.945.055.4\$101135320067380000.2285.649.440.2\$101335237567379500.0666.114.912.6\$101435240067379500.0674.917.515.4\$101535242567379500.0646.715.310.5\$101635245067379500.0646.715.310.5	S995	352375	6738000	0.054	3.5	15.0	11.2
\$99735242567380000.0544.415.68.9\$99835245067380000.0704.320.79.0\$99935247567380000.0774.921.112.4\$100035250067380000.0914.221.79.6\$100135252567380000.1455.247.119.8\$100235255067380000.0694.833.516.1\$100335257567380000.0997.515.635.3\$100435260067380000.0988.610.630.8\$100535262567380000.11211.211.844.4\$100635265067380000.1617.012.337.2\$100835312567380000.1617.012.337.2\$100935315067380000.2167.945.055.4\$101135320067380000.2285.649.440.2\$101335237567379500.0666.114.912.6\$101435240067379500.0674.917.515.4\$101535245067379500.0823.419.69.0	S996					177.0	85.4
\$99935247567380000.0774.921.112.4\$100035250067380000.0914.221.79.6\$100135252567380000.1455.247.119.8\$100235255067380000.0694.833.516.1\$100335257567380000.0997.515.635.3\$100435260067380000.0988.610.630.8\$100535262567380000.11211.211.844.4\$100635265067380000.1617.012.337.2\$100835312567380000.1616.1162.590.4\$100935315067380000.0974.639.038.9\$101035317567380000.2167.945.055.4\$101135320067380000.2285.649.440.2\$101235237567379500.0666.114.912.6\$101435240067379500.0674.917.515.4\$101535242567379500.0823.419.69.0	S997				4.4		8.9
\$100035250067380000.0914.221.79.6\$100135252567380000.1455.247.119.8\$100235255067380000.0694.833.516.1\$100335257567380000.0997.515.635.3\$100435260067380000.0988.610.630.8\$100535262567380000.11211.211.844.4\$100635265067380000.09411.013.159.1\$100735267567380000.1617.012.337.2\$100835312567380000.1616.1162.590.4\$100935315067380000.0974.639.038.9\$101035317567380000.2167.945.055.4\$101135320067380000.2285.649.440.2\$101335237567379500.0666.114.912.6\$101435240067379500.0646.715.310.5\$101635245067379500.0823.419.69.0	S998	352450	6738000	0.070	4.3	20.7	9.0
\$100135252567380000.1455.247.119.8\$100235255067380000.0694.833.516.1\$100335257567380000.0997.515.635.3\$100435260067380000.0988.610.630.8\$100535262567380000.11211.211.844.4\$100635265067380000.09411.013.159.1\$100735267567380000.1617.012.337.2\$100835312567380000.1616.1162.590.4\$100935315067380000.2167.945.055.4\$101135320067380000.2285.649.440.2\$101335237567379500.0666.114.912.6\$101435240067379500.0646.715.310.5\$101635245067379500.0823.419.69.0	S999		6738000	0.077	4.9	21.1	12.4
\$100235255067380000.0694.833.516.1\$100335257567380000.0997.515.635.3\$100435260067380000.0988.610.630.8\$100535262567380000.11211.211.844.4\$100635265067380000.09411.013.159.1\$100735267567380000.1617.012.337.2\$100835312567380000.1616.1162.590.4\$100935315067380000.0974.639.038.9\$101035317567380000.2167.945.055.4\$101135320067380000.16210.223.348.0\$101235237567379500.0666.114.912.6\$101335237567379500.0674.917.515.4\$101435240067379500.0823.419.69.0	S1000	352500	6738000	0.091	4.2	21.7	9.6
\$100235255067380000.0694.833.516.1\$100335257567380000.0997.515.635.3\$100435260067380000.0988.610.630.8\$100535262567380000.11211.211.844.4\$100635265067380000.09411.013.159.1\$100735267567380000.1617.012.337.2\$100835312567380000.1616.1162.590.4\$100935315067380000.0974.639.038.9\$101035317567380000.2167.945.055.4\$101135320067380000.2285.649.440.2\$101335237567379500.0666.114.912.6\$101435240067379500.0646.715.310.5\$101635245067379500.0823.419.69.0	S1001	352525		0.145	5.2	47.1	19.8
