

28 May 2024

High-Grade Copper Mineralisation Intercepted in the 'Saddle' of Flying Horse Pit

Highlights:

- New assay results from DDH drilling program at Flying Horse, a <u>copper sulphide</u> resource on the Mt Kelly Extended Mining Lease (ML 90170) include:
 - MTKD019 (Sulphide)
 - 40m @ 2.27% Cu from 132m (12.89m true width)
 - Including 16m @ 4.71% Cu from 150m (5.15m true width)
- Assay results from RC drilling targeting extensions to <u>copper oxide</u> mineralisation at the Mt Kelly Pit on the same group of mining leases returned:
 - o <u>MTKC0662 (Oxide)</u>
 - 9m @ 1.48% Cu from 35m
 - Including 3m @ 2.34% Cu from 36m
- Drilling results from the 2023 Flying Horse Program confirm the exploration potential still available on Austral's Mining Leases for both copper oxide and sulphide mineralisation.
- Improved structural understanding of the Flying Horse Mt Kelly Mt Clarke mineral systems provide further scope for future copper exploration and extensions to known high-grade copper mineralisation.

Copper producer Austral Resources Australia Ltd (ASX:ARI) ("Austral" or the "Company") is pleased to announce assay results from the diamond ("DDH") reverse circulation ("RC") drilling program, part of the in-progress scoping study into the Flying Horse Deposit.

Dan Jauncey Managing Director and CEO commented:

"These drill results combined with known high-grade mineralisation only 100m from the surface bodes well for the future development of the resource and confirms the substantial exploration potential on Austral's leases for both copper oxide and sulphide mineralisation".

Figure 1: Plan view of the 2023 Flying Horse Drilling Program, showing drill collar locations, major structural features and cross-section transects referred to within this release. Inset shows the location of major infrastructure and relevant resources in the context of the Mt Kelly Extended Mining Leases owned by Austral Resources.

Location, Tenure and Geology

The Flying Horse – Mt Clarke – Mt Kelly Pits are located 1.6km from Austral's LAO Cu oxide processing facilities and approximately 120km along a sealed road from the major mining town of Mount Isa, Queensland (Figure 1). The Flying Horse Pit is one of three mines developed on a package of mining leases during the early 2000's. Large-scale production of copper oxide ores commenced in 2005 yielding more than 55,000t of copper during the life of mine.

Proximity of the mining leases and remnant resources to AR's existing infrastructure makes it an attractive exploration targets for both Cu oxide and Cu sulphide mineralisation. Remnant copper sulphide mineralisation beneath the Flying Horse and Mt Clarke Pits represent a total sulphide resource containing 99 870 t of Cu, which together with the nearby Lady Colleen Deposit, represents

a combined inventory of 151,194t¹ of contained Cu (as sulphide) within the Mt Kelly Extended Mining Leases².

The Flying Horse Cu deposit is hosted within dolomitic and carbonaceous, fine-grained sedimentary sequences of the lower Paradise Creek Formation and upper Gunpowder Creek Formation. The lower Paradise Creek Formation is strongly carbonaceous, becoming less carbonaceous down sequence. In contrast, the upper Gunpowder Creek Formation which is predominantly monotonously interbedded to interlaminated dolomitic siltstones and mudstone, is only weakly to non-carbonaceous. Both sedimentary formations form a gentle, though warped syncline, becoming tight to chevron folded in proximity of major faults.

Both the host sequences of the Paradise Creek and upper Gunpowder Creek Formation are faulted against basement quartzites of the Surprise Creek Formation, and a package of bimodal volcanics believed to be equivalent to the Fiery Creek Volcanics, which display a higher grade of metamorphism/alteration.

Primary mineralising faults are represented by the McNamara Fault System (locally referred to as the Mt Kelly and Mt Clarke Faults), and the paragenetically-later though still-synmineralising Spinifex Fault, which also controls Cu sulphide mineralisation at the nearby Lady Colleen Deposit. Faults of the McNamara Fault System strike NNW and are mostly vertical to sub-vertical dip-slip faults (east block-up). In comparison, the Spinifex Fault strikes NW with a shallow-dip towards the NE and a reverse-sense of movement (thrust). Post-mineralising faults are sub-vertical and crosscut Cu mineralisation causing generally block up/ down offsets in mineralisation (transform faults). The informally named sinistral 'Mashers Fault' which strikes NNE, terminates mineralisation to the south of the Mt Kelly Pit and Mt Clarke Pits.

Cu mineralisation is believed to be principally controlled by the complex interaction between multigenerational faults (structural control) and chemical reduction within carbonaceous shales units (lithogeochemical control) in a similar mechanism to most sedimentary-hosted Cu-type deposits, worldwide.

¹ Austral Resources Annual Report 2023

² Refers to a contiguous package of Mining Leases including; ML5476, ML90168, ML90169, ML90170, ML5435, ML5446, ML5447, ML5448 and ML5478.

Drilling Update

The 2023 Flying Horse drilling program comprised of 1,068m of RC and 413.8m of DDH totalling 1,481.8m across 15 drillholes (Figures 1 and 2). The purpose of the program was two-fold:

- Expand high-grade Cu sulphide mineralisation within the Flying Horse deposit outside of the current resource to guide future pit optimisation and ongoing Cu sulphide scoping studies.
- Explore potential extensions of Cu oxide mineralisation outside of the current resource/ open pit areas.

The two diamond holes targeted potential extensions of high-grade sulphide mineralisation occurring outside of the most recent pit optimisation shell (see Austral ASX Announcement 20 April 2023) and resource models. Cost-effective RC drilling was employed to target potential copper oxide and sulphide mineralisation extending beyond the existing open pit walls and floor. Drillhole collar locations and orientations for each of the drillholes comprising the 2023 Flying Horse Program are provided in Appendix 1, along with a full list of assay results provided in Appendix 2. Significant intercepts returned from the 2023 Flying Horse Drilling Program are provided in Table 1.

Hole_ID	From	То	Method	Significant Intercept*	Metallurgical Class	Intercepted Cu%.m	Calculated True Width (m)	True Width Cu%.m	
MTKD019	131.00	169.00	1/2 core	40m @ 2.27% Cu from 132m	Sulphide	90.8	12.89	29.2603	
incl.	149.00	165.00	1/2 core	16 m @ 4.71% Cu from 150m	Sulphide	75.36	5.15	24.2565	
MTKD018	93.00	100.00	1/2 core	7m @ 0.70% Cu from 93m	Sulphide	4.9	1.69	1.183	
incl.	93.00	95.00	1/2 core	2m @ 1.05% from 93m	Sulphide	2.1	0.48	0.504	
MTKD018	124.30	133.00	1/2 core	8.7m @ 1.07% Cu from 124.3 m	Sulphide	9.309	2.1	2.247	
incl.	128.00	129.10	1/2 core	1.1m @ 2.99% Cu from 128m	Su lphi de	3.289	0.26	0.7774	
MTKC0662	35.00	44.00	1m Split	9m @ 1.48% Cu from 35m	Oxide	13.32	-	-	
incl.	36.00	39.00	1m Split	3m @ 2.34% Cu from 36m	Oxide	7.02	-	-	
MTKC0649	32.00	34.00	1 m Split	2m @ 0.54% Cu from 32m	Transitional	1.08	-	-	
MTKC0649	20.00	21.00	1 m Split	1m @ 0.3% Cu from 20m	Oxide	0.3	-	-	
MTKC0646	10.00	11.00	1 m Split	1m @ 0.49% Cu from 10m	Oxide	0.49	-	-	
MTKC0646	16.00	17.00	1m Split	1m @ 0.83% Cu from 16m	Oxide	0.83	-	-	
MTKC0645	6.00	8.00	1 m Split	2m @ 0.37% Cu from 6m	Oxide	0.74	-	-	
MTKC0644	24.00	33.00	1 m Split	9m @ 0.43% Cu from 24m	Oxide	3.87	-	-	
*'Significant Int	*'Significant Intercept' calculated using a 0.3% Cu cut-off, 2m internal dilution, no external dilution, no minimum interval and a significance threshold of >0.7% Cu for Sulphide, >0.3% Cu for Oxide/ Transitional.								

Table 1: Significant intercepts from the 2023 Flying Horse Drilling Program. A full list of drill collar locations, orientations and laboratory assays is provided in Appendix 1 and Appendix 2.

AUSTRAL RESOURCES

Α A BOCO TOFR Cu Grade (%) +3 MTKD018 MTKD019 1.66m @ 0.7% Cu from 93m +1 12.25m @ 2.36% Cu From 131m AND 2.1m @ 1.05% Cu from 124.3n + 0.5 Incl. 5.15m @ 4.75% Cu from 149m (True Width) (True Width) Cu%.m True 100 Width į +20 +10 +5 +2 Untested +1 Domain <1 ?? Flying Horse Resource Austral Resources nt Diagram (Cu%.m) (Rotated Long Section)

Figure 2: Pierce Point Diagram (long-section A-A') outlining all drillhole intercepts (as <u>Cu%m</u>) along the high-grade 'Saddle Lens' of the Flying Horse Cu Resource.

High-grade Copper Sulphide Targeting in the 'Saddle Lens' of the Flying Horse Deposit

The 'Saddle Lode' of the Flying Horse sulphide resource refers to the mineralisation beneath the pit wall separating the Flying Horse and Mt Clarke open pits, and contains some of the highest historical Cu sulphide grades intercepted. Interpreted as a series of fault bound lens, higher grades appear to be associated with areas where strongly carbonaceous mudstone units of the lower Paradise Creek Formation are folded and intensely faulted by the McNamara Fault.

The best results from the 2023 Flying Horse drilling program were obtained from MTKD019 (Figures 2 and 3), which was drilled to a total depth of 212.4m and returned an intercept of **40m @ 2.27% Cu from 132m, including 16m @ 4.71% Cu from 150m**. The highest copper grades over the metre were returned from massive lenses of principally chalcopyrite with lesser pyrite and trace bornite (Figure 4). Throughout the intercept, mineralisation is dominantly represented by brecciated and fracture vein networks composed of chalcopyrite-pyrite-dolomite-quartz fill, with trace bornite-chalcocite and patchy K-feldspar alteration.

The high-grade intercept in MTKD019 represents a ~65m lateral step out strike extension to the historical high-grade intercepts. Importantly, it opens the possibility of further strike extension of the Saddle Lode, with up to ~136m of untested space along the fault possible down plunge. To the southern strike extent of the Saddle Lens, MTKD018 targeted a possible fault-displaced strike extension to the high-grade pod. The target area is complicated by the oblique intersection of the steeply-dipping McNamara Fault, a steeply-dipping post-mineralising transform fault as well as the intersection of the low-angle Spinifex Fault. Results from MTKD018 failed to intersected the mineralisation of the same tenor as MTKD019, returning best intercepts of 2m @ 1.05% from 93m and 8.7m @ 1.07% Cu from 124.3m emplaced around the brecciated margins of a fault-displaced block of basement sequences (Surprise Creek Formation and Fiery Creek Volcanics), and within intensely faulted carbonaceous shales of the Paradise Creek Formation (Figure 5).



Figure 3: Cross-section B-B' through the high-grade Cu sulphide intercept from MTKD019.

Figure 4: Selected core and chip photos of Cu mineralisation intercepted in the 2023 Flying Horse Drilling Program. a) A lens of massive chalcopyrite hosted within faulted/ brecciated weakly carbonaceous shales (MTKD019, 152.7 - 155.9m). b) Chip tray photo showing Cu oxide mineralisation (malachite and chrysocolla) hosted in ferruginous saprock (MTKC0662, 36-40m).

AUSTRAL RESOURCES

ASX ANNOUNCEMENT

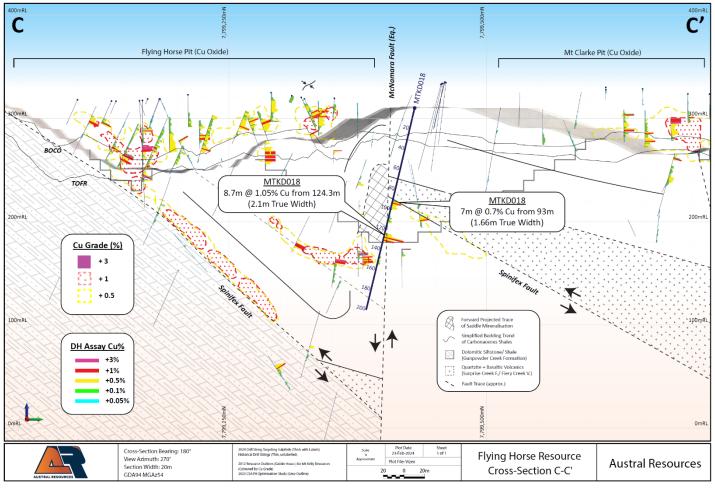


Figure 5: Cross-section C-C' through MTKD018 targeting the southern strike extension to the 'Saddle Lens'.

Copper Oxide extensions and remnant to the Mt Kelly Pit.

Drill targeting for potential extensions to Cu oxide mineralisation focussed on the southernmost margin of the Mt Kelly Pit, which is structurally-dominated by the complex interactions of the McNamara Fault, Mashers Fault and Spinifex Fault. Here, remnant copper oxide (malachite and chrysocolla) can be observed on highwall face of the Mt Kelly pit, variably controlled by faulted and deformed carbonaceous shales, with a previously unknown extent beyond the pit wall. Significant visible Cu oxide mineralisation was intersected in MTKC0662 collared outside the pit wall, returning **9m @ 1.48% Cu from 35m (as oxide), including 3m @ 2.34% Cu from 36m (as oxide)** in strongly ferruginous saprock developed within the hangingwall of the Spinifex Fault (Figure 6). MTKC0662 represents a +60m lateral step out from the nearest known historical drill intercept of Cu oxide mineralisation). MTKC0644 and MTKC0646, both of which were collared within the pit to assess the potential of unmined Cu oxide mineralisation at Mt Kelly, intersected **9m @ 0.43% Cu from 24m (as oxide)** from 16m, respectively.

