LIMITED Australian Mines Limited ABN 68 073 914 191 ASX | AUZ Level 34, 1 Eagle Street, Brisbane, Queensland 4000 T: + 61 7 3184 9184 E: <u>info@australianmines.com.au</u> W: australianmines.com.au 22 May 2024 Australian Securities Exchange 20 Bridge Street Sydney NSW 2000 # **ASX RELEASE** ## Discovery of Tin, Tantalum and Lithium Anomalies at Resende Australian Mines Limited ("Australian Mines" or "the Company") is pleased to report the discovery of Tin ("Sn"), Tantalum ("Ta") and Lithium ("Li") anomalies at our Resende Lithium Project licences¹ located in Minas Gerais, Brazil. #### **Highlights** - The highest assay results returned Sn, Ta and Li of 1180, 56, 38 ppm and 769, 65, 51 ppm respectively compares favourably to regional results which returned less than the lower detection limits of 5, 10, 10 ppm respectively, using the ICP analysis method. (See Figure 1 and Table 1) - Completed a targeted stream sediment sampling programme across the Resende Lithium Project licences representing an area of approximately 25km x 10km. - Seven drainage basins with anomalous Sn, Ta and Li have been defined. These metals are strongly associated and consistent with the targeted pegmatite – greisen related mineralization systems being exploited along strike and to the Southwest at AMG's Mibra Mine², which produces Sn, Ta, Li and feldspar concentrates. (See Figure 2) - These drainage basins are north of the historical Paiol Mine which recovered tin, tantalum and coarse gold from extensive historical eluvial workings³. ¹ Resende Project licenses granted to RTB Geologia E Mineracao LTDA and are in the process of transfer to AUZ as per ASX Announcement, 19 February 2024. ² https://amglithium.com/solutions/resources ³ Rolff, P.A.M.A., 1951. "Cassiterita aluvionar do Paiol no município de São João d' el Rey -- Minas Gerais", in Revista da Escola de Minas, Ano XVI, Maio de 1951, page 35-47 - The 7 anomalous drainage basins defined by the sampling cover an area of approx. 16km², five are contiguous representing a catchment area of some 9km². - The anomalous drainage basins are located in what appears to be a structurally favourable regional SW-NE structure extending from AMG's Mibra Mine and intersecting N-S structures coincident with the contact between coarse and medium facies of the Ritapolis Granite. - AUZ intends to embark on a comprehensive grid soil sampling program to identify potential future drilling targets. AUZ's CEO, Andrew Nesbitt commented "We are pleased with this stream sediment program as it has highlighted priority areas within a very large tenement package. For instance, the highest tin assay is significantly greater than the regional results in an area known for tin, tantalum and lithium. Even though the lithium assays can be considered low, this is expected to be due to lithium's high leachability characteristics." Figure 1: Location of regional assay results at the Resende Lithium Project⁴ ⁴ Figure 1 shows where appropriate half assay detection limits of <2.5, <5, <5 ppm for Sn, Ta and Li respectively. Figure 2: Defined basins prospective for tin, tantalum, and lithium⁵ ⁵ Figure 2 shows where appropriate half assay detection limits of <2.5, <5, <5 ppm for Sn, Ta and Li respectively. | Sample No. | X | Υ | Z | Sn ppm | Ta_ppm | Li_ppm | |------------|---------|-----------|-------|--------|--------|--------| | SS04 | 578,560 | 7,684,298 | 976 | 8 | <10 | 39 | | SS05 | 578927 | 7,683,297 | 989 | 10 | 20 | 47 | | SS05A | 579,045 | 7,683,115 | 1,018 | 90 | 40 | 52 | | SS06 | 577,690 | 7,687,923 | 1,086 | 15 | 61 | 23 | | SS07 | 576,776 | 7,688,072 | 957 | <5 | 13 | 23 | | SS10 | 575,581 | 7,685,459 | 970 | 769 | 65 | 51 | | SS11 | 575,908 | 7,683,656 | 942 | 1180 | 56 | 38 | | SS12 | 575,229 | 7,682,471 | 957 | 11 | <10 | 31 | | SS13 | 575,273 | 7,681,244 | 933 | <5 | <10 | 13 | | SS15 | 573,850 | 7,684,645 | 969 | 13 | <10 | <10 | | SS16 | 572,137 | 7,687,794 | 945 | <5 | <10 | 13 | | SS17 | 569,623 | 7,688,107 | 977 | <5 | <10 | 13 | | SS18 | 570,581 | 7,687,300 | 962 | <5 | <10 | 13 | | SS19 | 567,660 | 7,687,645 | 977 | <5 | <10 | 14 | | SS20 | 567,973 | 7,687,176 | 984 | 8 | <10 | 10 | | SS21 | 564,877 | 7,686,863 | 1,059 | <5 | <10 | <10 | | SS26 | 572,181 | 7,682,839 | 971 | <5 | <10 | <10 | | SS27 | 572,361 | 7,681,339 | 971 | <5 | <10 | 12 | | SS28 | 569,337 | 7,679,588 | 966 | <5 | <10 | <10 | | SS29 | 568,923 | 7,676,317 | 943 | <5 | <10 | 22 | | SS31 | 565,046 | 7,677,738 | 1,083 | 6 | <10 | <10 | | SS35 | 558,114 | 7,681,314 | 966 | <5 | <10 | <10 | | SS36 | 557,285 | 7,679,366 | 954 | <5 | <10 | <10 | | SS37 | 557,709 | 7,680,642 | 949 | <5 | <10 | <10 | | SS39 | 563,462 | 7,685,938 | 1,044 | <5 | <10 | <10 | Table 1: Stream sediment samples, locations and assay results⁶ $^{^{6}}$ Table 1 shows where appropriate half assay detection limits of <2.5, <5, <5 ppm for Sn, Ta and Li respectively. #### **About