S100335257567380000.0997.515.635.3S100435260067380000.0988.610.630.8S100535262567380000.11211.211.844.4S100635265067380000.09411.013.159.1S100735267567380000.1617.012.337.2S100835312567380000.1616.1162.590.4S100935315067380000.0974.639.038.9S101035317567380000.2167.945.055.4S101135320067380000.16210.223.348.0S101235325567379500.0666.114.912.6S101335237567379500.0674.917.515.4S101535242567379500.0823.419.69.0	S1002						
S100535262567380000.11211.211.844.4S100635265067380000.09411.013.159.1S100735267567380000.1617.012.337.2S100835312567380000.1616.1162.590.4S100935315067380000.0974.639.038.9S101035317567380000.2167.945.055.4S101135320067380000.16210.223.348.0S10123532567379500.0666.114.912.6S101435240067379500.0674.917.515.4S101535242567379500.0823.419.69.0	S1003			0.099			35.3
S100635265067380000.09411.013.159.1S100735267567380000.1617.012.337.2S100835312567380000.1616.1162.590.4S100935315067380000.0974.639.038.9S101035317567380000.2167.945.055.4S101135320067380000.16210.223.348.0S101235322567380000.2285.649.440.2S101335237567379500.0666.114.912.6S101435240067379500.0646.715.310.5S101635245067379500.0823.419.69.0	S1004	352600		0.098	8.6	10.6	30.8
\$100735267567380000.1617.012.337.2\$100835312567380000.1616.1162.590.4\$100935315067380000.0974.639.038.9\$101035317567380000.2167.945.055.4\$101135320067380000.16210.223.348.0\$101235322567380000.2285.649.440.2\$101335237567379500.0666.114.912.6\$101435240067379500.0674.917.515.4\$101535242567379500.0823.419.69.0	S1005			0.112	11.2	11.8	44.4
S100735267567380000.1617.012.337.2S100835312567380000.1616.1162.590.4S100935315067380000.0974.639.038.9S101035317567380000.2167.945.055.4S101135320067380000.16210.223.348.0S101235322567380000.2285.649.440.2S101335237567379500.0666.114.912.6S101435240067379500.0646.715.310.5S101635245067379500.0823.419.69.0					11.0		59.1
S100835312567380000.1616.1162.590.4S100935315067380000.0974.639.038.9S101035317567380000.2167.945.055.4S101135320067380000.16210.223.348.0S101235322567380000.2285.649.440.2S101335237567379500.0666.114.912.6S101435240067379500.0674.917.515.4S101535242567379500.0823.419.69.0					7.0		37.2
\$100935315067380000.0974.639.038.9\$101035317567380000.2167.945.055.4\$101135320067380000.16210.223.348.0\$101235322567380000.2285.649.440.2\$101335237567379500.0666.114.912.6\$101435240067379500.0674.917.515.4\$101535242567379500.0646.715.310.5\$101635245067379500.0823.419.69.0							
\$101035317567380000.2167.945.055.4\$101135320067380000.16210.223.348.0\$101235322567380000.2285.649.440.2\$101335237567379500.0666.114.912.6\$101435240067379500.0674.917.515.4\$101535242567379500.0646.715.310.5\$101635245067379500.0823.419.69.0	S1009				4.6	39.0	38.9
S101135320067380000.16210.223.348.0S101235322567380000.2285.649.440.2S101335237567379500.0666.114.912.6S101435240067379500.0674.917.515.4S101535242567379500.0646.715.310.5S101635245067379500.0823.419.69.0	S1010			0.216	7.9	45.0	55.4