It is interpreted that the Cu oxide mineralisation in all three of these drillholes are linked through hydromorphic dispersion, creating a structurally elongated wedge-shaped zone of remnant Cu oxide mineralisation approximately 130m in strike (Figure 6). Additional drilling to the west of the pit wall, and within the footwall zones to the Spinifex Fault and McNamara Faults were unable to extend significant mineralisation in these directions.

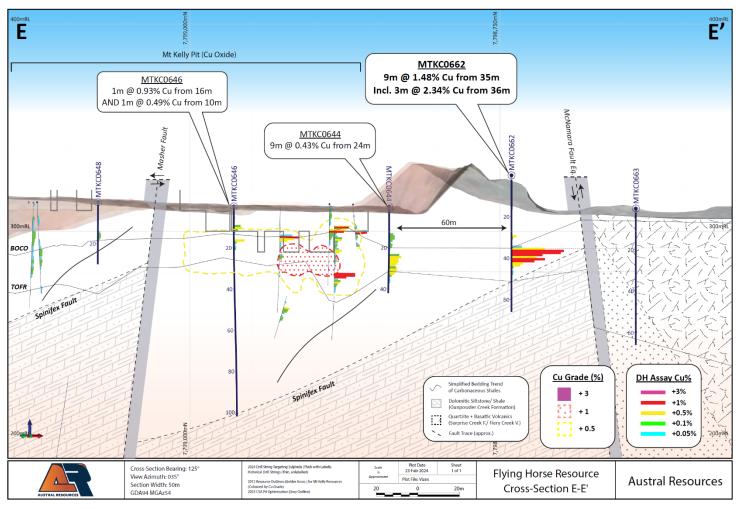


Figure 6: Cross-section E-E' showing the RC results of Cu oxide exploration in the southernmost extent of the Mt Kelly Pit.

Lateral Extensions to Flying Horse Sulphide Mineralisation along the Spinifex Fault

The Spinifex Fault, which is intimately associated with Austral's 2.8Mt @ 1.99% Cu Lady Colleen Deposit³, also plays a role in controlling Cu sulphide mineralisation in the Flying Horse Deposit. Historical shallow drilling by previous explorers indicated the potential for deeper sulphide, intersecting consistent low-grade Cu-oxide along the surface expression of the Spinifex Fault.

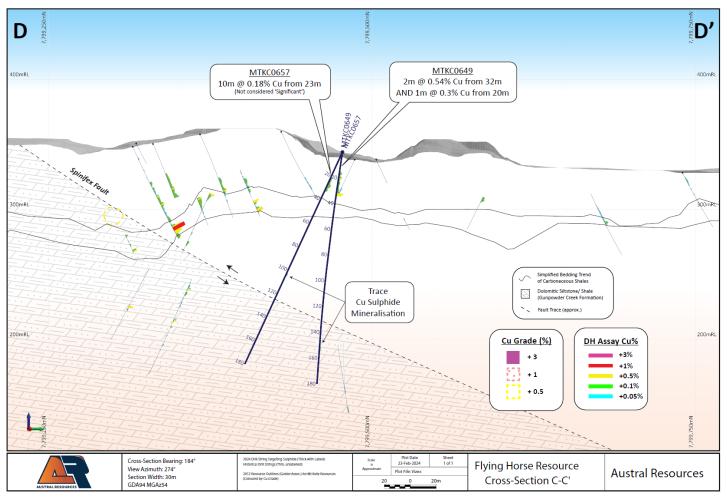


Figure 7: Cross-section D-D' through MTKC0649 and MTKC0657, located NNW of the Flying Horse Pit.

Two RC holes were drilled to 180m to assess copper sulphide potential beneath shallower historical intercepts of low-grade Cu oxide, between the Flying Horse Pit and untapped Lady Colleen Deposit to the northwest. The Spinifex Fault was intercepted at 129m in MTKC0657 and confirmed at 132m in MTKC0649, as pyrite-dolomite breccia intercepted, but only trace chalcopyrite. The best results for each of these holes was returned in the shallow oxide zone, with MTKC0649 intercepting 2m @ 0.54% Cu (as oxide) from 32m and 1m @ 0.3% Cu (as oxide) from 20m (Figure 7). The possibility for

³ See ASX Release 28 October 2022

additional steeply-dipping or plunging Cu sulphide lenses along the Spinifex Fault between the Flying Horse Pit and Lady Colleen Deposit is not yet known, and it remains an avenue for future exploration.

Further Work

- 2023 drilling results to be incorporated into resource models and ongoing scoping studies.
- Metallurgical investigation of transitional materials which comprises part of the Flying Horse resource.
- Modern electromagnetic surveys (MLEM/ FLEM) along the strike extent of the Saddle Lode of the Flying Horse Deposit complemented with the use of downhole EM surveys using existing open holes as survey platforms, to identify untested conductive mineralisation for future drill targeting.

The ongoing exploration of the Flying Horse Lady Colleen is the first step in expanding and assessing the potential to begin commercialisation of Austral's 223 075t⁴ of contained copper as sulphides to augment the Company's remaining 26 969t⁵ contained copper from the operational Anthill copper oxide mine.

This announcement is authorised for market release by Managing Director and CEO, Dan Jauncey.

FURTHER INFORMATION, PLEASE CONTACT:

Austral Resources Australia Ltd

Dan Jauncey

Managing Director & CEO Level 9, 60 Edward Street Brisbane City Qld 4000 P: +61 7 3520 2500

About Austral Resources

Austral Resources Australia Ltd (ASX:ARI) is a copper cathode producer operating in the Mt Isa region, Queensland, Australia. Its Mt Kelly copper oxide heap leach and solvent extraction electrowinning (SX-EW) plant has a nameplate capacity of 30,000tpa of copper cathode. Austral has developed its Anthill oxide copper mine, which has a Total Ore Reserve of 2.87Mt at 0.94% Cu, as of Dec 2023. The Company has been producing copper cathode from mid-2022.

⁴ Austral Resources Annual Report 2023

⁵ Austral Resources Annual Report 2023

Austral also owns a significant copper inventory with a JORC-compliant Mineral Resource Estimate of 55.41Mt @ 0.74% Cu and 2,100km² of highly prospective exploration tenure in the heart of the Mt Isa district, a world-class copper and base metals province. The Company is implementing an intensive exploration and development program designed to extend the life of mine, increase its resource base, and then review options to commercialise its copper resources.

To learn more, please visit: www.australres.com.

The Company confirms that it is not aware of any new information or data that materially affects the exploration results and estimates of Mineral Resources and Ore Reserves as cross-referenced in this release and that all material assumptions and technical parameters underpinning the estimates continue to apply and have not changed.

Competent Persons' Statement

The information in this announcement that relates to Mineral Assets, Exploration Targets, Exploration Results, Mineral Resources and Ore Reserves is based on and fairly reflects information compiled and conclusions derived by Dr. Nathan Chapman and Mr Don Fraser, Competent Persons who are Members of the Australian Institute of Geoscientists. Dr. Chapman and Mr Fraser are Senior Exploration Geologists with Austral Resources and have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results and Ore Reserves (2012 JORC Code). Dr. Chapman and Mr Fraser consent to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

Ore Reserve and Mineral Resource Estimate Statements

Detailed information that relates to Ore Reserves and Mineral Resource Estimates is provided in Austral Resources' Prospectus, Section 7, Independent Technical Assessment Report and the 2023 Annual Report. These documents are available on Austral's website: <u>www.australres.com</u> and on the ASX released as "Prospectus" on 1 November 2021, as well as "2023 Annual Report to Shareholders" on 28 March 2024. The Company confirms that it is not aware of any new information or data that materially affects the estimates of Mineral Resources and Ore Reserves as cross referenced in this release and that all material assumptions and technical parameters underpinning the estimates continue to apply and have not changed.

Appendix 1: 2023 Drillhole Details

Hole_ID	Hole_Type	Max_Depth (m)	Azi (MGA94_54)	Dip	NAT_Grid_ID	NAT_East	NAT_North	NAT_RL	RC_Depth (m)	HQ_Depth (m)
MTKD019	DD	212.4	248	-71	MGA94_54	305300	7799597	327.9	-	212.4
MTKD018	DD	201.4	179	-77	MGA94_54	305397	7799434	310.3	-	201.4
MTKC0666	RC	48	256	-60	MGA94_54	305872	7798723	323.5	48	-
MTKC0665	RC	54	0	-90	MGA94_54	305795	7798731	351.6	54	-
MTKC0664	RC	72	0	-60	MGA94_54	305795	7798733	351.5	72	-
MTKC0663	RC	66	0	-90	MGA94_54	305865	7798796	351.8	66	-
MTKC0662	RC	66	0	-90	MGA94_54	305790	7798790	344.0	66	-
MTKC0661	RC	72	0	-90	MGA94_54	305712	7798791	350.3	72	-
MTKC0660	RC	72	0	-90	MGA94_54	305732	7798729	372.6	72	-
MTKC0657	RC	180	176	-65	MGA94_54	304889	7799615	331.9	180	-
MTKC0649	RC	180	216	-80	MGA94_54	304883	7799622	331.7	180	-
MTKC0648	RC	30	0	-90	MGA94_54	305647	7798931	313.9	30	-
MTKC0646	RC	102	0	-90	MGA94_54	305702	7798902	311.3	102	-
MTKC0645	RC	84	0	-90	MGA94_54	305699	7798883	311.6	84	-
MTKC0644	RC	42	0	-90	MGA94_54	305767	7798862	310.8	42	-

AUSTRAL RESOURCES

Appendix 2. Lady Colleen Assays from 2023 Drilling Program

11-1-10	From	T = (m)	Interval	Completion 10	Sample	Sample		ME	-ICP61 (+ Cu-OG	62)		Significant Intercept (Cut-
Hole ID	(m)	To (m)	(m)	Sample ID	Туре	Method	Cu%	Ca%	Mg%	Fe%	S%	Off 0.3% Cu)
MTKC0644	9	10	1	D107891	CHIPS	1m_SPLIT	0.0264	0.02	0.45	2.83	0.01	
MTKC0644	10	11	1	D107892	CHIPS	1m_SPLIT	0.0338	0.02	0.62	4.08	0.01	
MTKC0644	11	12	1	D107893	CHIPS	1m_SPLIT	0.0637	0.07	0.77	4.37	0.15	
MTKC0644	12	13	1	D107894	CHIPS	1m_SPLIT	0.0443	0.03	0.42	4.42	0.01	
MTKC0644	13	14	1	D107895	CHIPS	1m_SPLIT	0.1385	0.16	0.48	2.33	0.01	
MTKC0644	14	15	1	D107896	CHIPS	1m_SPLIT	0.252	0.1	0.59	2.29	0.05	
MTKC0644	15	16	1	D107897	CHIPS	1m_SPLIT	0.279	0.1	0.55	4.75	0.14	
MTKC0644	16	17	1	D107898	CHIPS	1m_SPLIT	0.256	0.06	0.54	3.87	0.04	
MTKC0644	17	18	1	D107899	CHIPS	1m_SPLIT	0.0797	0.05	0.58	2.63	0.02	
MTKC0644	18	19	1	D107900	CHIPS	1m_SPLIT	0.1165	0.05	0.58	2.53	0.08	
MTKC0644	19	20	1	D107901	CHIPS	1m SPLIT	0.205	0.04	0.6	2.17	0.02	
MTKC0644	20	21	1	D107902	CHIPS	1m SPLIT	0.0677	0.04	0.54	4	0.02	
MTKC0644	21	22	1	D107903	CHIPS	1m SPLIT	0.0529	0.04	0.49	3.24	0.04	
MTKC0644	22	23		D107904	CHIPS	1m SPLIT	0.0396	0.04	0.53	3.43	0.25	
MTKC0644	23	24	1	D107905	CHIPS	1m SPLIT	0.202	0.04	0.63	2.36	0.34	
MTKC0644	24	25		D107906	CHIPS	1m SPLIT	0.787	0.03	0.57	2.68	0.45	
MTKC0644	25	26		D107907	CHIPS	1m SPLIT	0.408	0.03	0.51	2.51	0.36	
MTKC0644	26	27		D107908	CHIPS	1m SPLIT	0.485	0.04	0.56	2.02	0.82	
MTKC0644	27	28		D107909	CHIPS	1m_SPLIT	0.455	0.03	0.58	2.04	1.26	
MTKC0644	28	29		D107910	CHIPS	1m SPLIT	0.359	0.03	0.54	1.77	-	9m @ 0.43% Cu from 24m
MTKC0644	29	30		D107911	CHIPS	1m SPLIT	0.247	0.04	0.61	1.5	1.06	
MTKC0644	30			D107913	CHIPS	1m_SPLIT	0.445	0.04	0.56	1.93	1.23	
MTKC0644	31	32		D107914	CHIPS	1m_SPLIT	0.375	0.04	0.55	1.48	1.09	
MTKC0644	32	33		D107915	CHIPS	1m_SPLIT	0.311	0.04	0.58	1.40	1.14	
MTKC0644	33	34		D107916	CHIPS	1m_SPLIT	0.202	0.04	0.50	1.02	0.42	
MTKC0644	33	35		D107917	CHIPS	1m_SPLIT	0.0633	0.05	0.6	1.08	0.42	
MTKC0644	35	36		D107918	CHIPS	1m_SPLIT	0.0719	0.03	0.68	1.39	0.23	
MTKC0644	36	37		D107919	CHIPS	1m_SPLIT	0.0985	0.04	0.00	1.55	0.17	
MTKC0644	37	38		D107920	CHIPS	1m_SPLIT	0.0534	0.04	0.71	1.28	0.12	
MTKC0645	2	3		D107922	CHIPS	1m_SPLIT	0.0311	0.11	0.58	2.15	0.12	
MTKC0645	3			D107923	CHIPS	1m_SPLIT	0.0355	0.08	0.64	1.68	0.01	
MTKC0645	4			D107924	CHIPS	1m_SPLIT	0.0269	0.06	0.68	1.13	0.01	
MTKC0645	5	-		D107925	CHIPS	1m_SPLIT	0.0324	0.07	0.66	1.46	0.02	
MTKC0645	6	-		D107926	CHIPS	1m_SPLIT	0.362	0.07	0.57	2.42	0.02	
MTKC0645	7	8		D107927	CHIPS	1m_SPLIT	0.38	0.19	0.57	1.82	0.01	2m @ 0.37% Cu from 6m
MTKC0645	8			D107928	CHIPS	1m_SPLIT	0.188	0.13	0.58	2.25	0.01	
MTKC0645	9			D107929	CHIPS	1m_SPLIT	0.0521	0.17	0.63	2.23	-0.01	
MTKC0645	10	10		D107930	CHIPS	1m_SPLIT	0.031	0.13	0.62	2.19	0.01	
MTKC0645	10	11		D107931	CHIPS	1m_SPLIT	0.0396	0.13	0.55	3.54	-0.01	
MTKC0646	4	5		D107933	CHIPS	1m_SPLIT	0.0390	0.06	0.55	3.68	0.01	
MTKC0646	5			D107933	CHIPS	1m_SPLIT	0.027	0.06	0.38	6.16	0.04	
MTKC0646	6			D107934	CHIPS	1m_SPLIT	0.0738	0.08	0.57	3.96	0.04	
MTKC0646	7			D107935	CHIPS	1m_SPLIT	0.0419	0.02	0.55	2.85	0.01	
MTKC0646	8	-			CHIPS		0.0326	0.02	0.43	2.85	0.01	
	8			D107937		1m_SPLIT					0.01	
MTKC0646	9 10	-		D107938	CHIPS	1m_SPLIT	0.142	0.03	0.49	3.96		1m @ 0.40% (from 10
MTKC0646				D107939	CHIPS	1m_SPLIT	0.491	0.04			0.01	1m @ 0.49% Cu from 10m
MTKC0646	11 12	12		D107940	CHIPS	1m_SPLIT	0.29	0.06	0.56	2.46	0.01	
MTKC0646	12	13	1	D107941	CHIPS	1m_SPLIT	0.0835	0.06	0.6	2.16	0.01	

