Very Strong Results in Final Hole of 2023 Drilling Program Points to the Exciting Growth Potential at Maronan

Maronan Metals is very pleased to present very strong intercepts in MRN23022, the final hole of the 2023 drilling program. MRN23022 has delivered very impressive results on the Western Horizon, which will become one of the major priorities for future drilling at Maronan.

HIGHLIGHTS

- Standout intercepts from the Western Horizons include:
- 8.4 metres at 17.1% lead, $112 \mathrm{~g} / \dagger$ silver ($605 \mathrm{~g} / \dagger$ Silver Equivalent), including
- 4.4 metres at 22.2% lead, $148 \mathrm{~g} / \dagger$ silver ($793 \mathrm{~g} / \dagger$ Silver Equivalent), and
- 27.6 metres at 4.3% lead, $65 \mathrm{~g} / \dagger$ silver ($188 \mathrm{~g} / \dagger$ Silver Equivalent), including
- 5.0 metres at 7.5% lead, $173 \mathrm{~g} / \dagger$ silver ($383 \mathrm{~g} / \dagger$ Silver Equivalent).
- The high tenor section of the intercept in MRN23022 has a true width of about 7 metres and is a 100 metre step-out from historic drill hole MRN07001 which returned 14.48 metres at 11.1% lead, $133 \mathrm{~g} / \mathrm{t}$ silver; including 6.47 metres at 18.1% lead, $\mathbf{2 5 5 g} / \dagger$ silver.
- This result materially extends high grade mineralisation on the Western Horizon which remains open down-plunge and further highlights the significant value that can be gained from closer spaced and step-out drilling on the Maronan deposit.

Maronan Metals Ltd (ASX: MMA) (Maronan or the Company) is an Australian mineral explorer focused on realising the growth potential of the advanced Maronan Silver-Lead and Copper-Gold deposit in the Cloncurry region of Northwest Queensland. The Maronan Project is one of Australia's largest and highest-grade, undeveloped silver resources located just 90 km north of the giant Cannington Silver-Lead-Zinc Mine.

Maronan Metals Managing Director Richard Carlton commented:

"This is a great way to finish the 2023 drilling program, that gives our team an exciting focus area for future drilling which could add significant tonnage to the resource. MRN23022 has delivered some of the best lead results seen at Maronan. While our focus over the past 6 months has been the on the silver-enriched Eastern Horizon, this drilling shows the Western Horizon also contains very strong mineralisation within the Starter Zone, which bodes well for potential mining scenarios."

Results Discussion - MRN230022

Drill hole MRN23022 was designed to test lower extensions of high grade mineralisaiton on the Western Horizon, stepping north 100 metres and 80 metres down-dip from MRN07001 (Figures 1 and 2). Significant lead-silver intercepts include:

- 8.4 metres at 17.1% lead, $112 \mathrm{~g} / \dagger$ silver from 595.6 metres, including - 4.4 metres at 22.2% lead, $148 \mathrm{~g} / \dagger$ silver from 595.6 metres.

The thicker Western Horizon panel is interpreted to have a strike length of at least 150 metres, a downplunge extent of nearly 300 metres from MRN23008 and remains open further down-plunge and towards the south (Figure 2).

A second wide interval of Western Horizon mineralisation of potentially mineable grade was also intersected lower down the hole returning :

- 27.6 metre at 4.3% lead, $65 \mathrm{~g} / \dagger$ silver from 626 metres, including - 5.0 metre @ 7.5% lead, $173 \mathrm{~g} / \dagger$ silver from 630 metres.

This second zone of mineralisation was not observed in MRN07001 and further drilling is required to understand its significance.

Ongoing Program

Maronan has concluded its 2023 exploration drilling program, having completed 16,784 metres since the program commenced in August 2022.

Work is well underway on a revised resource estimation with an update to be provided in the first half of 2024.

Metallurgical research on the range of copper-gold mineralisation types and environmental base line studies have been initiated.

Table 1: Summary of assay results from MRN23022 using a lower cut-off grade of 1 weight percentage for lead

Hole Number	From (m)	Down-hole Intercept (m)	Estimated True Width (m)	Lead $\mathrm{wt} \%$	Silver g / t	Zinc $\mathrm{wt} \%$	Copper $\mathrm{wt} \%$	Gold g / t	Silver Equiv g / t	Mineralised Horizons
MRN23022	592.5	1.5	1.2	5.3	89		239	Western Horizon		
	595.6	8.4	7.0	17.1	112		609	Western Horizon		
includes	595.6	4.4	3.7	22.2	148		794	Western Horizon		
	605	1	0.8	1.3	32	68	Western Horizon			
	626	27.6	22.9	4.3	65	188	Western Horizon			
includes	630	5	4.2	7.5	173	383	Western Horizon			
includes	647	3.9	3.2	6.6	66	256	Western Horizon			
	745	7	5.8	1.5	57		97	Eastern Horizon		

Note - the equivalent calculation in Table 1 takes into account the preliminary metallurgical results that highlighted simple processing routes to achieve recoveries of 95% for the lead and 93% for the silver (refer to Red Metal ASX announcement dated 29 July 2015) and assumes 95% recovery of the zinc with the lead. Zinc values have not been used in the lead equivalent calculation due to the lack of metallurgical test work on the zinc-bearing ore types. A Lead price of USD $\$ 2000 / t$ and a silver price of USD $\$ 20 /$ z have been assumed in these calculations

Figure 1: Western Horizon Long section showing MRN23022 highlighting strong geological and grade continuity of the lead rich shoot on the Western Horizon and its steep plunge.

Figure 2: Cross section showing MRN23022 and highlighting strong geological and grade continuity of the Western Horizon within the shallow Starter Zone.

Figure 5: Plan view of 2022/2023 drilling completed and in progress at the Maronan Project with respect to key
Table 2: Summary of drilling completed since 1 January 2023