S101235322567380000.2285.649.440.2S101335237567379500.0666.114.912.6S101435240067379500.0674.917.515.4S101535242567379500.0646.715.310.5S101635245067379500.0823.419.69.0	S1011		6738000				
S101335237567379500.0666.114.912.6S101435240067379500.0674.917.515.4S101535242567379500.0646.715.310.5S101635245067379500.0823.419.69.0	S1012			0.228	5.6	49.4	40.2
S101435240067379500.0674.917.515.4S101535242567379500.0646.715.310.5S101635245067379500.0823.419.69.0						14.9	12.6
S1015 352425 6737950 0.064 6.7 15.3 10.5 S1016 352450 6737950 0.082 3.4 19.6 9.0							
S1016 352450 6737950 0.082 3.4 19.6 9.0	-						
	S1017	352475	6737950	0.067	4.9	23.9	9.8

S1018	352500	6737950	0.070	3.1	32.9	9.8
S1019	352525	6737950	0.095	4.0	46.8	11.8
S1020	352550	6737950	0.083	3.3	53.0	15.0
S1021	352575	6737950	0.074	4.4	18.4	11.8
S1022	352600	6737950	0.063	3.8	14.1	12.4
S1023	352625	6737950	0.075	5.7	12.4	11.6
S1024	352650	6737950	0.102	4.3	17.7	14.8
S1025	352675	6737950	0.138	5.5	18.3	23.5
S1026	352700	6737950	0.116	7.0	26.7	27.6
S1027	352725	6737950	0.266	12.4	40.8	90.4
S1028	352750	6737950	0.172	8.8	63.9	69.2
S1029	352775	6737950	0.145	7.0	47.6	73.7
S1030	352800	6737950	0.187	6.7	61.6	50.0
S1031	352825	6737950	0.175	6.0	90.8	58.9
S1032	352850	6737950	0.250	10.3	219.0	134.5
S1033	352875	6737950	0.479	12.6	564.0	241.0
S1034	352900	6737950	1.000	18.1	746.0	242.0
S1035	352925	6737950	1.350	12.3	357.0	217.0
S1036	352950	6737950	0.131	4.5	54.5	66.1
S1037	352975	6737950	0.401	6.2	77.7	39.2
S1038	353000	6737950	0.106	4.9	31.6	31.2
S1039	353025	6737950	0.168	4.1	39.2	34.8
S1040	353050	6737950	0.122	4.0	42.6	29.5
S1041	353075	6737950	0.161	5.1	81.4	46.5
S1042	353100	6737950	0.129	11.3	29.8	44.1
S1043	353125	6737950	0.086	3.6	25.5	24.6
S1044	353150	6737950	0.139	4.1	49.1	27.3
S1045	353175	6737950	0.161	8.9	24.7	30.6
S1046	353200	6737950	0.102	3.5	18.4	15.0
S1047	353225	6737950	0.145	3.0	14.4	17.4
S1048	352350	6737900	0.080	4.2	22.8	10.2
S1049	352375	6737900	0.066	3.1	17.3	6.1
S1050	352400	6737900	0.053	4.8	22.4	9.2
S1051	352425	6737900	0.086	4.3	13.8	5.6
S1052	352450	6737900	0.081	4.3	23.5	8.1
S1053	352475	6737900	0.081	2.9	38.6	8.8
S1054	352500	6737900	0.078	3.6	28.6	10.8
S1055	352525	6737900	0.085	2.6	17.1	7.5
S1056	352550	6737900	0.104	4.0	62.2	16.1
S1057	352575	6737900	0.108	3.7	58.1	19.6
S1058	352600	6737900	0.098	6.0	34.0	23.5
S1059	352625	6737900	0.087	3.3	18.6	16.6
S1060						
31000	353075	6737900	0.116	5.0	39.8	33.5

S1062	353125	6737900	0.114	6.2	44.5	35.6
S1063	353150	6737900	0.076	4.4	24.6	24.6
S1064	352325	6737850	0.105	4.9	21.7	10.6
S1065	352375	6737850	0.094	4.0	24.2	9.7
S1066	352400	6737850	0.060	6.3	22.0	17.4
S1067	352425	6737850	0.046	4.6	16.8	13.2
S1068	352450	6737850	0.064	6.1	19.7	11.0
S1069	352475	6737850	0.088	3.4	36.2	10.1
S1070	352500	6737850	0.106	4.5	24.3	13.6
S1071	352525	6737850	0.075	3.0	13.7	11.6
S1072	352550	6737850	0.068	4.0	24.9	18.0
S1073	352575	6737850	0.153	4.5	118.0	29.9
S1074	352600	6737850	0.121	7.0	53.1	40.2
S1075	352625	6737850	0.133	5.1	44.2	32.3
S1076	352650	6737850	0.136	6.0	36.7	46.1
S1077	352675	6737850	0.265	9.5	60.8	85.7
S1078	352700	6737850	0.290	13.8	136.5	88.6