Usla ID	From	T = (==)	Interval	Commissio	Sample	Sample		М	E-ICP61 (+ Cu-C	DG62)		Significant Intercept (Cut-
Hole ID	(m)	To (m)	(m)	Sample ID	Туре	Method	Cu%	Ca%	Mg%	Fe%	S%	Off 0.3% Cu)
MTKC0646	13	14	1	D107942	CHIPS	1m_SPLIT	0.0496	0.05	0.54	1.76	0.02	
MTKC0646	14	15	1	D107943	CHIPS	1m_SPLIT	0.0377	0.06	0.54	1.97	0.03	
MTKC0646	15	16	1	D107944	CHIPS	1m_SPLIT	0.0394	0.05	0.6	2	0.01	
MTKC0646	16	17	1	D107945	CHIPS	1m_SPLIT	0.832	0.05	0.61	2.68	0.02	1m @ 0.83% Cu from 16m
MTKC0646	17	18		D107946	CHIPS	1m_SPLIT	0.182	0.07	0.64	1.42	0.01	
MTKC0646	18	19	1	D107947	CHIPS	1m_SPLIT	0.0584	0.13	0.66	1.76	0.01	
MTKC0646	19	20		D107948	CHIPS	1m_SPLIT	0.0511	0.19	0.6	2.35	0.01	
MTKC0646	20	21	1	D107949	CHIPS	1m_SPLIT	0.1525	0.2	0.59	2.1	-0.01	
MTKC0646	21	22	1	D107950	CHIPS	1m_SPLIT	0.038	0.51	0.55	1.36	0.01	
MTKC0646	22	23	1	D107951	CHIPS	1m_SPLIT	0.0196	0.22	0.53	0.95	0.01	
MTKC0646	23	24	1	D107952	CHIPS	1m_SPLIT	0.0184	0.16	0.54	1.32	0.01	
MTKC0646	24	25	1	D107953	CHIPS	1m_SPLIT	0.0192	0.12	0.57	1.03	0.01	
MTKC0646	25	26	1	D107954	CHIPS	1m_SPLIT	0.0153	0.08	0.53	2.16	0.01	
MTKC0648	14	15		D107956	CHIPS	1m_SPLIT	0.0834	0.08	0.64	1.68	0.01	
MTKC0648	15	16	1	D107957	CHIPS	1m_SPLIT	0.1255	0.11	0.61	1.6	0.01	
MTKC0648	16	17	1	D107958	CHIPS	1m_SPLIT	0.147	0.08	0.6	1.58	0.01	
MTKC0648	17	18	1	D107959	CHIPS	1m_SPLIT	0.1395	0.03	0.62	1.76	0.01	
MTKC0648	18	19	1	D107960	CHIPS	1m_SPLIT	0.0579	0.03	0.5	1.74	0.03	
MTKC0648	19	20	1	D107961	CHIPS	1m_SPLIT	0.0326	0.04	0.51	1.2	0.05	
MTKC0648	20	21	1	D107962	CHIPS	1m_SPLIT	0.0593	0.04	0.57	1.01	0.08	
MTKC0649	13	14	1	D107964	CHIPS	1m_SPLIT	0.0304	0.03	0.53	5.45	0.01	
MTKC0649	14	15	1	D107965	CHIPS	1m_SPLIT	0.037	0.02	0.61	4.84	0.01	
MTKC0649	15	16	1	D107966	CHIPS	1m_SPLIT	0.064	0.03	0.61	6.79	0.01	
MTKC0649	16	17	1	D107967	CHIPS	1m_SPLIT	0.1675	0.11	0.31	16.7	0.01	
MTKC0649	17	18	1	D107968	CHIPS	1m_SPLIT	0.253	0.14	0.22	21.3	0.01	
MTKC0649	18	19	1	D107969	CHIPS	1m_SPLIT	0.0585	0.04	0.55	5.75	0.01	
MTKC0649	19	20	1	D107970	CHIPS	1m_SPLIT	0.1275	0.05	0.49	12.85	0.01	
MTKC0649	20	21	1	D107971	CHIPS	1m_SPLIT	0.303	0.06	0.35	21.3	0.01	1m @ 0.3% Cu from 20m
MTKC0649	21	22	1	D107972	CHIPS	1m_SPLIT	0.1725	0.05	0.36	9.61	0.01	
MTKC0649	22	23	1	D107973	CHIPS	1m_SPLIT	0.0919	0.03	0.66	4.7	0.01	
MTKC0649	23	24	1	D107974	CHIPS	1m_SPLIT	0.1025	0.03	0.68	4.75	0.01	
MTKC0649	24	25		D107975	CHIPS	1m_SPLIT	0.204	0.05	0.5	11.9	0.01	
MTKC0649	25	26	1	D107976	CHIPS	1m_SPLIT	0.128	0.05	0.56	6.71	0.01	
MTKC0649	26	27		D107977	CHIPS	1m_SPLIT	0.1225	0.04	0.6	4.92	0.01	
MTKC0649	27	28		D107978	CHIPS	1m_SPLIT	0.113	0.04	0.56	4.52	0.01	
MTKC0649	28	29		D107979	CHIPS	1m_SPLIT	0.146	0.04	0.43	5.86	0.01	
MTKC0649	29	30		D107980	CHIPS	1m_SPLIT	0.129	0.13	0.42	6.15	0.01	
MTKC0649	30	31		D107981	CHIPS	1m_SPLIT	0.206	0.14	0.46	7.82	0.02	
MTKC0649	31	32		D107982	CHIPS	1m_SPLIT	0.118	0.31	0.55	3.28	0.01	
MTKC0649	32	33		D107983	CHIPS	1m_SPLIT	0.321	0.28	0.47	3.59	0.02	2m @ 0.54% Cu from 32m
MTKC0649	33	34		D107984	CHIPS	1m_SPLIT	0.752	6.2	1.7	3.91	0.01	
MTKC0649	34	35		D107985	CHIPS	1m_SPLIT	0.0602	10.2	4.29	2.61	0.02	
MTKC0649	35	36		D107986	CHIPS	1m_SPLIT	0.0633	10.35	4.81	3	0.06	
MTKC0649	36	37		D107987	CHIPS	1m_SPLIT	0.0608	12.45	6.32	3.8	0.1	
MTKC0649	37	38		D107988	CHIPS	1m_SPLIT	0.0325	13.3	6.91	3.98	0.11	
MTKC0649	139	140		D107990	CHIPS	1m_SPLIT	0.0217	7.72	4.3	2.53	0.68	
MTKC0649	140	141		D107991	CHIPS	1m_SPLIT	0.0208	8.01	4.7	2.64	0.78	
MTKC0649	141	142	1	D107992	CHIPS	1m_SPLIT	0.0214	9	4.99	2.87	0.71	

11-1-15	From	T = (m)	Interval	Completion	Sample	Sample	ME-ICP61 (+ Cu-OG62)			Significant Intercept (Cut-		
Hole ID	(m)	To (m)	(m)	Sample ID	Туре	Method	Cu%	Ca%	Mg%	Fe%	S%	Off 0.3% Cu)
MTKC0649	142	143	1	D107993	CHIPS	1m_SPLIT	0.0529	5.94	3.54	2.4	0.97	
MTKC0649	143	144		D107994	CHIPS	1m_SPLIT	0.0477	8.53	4.91	2.93	0.81	
MTKC0649	144	145	1	D107995	CHIPS	1m_SPLIT	0.0107	7.54	4.37	2.64	1.04	
MTKC0649	145	146	1	D107996	CHIPS	1m_SPLIT	0.0473	6.43	3.79	2.49	0.85	
MTKC0649	146	147	1	D107997	CHIPS	1m_SPLIT	0.0542	10.5	5.61	3.21	0.59	
MTKC0649	147	148	1	D107998	CHIPS	1m_SPLIT	0.082	5.59	3.42	2.46	0.9	
MTKC0649	148	149	1	D107999	CHIPS	1m_SPLIT	0.0705	4.78	2.9	2.38	1.02	
MTKC0649	149	150	1	D108000	CHIPS	1m_SPLIT	0.0247	10	5.2	3.45	0.73	
MTKC0649	150	151	1	D108001	CHIPS	1m_SPLIT	0.0194	8.8	4.7	2.89	0.62	
MTKC0649	151	152	1	D108002	CHIPS	1m_SPLIT	0.0694	7.63	4.37	2.62	0.71	
MTKC0649	152	153	1	D108003	CHIPS	1m_SPLIT	0.0903	6.99	4.24	2.58	0.89	
MTKC0649	153	154	1	D108004	CHIPS	1m_SPLIT	0.1175	7.99	4.64	2.48	0.8	
MTKC0649	154	155	1	D108005	CHIPS	1m_SPLIT	0.0474	7.82	4.59	2.35	0.73	
MTKC0649	155	156	1	D108006	CHIPS	1m_SPLIT	0.0383	8.49	4.83	2.67	0.76	
MTKC0649	156	157	1	D108007	CHIPS	1m_SPLIT	0.0853	8.36	4.85	2.93	1.01	
MTKC0649	157	158	1	D108008	CHIPS	1m_SPLIT	0.0674	8.62	5.15	2.94	0.82	
MTKC0649	158	159	1	D108009	CHIPS	1m_SPLIT	0.0292	10.9	6.41	3.94	0.63	
MTKC0649	159	160	1	D108010	CHIPS	1m_SPLIT	0.015	5.99	3.61	2.84	1.22	
MTKC0657	20	21	1	D108128	CHIPS	1m_SPLIT	0.0229	0.02	0.71	2.15	0.01	
MTKC0657	21	22	1	D108129	CHIPS	1m_SPLIT	0.0562	0.04	0.56	3.31	0.01	
MTKC0657	22	23	1	D108130	CHIPS	1m_SPLIT	0.0907	0.04	0.62	4.67	0.01	
MTKC0657	23	24	1	D108131	CHIPS	1m_SPLIT	0.167	0.04	0.5	5.61	0.01	
MTKC0657	24	25	1	D108132	CHIPS	1m_SPLIT	0.1445	0.04	0.51	5.76	0.01	
MTKC0657	25	26	1	D108133	CHIPS	1m_SPLIT	0.1365	0.03	0.56	6.11	0.01	
MTKC0657	26	27	1	D108134	CHIPS	1m_SPLIT	0.123	0.03	0.64	4.6	0.01	
MTKC0657	27	28	1	D108135	CHIPS	1m_SPLIT	0.233	0.11	0.68	3.84	0.01	
MTKC0657	28	29	1	D108136	CHIPS	1m_SPLIT	0.286	0.06	0.45	5.73	0.01	
MTKC0657	29	30	1	D108137	CHIPS	1m_SPLIT	0.247	0.05	0.41	7.84	0.01	
MTKC0657	30	31	1	D108138	CHIPS	1m_SPLIT	0.1305	0.07	0.57	4.85	0.01	
MTKC0657	31	32	1	D108139	CHIPS	1m_SPLIT	0.125	0.05	0.5	4.19	0.01	
MTKC0657	32	33	1	D108140	CHIPS	1m_SPLIT	0.271	2.54	1.19	4.32	0.01	
MTKC0657	33	34	1	D108141	CHIPS	1m_SPLIT	0.0344	8.61	4.45	2.77	0.01	
MTKC0657	34	35	1	D108142	CHIPS	1m_SPLIT	0.0302	7.95	4.25	2.97	0.02	
MTKC0657	102	103	1	D108143	CHIPS	1m_SPLIT	0.0064	10.8	5.59	3.18	0.66	
MTKC0657	103	104	1	D108144	CHIPS	1m_SPLIT	0.0823	9.74	5.19	2.99	0.53	
MTKC0657	104	105	1	D108145	CHIPS	1m_SPLIT	0.143	7.02	3.95	2.46	0.65	
MTKC0657	105	106	1	D108146	CHIPS	1m_SPLIT	0.011	6.87	4.04	2.31	0.63	
MTKC0657	106	107	1	D108148	CHIPS	1m_SPLIT	0.0082	7.11	4.05	2.41	0.61	
MTKC0657	118	119		D108149	CHIPS	1m_SPLIT	0.0035	2.66	2.19	1.86	0.67	
MTKC0657	119	120	1	D108150	CHIPS	1m_SPLIT	0.0062	6.34	3.72	2.2	0.52	
MTKC0657	120	121	1	D108151	CHIPS	1m_SPLIT	0.0997	8.45	4.61	2.6	0.51	
MTKC0657	121	122		D108152	CHIPS	 1m_SPLIT	0.0365	9.55	5.26	2.8	0.61	
MTKC0657	122	123	1	D108153	CHIPS	 1m_SPLIT	0.0104	9.65	5.22	2.71	0.56	
MTKC0662	27	28		D108271	CHIPS	1m_SPLIT	0.0618	0.03	0.49	9.87	0.01	
MTKC0662	28	29		D108272	CHIPS	1m_SPLIT	0.0159	0.03	0.66	2.92	0.01	
MTKC0662	29	30		D108273	CHIPS	 1m_SPLIT	0.341	0.05	0.22	45.2	0.02	
MTKC0662	30	31		D108274	CHIPS	1m_SPLIT	0.105	0.04	0.34	19	0.01	
MTKC0662	31	32		D108275	CHIPS	 1m_SPLIT	0.0166	0.02	0.43	3.64	-0.01	