Drill Hole	East	North	RL	Dip	Azimuth	Hole Depth	Target	Assay Results
MRN22005	490660	7670730	211	-80	75	1,543.8m	Target 4 - below MRN12004B.	ASX: 4/4/23
MRN23001	491330	7670500	212	-60	80	366m	Starter Zone	ASX: 18/4/23
MRN23002	491447	7671050	212	-70	80	421.0m	NFZ - Gold	Assays received not material
MRN23003	491343	7670883	211	-65	80	450.9m	NFZ - Target 2 upplunge	Assays received not material
MRN22002W3	491227	7671127	210.8	-80	90	759.7	NFZ -Target 2	Assays received not material
MRN23004	491111	7670663	211	-80	100	834.8	Starter Zone to Target 3 Link	ASX: 9/7/2023
MRN23004W2	491111	7670663	211	-80	100	720.6	Starter Zone to Target 3 Link	ASX:19/7/2023
MRN23005	491423	7670460	210	-60	85	272.6	Starter Zone	ASX:29/5/2023
MRN23006	491421	7670599	210	-60	105	299.4	Starter Zone	ASX:31/7/2023
MRN14004W1	491033	7671217	210	-88	92	1320m	Copper-Gold Zone/DHEM Plate	ASX:19/7/2023
MRN23007	491254	7670402	211	-60	85	450.3	Shallow Silver Zone	ASX: 31/7/2023
MRN23008	491180	7670270	211	-60	90	615	Starter Zone	ASX: 9/8/2023
MRN23009	491305	7670202	210	-60	75	493.4	Starter Zone	ASX: 9/8/2023
MRN23010	491308	7670253	210	-60	70	504.5	Starter Zone	ASX: 20/9/2023
MRN23011	491450	7670520	212	-60	85	270.7	Shallow Silver Zone	ASX: 20/9/2023
MRN23012	491254	7670500	211	-60	85	460.7	Shallow Silver Zone	ASX: 20/9/2023
MRN23013	491340	7670445	211	-60	85	381.7	Shallow Silver Zone	ASX: 20/9/2023
MRN23014A	491340	7670445	211	-55	69	351.6	Shallow Silver Zone	ASX: 8/11/2023
MRN23015	491381	7670410	212	-60	85	300.7	Shallow Silver Zone	ASX: 8/11/2023
MRN23016	491480	7670448	212	-60	85	201.6	Shallow Silver Zone	ASX: 8/11/2023
MRN23017	491480	7670500	212	-60	85	201.6	Shallow Silver Zone	ASX: 8/11/2023
MRN23018	491424	7670520	212	-68	85	300.5	Shallow Silver Zone	ASX: 12/12/2023
MRN23019	491484	7670568	212	-60	85	198.1	Shallow Silver Zone	ASX: 12/12/2023
MRN23020	491253	7670491	212	-75	85	537.5	Shallow Silver Zone	ASX: 12/12/2023
MRN23021	491019	7670218	213	-60	80	680.9	Western Horizon	ASX: 12/12/2023
VWP_01	491461	7670496	212	-90	90	96.5	Water Monitor Bore	ASX: 12/12/2023
MRN23022	490949	7670323	212	-65	80	849.9	Western Horizon	This Report

-ENDS-

This announcement was authorised by the Board of Maronan Metals Limited.
For further information on the Company, please visit: maronanmetals.com.au

CONTACT

Richard Carlton
Managing Director
+61 402298029
richard.carlton@maronanmetals.com.au

Mark Flynn
Investor Relations
+61416068733
mark.flynn@maronanmetals.com.au

Maronan Metals Limited (ASX:MMA) is an Australian mineral explorer focused on realising the growth potential of the advanced Maronan copper-gold and silver-lead deposit in the Cloncurry region of northwest Queensland - one of Australia's most productive mineral provinces.

The Maronan Project contains JORC 2012 compliant Inferred Resources of:

- $30.8 \mathrm{Mt} @ 6.5 \%$ lead with $106 \mathrm{~g} / \dagger$ silver (using a 3% lead cut-off grade)
- $\quad 11 \mathrm{Mt} @ 1.6 \%$ copper with $0.8 \mathrm{~g} / \mathrm{t}$ gold (using a 1.0% copper cut-off grade)

The deposit offers significant untested exploration upside for high-value targets near surface and at depth.

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Results is based on and fairly represents information and supporting documentation compiled by Mr Robert Rutherford, who is a member of the Australian Institute of Geoscientists (AIG). Mr Rutherford is the Non-Executive Technical Director of the Company. Mr Rutherford has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the JORC Code). Mr Rutherford consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Silver Equivalent Calculation

Silver Equivalent was calculated using the formula: AgEq = ((Ag (ppm) * Agrec *Agprice) + (Pb (\%) * Pbrec *Pbprice)

- $\mathrm{Ag}(\mathrm{ppm})$ is the assay grade in parts per million of silver
- Agprice is the value of $1 \mathrm{~g} / \mathrm{t}$ silver based on a price assumption of \$USD20/ounce). In this instance the value of $\$ 0.643$
- Agrec is the estimated silver recovery from metallurgical testwork at Maronan of 93%.
- $\mathrm{Pb}(\%)$ is the weight percent assay grade for Lead
- Pbprice is the value of 1% Lead based on a price assumption of \$USD2000/tonne). In this instance the value of \$20
- Pbrec is the estimated silver recovery from metallurgical testwork at Maronan of 95%
- The formula calculates the value of metal for Silver and Lead and divides by the value of $1 \mathrm{~g} / \dagger$ silver to calculate the silver Equivalent value
- This Silver Equivalent calculation does not take into account any assumptions about payability, treatment costs or refining cost. Zinc is not included in the Silver Equivalent calculation as no metallurgical testwork on zinc containing material has been conducted at this point in time, and the distribution of zinc is poorly constrained

APPENDIX 1. JORC CODE, 2012 EDITION - TABLE 1 REPORT TEMPLATE

1.1 Section 1 Sampling Techniques and Data
(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation
Sampling techniques	- Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are Material to the Public Report. - In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.
Drilling techniques	- Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).
Drill sample recovery	- Method of recording and assessing core and chip sample recoveries and results assessed. - Measures taken to maximise sample recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.

Commentary

- Sampling has been half-core sampling of diamond drill core. Core has been cut using an automatic corewise core saw.
- Samples have been submitted for assay analysis with ALS Global at the Mt Isa Laboratory. Samples are crushed and pulverized to 85% passing $75 u m$. Samples are then assayed using the Au-AA25 (30 g fire assay) and ME-MS61 assay methods (48 element ICP-MS suite). For samples that return over-limit assays from the ME-MS61 assays, samples are re-assayed using the OG62 method.
- Maronan Metals has included standard and blank samples to monitor laboratory performance at a rate of approximately 1:25 samples. In addition to this, ALS has also included addition standard and blank materials to monitor the performance of the laboratory.
- MRN23022 - Diamond Drilling. PQ3: 0-56.8m; HQ3: 56.8-122.5m ; NQ2: 122.5 - $849.9 m$
- HQ AND NQ Drill core was oriented using the Reflex ACT3 digital orientation tool
- Overall - drill recoveries are very good. There is some core loss drilling through the transported cover sequence.
- Maronan Metals has been drilling triple tube diamond core through the intervals where coreloss has been noted to maximise recoveries through these intervals.
- Recovery was recorded for every drill run by measuring the length of the run drilled vs the length of core recovered.
- It is not known at this point in time whether there is a relationship between sample recovery and grade, or whether sample bias has

Criteria
JORC Code explanation
Commentary
occurred due to preferential loss or gain of material.