Australian Mines in Brazil** #### Resende Lithium Project (Lithium Valley, Minas Gerais)7 Minas Gerais is a global leading mining jurisdiction. The government is well known for supporting productive and sustainable operations in the state. Recently the government is focused on encouraging the development of the lithium minerals sector within the province. The Lithium Valley is home to 3 notable lithium producers and several ASX explorers. The notable producers include the Mina da Cachoeira underground mine with a production capacity of 45,000t per annum of 5.5% Li₂O spodumene concentrate⁸, AMG's Mibra Mine targeting lithium-tantalum-tin and is expecting to produce 130,000t lithium concentrate per annum⁹ and Sigma Lithium Corporation's (NASDAQ: SGML) Grota do Cirio operation, which is ramping up to 270,000t per annum of lithium concentrate¹⁰ . There is no guarantee that the Resende Lithium Project will have the same or similar levels of results, or that it will become a producing project. The Resende Lithium Project comprises 8 mineral right claims with total aggregate land holding of 13,314 HA or ~133km² (Figure 3). The Resende Lithium project is subject to transfer as per ASX Announcement 19 February 2024. The licences are in the Sao Joao del Rey Pegmatite Province, which is widely known for the presence of various mineralised bodies and is located~17km west of the AMG's Mibra Mine. The licences are believed to contain the eastern extensions of the geological structures and intrusive rocks, responsible for forming the mineralised pegmatites that are currently being mined at AMG's Mibra Mine to produce lithium, tantalum and tin concentrates. The district is characterised by numerous pegmatite bodies of varying mineralogical composition dominated by spodumene but including beryl, tantalitecolumbite and monazite. Several historically mapped pegmatite and tantalum occurrences have been mapped within the boundaries of the exploration licences11 and have not been previously tested/explored for lithium. ⁷ The Resende Lithium Project has no current or historical minerals resources ⁸ Mina da Cachoeira underground mine, https://www.cblitio.com.br/nossas-opera%C3%A7%C3%B5es, production rates and grades are not compliant with JORC 2012 reporting guidelines. ⁹ https://amglithium.com/solutions/resources ¹⁰ Sigma Lithium, NI 43-101 TECHNICAL REPORT GROTA DO CIRILO LITHIUM PROJECT, 31 October 2022, https://sigmalithiumresources.com/wp-content/uploads/2023/05/2023-01-SGML-Updated-Technical-Report-1.pdf ¹¹ Based on Geological Survey of Brazil, https://geoportal.sgb.gov.br/geosgb/ Figure 3: Location of Resende Lithium Project¹² #### Jequie Rare Earth Project (Bahia State)¹³ The project is located within the state of Bahia (Northeast Brazil). This renowned geological and government friendly jurisdiction has resulted in the establishment of several large-scale mining operations in the vicinity of the Jequie Rare Earth Project. The Jequie Rare Earth Project is expected to benefit from the associated complementary infrastructure of sealed roads and access to clean hydropower and a major deep-water port less than 200km distant. The Jequie Rare Earth project comprises 72 mineral right claims covering a total aggregate land holding of approx. 131,000 HA or ~1,310km² (Figure 4). The Jequie Rare $^{^{12}}$ Resende licenses granted to RTB Geologia E Mineracao LTDA and are in the process of transfer to AUZ as per ASX Announcement, 19 February 2024 ¹³ The Jequie Rare Earth Project has no current or historical mineral resources Earth project is subject to transfer as per ASX Announcement 19 February 2024. The licences are located in the Jequié Block, a tectono-structural block of the northeastern Sao Francisco craton. The Jequié Block comprises granulite facies-metamorphosed intrusive rocks with demonstrated rare earth element ("REE") anomalism, with Ionic clay and hard rock REE occurrences in the district. The Jequie project which is targeting Rare Earths/ Niobium is located adjacent to Brazilian Rare Earth Limited (BRE.ASX), with their Inferred Mineral Resource Estimate of 510Mt at 1,513ppm Total Rare Earth Oxide¹⁴. This has resulted in large scale pegging activity within the area. These results do not guarantee the same or similar levels of results at the Jequie Rare Earth Project. ¹⁴ Brazilian Rare Earth Prospectus of 13 November 2023,Pg 164. Rocha da Rocha Inferred mineral resource statement as of 23 May 2023 (reported in accordance with the JORC Code (2012)). These results do not guarantee the same or similar levels of results at the Jequie Rare Earth Project. Figure 4: Location of Jequie Rare Earth Project¹⁵ (Orange) **ENDS** $^{^{15}}$ Jequie Rare Earth Project licenses granted to RTB Geologia E Mineracao LTDA and are in the process of transfer to AUZ as per ASX Announcement, 19 February 2024 For more information, please contact: Andrew Luke