(m) · (m) · New best of the set of the se		From	To (m)	Interval	Commission	Sample	Sample	ME-ICP61 (+ Cu-OG62)			Significant Intercept (Cut-		
MTXC0662 33 34 1 D108277 CHIPS Jm. SPUT 0.01 0.02 0.02 0.03 0.27 0.01 MTXC0662 35 36 1 D108270 CHIPS Jm. SPUT 0.28 0.03 0.59 0.387 0.02 MTXC0662 37 38 1 D108280 CHIPS Jm. SPUT 2.28 0.03 0.59 2.37 0.04 MTXC0662 38 39 1 D108282 CHIPS Jm. SPUT 1.28 0.03 0.53 3.39 0.13 MTXC0662 41 42 1 D108282 CHIPS Jm. SPUT 1.815 0.03 0.03 0.03 0.01 MTXC0662 44 45 1 D108282 CHIPS Jm. SPUT 0.38 0.40 0.45 0.01 MTXC0662 46 47 1 D108282 CHIPS Jm. SPUT 0.38 0.43 0.43 0.41 MTXC0662 4	Hole ID	(m)	To (m)	(m)	Sample ID	Туре	Method	Cu%	Ca%	Mg%	Fe%	S%	Off 0.3% Cu)
MIXC0662 34 35 1 D108278 CHHS Im, SPUT 0.01 0.02 0.02 0.18 0.01 MIXC0662 36 37 1 D108280 CHHS Im, SPUT 2.28 0.03 0.55 2.25 0.06 MIXC0662 38 39 1 D108282 CHHS Im, SPUT 1.28 0.03 0.05 2.25 0.06 MIXC0662 40 41 D 108282 CHHS Im, SPUT 1.88 0.04 0.05 1.21 0.00 MIXC0662 44 42 1 D108282 CHHS Im, SPUT 1.81 0.03 0.03 0.04 0.01 MIXC0662 44 44 1 D108282 CHHS Im, SPUT 0.03 0.04 0.42 0.00 MIXC0662 45 46 1 D108282 CHHS Im, SPUT 0.03 0.04 0.01 MIXC0662 46 1 D108282 0.01 <td>MTKC0662</td> <td>32</td> <td></td> <td>1</td> <td>D108276</td> <td>CHIPS</td> <td>1m_SPLIT</td> <td>0.0202</td> <td>0.02</td> <td>0.52</td> <td>2.53</td> <td>-0.01</td> <td></td>	MTKC0662	32		1	D108276	CHIPS	1m_SPLIT	0.0202	0.02	0.52	2.53	-0.01	
MIXC6662 33 36 1008279 CHRS Jm. SPUT 0.04 0.02 0.18 0.01 MIXC6662 36 37 1002801 CHRS Jm. SPUT 2.28 0.03 0.55 2.59 0.04 MIXC6662 38 40 1002828 CHRS Jm. SPUT 1.88 0.04 0.05 2.25 0.01 MIXC6662 40 41 1002828 CHRS Jm. SPUT 1.88 0.02 0.55 3.31 0.02 MIXC6662 41 42 1002828 CHRS Jm. SPUT 0.38 0.04 0.55 3.03 0.03 MIXC6662 44 45 1002828 CHRS Jm. SPUT 0.03 0.049 2.48 0.05 MIXC6662 46 47 1002820 CHRS Jm. SPUT 0.035 0.03 0.03 0.01 MIXC6662 48 49 1002822 CHRS Jm. SPUT 0.065 0.25 0.48 8.75<	MTKC0662			1	D108277	CHIPS	1m_SPLIT						
MTKC0621333131010220110	MTKC0662					CHIPS	1m_SPLIT	0.061	0.02	0.48	5.92	-0.01	
MTKC062 37 38 1	MTKC0662		36	1	D108279	CHIPS	1m_SPLIT	0.931	0.04	0.29	11.85	-0.01	
MTKC0662 38 39 10108282 CHIPS Im. SPUT 1.98 0.04 0.05 2.26 0.01 MTKC0662 40 41 1008284 CHIPS Im. SPUT 1.42 0.02 0.53 3.21 0.03 MTKC0662 41 42 10108284 CHIPS Im. SPUT 1.815 0.03 0.53 3.09 0.03 MTKC0662 43 44 10108286 CHIPS Im. SPUT 0.716 0.03 0.04 2.48 0.05 MTKC0662 45 46 110108286 CHIPS Im. SPUT 0.055 0.02 0.01 MTKC0662 46 47 10108293 CHIPS Im. SPUT 0.065 0.25 0.48 8.75 0.01 MTKC0662 49 50 110108293 CHIPS Im. SPUT 0.014 0.19 0.59 1.5 0.01 MTKC0662 48 49 110108293 CHIPS Im. SPUT 0.017 0.19 <td>MTKC0662</td> <td></td> <td>37</td> <td>1</td> <td>D108280</td> <td>CHIPS</td> <td>1m_SPLIT</td> <td>2.28</td> <td>0.03</td> <td>0.59</td> <td>3.87</td> <td>0.02</td> <td></td>	MTKC0662		37	1	D108280	CHIPS	1m_SPLIT	2.28	0.03	0.59	3.87	0.02	
MTKC0652 93 40 1 D108233 CHIPS M.SPUT 0.93 0.57 2.26 0.11 99 0.148% Cultrom 35m MTKC0652 40 41 0 D108285 CHIPS Im.SPUT 1.815 0.03 0.53 3.09 0.13 MTKC0652 42 44 1 D108285 CHIPS Im.SPUT 0.183 0.04 0.53 3.09 0.13 MTKC0652 44 45 1 D108287 CHIPS Im.SPUT 0.130 0.03 0.05 1.2 0.01 MTKC0652 45 46 1 D108287 CHIPS Im.SPUT 0.0471 0.03 0.47 5.77 0.01 MTKC0652 48 49 1 D108292 CHIPS Im.SPUT 0.0855 0.25 0.48 8.75 0.01 MTKC0652 48 49 1 D108292 CHIPS Im.SPUT 0.074 0.19 0.59 1.6 0.01 MTK0652 49 50 1 D108976 HCORE UID76	MTKC0662	37	38	1	D108281	CHIPS	1m_SPLIT	2.77	0.03	0.5	2.59	0.04	
MTKC0662 40 41 1008284 CMPS Mm.SPUT 1.42 0.02 0.5 3.2.1 0.02 MTKC0662 42 42 1 1008285 CMPS Im.SPUT 0.383 0.04 0.5 1.7.9 0.03 MTKC0662 43 44 1 1008288 CMPS Im.SPUT 0.766 0.03 0.59 1.8 0.01 MTKC0662 44 45 1 0.08289 CMPS Im.SPUT 0.0622 0.13 0.47 5.97 0.01 MTKC0662 46 41 1 0.08290 CMPS Im.SPUT 0.0612 0.05 0.20 0.44 8.75 0.01 MTKC0662 47 48 1 0.08292 CMPS Im.SPUT 0.0134 0.19 0.59 1.15 0.01 MTKC0662 49 50 1 0.08292 CMPS Im.SPUT 0.0134 0.19 0.59 1.15 0.01 MTKC0662 49 50 1 0.108293 CMPS Im.SPUT 0.0142 0.1	MTKC0662		39	1	D108282	CHIPS	1m_SPLIT	1.98	0.04	0.61	2.91	0.06	
MTKC0662 41 42 10108285 CHIPS Im SPUT 8.815 0.03 0.53 3.09 0.13 MTKC0662 42 43 10108286 CHIPS Im SPUT 0.786 0.04 0.49 2.44 0.05 MTKC0662 44 44 10108280 CHIPS Im SPUT 0.716 0.03 0.49 2.44 0.05 MTKC0662 45 46 10108280 CHIPS Im SPUT 0.021 0.03 0.47 5.57 0.01 MTKC0662 46 47 10108290 CHIPS Im SPUT 0.018 0.2 0.58 0.45 0.01 MTKC0662 48 49 10108293 CHIPS Im SPUT 0.018 0.2 0.59 1.15 -0.01 MTKC0662 50 51 10108294 CHIPS Im SPUT 0.012 0.19 0.59 1.15 -0.01 MTKC0662 50 51 10108294 CHIPS Im SPUT 0.012 0.19 0.59 1.5 -0.01 MTKC0662 51	MTKC0662	39	40	1	D108283	CHIPS	1m_SPLIT	0.997	0.03	0.57	2.26	0.11	9m @ 1.48% Cu from 35m
MTKC0662 42 43 1 D108287 CHIPS Im SPUT 0.716 0.03 0.49 0.48 0.05 MTKC0662 44 45 1 D108288 CHIPS Im SPUT 0.136 0.03 0.49 0.48 0.05 MTKC0662 44 45 1 D108280 CHIPS Im SPUT 0.047 0.05 0.52 0.52 0.01 MTKC0662 45 46 1 D108290 CHIPS Im SPUT 0.065 0.22 0.54 45.7 0.01 MTKC0662 48 49 1 D108293 CHIPS Im SPUT 0.014 0.19 0.59 1.16 -0.01 MTKC0662 50 51 1 D108294 CHIPS Im SPUT 0.017 0.19 0.59 1.15 -0.01 MTKC0662 50 51 1 D108294 CHIPS Im SPUT 0.027 2.34 7.13 3.76 0.02 MTK0018 99 91 1 D109678 HCORE CUTCORE 0.562 2	MTKC0662	40	41	1	D108284	CHIPS	1m_SPLIT	1.42	0.02	0.5	3.21	0.02	
MTKC0662 44 44 1008287 CHHPS Im SPUT 0.136 0.03 0.49 2.48 0.05 MTKC0662 44 45 1 10108283 CHHPS Im SPUT 0.031 0.05 0.12 1.02 0.01 MTKC0662 46 47 1 1008290 CHHPS Im SPUT 0.062 0.13 0.47 5.97 0.01 MTKC0662 48 49 1 1008290 CHHPS Im SPUT 0.0685 0.25 0.48 8.75 0.01 MTKC0662 49 50 1 1008293 CHHPS Im SPUT 0.0174 0.019 0.15 0.01 MTKC062 50 51 1 1008294 CHUPS Im SPUT 0.0072 0.19 0.59 1.15 0.001 MTK0018 90 91 1 1009675 HCORE CUTCORE 0.22 2.34 7.11 3.76 0.02 MTK0018 91 92 1 1009675 HCORE CUTCORE 0.425 3.45 4.55 <	MTKC0662	41	42	1	D108285	CHIPS	1m_SPLIT	1.815	0.03	0.53	3.09	0.13	
MTKC062 44 45 1 D102282 CHIPS Im SPUT 0.035 0.05 0.59 1.8 0.01 MTKC062 45 46 47 1 D108280 CHIPS Im SPUT 0.065 0.52 0.43 0.01 MTKC062 47 48 1 D108292 CHIPS Im_SPUT 0.0655 0.25 0.48 8.75 0.01 MTKC062 48 4 1 D108292 CHIPS Im_SPUT 0.014 0.19 0.59 1.15 -0.01 MTKC062 50 51 1 D108294 CHIPS Im_SPUT 0.0174 0.19 0.59 1.15 -0.01 MTK0018 90 1 D109676 HCORE CUTCORE 0.0027 2.34 7.11 3.76 0.27 MTK0018 91 92 1 D109679 HCORE CUTCORE 0.36 3.4 4.29 1.01 MTK0018 <t< td=""><td>MTKC0662</td><td>42</td><td>43</td><td>1</td><td>D108286</td><td>CHIPS</td><td>1m_SPLIT</td><td>0.383</td><td>0.04</td><td>0.5</td><td>1.79</td><td>0.03</td><td></td></t<>	MTKC0662	42	43	1	D108286	CHIPS	1m_SPLIT	0.383	0.04	0.5	1.79	0.03	
MTKC0622 45 46 1 D108289 CHIPS Im_SPLT 0.0471 0.05 0.52 1.92 0.01 MTKC062 46 47 1 D108291 CHIPS Im_SPLT 0.0822 0.01 0.47 5.97 0.01 MTKC062 48 44 1 D108292 CHIPS Im_SPLT 0.0618 0.2 0.54 4.57 0.01 MTKC062 49 50 1 D108292 CHIPS Im_SPLT 0.017 0.19 0.59 1.5 -0.01 MTKC062 50 51 1 D108294 CHIPS Im_SPLT 0.0072 0.19 0.59 1.5 -0.01 MTK0018 90 91 1 D109676 HCORE 0.0027 2.34 7.11 3.76 0.02 MTK0018 91 92 1 D109678 HCORE CUTCORE 0.512 1.21 3.15 4.96 2.27 MTK0018 93 94 1 D109684 HCORE CUTCORE 0.543 7.51 4.1.8 <td>MTKC0662</td> <td>43</td> <td>44</td> <td>1</td> <td>D108287</td> <td>CHIPS</td> <td>1m_SPLIT</td> <td>0.716</td> <td>0.03</td> <td>0.49</td> <td>2.48</td> <td>0.05</td> <td></td>	MTKC0662	43	44	1	D108287	CHIPS	1m_SPLIT	0.716	0.03	0.49	2.48	0.05	
MTKC0622 46 47 1 D108290 CHIPS 1m SPUT 0.0822 0.13 0.47 5.97 0.01 MTKC062 47 48 1 D108291 CHIPS 1m SPUT 0.0855 0.25 0.48 8.75 0.01 MTKC062 48 49 1 D108293 CHIPS 1m_SPUT 0.014 0.19 0.59 1.16 -0.01 MTK0062 50 51 1 D108293 CHIPS 1m_SPUT 0.072 0.19 0.59 1.5 -0.01 MTK0018 90 91 1 D109676 HCORE CUTCORE 0.0827 2.34 7.11 3.76 0.02 MTK0018 91 92 1 D109679 HCORE CUTCORE 0.405 1.7 1.31 3.26 2.27 1.019 MTK0018 95 1 D109680 HCORE CUTCORE 0.34 8.35 4.57 5.48 1.38 MTK0018 96 91 1 D109680<	MTKC0662	44	45	1	D108288	CHIPS	1m_SPLIT	0.1305	0.03	0.59	1.8	0.01	
MTKC0622 44 45 1 D108291 CHIPS 1m_SPLT 0.0865 0.25 0.48 8.75 0.01 MTKC062 48 49 1 D108292 CHIPS 1m_SPLT 0.0618 0.2 0.54 4.57 -0.01 MTKC062 49 50 1 D108293 CHIPS 1m_SPLT 0.0072 0.19 0.59 1.15 -0.01 MTK0062 50 51 1 D109675 HCORE CUTCORE 0.0027 2.34 7.11 3.76 0.02 MTK018 90 91 1 D109676 HCORE CUTCORE 0.4027 2.34 7.11 3.76 0.02 MTK018 92 31<0109677	MTKC0662	45	46	1	D108289	CHIPS	1m_SPLIT	0.0471	0.05	0.52	1.92	0.01	