Logging

Sub-sampling
techniques and
sample
preparation

- Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
- Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.
- The total length and percentage of the relevant intersections logged.
- If core, whether cut or sawn and whether quarter, half or all core taken.
- If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.
- For all sample types, the nature, quality and appropriateness of the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.
- Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.
- Drill core has been logged for lithology, alteration and mineralisation and geotechnical RQD has been recorded. Specific Gravity measurements have been taken using the Archimedes Method (Dry Weight/(Dry Weight - Wet Weight). Magnetic Susceptibility reading have been collected using a K10 Magnetic Susceptibility machine.
- Logging of lithology and alteration is qualitative. Logging is sulphide mineralisation considered to be semi-quantitative in nature.
- All drill core has been photographed
- The total length (100\%) of recovered drill core for each drill hole has been logged.
- Drill core was cut in half using an automatic core saw. Drill core was cut slightly off the orientation line, with sampling of the half core that did not have the orientation line.
- The sampling method utilized is considered appropriate for the styles of mineralisation at the Maronan project.
- Certified Standards were inserted at a rate of 1:25 samples. Two different sets of standards are utilized, one for the lead, silver, zinc mineralisation (OREAS 135B; OREAS 136; OREAS 315; OREAS 317) and one for the copper, gold mineralisation (OREAS 520; OREAS 521; OREAS 522; OREAS 523; OREAS 601C)
- Blanks were inserted at a rate of 1:25 samples.
- No duplicate second-half drill core samples have been submitted.
- No specific grain size analysis has been completed on the Maronan project, however sampling methods utilized are consistent with those used by other mining and exploration projects targeting similar styles of mineralisation in the Mt Isa Belt.

Criteria

JORC Code explanation

Quality of assay
data and
laboratory tests

- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
- Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.

Commentary

- Samples were assayed by Au-AA25 (30g fire assay) technique for gold and the ME-MS61 method for $\mathrm{Ag}, \mathrm{Al}, \mathrm{As}, \mathrm{Ba}, \mathrm{Be}, \mathrm{Bi}, \mathrm{Ca}, \mathrm{Cd}$, $\mathrm{Ce}, \mathrm{Co}, \mathrm{Cr}, \mathrm{Cs}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Ga}, \mathrm{Ge}, \mathrm{Hf}, \mathrm{In}, \mathrm{K}, \mathrm{La}, \mathrm{Li}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Mo}, \mathrm{Na}$, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr . For over limit samples of $\mathrm{Ag}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}$, samples are assayed by the ore grade OG-62 method. Au-AA25 is considered a total assay method for gold. ICP-ME61 is considered a "near total" digest method, with only the most resistive minerals (eg Zircons) only partly dissolved.
- The methods of assaying utilized are considered appropriate for the style of mineralisation targeted
- Standard and Blank samples were inserted at a rate of 1:25 samples each.
- The standards used displayed acceptable levels of accuracy and precision. Any QAQC failures are recorded in Maronan Metals QAQC action register and follow up actions are recorded.
- Blank samples submitted were within acceptable limits.
- No duplicates at the sampling stage were submitted.
- The standards used displayed acceptable levels of accuracy and precision.

Verification of sampling and assaying

- The verification of significant intersections by either independent or alternative company personnel.
- The use of twinned holes.
- Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.
- Assay results reported in this release have been compiled by Exploration Manager Andrew Barker, and reviewed by Mr Rob Rutherford and Mr Richard Carlton.
- Logging is completed by two contract senior exploration geologists working for Maronan Metals, and is reviewed by Maronan Metals exploration manager.
- No holes have been twinned at this stage of exploration.
- Logging is saved into a logging template excel spreadsheet. Upon completion of logging, this data is uploaded into Maronan Metals Geobank Database. The Geobank Database is housed on an SQL server. A copy of the logging spreadsheet is saved on the Maronan Metals server
- Assays results are loaded into Maronan Metals Geobank Database. QAQC is checked on import, and issues identified are recorded in Maronan's QAQC register.

Criteria
JORC Code explanation
Location of data points

- Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.
- Specification of the grid system used.
- Quality and adequacy of topographic control.

Data spacing

and distribution

- Data spacing for reporting of Exploration Results.
- Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.
- Whether sample compositing has been applied.

Orientation of data in relation to geological structure

- Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.
- If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.

Commentary

- The drill collar for MRN23022 has been picked with a Garmin 66i GPS accurate to $+/-3$ metres.
- The drill hole collar was surveyed in MGA94 grid system.
- Topographic relief has been surveyed during a detailed 50 metre $\times 50$ metre gravity survey. The region is flat with relief varying less than 3 metres over the project area.
- Drill spacing around MRN23022 varies from ~80-200m.
- The drill pierce point spacing is sufficient to outline the structural geometry, broad extent of mineralisation and grade variations in the mineral system and is of sufficient spacing and distribution to infer a Mineral Resource.
- No sample compositing has been applied
- Bedded mineralisation appears folded about steep plunging tight to isoclinal fold structures. Limbs of the folds and the axial planar foliation are sub-parallel and dip between 60 and 80 degrees towards the west northwest. Structurally remobilised mineralisation in MRN14007 and other holes appears to parallel the axial plane to the northern fold structure which dips between 60 and 80 degrees towards the west northwest. East directed drilling provides a representative, unbiased sample across the isoclinal folded bedded mineralisation and axial planar, structurally remobilised mineralisation. The core to bedding angle of mineralisation typically varies between 20 and 50 degrees but can be locally more or less where bedding is folded.
- Continuity of the lead and silver mineralisation appears to have a steep bias, in the down dip-direction of the bedding, down the plunge direction of the northern fold structure. Fold structures, mineral and intersection lineations measured from the core indicate a steep plunge of about 70 degrees towards 284 degrees (grid). Causes of lateral and vertical variations of the grade and thickness of mineralisation within the bedding planes have not been resolved because of the wide spacing of the drilling.
- Modelled zones of mineralisation at the Maronan Project strike approximately 010 and dip ~ 70W.
- MRN23022 intersect the modelled mineralisation at a dip of -52 towards 92 (true north). True width is interpreted to be

Criteria
JORC Code explanation

Commentary

approximately 83% of the downhole intercept. The drilling orientation is not considered to have introduced a sampling bias.

Sample security

- The measures taken to ensure sample security.

Audits or reviews

- The results of any audits or reviews of sampling techniques and data.
- Drill core is kept at the drill rig which is manned 24/7 until it is collected by Maronan Metals personnel. Maronan Metals personnel transport the drill core to Maronan Metals yard in Cloncurry. The yard in Cloncurry is secured by a six foot fence and gates are locked at all times when no personnel are at the yard.
- Samples are collected from the Maronan Metals yard by Cloncurry Couriers and transported to ALS Mt Isa
- Samples are transported in bulka bags sealed with a cable tie.
- Upon receipt on samples at ALS Mt Isa, the dispatch is checked and a sample receipt sent to Maronan Metals confirming the dispatch details.
- Maronan metals completed an inspection of ALS Mt Isa Sample preparation facility in Mt Isa in April 2022 and had no adverse findings.
- A selection of historic pulps from drilling completed by Red Meta between 2011-2014 were submitted to ALS Mt Isa for check assaying utilising the same assay protocol as the current Maronan Metal program. Results from this program display a very strong correlation between the original Red Metal assays and the Maronan Metal check assays.