S1079	352725	6737850	0.163	111.5	79.2	73.0
S1080	352750	6737850	0.246	16.0	127.5	227.0
S1081	352775	6737850	0.158	14.5	150.5	226.0
S1082	352800	6737850	0.093	14.3	241.0	134.0
S1083	352825	6737850	0.131	10.8	296.0	121.0
S1084	352850	6737850	0.328	9.3	135.0	123.0
S1085	352875	6737850	0.635	12.9	659.0	117.0
S1086	352900	6737850	0.137	4.8	106.5	104.0
S1087	352925	6737850	0.210	5.2	153.0	131.5
S1088	352950	6737850	0.159	9.5	52.9	51.8
S1089	352975	6737850	0.189	5.0	122.0	72.3
S1090	353000	6737850	0.125	6.3	110.5	68.4
S1091	353025	6737850	0.163	4.0	59.4	37.2
S1092	353050	6737850	0.229	4.3	69.7	53.0
S1093	353075	6737850	0.144	3.6	48.6	59.4
S1094	353100	6737850	0.129	6.2	47.8	37.0
S1095	353125	6737850	0.274	4.0	50.6	53.6
S1096	353150	6737850	0.101	4.8	34.6	30.9
S1153	352920	6738025	1.110	33.7	600.0	252.0
S1154	352930	6738025	3.420	36.9	645.0	355.0
S1155	352940	6738025	0.962	11.7	382.0	168.5
S1156	352950	6738025	0.362	6.3	211.0	144.5
S1157	352960	6738025	0.385	6.2	203.0	131.5
S1158	352970	6738025	0.237	5.1	93.5	131.5
S1159	352980	6738025	0.110	4.2	65.6	119.5
S1160	352880	6737975	0.653	27.4	517.0	312.0

S1162	352900	6737975	1.695	27.2	996.0	363.0
S1163	352910	6737975	2.130	20.2	611.0	260.0
S1164	352920	6737975	2.700	22.9	613.0	372.0
S1165	352930	6737975	2.400	25.3	1685.0	329.0
S1166	352940	6737975	0.790	4.3	101.5	90.8
S1167	352950	6737975	0.374	4.6	144.5	63.7
S1168	352830	6737875	0.222	10.2	220.0	139.0
S1169	352840	6737875	0.388	14.7	299.0	135.5
S1170	352850	6737875	0.184	10.3	255.0	123.0
S1171	352860	6737875	0.190	13.5	668.0	130.0
S1172	352870	6737875	0.327	16.3	534.0	158.5
S1173	352880	6737875	0.469	9.7	339.0	124.5
S1174	352890	6737875	0.434	9.6	239.0	207.0
S1175	352900	6737875	0.401	7.4	196.5	200.0
S1239	352850	6737825	0.094	5.1	98.3	46.4
S1240	352875	6737825	0.221	5.2	191.5	54.0
S1241	352900	6737825	0.395	10.3	308.0	184.5
S1242	352925	6737825	0.269	6.1	165.5	94.4
S1243	352950	6737825	0.193	5.8	130.0	77.2

Webbs Consol North Prospect Rock Chip Assays (R158, R270-R289 previously reported)

			Primary		Cu		
SampleID	Easting	Northing	Lithology	Ag ppm	ppm	Pb ppm	Zn ppm
R158	352807	6737792	Volcanics	8.6	135	12950	410
R270	352871	6737883	Granite	1.7	20	805	127
R271	352900	6737923	Granite	29	373	8890	1470
R272	352907	6737925	Granite	51.9	316	5900	2060
R273	352914	6737936	Granite	25.4	393	18100	3100
R274	352912	6737949	Granite	3.8	26	639	349
R275	352891	6737952	Sediment	11.3	50	4540	417
R276	352886	6737938	Granite	7.7	119	5200	1245
R277	352898	6737932	Granite	2.8	17	2370	237
R278	352892	6737920	Granite	1.8	11	3030	181
R279	352885	6737952	Granite	1.4	54	993	1915
R280	352919	6737953	Granite	252	371	19400	2020
R281	352930	6737990	Granite	53.5	709	23000	2980
R282	352958	6737993	Granite	5.6	29	5150	228
R283	352952	6738037	Granite	1.9	24	244	327
R284	352972	6738052	Granite	1.8	110	8400	237
R285	353003	6738098	Granite	0.5	6	129	141
R286	353039	6738140	Granite	0.7	17	255	208
R287	353065	6738142	Granite	1.4	26	181	169
R288	353016	6738069	Granite	0.5	6	106	185

R289	3528	399	6737880	Granite	115	1	18	4730	723	
R293	3529	920	6737860	Granite	2.9		15	1205	169	
R294	3529	904	6737824	Granite	27.8	18	55	129500	4360	