MTKC0662 48 49 1 D108292 CHIPS Im_SPLIT 0.0618 0.2 0.54 4.57 -0.01 MTKC0662 49 50 1 D108293 CHIPS Im_SPLIT 0.017 0.19 0.59 1.16 -0.01 MTK0018 99 90 1 D109575 HCORE CUTCORE 0.0027 2.34 7.11 3.76 0.02 MTKD018 91 91 D109577 HCORE CUTCORE 0.562 2.09 2.32 3.31 1.65 MTKD018 92 93 1 D109578 HCORE CUTCORE 0.562 2.09 2.32 3.31 1.65 MTKD018 92 93 1 D109578 HCORE CUTCORE 0.562 2.09 2.32 3.31 1.65 MTKD018 93 94 1 D109684 HCORE CUTCORE 0.53 7.17 4.05 1.22 1.71 MTKD018 96 91 D109684 HCORE CUTCORE 0.364 6.52 3.64 <t< td=""><td>MTKC0662</td><td>46</td><td>47</td><td>1</td><td>D108290</td><td>CHIPS</td><td>1m_SPLIT</td><td>0.0822</td><td>0.13</td><td>0.47</td><td>5.97</td><td>0.01</td><td></td></t<>	MTKC0662	46	47	1	D108290	CHIPS	1m_SPLIT	0.0822	0.13	0.47	5.97	0.01	
MTKC0662 49 50 1 D108293 CHIPS Im_SPLIT 0.0174 0.19 0.59 1.16 -0.01 MTKC0662 50 51 1 D108274 CHIPS Im_SPLIT 0.0072 0.19 0.59 1.5 -0.01 MTKC018 89 0 D109675 HCORE CUTCORE 0.0825 3.8 2.88 2.34 0.13 MTKD018 90 91 1 D109677 HCORE CUTCORE 0.620 2.09 2.23 3.1 1.65 MTKD018 92 3 D109677 HCORE CUTCORE 0.562 2.09 2.32 3.15 4.96 2.27 MTKD018 93 94 1 D109678 HCORE CUTCORE 0.562 3.15 4.96 2.03 MTKD018 95 6 D D109684 HCORE CUTCORE 0.653 7.17 4.05 5.12 1.21 7.7 MTKD018 99 1 D109684 HCORE CUTCORE 0.874 4.52 5.6 3	MTKC0662	47	48	1	D108291	CHIPS	1m_SPLIT	0.0865	0.25	0.48	8.75	0.01	
MTKC0620 S0 S1 1 1 1 0<072 0.19 0.59 1.5 -0.01 MTKD018 89 90 1 1019967 HCORE CUTCORE 0.0027 2.34 7.11 3.76 0.02 MTKD018 90 91 92 1 D109677 HCORE CUTCORE 0.027 2.34 7.11 3.76 0.02 MTKD018 92 93 1 D109677 HCORE CUTCORE 0.951 5.55 3.15 4.96 2.97 MTKD018 93 94 95 1 D109680 HCORE CUTCORE 0.863 7.17 4.05 5.12 1.01 MTKD018 96 97 98 1 D109681 HCORE CUTCORE 0.364 6.52 3.64 3.49 1.52 MTKD018 99 910 1 D109681 HCORE CUTCORE 0.364 6.52 3.64 3.49 1.52 MTKD018 99 100 10 D109684 HCORE CUTCORE 0.364	MTKC0662	48	49	1	D108292	CHIPS	1m_SPLIT	0.0618	0.2	0.54	4.57	-0.01	
MTKD018 89 90 1 D109675 HCORE CUTCORE 0.0087 2.34 7.11 3.76 0.02 MTKD018 90 91 1 D109677 HCORE CUTCORE 0.0027 2.34 7.11 3.76 0.02 MTKD018 91 92 1 D109677 HCORE CUTCORE 0.562 2.09 2.32 3.31 1.65 MTKD018 92 93 94 1 D109679 HCORE CUTCORE 0.562 3.15 4.96 2.25 MTKD018 93 94 1 D109680 HCORE CUTCORE 1.51 5.6 3.11 5.04 1.30 MTKD018 96 97 1 D109681 HCORE CUTCORE 0.36 7.17 4.05 5.12 1.71 MTKD018 99 100 1 D109684 HCORE CUTCORE 0.364 6.52 3.64 3.49 1.52 MTKD018	MTKC0662	49	50	1	D108293	CHIPS	1m_SPLIT	0.0174	0.19	0.59	1.16	-0.01	
MTKD018M899910	MTKC0662	50	51	1	D108294	CHIPS	1m_SPLIT	0.0072	0.19	0.59	1.5	-0.01	
MTKD018 91 92 1 D109677 HCORE CUTCORE 0.562 2.09 2.32 3.31 1.65 MTKD018 92 93 1 D109679 HCORE CUTCORE 0.1405 1.7 1.31 3.26 2.27 MTKD018 93 94 1 D109679 HCORE CUTCORE 0.951 5.85 3.15 4.96 2.55 MTKD018 94 95 96 1 D109681 HCORE CUTCORE 0.666 5.92 3.24 4.29 1.03 MTKD018 95 96 1 D109682 HCORE CUTCORE 0.663 7.17 4.05 5.12 1.21 MTKD018 97 9 1 D109684 HCORE CUTCORE 0.34 6.52 3.64 3.45 4.59 4.26 2.88 MTKD018 99 10 D109686 HCORE CUTCORE 0.241 2.51 1.71 2.61 1.39 MTKD018 100 101 1 D109686 HCORE CUTCORE	MTKD018	89	90	1	D109675	HCORE		0.0085	3.8	2.89	2.34	0.13	
MTKD018 92 93 1 D109678 HCORE CUTCORE 0.1405 1.7 1.31 3.26 2.27 MTKD018 93 94 D109679 HCORE CUTCORE 0.91 5.85 3.15 4.96 2.95 MTKD018 94 95 0 D109680 HCORE CUTCORE 0.663 5.92 3.24 4.29 1.03 MTKD018 96 97 10 D109681 HCORE CUTCORE 0.663 7.17 4.05 5.12 1.21 MTKD018 96 97 10 D109681 HCORE CUTCORE 0.36 6.52 3.64 3.49 1.52 MTKD018 98 99 10 D109684 HCORE CUTCORE 0.37 4.83 2.59 4.26 2.28 MTKD018 101 101 D109687 HCORE CUTCORE 0.874 4.83 2.59 4.26 2.04 MTKD018 101 101 D109687 HCORE CUTCORE 0.014 1.56 6.13 7.57 <	MTKD018	90	91	1	D109676	HCORE	CUTCORE	0.0027	2.34	7.11	3.76	0.02	
MTKD018 93 94 1 D109679 HCORE CUTCORE 0.951 5.85 3.15 4.96 2.95 MTKD018 94 95 1 D109680 HCORE CUTCORE 1.15 5.6 3.01 5.04 1.88 MTKD018 95 96 1 D109681 HCORE CUTCORE 0.606 5.92 3.24 4.29 1.03 MTKD018 97 98 1 D109681 HCORE CUTCORE 0.33 8.35 4.57 5.48 1.38 MTKD018 99 10 D109686 HCORE CUTCORE 0.344 6.52 3.64 3.45 1.23 MTKD018 101 101 D109686 HCORE CUTCORE 0.874 4.83 2.51 1.71 2.61 1.39 MTKD018 100 101 D109686 HCORE CUTCORE 0.874 4.83 2.51 1.71 2.61 3.75 0.28 MTKD	MTKD018	91	92	1	D109677	HCORE	CUTCORE	0.562	2.09	2.32	3.31	1.65	
MTKD018 93 94 91 D109679 HCORE CUTCORE 0.951 5.85 3.15 4.96 2.95 MTKD018 94 95 1 D109680 HCORE CUTCORE 1.15 5.6 3.01 5.04 1.88 MTKD018 95 97 1 D109682 HCORE CUTCORE 0.606 5.52 3.24 4.29 1.03 MTKD018 97 98 1 D109682 HCORE CUTCORE 0.666 5.22 3.64 5.48 1.38 MTKD018 98 99 1 D109684 HCORE CUTCORE 0.874 4.83 2.59 4.26 2.28 MTKD018 100 101 1 D109686 HCORE CUTCORE 0.874 4.83 2.59 4.26 0.24 MTKD018 101 10109686 HCORE CUTCORE 0.017 7.5 4.18 3.41 1.00 MTKD018 1010 1010	MTKD018	92	93	1	D109678	HCORE	CUTCORE	0.1405	1.7	1.31	3.26	2.27	
MTKD018 95 96 1 D109681 HCORE CUTCORE 0.666 5.92 3.24 4.29 1.03 MTKD018 96 97 1 D109682 HCORE CUTCORE 0.653 7.17 4.05 5.12 1.121 MTKD018 97 98 1 D109684 HCORE CUTCORE 0.34 8.35 4.57 5.48 1.38 MTKD018 99 100 1 D109684 HCORE CUTCORE 0.34 6.52 3.64 3.49 1.52 MTKD018 100 101 1 D109686 HCORE CUTCORE 0.874 4.83 2.59 4.26 2.28 MTKD018 101 101 D109687 HCORE CUTCORE 0.0172 11.5 6.13 7.57 0.28 MTKD018 102 103 1 D109690 HCORE CUTCORE 0.0152 11.5 6.13 7.57 0.28 MTKD018	MTKD018	93	94	1	D109679	HCORE	CUTCORE	0.951	5.85	3.15	4.96	2.95	
MTKD018 96 97 1 D109682 HCORE CUTCORE 0.653 7.17 4.05 5.12 1.211 MTKD018 97 98 1 D109683 HCORE CUTCORE 0.3 8.35 4.57 5.48 1.38 MTKD018 99 10 D109684 HCORE CUTCORE 0.364 6.52 3.64 3.49 1.52 MTKD018 99 10 D109685 HCORE CUTCORE 0.874 4.83 2.59 4.26 2.28 MTKD018 100 101 D109687 HCORE CUTCORE 0.707 7.5 4.18 3.41 1.04 MTKD018 102 1019687 HCORE CUTCORE 0.012 11.5 6.13 7.57 0.28 MTKD018 102 1019689 HCORE CUTCORE 0.012 11.5 6.13 7.57 0.28 MTKD018 106 1 D109691 HCORE CUTCORE 0.0134 12.65 6.68 3.96 0.25 MTKD018 106 1 </td <td>MTKD018</td> <td>94</td> <td>95</td> <td>1</td> <td>D109680</td> <td>HCORE</td> <td>CUTCORE</td> <td>1.15</td> <td>5.6</td> <td>3.01</td> <td>5.04</td> <td>1.88</td> <td></td>	MTKD018	94	95	1	D109680	HCORE	CUTCORE	1.15	5.6	3.01	5.04	1.88	
MTKD018 97 98 1 D109683 HCORE CUTCORE 0.3 8.35 4.57 5.48 1.38 MTKD018 98 99 1 D109684 HCORE CUTCORE 0.364 6.52 3.64 3.49 1.52 MTKD018 99 100 10 1019685 HCORE CUTCORE 0.874 4.83 2.59 4.26 D.28 MTKD018 100 101 1 D109686 HCORE CUTCORE 0.874 4.83 2.59 4.26 D.28 MTKD018 100 101 1 D109687 HCORE CUTCORE 0.217 T.5 4.18 3.41 1.04 MTKD018 103 104 1 D109689 HCORE CUTCORE 0.0147 13.45 T.38 4.2 0.44 MTKD018 104 105 1 D109691 HCORE CUTCORE 0.0147 13.45 T.07 5.47 1.94 MTKD	MTKD018	95	96	1	D109681	HCORE	CUTCORE	0.606	5.92	3.24	4.29	1.03	
MTKD018979811D109683HCORECUTCORE0.38.354.575.481.38MTKD018989910D109684HCORECUTCORE0.3646.523.643.491.52MTKD0189910010D109686HCORECUTCORE0.8744.832.594.262.24MTKD01810010D109686HCORECUTCORE0.2412.511.712.611.33MTKD0181001001009686HCORECUTCORE0.0177.54.183.411.04MTKD0181001001009689HCORECUTCORE0.01211.56.137.570.28MTKD0181001001009689HCORECUTCORE0.014713.457.384.20.44MTKD0181041051009691HCORECUTCORE0.014713.457.384.20.44MTKD0181041001009691HCORECUTCORE0.014313.57.075.471.94MTKD0181001001009691HCORECUTCORE0.02813.37.084.660.0550.054MTKD0181001101009691HCORECUTCORE0.21911.25.553.760.55MTKD0181001101009691HCORECUTCORE0.2619.425.252.860.42MTKD0181101111009691	MTKD018	96	97	1	D109682	HCORE	CUTCORE	0.653	7.17	4.05	5.12	1.21	7m @ 0.70% Cu from 93m
MTKD018 99 100 1 D109685 HCORE CUTCORE 0.874 4.83 2.59 4.26 2.28 MTKD018 100 101 109686 HCORE CUTCORE 0.241 2.51 1.71 2.61 1.39 MTKD018 101 102 1019687 HCORE CUTCORE 0.070 7.5 4.18 3.41 1.04 MTKD018 102 103 1 D109687 HCORE CUTCORE 0.0152 11.5 6.13 7.57 0.28 MTKD018 103 104 1 D109689 HCORE CUTCORE 0.0147 13.45 7.38 4.22 0.44 MTKD018 104 105 1 D109691 HCORE CUTCORE 0.0134 12.65 6.86 3.96 0.25 MTKD018 106 107 1 D109691 HCORE CUTCORE 0.216 1.33 7.07 5.47 0.55 MTKD018 107	MTKD018	97	98			HCORE		0.3	8.35	4.57	5.48	1.38	
MTKD018991001D109685HCORECUTCORE0.8744.832.594.262.28MTKD018100101109686HCORECUTCORE0.2412.511.712.611.39MTKD0181011021D109687HCORECUTCORE0.0707.54.183.411.04MTKD0181021031D109687HCORECUTCORE0.015211.56.137.570.28MTKD0181031041D109689HCORECUTCORE0.014713.457.384.20.44MTKD01810410D109699HCORECUTCORE0.014713.457.384.20.44MTKD0181051061D109691HCORECUTCORE0.014713.457.384.20.44MTKD0181051061D109692HCORECUTCORE0.014713.457.384.20.44MTKD0181071081D109693HCORECUTCORE0.28613.37.084.670.99MTKD01810910D109694HCORECUTCORE0.2619.475.252.860.42MTKD01810910D109694HCORECUTCORE0.2619.475.252.860.43MTKD018110110D109696HCORECUTCORE0.2619.475.252.860.59MTKD0181111		98	99	1	D109684	HCORE	CUTCORE	0.364	6.52	3.64	3.49	1.52	