1.2 Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	- Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. - The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	- Maronan is located within EPM 13368 situated in the Cloncurry region of north-west Queensland. EPM 13368 is owned 100% by Maronan Metals Limited. No material ownership issues or agreements exist over the tenement. An ancillary exploration access agreement has been established with the native title claimants and a standard landholder conduct and compensation agreement has been established with the pastoral lease holders. - The tenements are in good standing and no known impediments exist
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	- The extent of mineralisation at Maronan has been defined by 54 diamond core drill holes drilled by five different companies since 1987 until the present. Shell Minerals/Billiton/Acacia discovered base metal mineralisation on the project in 1987 and completed 16 shallow holes to 1993 . From 1995 to 1996 MPI completed 3 holes into the northern and southern fold hinge structures. From 2001 to 2004 Phelps Dodge completed 6 holes. BHP Cannington undertook a campaign of lead-silver exploration from 2006 to 2008 completing 13 holes. Red Metal Limited completed 16 holes from 2011 to the 2019 seeking depth extensions to the bedded lead-silver and separate copper-gold mineralisation. Maronan Metals was spun out of Red Metals in 2022 and has subsequently drilled seven holes and is continuing to explore the Maronan project.
Geology	- Deposit type, geological setting and style of mineralisation.	- Exploration on Maronan has identified three separate styles of mineralisation, bedded lead-silver mineralisation partially overprinted by structurally controlled, copper-gold mineralisation, and gold only mineralisation - The lead-silver mineralisation is of a similar style to the nearby Cannington deposit, one of the world's largest silver and lead producing operations. The Maronan lead-silver mineralisation occurs in two separate but sub-parallel banded carbonate-lead sulphide-magnetite-calcsilicate units referred to as the Western Horizon (Upper) and Eastern Horizon (Lower. The two horizons can be separated by up to 100 metres of quartz clastic meta-sediments (psammites, pelites and quartzite). At the Northern Fold Structure the

Eastern horizon is folded forming a steep plunging tight to isoclinal fold structure with attenuated or transposed limbs and a thickened hinge zone region.

- The overprinting copper-gold mineralisation can be compared with the ISCG mineralisation styles at the nearby Eloise and Osborne ore bodies. Mineralisation is associated with intense silica alteration within a bedding-parallel structure focused between the Western and Eastern Lead-Silver mineralised zones and comprises strong pyrrhotite with variable chalcopyrite and minor magnetite.
- Gold only mineralisation occurs in the Northern Fold area, upplunge on bedded Lead-Silver mineralisation within the Eastern Horizon and is associated disseminated arsenopyrite within strong magnetite-carbonate facies/alteration. This zone appears to transition down-plunge to carbonate-sulphide dominant facies/alteration that hosts the lead silver mineralisation.
- Lead-Silver and Copper-Gold styles of mineralisation appear to show improvement in grade and widths at depth and remain open down-plunge and at shallow levels between the existing wide spaced intercepts.

Drill hole Information

Data aggregation methods

- A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:
- easting and northing of the drill hole collar
- elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar
- dip and azimuth of the hole
- down hole length and interception depth
- hole length.
- If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.
- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.
- Where aggregate intercepts incorporate short lengths of
- Drill hole details are included in the ASX report in Table I and Table 2 of this report.
- Assay results have been reported using length-weighting technique to calculate down hole average grades. No top-cuts have been applied.
- A cut-off grade of 1% has been used for reporting of Lead Results
- Due to the poly-metallic nature of mineralisation at Maronan,
high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
- The assumptions used for any reporting of metal equivalent values should be clearly stated.
intervals of mineralisation below the cut-off may be included within a broader mineralised zone, Internal dilution below cut-off is also permitted where geological continuity of a particular zone is inferred.
- Aggregate intercepts have been included - for example:
- Lead-Silver Mineralisation
- $8.4 \mathrm{~m}(7.0 \mathrm{~m} \mathrm{etw})$ at $17.1 \% \mathrm{~Pb}, 112 \mathrm{~g} / \mathrm{t}$ Ag from 595.6 m downhole including;
- $4.4 \mathrm{~m}(3.7 \mathrm{~m}$ etw) at $22.2 \% \mathrm{~Pb}, 148 \mathrm{~g} / \dagger \mathrm{Ag}$, from 595.6 m downhole

In this example, the sub-interval contains significantly higher grade than the broader interval.

In addition to reporting the raw assay results, Silver-Lead results have been reported as Silver Equivalent (AgEq). The Silver Equivalent value is considered an appropriate method for reporting combined silver, lead mineralisation at Maronan because of the exceptional metallurgical recovery of both the lead and silver and the resulting concentrates very high silver content and low levels of penalty elements. The silver equivalent calculation takes into account the preliminary metallurgical results that highlighted simple processing routes to achieve recoveries of 95% for the lead and 93% for the silver (refer to Red Metal ASX announcement dated 29 July 2015). Gold values have not been used in the lead equivalent calculation due to the lack of metallurgical test work on the gold-bearing ore types.

- Silver Equivalent was calculated using the formula:
$\mathrm{AgEq}=\left((\mathrm{Pb}(\%) \quad * \mathrm{Pbrec} * \mathrm{~Pb}\right.$ price $)+\left(\mathrm{Ag}(\mathrm{g} / \mathrm{t})^{*}\right.$ Ag $\left.{ }^{\text {rec* }}{ }^{\text {Ag }}{ }^{\text {price }}\right)+(\mathrm{Zn}$ (\%)*Znec*Zn $\left.{ }^{\text {price }}\right)$) / Ag price
- $\mathrm{Pb}(\%)$ is the weight percent assay grade for Lead
- Pbrec is the assumed metallurgical recovery of 95% for lead based on previous testwork at Maronan
- Pbprice is the value of 1% Lead based on a price assumption of \$USD2000/tonne). In this instance the value of \$20
- $\mathrm{Ag}(\mathrm{g} / \mathrm{t})$ is the assay grade in grams/tonne of silver
- Agrec is the assumed metallurgical recovery of 93% for silver based on previous testwork at Maronan
- Agprice is the value of $1 \mathrm{~g} / \mathrm{t}$ Silver based on a price assumption of \$USD20/ounce). In this instance the value of \$0.643
- $\quad \mathrm{Zn}(\%)$ is the weight percent assay grade for Zinc
- $\quad Z n^{r e c}$ is an assumed metallurgical recovery of 95% for zinc. No specific metallurgical testwork has been completed for Zinc on the Maronan project, but it is assumed it will report with the lead to concentrate.
- Znprice is the value of 1% Zinc based on a price assumption of \$USD3100/tonne. In this instance the value of \$31
- \quad The formula calculates the value of the recoverable metal for Lead and Silver and divides with by the value of 1 gm Silver to calculate the Silver Equivalent value
This Silver Equivalent calculation does not take into account any assumptions about payability, treatment costs or refining costs

Relationship

between
mineralisation
widths and intercept lengths

- These relationships are particularly important in the reporting of Exploration Results.
- If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.
- If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').

