(ACN 149 105 653) ASX Code: DTR

CAPITAL STRUCTURE

Share Price (28/03/24)\$0.014Shares on issue1.45 billionMarket Cap\$20.3 million

MAJOR SHAREHOLDERS

Mr. Mark Johnson AO	20.18
Mr. Stephen Baghdadi	13.70
Southern Cross Exploration N.L	6.60%
National Nominees	5.53%

DIRECTORS & MANAGEMENT

Mark Johnson AO Chairman

Stephen Baghdadi Managing Director

Greg Hall Non-Executive Director

Tony Ferguson Non-Executive Director

Bill Lannen Non-Executive Director

John Smith Company Secretary

CONTACT

John Smith Phone: +61 2 9375 2353 Postal Address: P.O. Box 553 South Hurstville NSW 2221 Email: info@datelineresources.com.au

Major Expansion of High-Grade Gold Zone with Exceptional Intersect of 88 metres at 4.18g/t Au

Highlights

88m @ 4.18g/t Au intercepted in diamond drill hole CM24-16 Inc. 22.8m @ 8.17g/t Au.

DATELINE RESOURCES

- 19.8m @ 4.19g/t Au intercepted in diamond drill hole CM24-15.
- **High-grade gold** intersected **in the felsite breccia** unit, outside of the targeted high-grade sedimentary breccia unit.
- Felsite breccia unit is the largest volume unit in the breccia pipe, representing a significant increase in the target zone.
- Analysis of past geophysical data has commenced.
- Additional geochemistry analysis received.

Dateline Resources Limited (Dateline or **the Company**) is pleased to announce it has received assay results for part of the diamond drillhole, CM24-16, and all of the results for diamond drill hole CM24-15 completed at the Colosseum Gold Project in San Bernardino County, California, USA

Previous holes drilled by the Company have been collared on the north eastern side of the breccia pipe. Drill hole CM24-16 was collared on the northern side of the breccia pipe and has intersected **88m @ 4.18g/t Au.** CM24-16 confirms continuity of mineralisation to the north of, and below previous drill holes.

Both drill holes **CM24-15 and CM24-16 intersected high grade mineralisation in the felsite unit of the breccia pipe,** rather than the sedimentary breccia that has been the primary target to date. This development is significant and the geology model will be updated accordingly.

Drill holes CM24-15 and CM24-16 are the 9th and 10th exploratory holes the Company has undertaken at the Colosseum Project. Highlights of the drilling to date include,

- 88m @ 4.18g/t Au inc. 22.8m @ 8.17g/t Au in drill hole CM24-16,
- 19.8m @ 4.19g/t Au in drill hole CM24-15,
- 70.1m @ 6.53g/t Au inc. 25.9m @ 15.31g/t Au in drill hole CM23-14¹,
- 100m @ 4.16g/t Au in drill hole CM22-05²,
- 10.67m @ 13.71g/t Au in drill hole CM22-04³,
- 19.17m @ 1.81g/t Au in drill hole CM23-09⁴,
- 81.35m @ 2.57g/t Au inc. 36m @ 3.97g/t Au in drill hole CM23-11a⁵,
- 76.2m @ 8.62g/t Au inc. 23.5m @ 21.8g/t Au in drill hole CM23-08⁵

Commenting on the results, Managing Director, Stephen Baghdadi, commented:

"The drilling program has been accelerated and expanded at Colosseum. Both of these diamond drill holes have intersected wide zones of gold mineralisation outside of the known high-grade sedimentary breccia unit.

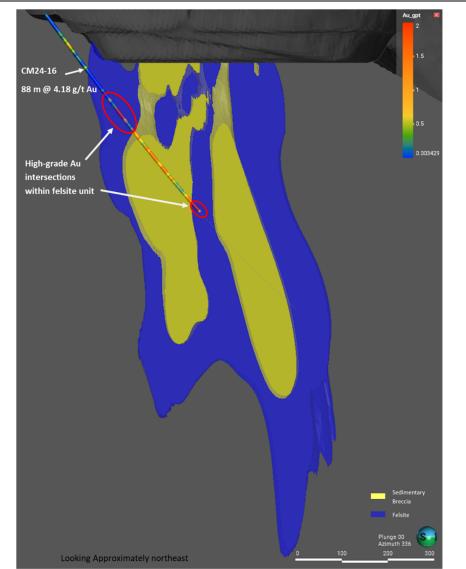
CM24-16 intersected a wide **88m @ 4.18g/t Au** in the upper and lower part of the drill hole **in the felsite breccia unit**. This is an encouraging development because the felsite breccia unit is the most voluminous rock type at the Colosseum."

- ⁴ ASX Announcement 30 October 2023 September Quarterly Activities Report
- ⁵ ASX Announcement 20 July 2023 Wide Gold Intercept at Colosseum 81.35m @ 2.57g/t Au

¹ASX Announcement 13 February 2024 – Wide intersection 70.1 metre @ 6.53g/t Gold at Colosseum

² ASX Announcement 6 June 2022 – 100 metres of 4.16g/t Au Colosseum Gold Project

³ ASX Announcement 12 May 2022 – Wide High-grade drill intercepts at Colosseum Gold Project


Diamond drill hole details - High grade gold values in the felsite breccia unit.

Most of the drilling to date has been designed to test from northeast to the southwest. Drillhole CM24-16 is being drilled at a dip of -52° towards azimuth 113° to test the continuity of the high-grade gold mineralisation from north to south while also testing for any southern extension of the sedimentary breccia body at depth. CM24-16 has shown a continuation of high-grade gold mineralisation in the felsite breccia which surrounds the sedimentary breccia unit.

Within both the felsite breccia and the sedimenatry breccia, there is a notable continuity of mineralisation that has intersected **88 metres of 4.18g/t Au in drill hole CM24-16**. CM24-16 also includes a high-grade mineralised section of **22.8 metres of 8.17 g/t Au.** The high-grade mineralisation within the felsite breccia is an encouraging sign for the expanded potential economic volume of the deposit and additional drill holes are planned to test the extents of this felsite breccia mineralization.