MTKD018 101 102 1 D109687 HCORE CUTCORE 0.0707 7.5 4.18 3.41 1.04 MTKD018 102 103 1 D109688 HCORE CUTCORE 0.0152 11.5 6.13 7.57 0.28 MTKD018 103 104 10 D109699 HCORE CUTCORE 0.0147 13.45 7.38 4.22 0.44 MTKD018 104 105 1 D109690 HCORE CUTCORE 0.0147 13.45 7.38 4.22 0.44 MTKD018 105 106 1 D109690 HCORE CUTCORE 0.0134 11.5 7.07 5.47 1.94 MTKD018 105 106 1 D109693 HCORE CUTCORE 0.0286 13.3 7.08 4.67 0.99 MTKD018 107 108 1 D109693 HCORE CUTCORE 0.261 3.47 5.25 3.76 0.55 MTKD018 109 101 D109694 HCORE CUTCORE 0.261 9.4		99	100			HCORE	CUTCORE	0.874	4.83		4.26		
MTKD018 101 102 1 D109687 HCORE CUTCORE 0.0707 7.5 4.18 3.41 1.04 MTKD018 102 103 1 D109688 HCORE CUTCORE 0.0152 11.5 6.13 7.57 0.28 MTKD018 103 104 10 D109699 HCORE CUTCORE 0.0147 13.45 7.38 4.22 0.44 MTKD018 104 105 1 D109690 HCORE CUTCORE 0.0147 13.45 7.38 4.22 0.44 MTKD018 105 106 1 D109690 HCORE CUTCORE 0.0134 11.5 7.07 5.47 1.94 MTKD018 105 106 1 D109693 HCORE CUTCORE 0.0286 13.3 7.08 4.67 0.99 MTKD018 107 108 1 D109693 HCORE CUTCORE 0.261 3.47 5.25 3.76 0.55 MTKD018 109 101 D109694 HCORE CUTCORE 0.261 9.4						1	-						
MTKD0181021031D109688HCORECUTCORE0.015211.56.137.570.28MCOREMTKD0181031041D109699HCORECUTCORE0.014713.457.384.20.44MTKD0181051051D109690HCORECUTCORE0.013412.656.863.960.25MTKD0181051061D109691HCORECUTCORE0.015813.157.075.471.94MTKD0181061071D109692HCORECUTCORE0.026613.37.084.670.09MTKD0181001081D109693HCORECUTCORE0.21911.25.953.760.550.055MTKD01810910D109694HCORECUTCORE0.2619.475.252.860.42MTKD018110111D109695HCORECUTCORE0.2619.475.252.860.59MTKD018110111D109695HCORECUTCORE0.36410.95.952.980.54MTKD018111112D109697HCORECUTCORE0.25210.355.682.730.39MTKD018111114D109699HCORECUTCORE0.5228.574.652.850.74MTKD018112113D109699HCORECUTCORE0.5228.574.652.850.74MTK	MTKD018	101	102	1	D109687	HCORE	CUTCORE	0.0707	7.5	4.18	3.41	1.04	
MTKD0181031041D109689HCORECUTCORE0.014713.457.384.20.44MTKD018106100100HCORECUTCORE0.013412.656.863.960.25MTKD0181051061D10909HCORECUTCORE0.015813.157.075.471.94MTKD0181061071D10909HCORECUTCORE0.028613.37.084.670.99MTKD0181071081D10909HCORECUTCORE0.21911.25.953.760.55MTKD0181091001D10969HCORECUTCORE0.2619.475.252.860.42MTKD018109110D10969HCORECUTCORE0.6410.95.952.980.54MTKD018110111D10969HCORECUTCORE0.6410.95.952.980.54MTKD018111112D10969HCORECUTCORE0.6312.97.133.310.31MTKD018113114D10969HCORECUTCORE0.528.574.652.850.74MTKD018113114D10969HCORECUTCORE0.528.574.652.850.74MTKD018113114D10969HCORECUTCORE0.528.574.652.850.74MTKD018113116D10970HCORE </td <td></td>													
MTKD0181041051D109690HCORECUTCORE0.013412.656.683.960.25AccessMTKD0181051061D109691HCORECUTCORE0.015813.157.075.471.94MTKD0181061071D109692HCORECUTCORE0.028613.37.084.670.99MTKD0181071081D109693HCORECUTCORE0.21911.25.953.760.55MTKD01810910D109694HCORECUTCORE0.7729.425.122.860.42MTKD018109110D109695HCORECUTCORE0.64410.95.952.980.54MTKD018110111D109696HCORECUTCORE0.63410.95.952.980.54MTKD018111112D109697HCORECUTCORE0.6410.95.952.980.54MTKD018111112D109699HCORECUTCORE0.6210.355.682.730.39MTKD01811311411D109699HCORECUTCORE0.5228.574.652.850.74MTKD018113116D109701HCORECUTCORE0.5278.574.652.850.74MTKD018114115D109701HCORECUTCORE0.53710.35.662.530.2MTKD01811511		103	104	1	D109689	HCORE	CUTCORE	0.0147	13.45	7.38	4.2	0.44	
MTKD018 106 107 1 D109692 HCORE CUTCORE 0.0286 13.3 7.08 4.67 0.99 Accession MTKD018 107 108 1 D109693 HCORE CUTCORE 0.219 11.2 5.95 3.76 0.55 0.055 MTKD018 108 109 1 D109694 HCORE CUTCORE 0.0772 9.42 5.12 2.86 0.42 MTKD018 109 110 1 D109694 HCORE CUTCORE 0.61 9.47 5.25 2.86 0.42 MTKD018 109 111 1 D109696 HCORE CUTCORE 0.64 10.9 5.95 2.98 0.54 MTKD018 111 112 D109697 HCORE CUTCORE 0.634 10.9 5.68 2.73 0.39 MTKD018 111 112 D109699 HCORE CUTCORE 0.522 8.57 4.65 2.85 0.74	MTKD018	104	105	1	D109690	HCORE	CUTCORE	0.0134	12.65	6.86	3.96	0.25	
MTKD0181071081D109693HCORECUTCORE0.21911.25.953.760.55AccessMTKD0181081091D109694HCORECUTCORE0.07729.425.122.860.42MTKD0181091101D109695HCORECUTCORE0.2619.475.252.860.59MTKD0181101111D109696HCORECUTCORE0.36410.95.952.980.54MTKD0181111121D109697HCORECUTCORE0.16312.97.133.310.31MTKD0181121131D109699HCORECUTCORE0.5228.574.652.850.74MTKD0181131141D109701HCORECUTCORE0.1659.465.212.720.37MTKD018115116D109702HCORECUTCORE0.35710.35.662.530.2MTKD018116117D109703HCORECUTCORE0.098710.95.912.940.26		105	106			HCORE		0.0158			5.47	1.94	
MTKD018 108 109 1 D109694 HCORE CUTCORE 0.0772 9.42 5.12 2.86 0.42 MTKD018 109 110 1 D109695 HCORE CUTCORE 0.261 9.47 5.25 2.86 0.59 MTKD018 110 111 1 D109696 HCORE CUTCORE 0.364 10.9 5.95 2.98 0.54 MTKD018 111 112 1 D109696 HCORE CUTCORE 0.364 10.9 5.95 2.98 0.54 MTKD018 111 112 1 D109697 HCORE CUTCORE 0.163 12.9 7.13 3.31 0.31 MTKD018 112 113 D109699 HCORE CUTCORE 0.522 8.57 4.65 2.85 0.74 MTKD018 113 114 D109701 HCORE CUTCORE 0.165 9.46 5.21 2.72 0.37 MTKD018 116	MTKD018	106	107	1	D109692	HCORE	CUTCORE	0.0286	13.3	7.08	4.67	0.99	
MTKD018 109 110 1 D109695 HCORE CUTCORE 0.261 9.47 5.25 2.86 0.59 Accession MTKD018 110 111 1 D109696 HCORE CUTCORE 0.364 10.9 5.95 2.98 0.54 MTKD018 111 112 1 D109697 HCORE CUTCORE 0.163 12.9 7.13 3.31 0.31 MTKD018 112 113 1 D109697 HCORE CUTCORE 0.163 12.9 7.13 3.31 0.31 MTKD018 112 113 1 D109699 HCORE CUTCORE 0.52 8.57 4.65 2.85 0.74 MTKD018 113 114 1 D109701 HCORE CUTCORE 0.522 8.57 4.65 2.85 0.74 MTKD018 114 115 D109701 HCORE CUTCORE 0.357 10.3 5.66 2.53 0.2	MTKD018	107	108	1	D109693	HCORE	CUTCORE	0.219	11.2	5.95	3.76	0.55	
MTKD018 110 111 1 D109696 HCORE CUTCORE 0.364 10.9 5.95 2.98 0.54 MTKD018 111 112 1 D109697 HCORE CUTCORE 0.163 12.9 7.13 3.31 0.31 MTKD018 112 113 1 D109697 HCORE CUTCORE 0.163 12.9 7.13 3.31 0.31 MTKD018 112 113 1 D109699 HCORE CUTCORE 0.25 10.35 5.68 2.73 0.39 MTKD018 113 114 1 D109699 HCORE CUTCORE 0.522 8.57 4.65 2.85 0.74 MTKD018 114 115 D109701 HCORE CUTCORE 0.165 9.46 5.21 2.72 0.37 MTKD018 115 116 D109702 HCORE CUTCORE 0.0357 10.3 5.66 2.53 0.2 MTKD018 116	MTKD018	108	109	1	D109694	HCORE	CUTCORE	0.0772	9.42	5.12	2.86	0.42	
MTKD018 110 111 1 D109696 HCORE CUTCORE 0.364 10.9 5.95 2.98 0.54 MTKD018 111 112 1 D109697 HCORE CUTCORE 0.163 12.9 7.13 3.31 0.31 MTKD018 112 113 1 D109697 HCORE CUTCORE 0.163 12.9 7.13 3.31 0.31 MTKD018 112 113 1 D109699 HCORE CUTCORE 0.25 10.35 5.68 2.73 0.39 MTKD018 113 114 1 D109699 HCORE CUTCORE 0.522 8.57 4.65 2.85 0.74 MTKD018 114 115 D109701 HCORE CUTCORE 0.165 9.46 5.21 2.72 0.37 MTKD018 115 116 D109702 HCORE CUTCORE 0.0357 10.3 5.66 2.53 0.2 MTKD018 116	MTKD018	109	110	1	D109695	HCORE	CUTCORE	0.261	9.47	5.25	2.86	0.59	
MTKD018 111 112 1 D109697 HCORE CUTCORE 0.163 12.9 7.13 3.31 0.31 0.31 MTKD018 112 113 1 D109698 HCORE CUTCORE 0.25 10.35 5.68 2.73 0.39 MTKD018 113 114 1 D109699 HCORE CUTCORE 0.522 8.57 4.65 2.85 0.74 MTKD018 114 115 D109701 HCORE CUTCORE 0.522 8.57 4.65 2.85 0.74 MTKD018 114 115 D109701 HCORE CUTCORE 0.165 9.46 5.21 2.72 0.37 MTKD018 115 116 D109702 HCORE CUTCORE 0.0357 10.3 5.66 2.53 0.2 MTKD018 116 117 D109703 HCORE CUTCORE 0.0987 10.9 5.91 2.94 0.26			111						10.9				
MTKD018 112 113 1 D109698 HCORE CUTCORE 0.25 10.35 5.68 2.73 0.39 Additional state MTKD018 113 114 1 D109699 HCORE CUTCORE 0.522 8.57 4.65 2.85 0.74 Additional state MTKD018 114 115 1 D109701 HCORE CUTCORE 0.165 9.46 5.21 2.72 0.37 Additional state Additional state <td></td>													
MTKD018 113 114 1 D109699 HCORE CUTCORE 0.522 8.57 4.65 2.85 0.74 MTKD018 114 115 1 D109701 HCORE CUTCORE 0.165 9.46 5.21 2.72 0.37 MTKD018 115 116 D109702 HCORE CUTCORE 0.357 10.3 5.66 2.53 0.2 MTKD018 116 117 1 D109703 HCORE CUTCORE 0.0987 10.9 5.91 2.94 0.26													
MTKD018 114 115 1 D109701 HCORE CUTCORE 0.1165 9.46 5.21 2.72 0.37 MTKD018 115 116 1 D109702 HCORE CUTCORE 0.357 10.3 5.66 2.53 0.2 MTKD018 116 117 1 D109703 HCORE CUTCORE 0.0987 10.9 5.91 2.94 0.26													
MTKD018 115 116 1 D109702 HCORE CUTCORE 0.0357 10.3 5.66 2.53 0.2 MTKD018 116 117 1 D109703 HCORE CUTCORE 0.0987 10.9 5.91 2.94 0.26													
MTKD018 116 117 1 D109703 HCORE CUTCORE 0.0987 10.9 5.91 2.94 0.26													
	MTKD018	117	117.9			HCORE	CUTCORE	0.1645	12.15	6.44	4.42	1.11	