Nesbitt Chief Executive Officer Australian Mines Limited +61 8 9481 5811 investorrelations@australianmines.com.au Authorised for release by the Board of Directors of Australian Mines Limited Australian Mines Limited supports the vision of a world where the mining industry respects the human rights and aspirations of affected communities, provides safe, healthy, and supportive workplaces, minimises harm to the environment, and leaves positive legacies. #### **COMPETENT PERSONS STATEMENT** "The information in this report is based on and fairly represents information and supporting documentation reviewed by Jonathan Victor Hill, who is an advisor to Australian Mines Ltd. Mr. Hill is a Fellow of the Australasian Institute of Mining and Metallurgy and has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Hill consents to the inclusion in this report of the matters based on his information in the form and context in which they appear." ABN 68 073 914 191 ASX | AUZ Level 34, 1 Eagle Street, Brisbane, Queensland 4000 T + 61 8 9481 5811 E info@australianmines.com.au W australianmines.com.au The purpose of Table 1 below is to comply with Question 36 of the ASX "Mining Reporting Rules for Mining Entities: Frequently Asked Questions". ### **Section 1: Sampling Techniques and Data** **AUSTRALIAN MINES** LIMITED | Criteria | Explanation | Commentary | |---------------------|--|---| | Sampling techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | In this press release results from a reconnaissance stream sediment sampling programme over the Resende Costa project area are reported. The stream sediment sampling procedures used are described below. Sample collection was undertaken by a trained field technician overseen by a geologist, Sampling involved collecting approximately 3kg of -2mm sized sediment from the active stream bed. Where possible, the sampling medium consisted of clays with a significant fine sand/silt component or clay rich/silty sands. Any surficial layer of decomposing organic material was removed before sample collection. To obtain sufficient sample weight, it was often necessary to collect material from several points along a 10 to 50m length of the drainage. The samples were collected using plastic shovels with the collected material being screened in the field to -2mm using screens constructed from nylon and PVC. This sampled material was homogenised manually in a plastic bucket, and excess water and fine organics were decanted before the final sample being transferred to the sample bag. After allowing the sample several minutes to settle, the excess water and fine organics were again decanted. All samples were labelled in the field, both with internal ID cards within plastic bags and using marker pens on the outside of the sample bags. The | | | - | | |---|--|--| | | | sample bags are heavy duty clear plastic and were sealed using plastic ties. The sample for analysis is sent to the laboratory and its GPS location and sampling conditions recorded, | | Drilling
techniques | Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | Not applicable as no drilling is
reported nor has known drilling
taken place on the project | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | Not applicable as no drilling is
reported nor has known drilling
taken place on the project | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | Not applicable as no drilling is
reported nor has known drilling
taken place on the project Not
applicable as no drilling was
performed at the project | | Sub-sampling
techniques
and sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of | At the laboratory the sample is
dried, sieved and the fraction less
than 80 mesh is split using a jones
riffle splitter analysed by ICP Muti-
Element Method. | | Quality of
assay data and
laboratory
tests | the sample preparation technique. • Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. • Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. • Whether sample sizes are appropriate to the grain size of the material being sampled. • The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. • For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. • Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | The samples in this release were analysed by SGS Laboratory, Belo Horizonte, Brasil METHOD ICM90A: determination by fusion with sodium peroxide – ICP OES/ICP MS. This is considered a total analysis for the 55 elements determined by this ICP method. | |---|---|--| | Verification of sampling and assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | Not applicable, as no drilling or
known drilling nor assay results are
reported. | | Location of data points | Accuracy and quality of
surveys used to locate drill
holes (collar and down-hole
surveys), trenches, mine
workings and other locations
used in Mineral Resource
estimation. Specification of the grid system