- High gold values have been intersected in the felsite breccia unit (Blue)
- High gold values were previously thought to be only in sedimentary breccia (Yellow)
- Felsite unit (Blue) is the most voluminous unit at the Colosseum
- Assays of samples from bottom section of CM24-16 are yet to be received from ALS Labs
- Geology model will be revised once balance of assay data has been received for CM24-16

Figure 1: Cross section showing CM24-16 high-grade gold intersections in both sedimentary breccia and felsite units.

As at the date of this release, the Company has completed 257 metres of the planned 274 metre for CM24-16, with drilling set to resume within a week, after pausing for a drill crew break.

RC Drilling Program

In addition to the diamond core drill holes mentioned above, reverse circulation (RC) drilling commenced at the Colosseum Project in March 2024. One RC drill-hole has been completed and the drill samples have been sent for analysis. The RC rig is tasked with infill drilling of high grade zones defined by diamond drilling in order to improve the mineral resource categorisation to Measured or Indicated in preparation for underground mine planning studies. An initial 10 hole RC drilling program is planned. The program may be expanded in light of the recent results from drill hole CM24-16

3D Inversion of Induced Polarisation (IP) Survey

Induced polarization (IP) is a geophysical method used to detect the presence of subsurface sulphide. It works by measuring the response of the ground to an applied electrical current. When an alternating current is passed through the ground, it polarizes the minerals within it, causing them to temporarily store electrical charge. The rate at which this charge is stored and released depends on the properties of the minerals and the surrounding rock.

The Company is in possession of both a magnetic and an IP survey that was completed in the 1980's by Amselco, a wholly owned subsidiary of British Petroleum (BP) when they owned the Colosseum. Amselco conducted surveys along 14 lines in a north-east/south-west orientation that covered both breccia pipes and the area immediately surrounding them.

Using software that was not available when the survey was completed in the 1980's, the data will be reprocessed to create a 3D visualization of the subsurface. This visualization will show the distribution of chargeability (a property related to the ability of materials to store electrical charge) and resistivity (a measure of how such material opposes the flow of electric current) in the surveyed area.

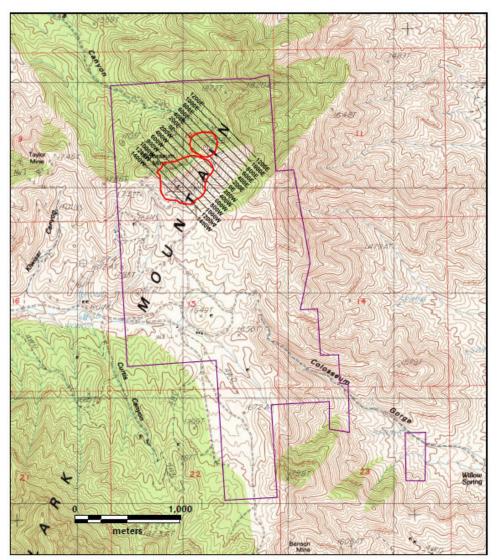


Figure 2: Map showing Colosseum claim boundary in purple, the Amselco IP and magnetic survey lines in black and the outline of the open pits in red.

Additional geophysics work at the Colosseum.

The IP method that is currently being analysed typically looks up to 200m below the surface. Depending on the outcome of this low-cost analysis of the historical geophysical data, the Company may complete additional geophysics surveys if it believes that it could enhance the potential success of its drilling program.

Other electrical methods under consideration could detect deeper mineralisation.

Mineralisation at the Colosseum

Mineralisation at the Colosseum mine is primarily contained in two breccia pipes that are made up of a combination of sediment, felsite and granite units. Until recently, very high grade mineralisation was thought to occur only in the sedimentary breccia unit. Drill holes CM24-16 and CM24-15 have demonstrated high grade mineralisation can also occur in the felsite breccia unit. In addition, drill hole CM23-14 intersected mineralisation in quartz veins that are in the graniteoutside of the breccia pipes. A revised geology model will be completed when the balance of the results from CM24-16 become available.

Geochemistry Analysis

Early geochemical work on CM23-14 indicated bismuth and tellurium as good pathfinder elements for gold. Anomalous arsenic and antimony form a halo above high-grade gold intercepts. The Company has now received the results of multi-element geochemical analysis from all drill holes completed in 2023/2024. The results are currently being analysed to confirm geochemical patterns associated with gold mineralisation across all the areas that the Company has drilled.

This announcement has been authorised for release on ASX by the Company's Board of Directors.

For more information:

Stephen Baghdadi Managing Director +61 2 9375 2353 www.datelineresources.com.au Andrew Rowell White Noise Communications +61 400 466 226 andrew@whitenoisecomms.com

Follow Dateline on Twitter: <u>https://twitter.com/Dateline_DTR</u>

About Dateline Resources Limited

Dateline Resources Limited (ASX: DTR) is an Australian publicly listed company focused on mining and exploration in North America. The Company owns 100% of the Colosseum Gold-REE Project in California.

The Colosseum Gold Mine is located in the Walker Lane Trend in East San Bernardino County, California. On July 6, 2022, the Company announced to the ASX that the Colosseum Gold mine has a JORC-2012 compliant Mineral Resource estimate of 20.9Mt @ 1.2g/t Au for 813,000oz. Of the total Mineral Resource, 258koz @1.2g/t Au (32%) are classified as Measured, 322koz @1.2g/t Au (39%) as Indicated and 235koz @1.3g/t Au (29%) as Inferred.

The Colosseum is located less than 10km north of the Mountain Rare Earth mine. Work has commenced on identifying the source of the mantle derived rocks that are associated with carbonatites and are located at Colosseum.