R295	3529	921	6737823	Granite	1.8		16	579	210	
R296	3529	909	6737791	Granite	17		32	3620	126	
Data spacing distribution	g and	 • \ ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Results. Whether the sufficient to geological ar or the Miner estimation p applied.	g for reportin data spacing establish nd grade com ral Resource rocedure(s) a mple compo	and distribu the degre tinuity appro and Ore Re and classific	tion is poriate eserve ations	• • •	estimation Sampling samples. Sampling samples. The soil between The rock is betwee	n. consisted sample v 0.07kg to 0 chip samp n 0.91kg to	le weight range
Orientation o in relation to geological structure		• • •	unbiased san he extent to he deposit ty f the relat prientation a mineralised s ntroduced a	prientation of s npling of poss which this is k pe. ionship betw and the ori structures is c sampling bia d reported if n	ible structure nown, consi veen the o entation of onsidered to as, this shou	es and dering drilling key have	•	No drilling carried ou		el sampling was
Sample secu	ırity	 The measures taken to ensure sample security. The measures taken to ensure sample the Project Manager durin transport from site to the a laboratories. 			The measures taken to ensure sample					during
Audits or rev	views			f any audits o nniques and d			•		or reviews ut at this po	have been bint.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement andland tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The sampling was conducted on EL8933 EL8933 is 100% held by Lode Resources Ltd. Native title does not exist over EL8933 All leases/tenements are in good standing
Exploration done by otherparties	Acknowledgment and appraisal of exploration by other parties.	Limited historic rock and soil sampling.
Geology	Deposit type, geological setting andstyle of mineralisation.	• EL8933 falls within the southern portion of the New England Orogen (NEO). EL8933 hosts numerous base metal occurrences. The Webbs Consol mineralisation is likely intrusion related and hosted within the Webbs Consol Leucogranite and, to a lesser extent, the Emmaville Volcanics
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including, easting and northing, elevation or RL, dip and azimuth, down hole length, interception depth and hole length. If the exclusion of this information is justified the Competent Person should clearly explain why this is the case. 	No drilling was carried out
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	No drilling was carried out

	• The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	No drilling or channel sampling was carried out.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plans and sections. 	Refer to plans and sections within report
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The accompanying document is considered to represent a balanced report.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported. 	All meaningful and material data is reported.
Further work	• The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Sampling and mapping activities are ongoing. Drilling is currently ongoing and results will be reported in due course.