used. Quality and adequacy of
topographic control. | Not applicable, as no drilling or
known drilling nor assay
results are reported. A
handheld GPS was used for
sample location | |---|--|--| | Data spacing
and
distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | Not applicable as no mineral
resource estimation is reported | | Orientation of
data in
relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Not applicable as only rock-chip
and stream sediment sampling
for exploratory purposes was
performed | | Sample
security | The measures taken to ensure
sample security. | The samples were securely
bagged and remained in the
possession of the exploration
geologist | | Audits or reviews | The results of any audits or
reviews of sampling
techniques and data. | No previous reviews following
the JORC code are known to this
CP | ## **Section 2 Reporting of Exploration Results** (Criteria listed in the preceding section also apply to this section.) | Criteria | Explanation | Commentary | |--|---|---| | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The details concerning the mineral tenement are described in the ASX announcement by Australian Mines Ltd of December 6th, 2023 ASX Announcement 6 December 2023 The surface area belongs to third parties (usually, small farmers) and have no interference with any known protected area | | Exploration done by other parties | Acknowledgment and appraisal of exploration by other parties. | Nothing to report, the
company is not aware of any
previous reported
exploration | | Geology | Deposit type, geological setting and
style of mineralisation. | Refer to the information presented in the text above and in this announcement. | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | Not applicable as no drilling was reported, nor has any known drilling taken place on the project in the past | | - · | | N. 1. 1. 1. 1. | |-------------------|---|--| | Data | In reporting Exploration Results, | Not applicable to results | | aggregation | weighting averaging techniques, | reported in this release. | | methods | maximum and/or minimum grade | | | | truncations (eg cutting of high | | | | grades) and cut-off grades are | | | | usually Material and should be | | | | stated. | | | | Where aggregate intercepts | | | | | | | | incorporate short lengths of high | | | | grade results and longer lengths | | | | of low grade results, the | | | | procedure used for such | | | | aggregation should be stated and | | | | some typical examples of such | | | | aggregations should be shown in | | | | detail. | | | | The assumptions used for any | | | | reporting of metal equivalent | | | | values should be clearly stated. | | | Relationship | These relationships are particularly | Not applicable as no drilling | | between | important in the reporting of | has been undertaken on the | | mineralisation | Exploration Results. | project to date. | | | | project to date. | | widths and | If the geometry of the | | | intercept lengths | mineralisation with respect to the | | | | drill hole angle is known, its nature | | | | should be reported. | | | | If it is not known and only the | | | | down hole lengths are reported, | | | | there should be a clear statement | | | | to this effect (eg 'down hole | | | | length, true width not known'). | | | Diagrams | Appropriate maps and sections | All relevant information | | | (with scales) and tabulations of | is presented in the | | | intercepts should be included for | release. | | | any significant discovery being | | | | reported These should include, | | | | but not be limited to a plan view | | | | of drill hole collar locations and | | | | appropriate sectional views. | | | Balanced | Where comprehensive reporting | Not applicable as no | | reporting | of all Exploration Results is not | | | reporting | | drilling nor assay results | | | practicable, representative | are reported nor | | | reporting of both low and high | available at this stage. | | | grades and/or widths should be | | | | practiced to avoid misleading | All sample analytical | | | reporting of Exploration Results. | results presented in the | | | | report. | | Other | Other exploration data, if | All relevant information | | substantive | meaningful and material, should | regarding geophysical | | exploration data | be reported including (but not | and geological | | - | limited to): geological | interpretation is | | | observations; geophysical survey | presented in this | | | results; geochemical survey | announcement. | | | | | | | results; bulk samples – size and | | | | method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | | |--------------|---|--| | Further work | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | Further follow-up geochemical sampling (including soil, stream and rock chip sampling) and geological mapping is planned for the next phase of work. |