AUSTRAL RESOURCES

	From	T = ()	Interval	Completion	Sample	Sample		ME	-ICP61 (+ Cu-C	DG62)		Significant Intercept (Cut-
Hole ID	(m)	To (m)	(m)	Sample ID	Туре	Method	Cu%	Ca%	Mg%	Fe%	S%	Off 0.3% Cu)
MTKD018	117.9	119	1.1	D109705	HCORE	CUTCORE	0.0757	3.89	2.21	2.38	0.77	
MTKD018	119	120	1	D109706	HCORE	CUTCORE	0.0114	1.93	1.45	1.94	0.42	
MTKD018	120	121	1	D109707	HCORE	CUTCORE	0.0406	2.46	1.67	2.33	0.57	
MTKD018	121	122	1	D109708	HCORE	CUTCORE	0.0652	1.54	1.18	1.74	0.67	
MTKD018	122	123	1	D109709	HCORE	CUTCORE	0.0561	2.71	1.69	2.41	0.96	
MTKD018	123	123.5	0.5	D109710	HCORE	CUTCORE	0.0376	2.01	1.46	1.86	0.51	
MTKD018	123.5	124.3	0.8	D109711	HCORE	CUTCORE	0.0357	1.46	1.39	1.82	0.49	
MTKD018	124.3	125	0.7	D109712	HCORE	CUTCORE	0.529	13.55	7.31	5.22	1.54	
MTKD018	125	126	1	D109713	QCORE	CUTCORE	0.758	16.4	8.89	4.78	1.27	
MTKD018	126	127	1	D109715	HCORE	CUTCORE	0.686	15.25	8.22	4.98	1.84	
MTKD018	127	128	1	D109716	HCORE	CUTCORE	0.8	10.5	5.57	4.72	2.33	8.7m @ 1.07% Cu from
MTKD018	128	129.1	1.1	D109717	HCORE	CUTCORE	2.99	14.45	7.65	7.16	4.61	124.3m
MTKD018	129.1	130	0.9	D109718	HCORE	CUTCORE	0.922	11.35	6.01	4.52	1.74	124.500
MTKD018	130	131	1	D109719	HCORE	CUTCORE	0.486	11.6	6.19	4.96	2.17	
MTKD018	131	132	1	D109720	HCORE	CUTCORE	1.6	14.4	7.5	6.54	3.69	
MTKD018	132	133	1	D109721	HCORE	CUTCORE	0.471	11.7	6.1	4.13	1.24	
MTKD018	133	134	1	D109722	HCORE	CUTCORE	0.0238	1.34	1.37	2.12	0.14	
MTKD018	134	135	1	D109723	HCORE	CUTCORE	0.0141	0.61	0.97	1.57	0.1	
MTKD018	147	148	1	D109724	HCORE	CUTCORE	0.0921	3.76	2.26	3.43	1.03	
MTKD018	148	149	1	D109725	HCORE	CUTCORE	0.1725	1.87	1.52	3.1	1.22	
MTKD018	149	150	1	D109727	HCORE	CUTCORE	0.214	1.76	1.42	3.45	2.22	
MTKD018	150	151	1	D109728	HCORE	CUTCORE	0.0233	1.17	1.32	2.15	0.42	
MTKD018	151	152	1	D109729	HCORE	CUTCORE	0.375	4.16	2.66	3.94	1.44	
MTKD018	152	153	1	D109730	HCORE	CUTCORE	0.145	2.56	1.75	2.93	1.25	
MTKD018	153	154	1	D109731	HCORE	CUTCORE	0.127	3.06	1.97	3.19	1.09	
MTKD018	154	155	1	D109732	HCORE	CUTCORE	0.19	3.24	2.03	3.26	1.42	
MTKD018	155	156	1	D109733	HCORE	CUTCORE	0.303	2.58	1.83	3.03	1.22	
MTKD018	156	157	1	D109734	HCORE	CUTCORE	0.128	2.76	1.94	3.29	1.14	
MTKD018	157	158	1	D109735	HCORE	CUTCORE	0.0291	1.64	1.46	2.54	0.87	
MTKD019	57	58	1	D109736	HCORE	CUTCORE	0.0213	0.07	0.67	1.41	0.01	
MTKD019	58	59	1	D109737	HCORE	CUTCORE	0.0271	0.09	0.71	1.32	0.01	
MTKD019	59	60	1	D109738	HCORE	CUTCORE	0.0271	0.1	0.74	1.22	0.01	
MTKD019	60	61	1	D109739	HCORE	CUTCORE	0.0398	0.1	0.76	1.28	0.01	
MTKD019	61	62	1	D109740	HCORE	CUTCORE	0.0552	0.13	0.7	2.04	0.01	
MTKD019	62	63		D109741	HCORE	CUTCORE	0.1015	3.62	0.68	4.03	0.02	
MTKD019	63	64		D109742	HCORE	CUTCORE	0.0771	5.74	0.51	9.74	0.01	
MTKD019	64	65		D109743	HCORE	CUTCORE	0.0164	0.38	0.69	1.17	0.01	
MTKD019	65	66	1	D109744	HCORE	CUTCORE	0.0157	0.09	0.71	1.07	0.01	
MTKD019	66	67		D109745	HCORE	CUTCORE	0.0229	0.08	0.76	1.35	0.01	
MTKD019	67	68		D109746	HCORE	CUTCORE	0.0289	0.07	0.73	1.64	0.02	
MTKD019	68	69		D109747	HCORE	CUTCORE	0.0213	0.03	0.7	1.33	0.03	
MTKD019	100	101		D109748	HCORE	CUTCORE	0.0119	0.12	1.21	2.54	0.24	
MTKD019	101	102		D109749	HCORE	CUTCORE	0.024	0.14	1.43	2.92	0.3	
MTKD019	102	103		D109750	HCORE	CUTCORE	0.0171	0.39	1.35	2.36	0.33	
MTKD019	103	104		D109751	HCORE	CUTCORE	0.0524	0.25	1.2	2.23	0.65	
MTKD019	104	105		D109752	HCORE	CUTCORE	0.0043	0.55	1.37	2.46	0.35	
MTKD019	105	106		D109753	HCORE	CUTCORE	0.0034	0.16	1.27	3.24	0.45	
MTKD019	106	107	1	D109754	HCORE	CUTCORE	0.0032	0.11	1.04	2.31	0.42	

MTKD019 108 109 1 D109756 HCORE CUTCORE 0.0299 0.11 0.96 2.54 0 MTKD019 109 110 1 D109757 HCORE CUTCORE 0.0042 0.11 1.12 2.94 0 MTKD019 110 111 1 D109758 HCORE CUTCORE 0.0037 0.11 1.06 2.72 0 MTKD019 111 112 D109759 HCORE CUTCORE 0.0162 0.14 2.02 5.19 0 MTKD019 112 113 1 D109760 HCORE CUTCORE 0.0026 0.11 0.95 2.38 0	Off 0.3% Cu) .32 .68 .62 .64 .51
MTKD019 108 109 1 D109756 HCORE CUTCORE 0.0299 0.11 0.96 2.54 0 MTKD019 109 110 1 D109757 HCORE CUTCORE 0.0042 0.11 1.12 2.94 0 MTKD019 110 111 1 D109757 HCORE CUTCORE 0.0037 0.11 1.12 2.94 0 MTKD019 110 111 1 D109758 HCORE CUTCORE 0.0037 0.11 1.06 2.72 0 MTKD019 111 112 D109759 HCORE CUTCORE 0.0162 0.14 2.02 5.19 0 MTKD019 112 113 1 D109760 HCORE CUTCORE 0.0026 0.11 0.95 2.38 0	.68 .62 .64 .51
MTKD019 109 110 1 D109757 HCORE CUTCORE 0.0042 0.11 1.12 2.94 0 MTKD019 110 111 1 D109758 HCORE CUTCORE 0.0037 0.11 1.06 2.72 0 MTKD019 111 112 1 D109759 HCORE CUTCORE 0.0162 0.14 2.02 5.19 0 MTKD019 112 113 1 D109760 HCORE CUTCORE 0.0026 0.11 0.95 2.38 0	0.62 0.64 0.51
MTKD019 110 111 1 D109758 HCORE CUTCORE 0.0037 0.11 1.06 2.72 0 MTKD019 111 112 1 D109759 HCORE CUTCORE 0.0162 0.14 2.02 5.19 0 MTKD019 112 113 1 D109760 HCORE CUTCORE 0.0026 0.11 0.95 2.38 0	.64 .51
MTKD019 111 112 1 D109759 HCORE CUTCORE 0.0162 0.14 2.02 5.19 0 MTKD019 112 113 1 D109760 HCORE CUTCORE 0.0026 0.11 0.95 2.38 0	.51
MTKD019 112 113 1 D109760 HCORE CUTCORE 0.0026 0.11 0.95 2.38 0	
	.49
MTKD019 113 114 1 D109761 HCORE CUTCORE 0.0087 0.1 1.02 2.69 0	.79
MTKD019 114 115 1 D109762 HCORE CUTCORE 0.0072 0.11 1.1 3.13	0.6
MTKD019 121 122 1 D109763 HCORE CUTCORE 0.0147 0.39 0.92 2.33	.67
MTKD019 122 123 1 D109764 HCORE CUTCORE 0.0612 0.46 1.08 2.29 0	.47
MTKD019 123 124 1 D109765 HCORE CUTCORE 0.0286 0.55 1.06 2.34	.36
MTKD019 124 125 1 D109766 HCORE CUTCORE 0.12 2.07 1.52 2.5	.97
MTKD019 125 126 1 D109768 HCORE CUTCORE 0.0373 1.65 1.26 1.66	0.2
MTKD019 126 127 1 D109769 HCORE CUTCORE 0.0109 0.57 0.9 1.56 0	.23
MTKD019 127 128 1 D109770 HCORE CUTCORE 0.0083 0.22 0.82 1.96	0.3
MTKD019 128 129 1 D109771 HCORE CUTCORE 0.0052 0.84 1.17 1.71	.21
MTKD019 129 130 1 D109772 HCORE CUTCORE 0.0139 0.3 0.81 1.41	.28
MTKD019 130 131 1 D109773 HCORE CUTCORE 0.0057 0.27 0.73 1.16	.11
MTKD019 131 132 1 D109774 HCORE CUTCORE 0.0907 0.82 1.07 2.38	0.5
MTKD019 132 133 1 D109775 HCORE CUTCORE 1.295 3.92 2.48 7.64	.85
MTKD019 133 134 1 D109776 HCORE CUTCORE 0.536 15.85 8.28 9.27	.33
	.83
	.32
MTKD019 138 139 1 D109781 HCORE CUTCORE 0.227 1.67 1.36 3.92	39
MTKD019 139 140 1 D109782 HCORE CUTCORE 1.085 6.98 3.96 6.72	.79
MTKD019 140 141 1 D109783 HCORE CUTCORE 0.819 10.4 5.73 7.05	3.7
MTKD019 141 142 1 D109784 HCORE CUTCORE 0.856 8.07 4.26 5.44	2.7
MTKD019 142 143 1 D109785 HCORE CUTCORE 0.613 11.7 6.36 5.7	.82
MTKD019 143 144 1 D109786 HCORE CUTCORE 0.32 13.75 7.45 6.77	52
	11
	96
	38m @ 2.36% Cu from
MTKD019 147 148 1 D109790 HCORE CUTCORE 0.373 15.7 8.34 6.52	131m
	.45
	.65
MTKD019 150 151 1 D109794 HCORE CUTCORE 2.43 10.9 5.98 10.25	7.7
	.06
	.63
MTKD019 153 154 1 D109797 HCORE CUTCORE 14.5 4.43 2.4 18.8	10
MTKD019 154 155 1 D109798 HCORE CUTCORE 2.8 7.71 4.25 7.94	5.7
	.29
MTKD019 156 157 1 D109800 HCORE CUTCORE 10.95 3.68 1.94 18.2	10
MTKD019 157 158 1 D109801 HCORE CUTCORE 6.25 8.4 4.49 13.25	10
	.58
MTKD019 159 160 1 D109803 HCORE CUTCORE 8.03 4.43 2.63 15.75	10
MTKD019 160 161 1 D109804 HCORE CUTCORE 8.29 7.22 3.89 15.7	10