Forward-Looking Statements

This announcement may contain "forward-looking statements" concerning Dateline Resources that are subject to risks and uncertainties. Generally, the words "will", "may", "should", "continue", "believes", "expects", "intends", "anticipates" or similar expressions identify forward-looking statements. These forward-looking statements involve risks and uncertainties that could cause actual results to differ materially from those expressed in the forward-looking statements. Many of these risks and uncertainties relate to factors that are beyond Dateline Resources' ability to control or estimate precisely, such as future market conditions, changes in regulatory environment and the behaviour of other market participants. Dateline Resources cannot give any assurance that such forward-looking statements will prove to have been correct. The reader is cautioned not to place undue reliance on these forward-looking statements. Dateline Resources assumes no obligation and does not undertake any obligation to update or revise publicly any of the forward-looking statements set out herein, whether as a result of new information, future events or otherwise, except to the extent legally required.

Competent Person Statement

Sample preparation and any exploration information in this announcement is based upon work reviewed by Mr Greg Hall who is a Chartered Professional of the Australasian Institute of Mining and Metallurgy (CP-IMM). Mr Hall has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to quality as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Hall is a Non-Executive Director of Dateline Resources Limited and consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

Appendix 1: Drill Collar Information

Hole ID	Easting	Northing	Elevation	Total Depth (m)
CM24-15	11245	21173	5433	301.3
CM24-16	10923	20740	5504	221.6
RC24-001	11179	21145	5435	74.7

Appendix 2: Assay Information

Sample_ID	Hole_ID	Drill Type	From (m)	To (m)	Length (m)	Au ppm	Au opt
K428395	CM24-15	core	0.0	1.8	1.8	0.01	0.0003
K428396	CM24-15	core	1.8	3.4	1.5	0.04	0.0011
K428397	CM24-15	core	3.4	4.9	1.5	0.02	0.0007
K428398	CM24-15	core	4.9	6.4	1.5	0.03	0.0010
K428399	CM24-15	core	6.4	7.9	1.5	0.02	0.0007
K428400	CM24-15	core	7.9	9.4	1.5	0.02	0.0006
K428402	CM24-15	core	9.4	11.0	1.5	0.01	0.0003
K428403	CM24-15	core	11.0	12.5	1.5	0.02	0.0006
K428404	CM24-15	core	12.5	14.0	1.5	0.01	0.0002
K428405	CM24-15	core	14.0	15.5	1.5	0.05	0.0014
K428406	CM24-15	core	15.5	17.1	1.5	0.21	0.0061
K428407	CM24-15	core	17.1	18.6	1.5	0.08	0.0022
K428409	CM24-15	core	18.6	20.1	1.5	0.09	0.0025
K428410	CM24-15	core	20.1	21.6	1.5	0.12	0.0034
K428411	CM24-15	core	21.6	23.2	1.5	0.10	0.0029
K428412	CM24-15	core	23.2	24.7	1.5	0.20	0.0059
K428413	CM24-15	core	24.7	26.2	1.5	0.28	0.0081
K428414	CM24-15	core	26.2	27.7	1.5	0.07	0.0019
K428416	CM24-15	core	27.7	29.3	1.5	0.24	0.0071
K428417	CM24-15	core	29.3	30.8	1.5	6.24	0.1820
K428418	CM24-15	core	30.8	32.3	1.5	1.17	0.0342
K428419	CM24-15	core	32.3	33.8	1.5	0.31	0.0091
K428420	CM24-15	core	33.8	35.4	1.5	0.19	0.0056
K428421	CM24-15	core	35.4	36.9	1.5	0.17	0.0051
K428422	CM24-15	core	36.9	37.8	0.9	0.57	0.0165
K428424	CM24-15	core	37.8	38.4	0.6	0.77	0.0226
K428425	CM24-15	core	38.4	39.9	1.5	1.80	0.0525
K428426	CM24-15	core	39.9	41.5	1.5	0.43	0.0125
K428427	CM24-15	core	41.5	43.0	1.5	0.29	0.0084
K428428	CM24-15	core	43.0	44.5	1.5	7.38	0.2150
K428429	CM24-15	core	44.5	46.0	1.5	0.89	0.0259
K428430	CM24-15	core	46.0	47.5	1.5	0.41	0.0119
K428431	CM24-15	core	47.5	49.1	1.5	34.60	1.0100
K428433	CM24-15	core	49.1	50.6	1.5	0.12	0.0035
K428434	CM24-15	core	50.6	52.1	1.5	0.09	0.0027
K428435	CM24-15	core	52.1	53.6	1.5	0.06	0.0018
K428436	CM24-15	core	53.6	55.2	1.5	0.04	0.0013