Diagrams

- Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.

Balanced
reporting

- Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.
- Drill holes are interpreted to have intersected the mineralisation at an appropriate intersection angle.
- Modelled zones of mineralisation at the Maronan Project strike approximately 010 and dip $\sim 70 \mathrm{~W}$.
- Estimated True Widths are reported in Table 1 of the report
- Plan view, cross sectional and long section views are included within the body of the ASX release (Figures 1, 2, 3)
- All assay results for, gold, silver, copper, lead and zinc for MRN23022 are reported as Appendix 2 in this ASX release.

Criteria
JORC Code explanation
Other substantive exploration data or contaminating substances.

- Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious
- The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).
- Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.

Commentary

- Not Applicable
- Maronan Metals Ltd has completed $16,784 \mathrm{~m}$ of diamond drilling since August 2022
- Maronan has completed the current phase of exploration drilling and is currently reviewing the Maronan Resource.
- Mineralisation on the Eastern and Western Horizon Pb-Ag domains remains open down pluge, and requires additional drilling to increase confidence in the existing resource.
- The Maronan Copper-Gold resource is open down plunge. Further infill drilling is required to upgrade the resource from inferred to indicated category.
- Previous exploration completed by Red Metal Limited identified an untested EM anomaly (Maronan North). Maronan Metals has completed a small program of soil sampling over the Maronan North EM anomaly. In due course, Maronan Metals may test the Northern EM target with a diamond drill hole METALS

APPENDIX 2 - ASSAY RESULTS FOR MRN23022

HOLE_ID	SAMPLE_ID	FROM	TO	Ag_ppm	Au_ppm	Cu_ppm	Pb_ppm	Zn_ppm
MRN23022	MM07389	60.1	61	0.29	0.005	20	29	108
MRN23022	MM07390	70	71	0.23	0.005	23.8	53.5	145
MRN23022	MM07391	83	84	0.37	0.01	162.5	42.8	172
MRN23022	MM07392	88	89	3.21	0.44	74.6	52.8	168
MRN23022	MM07393	110	111	0.07	0.01	7.9	44.8	74
MRN23022	MM07394	120	121	0.22	0.005	3.6	64.7	72
MRN23022	MM07395	132	133	0.03	0.005	5.7	13.6	66
MRN23022	MM07396	135	136	0.01	0.005	4.3	26.9	61
MRN23022	MM07397	150	151	0.07	0.01	23.6	15.3	78
MRN23022	MM07398	164	165	0.02	0.01	2.7	15.5	52
MRN23022	MM07399	191	192	0.05	0.02	3.1	31.4	40
MRN23022	MM07401	192	193	0.33	0.02	291	24.3	52
MRN23022	MM07402	199	200	0.05	0.01	102.5	33.7	44
MRN23022	MM07403	200	201	3.59	0.07	7580	40.8	74
MRN23022	MM07404	201	202	0.005	0.005	7.9	27.7	301
MRN23022	MM07405	205	206	0.07	0.01	26.7	22	43
MRN23022	MM07406	209	210	0.49	0.03	370	34.5	188
MRN23022	MM07407	219	220.2	0.09	0.01	45.5	32.3	91
MRN23022	MM07408	229	230	0.11	0.02	24.3	20.2	55
MRN23022	MM07409	239	240	0.04	0.03	55.4	9.1	128
MRN23022	MM07410	249	250	0.03	0.01	7.6	32.9	38
MRN23022	MM07411	259	260	0.08	0.005	42	42.7	40
MRN23022	MM07413	269	270	0.07	0.02	35.4	44.1	39
MRN23022	MM07414	279	280	0.005	0.005	11.4	30	20
MRN23022	MM07415	289	290	0.11	0.005	141	61.6	69
MRN23022	MM07416	299	300	0.07	0.005	12	63.7	31
MRN23022	MM07417	309	310	0.05	0.05	17.6	25.1	16
MRN23022	MM07418	319	320	0.01	0.005	28.9	18.2	11
MRN23022	MM07419	330	331	0.58	0.02	36.7	140	535
MRN23022	MM07420	339	340	0.16	0.02	12.1	35.4	18
MRN23022	MM07421	349	350	0.21	0.04	9.8	47.6	44
MRN23022	MM07422	359	360	0.16	0.01	16	146	30
MRN23022	MM07423	368.9	370	0.11	0.005	27.9	99.4	66
MRN23022	MM07424	379	380	0.005	0.01	1.6	25	19
MRN23022	MM07426	389	390	0.1	0.01	88.3	45.3	34
MRN23022	MM07427	398.8	400	0.39	0.005	84.7	84.3	17
MRN23022	MM07428	409	410	0.02	0.005	5.1	63.4	17
MRN23022	MM07429	419	420	0.8	0.005	19.4	678	117
MRN23022	MM07430	429	430	0.04	0.01	58.5	28.5	17
MRN23022	MM07431	439	440	0.09	0.005	67.8	36.8	16
MRN23022	MM07432	449	450	0.63	0.16	46	55.2	26
MRN23022	MM07433	459	460	0.12	0.005	10.2	83.9	11
MRN23022	MM07434	469	470	0.09	0.005	6.4	169.5	39