Sample_ID	Hole_ID	Drill Type	From (m)	To (m)	Length (m)	Au ppm	Au opt
K428437	CM24-15	core	55.2	56.7	1.5	0.04	0.0011
K428438	CM24-15	core	56.7	58.2	1.5	0.08	0.0024
K428440	CM24-15	core	58.2	59.7	1.5	0.15	0.0044
K428441	CM24-15	core	59.7	61.3	1.5	0.25	0.0074
K428442	CM24-15	core	61.3	62.8	1.5	0.22	0.0064
K428443	CM24-15	core	62.8	64.3	1.5	0.09	0.0027
K428444	CM24-15	core	64.3	65.8	1.5	0.25	0.0072
K428445	CM24-15	core	65.8	67.4	1.5	0.32	0.0094
K428446	CM24-15	core	67.4	68.9	1.5	0.25	0.0073
K428448	CM24-15	core	68.9	70.4	1.5	0.19	0.0056
K428449	CM24-15	core	70.4	71.9	1.5	0.18	0.0052
K428450	CM24-15	core	71.9	73.5	1.5	0.03	0.0009
K428451	CM24-15	core	73.5	75.0	1.5	0.07	0.0020
K428452	CM24-15	core	75.0	76.5	1.5	0.05	0.0016
K428453	CM24-15	core	76.5	78.0	1.5	0.07	0.0022
K428455	CM24-15	core	78.0	79.5	1.5	0.11	0.0031
K428456	CM24-15	core	79.5	81.1	1.5	0.06	0.0019
K428457	CM24-15	core	81.1	82.6	1.5	0.02	0.0005
K428458	CM24-15	core	82.6	84.1	1.5	0.03	0.0009
K428459	CM24-15	core	84.1	85.5	1.4	0.17	0.0049
K428460	CM24-15	core	85.5	86.0	0.5	0.03	0.0010
K428462	CM24-15	core	86.0	87.2	1.2	0.02	0.0005
K428463	CM24-15	core	87.2	88.7	1.5	0.06	0.0017
K428464	CM24-15	core	88.7	90.2	1.5	0.07	0.0021
K428465	CM24-15	core	90.2	91.7	1.5	0.16	0.0048
K428466	CM24-15	core	91.7	93.3	1.5	0.09	0.0026
K428467	CM24-15	core	93.3	94.1	0.8	0.07	0.0020
K428469	CM24-15	core	94.1	95.4	1.3	0.91	0.0266
K428470	CM24-15	core	95.4	96.3	0.9	0.87	0.0254
K428471	CM24-15	core	96.3	97.8	1.5	0.96	0.0280
K428472	CM24-15	core	97.8	98.6	0.8	1.15	0.0336
K428473	CM24-15	core	98.6	100.1	1.5	0.38	0.0111
K428474	CM24-15	core	100.1	101.6	1.5	0.03	0.0010
K428476	CM24-15	core	101.6	103.2	1.5	0.12	0.0036
K428477	CM24-15	core	103.2	104.7	1.5	0.18	0.0053
K428478	CM24-15	core	104.7	106.2	1.5	0.06	0.0019
K428479	CM24-15	core	106.2	107.6	1.4	0.52	0.0151
K428480	CM24-15	core	107.6	109.1	1.5	1.05	0.0306
K428481	CM24-15	core	109.1	110.6	1.5	0.67	0.0195
K428483	CM24-15	core	110.6	112.2	1.5	0.81	0.0237
K428484	CM24-15	core	112.2	113.7	1.5	0.50	0.0146
K428485	CM24-15	core	113.7	115.2	1.5	0.56	0.0164
K428486	CM24-15	core	115.2	116.7	1.5	0.31	0.0091
K428487	CM24-15	core	116.7	118.2	1.5	1.84	0.0536
K428489	CM24-15	core	118.2	119.7	1.5	1.15	0.0336
K428490	CM24-15	core	119.7	120.7	1.0	0.03	0.0008
K428491	CM24-15	core	120.7	122.2	1.5	0.03	0.0007
K428492	CM24-15	core	122.2	123.7	1.5	0.06	0.0018

Sample_ID	Hole_ID	Drill Type	From (m)	To (m)	Length (m)	Au ppm	Au opt
K428493	CM24-15	core	123.7	124.8	1.1	0.06	0.0017
K428495	CM24-15	core	124.8	126.0	1.2	0.12	0.0034
K428496	CM24-15	core	126.0	126.8	0.8	0.23	0.0068
K428497	CM24-15	core	126.8	128.3	1.5	0.18	0.0052
K428498	CM24-15	core	128.3	129.8	1.5	0.81	0.0235
K428499	CM24-15	core	129.8	131.4	1.5	0.60	0.0175
K428500	CM24-15	core	131.4	132.9	1.5	0.62	0.0179
K428502	CM24-15	core	132.9	134.4	1.5	0.66	0.0191
K428503	CM24-15	core	134.4	135.9	1.5	0.63	0.0183
K428504	CM24-15	core	135.9	137.5	1.5	0.24	0.0069
K428505	CM24-15	core	137.5	139.0	1.5	0.66	0.0194
K428506	CM24-15	core	139.0	140.5	1.5	0.63	0.0182
K428507	CM24-15	core	140.5	142.0	1.5	0.04	0.0011
K428509	CM24-15	core	142.0	143.6	1.5	0.12	0.0035
K428510	CM24-15	core	143.6	145.1	1.5	0.23	0.0068
K428511	CM24-15	core	145.1	146.6	1.5	0.15	0.0045
K428512	CM24-15	core	146.6	148.1	1.5	0.07	0.0021
K428513	CM24-15	core	148.1	149.6	1.5	0.26	0.0076
K428514	CM24-15	core	149.6	151.2	1.5	0.51	0.0147
K428516	CM24-15	core	151.2	152.7	1.5	0.14	0.0041
K428517	CM24-15	core	152.7	154.2	1.5	0.09	0.0027
K428518	CM24-15	core	154.2	155.7	1.5	0.03	0.0009
K428519	CM24-15	core	155.7	157.3	1.5	0.84	0.0246
K428520	CM24-15	core	157.3	158.8	1.5	0.20	0.0058
K428521	CM24-15	core	158.8	160.3	1.5	0.29	0.0085
K428523	CM24-15	core	160.3	161.8	1.5	0.43	0.0125
K428524	CM24-15	core	161.8	163.4	1.5	0.16	0.0048
K428525	CM24-15	core	163.4	164.9	1.5	0.25	0.0072
K428526	CM24-15	core	164.9	166.4	1.5	0.34	0.0100
K428527	CM24-15	core	166.4	167.9	1.5	0.16	0.0045
K428528	CM24-15	core	167.9	169.5	1.5	0.12	0.0035
K428530	CM24-15	core	169.5	171.0	1.5	0.19	0.0055
K428531	CM24-15	core	171.0	172.5	1.5	0.11	0.0031
K428532	CM24-15	core	172.5	174.0	1.5	0.81	0.0236
K428533	CM24-15	core	174.0	175.6	1.5	0.07	0.0021
K428534	CM24-15	core	175.6	177.1	1.5	0.08	0.0024
K428535	CM24-15	core	177.1	178.6	1.5	0.11	0.0031
K428537	CM24-15	core	178.6	180.1	1.5	0.10	0.0028
K428538	CM24-15	core	180.1	181.7	1.5	0.27	0.0080
K428539	CM24-15	core	180.1	183.2	3.0	0.08	0.0025
K428540	CM24-15	core	183.2	184.7	1.5	0.41	0.0118
K428541	CM24-15	core	184.7	186.2	1.5	0.44	0.0128
K428542	CM24-15	core	186.2	187.7	1.5	0.21	0.0062
K428544	CM24-15	core	187.7	189.3	1.5	0.42	0.0123
K428545	CM24-15	core	189.3	193.8	4.6	0.57	0.0166
K428546	CM24-15	core	190.8	192.3	1.5	0.30	0.0087
K428547	CM24-15	core	192.3	193.8	1.5	0.18	0.0054
K428548	CM24-15	core	193.8	195.4	1.5	0.18	0.0051

Sample_ID	Hole_ID	Drill Type	From (m)	To (m)	Length (m)	Au ppm	Au opt
K428549	CM24-15	core	195.4	196.9	1.5	0.12	0.0034
K428551	CM24-15	core	196.9	198.4	1.5	0.27	0.0079
K428552	CM24-15	core	198.4	199.9	1.5	0.20	0.0058
K428553	CM24-15	core	199.9	201.5	1.5	0.27	0.0077
K428554	CM24-15	core	201.5	203.0	1.5	0.26	0.0077
K428555	CM24-15	core	203.0	204.5	1.5	0.83	0.0241
K428556	CM24-15	core	204.5	206.0	1.5	0.27	0.0078
K428558	CM24-15	core	206.0	207.6	1.5	0.14	0.0042
K428559	CM24-15	core	207.6	209.1	1.5	0.04	0.0011
K428560	CM24-15	core	209.1	210.6	1.5	0.10	0.0030
K428561	CM24-15	core	210.6	212.1	1.5	0.31	0.0092
K428562	CM24-15	core	212.1	213.7	1.5	0.06	0.0017
K428563	CM24-15	core	213.7	215.2	1.5	0.90	0.0264
K428565	CM24-15	core	215.2	216.7	1.5	0.14	0.0040
K428566	CM24-15	core	216.7	218.2	1.5	0.24	0.0069
K428567	CM24-15	core	218.2	219.8	1.5	0.18	0.0053
K428568	CM24-15	core	219.8	221.3	1.5	0.10	0.0031
K428569	CM24-15	core	221.3	222.8	1.5	0.20	0.0058
K428570	CM24-15	core	222.8	224.3	1.5	0.20	0.0057
K428572	CM24-15	core	224.3	225.8	1.5	0.16	0.0047
K428573	CM24-15	core	225.8	227.4	1.5	0.15	0.0045
K428574	CM24-15	core	227.4	228.9	1.5	0.13	0.0037
K428575	CM24-15	core	228.9	230.4	1.5	0.19	0.0057
K428576	CM24-15	core	230.4	231.9	1.5	0.72	0.0211
K428577	CM24-15	core	231.9	233.5	1.5	0.03	0.0008
K428579	CM24-15	core	233.5	235.0	1.5	0.06	0.0016
K428580	CM24-15	core	235.0	236.5	1.5	0.02	0.0006
K428581	CM24-15	core	236.5	238.0	1.5	0.02	0.0006
K428582	CM24-15	core	238.0	239.6	1.5	0.01	0.0003
K428583	CM24-15	core	239.6	241.1	1.5	0.01	0.0003
K428584	CM24-15	core	241.1	242.6	1.5	0.14	0.0042
K428586	CM24-15	core	242.6	244.1	1.5	0.16	0.0046
K428587	CM24-15	core	244.1	245.7	1.5	0.07	0.0020
K428588	CM24-15	core	245.7	247.2	1.5	0.09	0.0026
K428589	CM24-15	core	247.2	248.7	1.5	0.01	0.0002
K428590	CM24-15	core	248.7	250.2	1.5	0.10	0.0030
K428591	CM24-15	core	250.2	251.8	1.5	0.01	0.0003
K428592	CM24-15	core	251.8	253.3	1.5	0.01	0.0002
K428594	CM24-15	core	253.3	254.8	1.5	0.30	0.0086
K428595	CM24-15	core	254.8	256.3	1.5	0.04	0.0012
K428596	CM24-15	core	256.3	257.8	1.5	0.04	0.0012
K428597	CM24-15	core	257.8	259.4	1.5	0.01	0.0003
K428598	CM24-15	core	259.4	260.9	1.5	0.13	0.0037
K428599	CM24-15	core	260.9	262.4	1.5	0.52	0.0150
K428601	CM24-15	core	262.4	263.9	1.5	0.43	0.0125
K428602	CM24-15	core	263.9	265.5	1.5	0.12	0.0034
K428603	CM24-15	core	265.5	267.0	1.5	0.18	0.0052
K428604	CM24-15	core	267.0	268.5	1.5	0.04	0.0012