MRN23022	MM07435	479	480	0.49	0.06	236	73.1	27
MRN23022	MM07436	487	488	0.55	0.005	54	314	42
MRN23022	MM07438	488	489	1.78	0.01	14	611	24
MRN23022	MM07439	489	490	5.38	0.04	27.6	2350	61
MRN23022	MM07440	490	491	3.83	0.03	5.6	780	26
MRN23022	MM07441	495	496	0.08	0.04	3.4	120	29
MRN23022	MM07442	499	500	0.51	0.02	231	62.9	29
MRN23022	MM07443	504	505	0.5	0.01	17.4	178	36
MRN23022	MM07444	505	506	2.58	0.01	205	601	19
MRN23022	MM07445	506	507	2.13	0.01	187.5	475	19
MRN23022	MM07446	507	508	2.28	0.01	181.5	423	27
MRN23022	MM07447	508	509	2.66	0.01	303	257	55
MRN23022	MM07448	509	510	1.15	0.01	105	221	30
MRN23022	MM07449	510	511	2.25	0.01	205	395	32
MRN23022	MM07451	511	512	1.44	0.005	89.7	446	54
MRN23022	MM07452	512	513	1.8	0.005	75.3	683	25
MRN23022	MM07453	513	514	3.55	0.01	122.5	1160	30
MRN23022	MM07454	514	515	2.23	0.01	86	882	261
MRN23022	MM07455	515	516	1.88	0.01	21.1	956	56
MRN23022	MM07456	516	517	2.98	0.01	25.6	1055	26
MRN23022	MM07457	517	518	2.49	0.01	57.8	1020	57
MRN23022	MM07458	518	519	2.18	0.01	16.6	863	25
MRN23022	MM07459	519	520	2.86	0.005	8.7	1240	34
MRN23022	MM07460	520	521	1.04	0.02	8.6	638	25
MRN23022	MM07461	521	522	7.14	0.19	29.4	3790	947
MRN23022	MM07463	522	523	16.15	0.28	119.5	8040	194
MRN23022	MM07464	523	524	13.25	0.12	217	5030	35
MRN23022	MM07465	524	525	10.05	0.02	13.2	2720	19
MRN23022	MM07466	525	526	2.95	0.03	9.6	1065	27
MRN23022	MM07467	526	527	0.77	0.005	7.4	444	29
MRN23022	MM07468	527	528	26.6	0.04	9.2	9920	357
MRN23022	MM07469	528	529	3.8	0.02	11.8	1595	37
MRN23022	MM07470	529	530	3.27	0.1	5	1725	21
MRN23022	MM07471	530	531	0.52	0.01	3.7	421	19
MRN23022	MM07472	531	532	1.49	0.005	6.2	476	26
MRN23022	MM07473	532	533	0.66	0.01	4.1	300	18
MRN23022	MM07474	533	534	2.03	0.04	4	877	21
MRN23022	MM07476	534	535	1.56	0.03	4.2	767	81
MRN23022	MM07477	535	536	0.31	0.01	1.7	262	108
MRN23022	MM07478	536	537	2.25	0.02	6.8	458	89
MRN23022	MM07479	537	538	1.27	0.03	3.5	487	47
MRN23022	MM07480	538	539	1.94	0.01	7.2	425	118
MRN23022	MM07481	539	540	0.67	0.005	12.7	274	74
MRN23022	MM07482	540	541	3.49	0.01	149	806	82
MRN23022	MM07483	541	542	0.39	0.01	9.1	271	93
MRN23022	MM07484	542	543	1.04	0.02	12.6	473	254

METRLS

MRN23022	MM07485	543	544	1.88	0.01	59	704	331
MRN23022	MM07486	544	545	0.63	0.005	15.5	380	100
MRN23022	MM07488	545	546	0.33	0.01	6	353	56
MRN23022	MM07489	546	547	1.8	0.01	26.1	464	201
MRN23022	MM07490	547	548	1.01	0.17	7.7	318	178
MRN23022	MM07491	548	549	0.84	0.02	9.1	412	136
MRN23022	MM07492	549	550	0.42	0.04	19.3	223	85
MRN23022	MM07493	550	551	0.87	0.01	37.4	318	22
MRN23022	MM07494	551	552	2.17	0.01	77.6	790	29
MRN23022	MM07495	552	553	2.13	0.01	593	572	126
MRN23022	MM07496	553	554	0.38	0.02	46.3	240	30
MRN23022	MM07497	554	555	1.36	0.01	140	768	169
MRN23022	MM07498	555	556	0.61	0.01	119.5	386	109
MRN23022	MM07499	556	557	1.18	0.01	60.5	414	106
MRN23022	MM07501	557	558	0.8	0.03	82.1	139	74
MRN23022	MM07502	558	559	5.3	0.04	629	210	95
MRN23022	MM07503	559	560	3.67	0.2	296	223	346
MRN23022	MM07504	560	561	1.51	0.06	115	198.5	53
MRN23022	MM07505	561	562	0.16	0.005	26.6	129.5	64
MRN23022	MM07506	562	563	0.58	0.01	138.5	145.5	64
MRN23022	MM07507	563	564	0.17	0.01	28.3	97	28
MRN23022	MM07508	564	565	0.64	0.01	64	276	136
MRN23022	MM07509	565	566	2.02	0.01	61.6	292	97
MRN23022	MM07510	566	567	0.18	0.01	8.1	347	34
MRN23022	MM07511	567	568	2.39	0.01	85	1100	25
MRN23022	MM07513	568	569	1.18	0.01	35.4	824	20
MRN23022	MM07514	569	570	1.02	0.01	26.3	829	23
MRN23022	MM07515	570	571	7.25	0.02	132.5	2080	65
MRN23022	MM07516	571	572.2	0.95	0.01	108	204	47
MRN23022	MM07517	572.2	573	0.17	0.02	89.4	112.5	104
MRN23022	MM07518	573	574	0.07	0.01	132	37	24
MRN23022	MM07519	574	575	0.26	0.005	286	55.2	38
MRN23022	MM07520	575	576	10.9	0.03	8110	107.5	43
MRN23022	MM07521	576	576.8	13.1	0.09	9070	152	59
MRN23022	MM07522	576.8	578	1.7	0.02	1090	409	44
MRN23022	MM07523	578	578.9	6.12	0.03	3580	3480	305
MRN23022	MM07524	578.9	580.33	5.54	0.06	3150	1765	147
MRN23022	MM07526	580.33	581	0.59	0.005	116	327	58
MRN23022	MM07527	581	582	0.63	0.01	377	304	113
MRN23022	MM07528	582	583	0.4	0.005	228	104	60
MRN23022	MM07529	583	584	0.09	0.005	27.9	87.2	33
MRN23022	MM07530	584	584.9	0.22	0.01	207	108.5	109
MRN23022	MM07531	584.9	586	0.63	0.02	516	117	528
MRN23022	MM07532	586	587	0.95	0.02	898	184.5	455
MRN23022	MM07533	587	588	1.08	0.13	322	404	596
MRN23022	MM07534	588	589	1.38	0.18	597	415	321

MRN23022	MM07535	589	590	1.1	0.02	412	473	272
MRN23022	MM07536	590	591.27	5.14	0.03	200	1865	306
MRN23022	MM07538	591.27	592.5	1.91	0.01	48.8	1700	321
MRN23022	MM07539	592.5	593	112	0.16	108.5	81800	252
MRN23022	MM07540	593	594	76.9	0.07	975	39100	187
MRN23022	MM07541	594	595	11.35	0.04	181	2770	33
MRN23022	MM07542	595	595.6	3.45	0.01	376	1795	56
MRN23022	MM07543	595.6	597	205	0.25	522	241000	36
MRN23022	MM07544	597	598	83.6	0.14	168.5	145000	130
MRN23022	MM07545	598	599	119	0.35	118	214000	315
MRN23022	MM07546	599	600	163	0.38	64.6	280000	217
MRN23022	MM07547	600	601	74.4	0.07	104	143500	202
MRN23022	MM07548	601	602	13.65	0.01	71.1	28900	106
MRN23022	MM07549	602	603	64.5	0.08	42.3	119000	74
MRN23022	MM07551	603	604	135	0.13	33.1	169500	150
MRN23022	MM07552	604	605	4.25	0.005	29.8	4880	186
MRN23022	MM07553	605	606	32	0.04	59.7	13500	240
MRN23022	MM07554	606	607	0.77	0.005	7.3	1095	50
MRN23022	MM07555	607	608	0.08	0.005	1.3	156	46
MRN23022	MM07556	608	609	0.24	0.005	0.9	214	48
MRN23022	MM07557	609	610	0.12	0.005	61.2	108.5	79
MRN23022	MM07558	610	611	0.01	0.005	3.9	113.5	58
MRN23022	MM07559	611	612	0.09	0.005	10.9	114.5	96
MRN23022	MM07560	612	613	0.1	0.005	5.7	96	76
MRN23022	MM07561	613	614	0.1	0.005	2.2	95.6	66
MRN23022	MM07563	614	615	0.005	0.02	1.1	85.7	61
MRN23022	MM07564	615	616	0.005	0.005	0.4	81	42
MRN23022	MM07565	616	617	0.14	0.005	17.8	110	55
MRN23022	MM07566	617	618	0.17	0.005	11.4	162.5	42
MRN23022	MM07567	618	619	0.17	0.01	3.5	86.1	43
MRN23022	MM07568	619	620	0.06	0.005	2.7	89.3	53
MRN23022	MM07569	620	621	0.07	0.005	2.6	83.6	38
MRN23022	MM07570	621	622	0.06	0.005	3.9	71.1	52
MRN23022	MM07571	622	623	0.14	0.005	7.8	253	116
MRN23022	MM07572	623	624	0.44	0.005	14.7	338	338
MRN23022	MM07573	624	624.56	0.13	0.01	4.6	197.5	278
MRN23022	MM07574	624.56	625.5	0.42	0.005	116.5	99.1	645
MRN23022	MM07576	625.5	626	1.38	0.005	103.5	410	280
MRN23022	MM07577	626	627	37.1	0.02	56.8	52400	170
MRN23022	MM07578	627	628	9.33	0.01	41.1	8650	200
MRN23022	MM07579	628	629	78.7	0.09	562	38100	803
MRN23022	MM07580	629	630	67.1	0.07	130	38800	376
MRN23022	MM07581	630	631	346	0.16	419	147500	342
MRN23022	MM07582	631	632	159	0.17	83.4	63600	780
MRN23022	MM07583	632	633	50.5	0.02	8.4	22800	212
MRN23022	MM07584	633	634	147	0.12	246	64500	1195

METRLS

MRN23022	MM07585	634	635	162	0.06	41.4	75300	83
MRN23022	MM07586	635	636	41.9	0.02	12.4	43400	97
MRN23022	MM07588	636	637	23.5	0.01	11.9	37700	40
MRN23022	MM07589	637	638	10.75	0.01	24.7	21500	34
MRN23022	MM07590	638	639	12.35	0.02	9.1	21800	34
MRN23022	MM07591	639	640	38	0.005	16.1	25400	55
MRN23022	MM07592	640	641	80.2	0.01	15.4	41600	69
MRN23022	MM07593	641	642	30.3	0.01	21.2	23900	62
MRN23022	MM07594	642	643	23.6	0.09	4.4	29200	26
MRN23022	MM07595	643	644	56	0.01	51.4	28200	908
MRN23022	MM07596	644	645	50.4	0.01	16.2	29300	750
MRN23022	MM07597	645	646	14.55	0.01	4.3	13600	31
MRN23022	MM07598	646	647	27.8	0.01	8.5	29400	28
MRN23022	MM07599	647	648	97.6	0.01	58.7	116000	44
MRN23022	MM07601	648	649	38.7	0.01	19.4	38900	48
MRN23022	MM07602	649	650	32.9	0.01	18.4	53300	23
MRN23022	MM07603	650	650.9	97	0.02	155	54200	28
MRN23022	MM07604	650.9	652.3	1.28	0.005	13	1145	132
MRN23022	MM07605	652.3	653	2	0.01	172	1305	241
MRN23022	MM07606	653	653.6	96.3	0.05	293	97600	56
MRN23022	MM07607	653.6	654.3	0.34	0.005	93.8	237	157
MRN23022	MM07608	654.3	655	0.39	0.005	87.5	405	108
MRN23022	MM07609	655	656	0.54	0.005	3.9	691	81
MRN23022	MM07610	656	657	0.07	0.01	1.4	176	74
MRN23022	MM07611	657	658	0.21	0.005	16	131	104
MRN23022	MM07613	658	659	0.15	0.005	8.4	127	122
MRN23022	MM07614	659	660	0.27	0.01	18	128.5	118
MRN23022	MM07615	660	661	0.21	0.005	8.8	150.5	109
MRN23022	MM07616	669	670	2.68	0.01	70.2	348	179
MRN23022	MM07617	676	677	0.04	0.005	9.5	91.7	79
MRN23022	MM07618	684	685	0.32	0.005	6.5	49.9	43
MRN23022	MM07619	691	692	0.03	0.01	2.4	16.9	20
MRN23022	MM07620	692	693	0.04	0.005	3.9	20.1	19
MRN23022	MM07621	693	694	0.05	0.02	1.8	34.2	28
MRN23022	MM07622	694	695	0.3	0.005	2.4	25.2	32
MRN23022	MM07623	700	701	0.07	0.005	3.7	20.7	33
MRN23022	MM07624	701	702	0.37	0.01	36.6	26	29
MRN23022	MM07626	702	703	0.02	0.005	2.4	39.5	44
MRN23022	MM07627	703	703.8	0.04	0.005	1.4	35.8	48
MRN23022	MM07628	703.8	705	3.52	0.02	328	271	851
MRN23022	MM07629	705	706	2.85	0.06	396	237	235
MRN23022	MM07630	706	707	3.79	0.4	258	505	177
MRN23022	MM07631	707	708	8.65	0.37	605	933	142
MRN23022	MM07632	708	709	3.49	0.05	640	376	105
MRN23022	MM07633	709	710.1	13.65	0.16	917	2760	256
MRN23022	MM07634	710.1	711	0.2	0.01	10.6	118.5	61