Sample_ID	Hole_ID	Drill Type	From (m)	To (m)	Length (m)	Au ppm	Au opt
K428605	CM24-15	core	268.5	270.0	1.5	0.04	0.0013
K428606	CM24-15	core	270.0	271.6	1.5	0.02	0.0007
K428607	CM24-15	core	271.6	273.1	1.5	0.01	0.0003
K428608	CM24-15	core	273.1	274.6	1.5	0.03	0.0008
K428610	CM24-15	core	274.6	276.1	1.5	0.02	0.0006
K428611	CM24-15	core	276.1	277.7	1.5	0.07	0.0021
K428612	CM24-15	core	277.7	278.5	0.8	0.59	0.0171
K428613	CM24-15	core	278.5	278.8	0.3	0.43	0.0125
K428614	CM24-15	core	278.8	279.2	0.4	0.07	0.0019
K428615	CM24-15	core	279.2	280.7	1.5	0.12	0.0035
K428617	CM24-15	core	280.7	282.2	1.5	0.23	0.0067
K428618	CM24-15	core	282.2	283.8	1.5	0.02	0.0006
K428619	CM24-15	core	283.8	285.3	1.5	0.02	0.0007
K428620	CM24-15	core	285.3	286.8	1.5	0.01	0.0003
K428621	CM24-15	core	286.8	287.3	0.5	0.10	0.0030
K428622	CM24-15	core	287.3	287.7	0.4	0.08	0.0023
K428624	CM24-15	core	287.7	289.2	1.5	0.46	0.0135
K428625	CM24-15	core	289.2	291.0	1.8	0.21	0.0060
K428626	CM24-15	core	291.0	292.5	1.5	0.09	0.0026
K428627	CM24-15	core	292.5	294.1	1.5	0.02	0.0006
K428628	CM24-15	core	294.1	295.6	1.5	0.01	0.0003
K428629	CM24-15	core	295.6	297.1	1.5	0.01	0.0003
K428631	CM24-15	core	297.1	298.6	1.5	0.02	0.0007
K428632	CM24-15	core	298.6	300.2	1.5	0.02	0.0005
K428633	CM24-15	core	300.2	301.3	1.2	0.03	0.0009
K428634	CM24-16	core	0.0	2.1	2.1	0.12	0.0036
K428635	CM24-16	core	2.1	3.7	1.5	0.03	0.0008
K428636	CM24-16	core	3.7	5.2	1.5	0.03	0.0008
K428637	CM24-16	core	5.2	6.7	1.5	0.05	0.0016
K428638	CM24-16	core	6.7	8.2	1.5	0.03	0.0008
K428639	CM24-16	core	8.2	9.8	1.5	0.01	0.0003
K428641	CM24-16	core	9.8	11.3	1.5	0.01	0.0003
K428642	CM24-16	core	11.3	12.8	1.5	0.03	0.0009
K428643	CM24-16	core	12.8	14.3	1.5	0.06	0.0018
K428644	CM24-16	core	14.3	15.8	1.5	0.18	0.0054
K428645	CM24-16	core	15.8	17.4	1.5	0.31	0.0090
K428646	CM24-16	core	17.4	18.9	1.5	0.10	0.0028
K428648	CM24-16	core	18.9	20.4	1.5	0.27	0.0080
K428649	CM24-16	core	20.4	21.9	1.5	0.46	0.0135
K428650	CM24-16	core	21.9	23.5	1.5	0.36	0.0106
K428651	CM24-16	core	23.5	25.0	1.5	0.81	0.0237
K428652	CM24-16	core	25.0	26.5	1.5	0.48	0.0140
K428653	CM24-16	core	26.5	28.0	1.5	1.29	0.0375
K428655	CM24-16	core	28.0	29.6	1.5	0.32	0.0093
K428656	CM24-16	core	29.6	31.1	1.5	0.44	0.0128
K428657	CM24-16	core	31.1	32.6	1.5	0.15	0.0043
K428658	CM24-16	core	32.6	34.1	1.5	0.01	0.0003
K428659	CM24-16	core	34.1	35.7	1.5	0.18	0.0051

Sample_ID	Hole_ID	Drill Type	From (m)	To (m)	Length (m)	Au ppm	Au opt
K428660	CM24-16	core	35.7	37.2	1.5	0.17	0.0049
K428662	CM24-16	core	37.2	38.7	1.5	0.13	0.0039
K428663	CM24-16	core	38.7	40.2	1.5	0.02	0.0005
K428664	CM24-16	core	40.2	41.3	1.1	0.02	0.0005
K428665	CM24-16	core	41.3	42.8	1.5	0.08	0.0023
K428666	CM24-16	core	42.8	44.3	1.5	0.47	0.0137
K428667	CM24-16	core	44.3	45.9	1.5	0.10	0.0030
K428669	CM24-16	core	45.9	47.4	1.5	0.03	0.0010
K428670	CM24-16	core	47.4	48.9	1.5	0.04	0.0011
K428671	CM24-16	core	48.9	50.6	1.7	0.005	0.00015
K428672	CM24-16	core	50.6	52.1	1.5	0.005	0.00015
K428673	CM24-16	core	52.1	53.9	1.8	0.005	0.00015
K428674	CM24-16	core	53.9	55.5	1.5	0.005	0.00015
K428676	CM24-16	core	55.5	57.0	1.5	0.005	0.00015
K428677	CM24-16	core	57.0	58.5	1.5	0.01	0.0003
K428678	CM24-16	core	58.5	60.0	1.5	0.01	0.0003
K428679	CM24-16	core	60.0	61.6	1.5	0.01	0.0003
K428680	CM24-16	core	61.6	63.1	1.5	0.31	0.0091
K428681	CM24-16	core	63.1	64.6	1.5	0.01	0.0003
K428683	CM24-16	core	64.6	66.1	1.5	0.05	0.0015
K428684	CM24-16	core	66.1	67.7	1.5	0.02	0.0006
K428685	CM24-16	core	67.7	69.2	1.5	0.08	0.0022
K428686	CM24-16	core	69.2	70.4	1.2	1.05	0.0307
K428687	CM24-16	core	70.4	71.6	1.2	0.94	0.0274
K428688	CM24-16	core	71.6	73.1	1.5	0.08	0.0024
K428690	CM24-16	core	73.1	74.1	0.9	0.16	0.0045
K428691	CM24-16	core	74.1	75.3	1.2	0.31	0.0090
K428692	CM24-16	core	75.3	77.2	2.0	0.28	0.0081
K428694	CM24-16	core	77.2	78.3	1.1	9.03	0.2630
K428695	CM24-16	core	78.3	79.9	1.5	2.55	0.0744
K428696	CM24-16	core	79.9	81.4	1.5	5.23	0.1525
K428697	CM24-16	core	81.4	82.9	1.5	4.70	0.1370
K428698	CM24-16	core	82.9	84.4	1.5	3.91	0.1140
K428699	CM24-16	core	84.4	85.9	1.5	3.78	0.1100
K428701	CM24-16	core	85.9	87.5	1.5	0.80	0.0233
K428702	CM24-16	core	87.5	89.0	1.5	1.23	0.0359
K428703	CM24-16	core	89.0	90.5	1.5	0.18	0.0053
K428704	CM24-16	core	90.5	92.0	1.5	0.29	0.0086
K428705	CM24-16	core	92.0	93.6	1.5	0.16	0.0047
K428706	CM24-16	core	93.6	95.1	1.5	0.44	0.0127
K428708	CM24-16	core	95.1	96.6	1.5	2.14	0.0623
K428709	CM24-16	core	96.6	98.1	1.5	1.93	0.0562
K428710	CM24-16	core	98.1	99.7	1.5	1.16	0.0339
K428711	CM24-16	core	99.7	101.2	1.5	1.35	0.0393
K428712	CM24-16	core	101.2	102.7	1.5	3.94	0.1150
K428713	CM24-16	core	102.7	104.2	1.5	0.77	0.0224
K428715	CM24-16	core	104.2	105.8	1.5	0.52	0.0150
K428716	CM24-16	core	105.8	107.3	1.5	0.22	0.0065

Sample_ID	Hole_ID	Drill Type	From (m)	To (m)	Length (m)	Au ppm	Au opt
K428717	CM24-16	core	107.3	108.8	1.5	0.26	0.0077
K428718	CM24-16	core	108.8	110.3	1.5	3.30	0.0963
K428719	CM24-16	core	110.3	111.9	1.5	2.52	0.0736
K428720	CM24-16	core	111.9	113.4	1.5	1.25	0.0364
K428722	CM24-16	core	113.4	114.9	1.5	40.20	1.1750
K428723	CM24-16	core	114.9	116.4	1.5	4.48	0.1305
K428724	CM24-16	core	116.4	118.0	1.5	4.57	0.1330
K428725	CM24-16	core	118.0	119.5	1.5	18.65	0.5440
K428726	CM24-16	core	119.5	121.0	1.5	27.40	0.7995
K428728	CM24-16	core	121.0	122.5	1.5	1.88	0.0547
K428729	CM24-16	core	122.5	124.0	1.5	0.53	0.0154
K428730	CM24-16	core	124.0	125.6	1.5	0.96	0.0279
K428731	CM24-16	core	125.6	127.1	1.5	4.67	0.1360
K428732	CM24-16	core	127.1	128.6	1.5	3.05	0.0891
K428733	CM24-16	core	128.6	130.1	1.5	6.16	0.1795
K428735	CM24-16	core	130.1	131.7	1.5	3.02	0.0881
K428736	CM24-16	core	131.7	133.2	1.5	0.80	0.0233
K428737	CM24-16	core	133.2	134.7	1.5	0.30	0.0088
K428738	CM24-16	core	134.7	136.2	1.5	1.45	0.0424
K428739	CM24-16	core	136.2	137.8	1.5	2.87	0.0837
K428740	CM24-16	core	137.8	139.3	1.5	0.44	0.0129
K428742	CM24-16	core	139.3	140.8	1.5	0.23	0.0066
K428743	CM24-16	core	140.8	142.3	1.5	0.13	0.0037
K428744	CM24-16	core	142.3	143.9	1.5	0.20	0.0058
K428745	CM24-16	core	143.9	145.4	1.5	0.12	0.0035
K428746	CM24-16	core	145.4	146.9	1.5	0.11	0.0031
K428747	CM24-16	core	146.9	148.2	1.2	0.05	0.0016
K428749	CM24-16	core	148.2	148.5	0.4	0.75	0.0218
K428750	CM24-16	core	148.5	150.0	1.4	0.29	0.0085
K428751	CM24-16	core	150.0	151.5	1.5	0.78	0.0227
K428752	CM24-16	core	151.5	153.0	1.5	1.62	0.0474
K428753	CM24-16	core	153.0	154.5	1.5	4.77	0.1390
K428754	CM24-16	core	154.5	156.0	1.5	5.55	0.1620
K428756	CM24-16	core	156.0	157.6	1.5	2.17	0.0634
K428757	CM24-16	core	157.6	159.1	1.5	12.50	0.3640
K428758	CM24-16	core	159.1	160.6	1.5	23.90	0.6970
K428759	CM24-16	core	160.6	162.1	1.5	14.25	0.4150
K428760	CM24-16	core	162.1	163.7	1.5	2.87	0.0837
K428761	CM24-16	core	163.7	165.2	1.5	0.78	0.0229

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 As of 03/30/2024 the Colosseum Mine, Colosseum Rare Metals, INC. has completed 816 metres of drilling in 3 core holes and 1 RC hole in Q1. All of the drilling was done from surface with a diamond drill rig and reverse circulation drill rig. Industry standard core handling and chip sampling procedures were employed to ensure high quality samples. Core/chip sample boundaries were defined by changes in lithology, alteration, and mineralisation noted in logging. Collar to toe assays were taken and sent to labs for analysis. Core was cut along the long axis leaving half for assay and half to be stored in cardboard core boxes. RC samples were on a 5-foot (1.52 meter) interval through a cyclone and riffle splitter to leave a 1-2 kg sample for assay and the rest separated for storage. Samples from drill holes were sent to ALS Global and Paragon Geochemical in Reno, Nevada for sample preparation and assay. Samples were dried, weighed, crushed and split to obtain 250 gm. Samples were placed in ring and puck grinder to produce 85% minus 75-micron pulp. This material was blended on clean cloth and packaged in paper pulp bags. Using a pulp balance, a 30-gm sample was weighted out for traditional fire assay. Samples were analyzed using standard fire assay for gold. Over limits were analyzed via gravimetric analysis. All samples followed a strict Chain of Custody. Routine QAQC samples were inserted in the sample runs at a rate of 20%, comprising Certified Reference Materials from CDN Resource Laboratories Ltd., and verified blank granitic material. Surface sampling of dump material was taken at random surrounding the Colosseum pits to test approximate grades of dumps.

- Surface sampling within trenches at the Argos property were taken approximately every 15 metres across the trench to test strontium and barium percentages within the celestite surface expressions.
- Sampling practice is appropriate to the geology and mineralisation of the deposit and complies with industry best practice.