MRN23022	MM07635	711	712	0.17	0.005	4.6	189.5	110
MRN23022	MM07636	712	713	4.36	0.13	40.4	1390	177
MRN23022	MM07638	713	714	0.6	0.38	184	100	184
MRN23022	MM07639	714	715	1.01	0.01	180.5	223	233
MRN23022	MM07640	715	715.7	1.76	0.01	109.5	351	233
MRN23022	MM07641	715.7	716.35	1.82	0.02	92.1	353	194
MRN23022	MM07642	716.35	717	0.16	0.005	8.1	108	61
MRN23022	MM07643	717	718	0.14	0.005	2.2	84.7	116
MRN23022	MM07644	718	719	1.26	0.01	46.6	641	222
MRN23022	MM07645	719	720.2	0.27	0.005	8.8	354	308
MRN23022	MM07646	720.2	721	0.07	0.005	1	210	43
MRN23022	MM07647	721	722.2	0.08	0.005	4.4	155	93
MRN23022	MM07648	722.2	722.75	1.24	0.01	164	286	203
MRN23022	MM07649	722.75	723.85	0.9	0.01	71.6	215	319
MRN23022	MM07651	723.85	724.75	1.34	0.01	481	86.8	453
MRN23022	MM07652	724.75	725.75	2.86	0.14	215	544	362
MRN23022	MM07653	725.75	726.75	1.54	0.01	212	234	322
MRN23022	MM07654	726.75	727.75	4.26	0.02	243	498	311
MRN23022	MM07655	727.75	728.75	4.09	0.03	336	494	332
MRN23022	MM07656	728.75	729.75	1.93	0.01	275	207	386
MRN23022	MM07657	729.75	730.75	2.7	0.05	656	138	309
MRN23022	MM07658	730.75	731.75	1.71	0.07	405	157	264
MRN23022	MM07659	731.75	732.75	0.25	0.005	4.2	210	73
MRN23022	MM07660	740	741	0.48	0.005	4.6	587	51
MRN23022	MM07661	744	745	26.5	0.03	245	6510	177
MRN23022	MM07663	745	746	124	0.12	120	30300	399
MRN23022	MM07664	746	747	17	0.01	306	3600	497
MRN23022	MM07665	747	748	30.5	0.05	246	8160	441
MRN23022	MM07666	748	749	42.3	0.15	432	7170	371
MRN23022	MM07667	749	750	2.06	0.01	318	365	421
MRN23022	MM07668	750	751	67.8	0.06	139.5	20300	319
MRN23022	MM07669	751	752	133	0.05	221	35800	348
MRN23022	MM07670	752	753.1	0.91	0.005	307	358	383
MRN23022	MM07671	753.1	754	0.32	0.005	5.3	266	98
MRN23022	MM07672	758	759	0.16	0.01	15.4	108.5	55
MRN23022	MM07673	767	768.1	0.81	0.005	83.5	413	544
MRN23022	MM07674	768.1	769	0.3	0.02	47.1	117.5	59
MRN23022	MM07676	769	770	0.64	0.02	264	147	498
MRN23022	MM07677	770	771	0.3	0.005	114	74.4	418
MRN23022	MM07678	771	772	0.27	0.02	151.5	42.3	421
MRN23022	MM07679	772	773	0.48	0.01	258	47.1	430
MRN23022	MM07680	773	774	0.4	0.01	197	57.6	392
MRN23022	MM07681	774	775	0.21	0.01	25	76.3	510
MRN23022	MM07682	775	776	0.39	0.01	185	63.6	427
MRN23022	MM07683	776	777	0.16	0.005	24.9	50.3	310
MRN23022	MM07684	777	778	0.19	0.005	38.5	37.5	208

MRN23022	MM07685	778	779	0.6	0.01	353	67.4	331
MRN23022	MM07686	779	779.75	0.63	0.01	414	38.8	260
MRN23022	MM07688	779.75	780.4	0.52	0.03	133.5	127	221
MRN23022	MM07689	780.4	781	0.06	0.03	2.4	19.9	157
MRN23022	MM07690	781	781.75	0.02	0.005	3.9	18.9	207
MRN23022	MM07691	781.75	782.5	0.1	0.01	2.9	44.2	225
MRN23022	MM07692	782.5	783.25	0.09	0.005	17.6	76.3	255
MRN23022	MM07693	783.25	784	0.77	0.06	332	113.5	366
MRN23022	MM07694	784	785	0.28	0.01	182	50.9	473
MRN23022	MM07695	785	786	0.32	0.01	234	56.3	364
MRN23022	MM07696	786	787	0.31	0.03	279	33	508
MRN23022	MM07697	787	788	0.39	0.05	276	53	457
MRN23022	MM07698	788	788.83	0.56	0.1	255	117.5	307
MRN23022	MM07699	788.83	789.75	0.03	0.01	4.3	35.6	188
MRN23022	MM07701	789.75	790.61	0.05	0.005	6.3	81.6	176
MRN23022	MM07702	790.61	791.42	0.6	0.005	504	68	111
MRN23022	MM07703	791.42	791.9	0.01	0.005	2.1	5.6	80
MRN23022	MM07704	791.9	792.26	1.2	0.09	398	382	89
MRN23022	MM07705	792.26	792.67	0.06	0.005	4.4	387	169
MRN23022	MM07706	792.67	793.07	2.39	0.09	579	584	76
MRN23022	MM07707	793.07	794	0.37	0.01	377	44.5	87
MRN23022	MM07708	794	795	0.92	0.02	481	244	145
MRN23022	MM07709	795	795.77	0.56	0.01	438	119	104
MRN23022	MM07710	795.77	796.75	0.82	0.09	288	140.5	61
MRN23022	MM07711	796.75	797.53	0.19	0.04	61	108	63
MRN23022	MM07713	797.53	798.5	0.04	0.005	2.4	112.5	74
MRN23022	MM07714	798.5	799.5	0.02	0.005	1.1	51.8	47
MRN23022	MM07715	810	811	0.21	0.01	5.5	163	54
MRN23022	MM07716	817	818	1.5	0.005	3.7	610	36
MRN23022	MM07717	820	821	1.28	0.01	9.8	228	71
MRN23022	MM07718	823	824	0.1	0.01	7.1	49	51
MRN23022	MM07719	824	825	7	0.04	783	61.8	83
MRN23022	MM07720	825	826	0.1	0.005	11.8	49.9	137
MRN23022	MM07721	826	827	0.46	0.005	58.3	60.2	109
MRN23022	MM07722	827	828	0.05	0.005	3	49.4	127
MRN23022	MM07723	830	831	0.15	0.005	50.9	30.1	129
MRN23022	MM07724	841	842	0.16	0.01	30.6	15.4	121
MRN23022	MM07726	848	849	0.33	0.01	66.6	29.3	154