Criteria	JORC Code explanation	Commentary
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 The drilling program utilizes surface core drilling. The core drilling is being conducted with an Everdigm cat 4 drill with HQTT core tooling. Triple tubes were used for the for all holes to increase recoveries. The drilling has been completed by an experienced diamond drilling core driller.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All drilling recoveries have been logged and notated each run based on 3.05-meter tooling. To maximize sample recoveries, use of triple tube and long chain polymer muds were used to increase recovery. There has been no analysis between sample recoveries and grade to date.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Core samples were geologically logged. Lithology, veining, alteration, mineralisation, and weathering are recorded in the appropriate tables of the drill hole database. Each core box was photographed dry and wet, after logging of unit and structures were notated on the core. Core was cut along the long axis using a diamond saw, half-core was sampled, and half stored for reference. Geological logging of core samples is qualitative and quantitative in nature.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All drill core samples were cut along the long axis. The left side when looking down hole was sampled. Samples were placed in a heavy-duty poly sample bag. Each core sample placed in heavy duty poly sample bag, noted interval width in sample book, with a sample tag with the corresponding sample number placed in the bag with the other tag stapled to the top of the bag. Sample bags were stapled along the top. Samples were sent by freight to ALS Global, or Paragon Geochemical in Reno, Nevada. Routine QAQC samples were inserted at a 20% rate into the sample batches and comprised Certified Reference Materials (CRMs) from CDN Resource Laboratories Ltd. and verified blank granitic material. Rock samples sent to ALS Laboratories and Paragon Geochemical were dried, weighed, crushed, and split, with a split pulverized to better than 85% passing 75 microns. Samples were analyzed for trace elements using 4-acid digestion. Additionally, rocks samples were analyzed by standard 30gm fire assay for gold and silver. Sample size assessment was not conducted but used sampling size which is typical for gold deposits.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were assayed by industry standard methods by ALS Global Laboratories, and Paragon Geochemical, in Reno, Nevada. Fire assays for gold were completed using industry standard fire assay methodology. External certified standards and blank material were added to the sample submission.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Sampling, documentation, and sample submittal were under the guidance and care of Graham Craig, GIT (Association of Professional Engineers and Geoscientists of Manitoba). Drilling, sample, and assay data is currently stored in MX Deposit, a secured data management system through Seequent. Intercept lengths and grades calculated using no more than three consecutive <0.2 g/t Au as the cutoff for cumulative grade intervals.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill hole collars are surveyed using differential GPS survey equipment. The positions are accurate to within 10 cm x-y and height (z) to +/- 20 cm. The holes are surveyed in UTM WGS 84 coordinate system. Down hole surveys will be done using a Reflex EZ-TRAC magnetic downhole survey tool on all diamond drill holes. With collars surveyed using Reflex TN-14 Azi-Aligner. Sample locations were surveyed using UTM WGS 84 coordinate system.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The spacing and location of data is currently 5-15 meter spacing according to previous Mineral Resource estimation completed by Barbara Carroll, CPG (American Institute of Professional Geologists) of GeoGRAFX Consulting, LLC. No sample compositing has been applied at this time.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes are planned to be drilled along strike due to limited areas available to drill from. Definition of structure location is the principal goal. Sample orientation is deemed to be representative for reporting purposes. No bias is considered to have been introduced by the existing sampling orientation.

Criteria	JORC Code explanation	Commentary
Sample security	• The measures taken to ensure sample security.	• All samples were taken and maintained under the constant care of Colosseum Rare Metals, INC. personnel. Samples were delivered to laboratories by a licensed transportation company.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 Drill hole sampling techniques and QAQC procedures have been developed and reviewed by Dale Sketchley, M.Sc., P. Geo. of Acuity Geoscience Ltd., Graham Craig, GIT. The QAQC program has demonstrated its ability to catch errors. A QAQC review will be completed for this program. Mineral resource estimations and JORC 2022 completed by Barbara Carroll, CPG.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Colosseum Mine project is located in T17N R13E Sec 10, 11, 14, 15, 22, 23 SB&M. All tenements are 100% owned by Dateline Resources Limited or a wholly owned subsidiary and there exist production-based royalties as previously disclosed to ASX.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Historical work has been completed by various mining companies since 1972. Draco Mines (1972-1974) Placer Amex (1975-1976) Draco Mines (1980) Amselco (1982-1984 Dallhold Resources/Bond Gold (1986-1989) Lac Minerals (1989-1994) All the companies were reputable, well-known mining/exploration companies that followed the accepted industry standard protocols of the time. Review of this work was completed by GeoGRAFX Consulting, LLC in 2022. All previous work undertaken by others is non-JORC compliant.
Geology	• Deposit type, geological setting and style of mineralisation.	 The Colosseum mine is hosted by Cretaceous aged breccia-pipe. The pipe contains aphanitic Cretaceous rhyolite flows, Pre-Cambrian granitic basement material, and Cambrian-Devonian dolomite clasts replaced by sulphide mineralisation. The gold mineralisation occurs in brecciated felsite and sediment clast replaced by sulphides. The Argos mine is a flat, shallow-dipping sedimentary strontium deposit hosted in celestite. The celestite bed is overlain by various surface

Criteria	JORC Code explanation	Commentary
		sediments with volcanics, primarily mafic volcanics, on the footwall. The mine was previously trenched along two trenches running approximately east to west at 1-3 metres in depth. There was one underground access mined historically that accessed from within the celestite layer to approximately 12 metres deep with limited east/west development at the bottom.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material, and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 See Table 1 within this report for details of the drill holes and sample locations.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Drill hole intersections are reported above a lower exploration cut-off grade of 0.1 g/T Au and no upper cut off grade has been applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Drill holes are orientated along apparent strike of the breccia pipe due to limited drill pad locations. Interception angles of the mineralised structures are estimated using core drilling intercepts and existing 3D models of the pipe orientation.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Supporting figures have been included within the body of this release.

Criteria	JORC Code explanation	Commentary
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.	 Representative reporting of both low and high grades and/or widths have been reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 At Colosseum, future work will include expanded drilling between the North and South pits, mapping, and sampling of open pit benches; as well as infill and expanded surface soil geochemistry, geological mapping, and geophysics.