Hole ID	From	To (m)	Interval	Sample ID	Sample	Sample		ME	E-ICP61 (+ Cu-C	DG62)		Significant Intercept (Cut-
Hole ID	(m)	10 (m)	(m)	Sample ID	Туре	Method	Cu%	Ca%	Mg%	Fe%	S%	Off 0.3% Cu)
MTKD019	161	162	1	D109805	HCORE	CUTCORE	5.6	4.27	2.82	11.55	10	
MTKD019	162	163	1	D109806	HCORE	CUTCORE	1.795	12.8	7.18	8.14	5.04	
MTKD019	163	164	1	D109807	HCORE	CUTCORE	2.49	9.7	5.54	9.4	7.66	
MTKD019	164	165	1	D109808	HCORE	CUTCORE	0.725	9.61	5.09	7.1	4.22	
MTKD019	165	166	1	D109809	HCORE	CUTCORE	4.44	9.07	4.85	13.55	10	38m @ 2.36% Cu from
MTKD019	166	167	1	D109810	HCORE	CUTCORE	0.594	4.23	2.95	5.82	4.34	131m
MTKD019	167	168	1	D109811	HCORE	CUTCORE	1.8	8.14	4.37	7.82	5.4	
MTKD019	168	169	1	D109812	HCORE	CUTCORE	0.642	7.55	4.26	6.93	4.45	
MTKD019	169	170	1	D109813	HCORE	CUTCORE	0.573	7.26	4.03	6.76	4.48	
MTKD019	170	171	1	D109814	HCORE	CUTCORE	0.675	6.93	3.89	6.72	3.99	
MTKD019	171	172	1	D109815	HCORE	CUTCORE	0.226	7.29	4.19	6.51	3.17	
MTKD019	172	173	1	D109816	HCORE	CUTCORE	0.113	8.99	5.9	8.77	0.82	
MTKD019	173	174	1	D109817	HCORE	CUTCORE	0.1135	7.83	4.88	7.89	0.78	
MTKD019	174	175	1	D109818	HCORE	CUTCORE	0.0199	9.66	5.16	5.91	0.38	
MTKD019	175	176	1	D109820	HCORE	CUTCORE	0.0109	9.88	5.14	5.75	0.31	
MTKD019	176	177	1	D109821	HCORE	CUTCORE	0.0175	10.3	5.28	6.09	0.5	
MTKD019	177	178	1	D109822	HCORE	CUTCORE	0.0124	7.63	4.38	4.97	0.65	
MTKD019	178	179	1	D109823	HCORE	CUTCORE	0.0224	10.3	5.46	4.94	0.43	
MTKD019	179	180	1	D109824	HCORE	CUTCORE	0.0432	8.32	4.42	3.13	0.47	
MTKD019	180	181	1	D109825	HCORE	CUTCORE	0.0171	8.67	4.55	3.31	0.52	
MTKD019	194	195	1	D109826	HCORE	CUTCORE	0.0127	3.45	2.45	3.18	1.79	
MTKD019	195	196	1	D109827	HCORE	CUTCORE	0.0054	2.7	2	2.27	1.22	
MTKD019	196	197	1	D109828	HCORE	CUTCORE	0.0098	4.97	2.97	2.71	1.04	
MTKD019	197	198	1	D109829	HCORE	CUTCORE	0.1305	3.89	3.06	3.8	1.7	
MTKD019	198	199	1	D109830	HCORE	CUTCORE	0.304	4.98	2.86	3.67	1.92	
MTKD019	199	200	1	D109831	HCORE	CUTCORE	0.364	11.75	6.55	5.71	1.76	
MTKD019	200	201	1	D109833	HCORE	CUTCORE	0.1075	5.42	3.04	3.16	1.09	
MTKD019	201	202	1	D109834	HCORE	CUTCORE	0.1465	2.62	1.6	2.87	1.64	
MTKD019	202	203	1	D109835	HCORE	CUTCORE	0.307	7.66	4.29	6.15	3.9	
MTKD019	203	204	1	D109836	HCORE	CUTCORE	0.0344	7.12	3.47	2.86	0.91	
MTKD019	204	205	1	D109837	HCORE	CUTCORE	0.0309	1.76	1.08	1.87	0.89	
MTKD019	205	206	1	D109838	HCORE	CUTCORE	0.0814	0.78	0.66	1.42	0.67	

AUSTRAL RESOURCES

ASX ANNOUNCEMENT

Appendix 3. JORC Code Table 1

Section 1: Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling (e.g. cut channels,	RC drilling was sampled on 1 m intervals using a spear to collect 2 to 3 kg
techniques	random chips, or specific specialised industry	samples.
	standard measurement tools appropriate to the	
	minerals under investigation, such as downhole	The splitter was cleaned at the end of each rod, the cyclone was cleaned
	gamma sondes, or handheld XRF instruments, etc).	at the start of each hole.
	These examples should not be taken as limiting the	
	broad meaning of sampling.	Diamond drill core was cut and sampled as half core in 1 m lengths, with
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems	any variations in length (0.8-1.3m) based on representativity of mineralization domains and/or lithological boundaries being sampled.
	used.	Areas of core loss were recorded and omitted.
	Aspects of the determination of mineralisation that	
	are Material to the Public Report.	Duplicates were obtained every 75 samples to monitor for sample
	In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse	representivity and assay reproducibility.
	circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g	All samples were afforded unique sample numbers, preprinted on sample calico bags.
	charge for fire assay'). In other cases, more	Complex were cent to ALC leb for comple properties and applying. The
	explanation may be required, such as where there is coarse gold that has inherent sampling problems.	Samples were sent to ALS lab for sample preparation and analysis. The laboratory conforms to Australian Standards ISO 9001 and ISO 17025.
	Unusual commodities or mineralisation types (eg	aboratory comornis to Australian Standards 150 9001 and 150 17025.
	submarine nodules) may warrant disclosure of	
	detailed information.	
Drilling	Drill type (e.g. core, reverse circulation, open-hole	Reverse circulation and percussion methods were used to test near
techniques	hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	surface oxide mineralisation while diamond drilling (PQ and HQ2) was used for evaluating deeper sulphide mineralisation. All holes were surveys at 30m intervals using a Reflex Gyro, and drillcore orientated along the bottom of core. RC drilling used standard face sampling hammers, high pressure compressor and a riffle splitter. Diamond drilling was PQ & HQ2 size using standard/triple tubing. Drill holes considered unreliable such as water bore, percussion holes, RAB holes, were excluded from the resource estimates quoted.
Drill sample	Method of recording and assessing core and chip	For RC samples the weight of the recovered sample was recorded as high,
recovery	sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	medium or low or as a number from 1 to 5. The drillhole database indicates that 35% of the samples have a high sample recovery weight and 51% with medium sample recovery weights. For diamond drilling, the historical sample recovery averages 95%. RC and diamond sampling methods are appropriate for the style of mineralisation. Current AR1 drilling procedures include adequate measures to control sample contamination and minimise sample loss.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Geological logging entered into MS Excel tables with drop-down menus for data entry, with internal validation checks. Excel tables capturing the data include lithology, oxidation, grain size, colour, rock texture, dominant copper minerals, fracture angle and bedding/ structure angle (DD). Data undergoes secondary validation when entering the database

Criteria	JORC Code explanation	Commentary
	The total length and percentage of the relevant intersections logged.	(DataShed5). All chips and diamond core are geologically logged and photographed.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	Diamond core is cut longitudinally with half core taken for sampling. The RC drilling has an attached cyclone and cone splitter from which 2 to 3 kg samples were collected. Field duplicates were collected for the RC samples from the master sample bag using a spear. Duplicates for diamond core samples are achieved by using quarter core and also taken from the crushed rejects at ALS laboratory to ensure both sample representivity and reproducibility are being assessed equally. Field duplicates varied by approximately 10-16% at intermediate Cu grades (0.7%) which is within the expected range of low-volume (quarter core) samples given the style of vein/ breccia mineralization encountered.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	All laboratory assays are achived via 4-acid digest finished with ICP-MS (ME-ICP61 + Cu-OG62, for ore-grade results). Standards and blanks were inserted at a rate of 1 in 25 and a minimum of 2 standards per batch. Standard Certified Reference Materials (CRMs) used were OREAS901, OREAS902, OREAS903, OREAS904, OREAS 908 and OREAS163. All CRMs returned for the batches outlined in the release were within 3SD of certified results and the longterm average with 1SD for Cu. Standards were picked to match the expected grade of the mineralised interval. Blanks were inserted immediately after the standard. Field duplicates were inserted with the blanks and standards. Prior to 2008 there was minimal QAQC, but some check sampling and production reconciliation indicated no material problems with assaying. Available QAQC data was assessed and there were no significant sampling and assaying issues noted. Laboratory duplicates of sample pulps returned results that were showed <2% difference in high-grade Cu (+2% Cu), <3% difference in medium-grade Cu (+1% Cu) and <5% difference in low-grade Cu (<1% Cu). The frequency of standards, blanks and duplicates is considered adequate.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Significant intercepts returned from the lab are validated by site geologists using both logged data and core photography. Reported drilling is exploratory in nature. There were no twin holes as part of the reported drilling. The AR1 drill hole database (including results for Flying Horse) is maintained using DataShed5 as a host, with sampling data maintained digitally (on database) and in hard copy format onsite. A designated database administrator maintains the database and is tasked with adding data and making any corrections to the database. Negative assay values indicate half detection limit (typically 0.005). Unsampled intervals within the mineralised envelope were assigned a value of 0.001% Cu.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Across AR1 (including LC) the majority of the drill hole locations are reported to be by differential GPS which provides sub-metre accuracy for regional GDA94 coordinates. All drilling and datapoints are presented UTM GDA94 MGA Zone 54.

Criteria	JORC Code explanation	Commentary
	Specification of the grid system used. Quality and adequacy of topographic control.	Down hole surveys were collected using a range of methods with the majority of the historical drill holes surveyed using a single-shot or multi- shot camera on approximately 30 m intervals. Since mineralization is not associated with any magnetic minerals, this is deemed effective. Recent drilling conducted by AR1 and reported here is surveyed using modern downhole gyro techniques. Only the diamond drill holes (MTKD019 & MTKD018) and two RC holes (MTKC0657 & MTKC0649) were drilled at an angle (i.e. not vertical). Topography is provided by a detailed drone survey by Austral, which is continuously updated with sub metre accuracy. The current topography surfaces have been updated to the end of January 2021.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Due to the steep terrane within and near the open pit, drillhole orientation and spacing is dependent on drill rig accessibility/ safety. Drilling is exploratory in nature and as such Histotorical drill hole data was composited to 3 m intervals by mineralisation domain for the Flying Horse/ Mt Clarke resource model shown in this report. The drill spacing is sufficient to capture the salient geological features controlling the mineralisation and is sufficient, in places, to define Measured and Indicated Mineral Resources.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The drilling orientations presented in this release are provided in the collar table of Appendix 1; copper mineralisation is orientated at variable geometry depending on where in the near-pit environment the drilling took place. For example, in the 'Saddle Lens' area, mineralization is vertical to sub vertical in nature. Cu oxide results are flat to very gently dipping (<20°). Measurements of orientated drillcore were taken of relevant geological features (veins, fault planes, bedding) where possible. Due to the steep terrane within and near the open pit, drillhole orientation and spacing is dependent on drill rig accessibility/ safety. Subsequently, diamond drilling intersected mineralization at an acute angle. True width calculations are provided in this report where this is believed to have occurred.
Sample security	The measures taken to ensure sample security.	Sample numbers are recorded on the sample sheet and the data is later entered into the corresponding drill log. Once the hole/log is complete the file is sent to the database manager and checked by a geologist. Samples are placed in numbered samples dispatch bins, prior to being sent to the laboratory. The sample number, bin and date-time are recorded in the sample dispatch sheet which is signed by the operating field technician. Each sample bin or approximately every 100 samples are allocated a batch number and a separate laboratory submission sheet. Samples were dispatched by truck (weekly) to the ALS Mount Isa Laboratory where the samples undergo sample preparation (pulverizing) before being onforwarded to the ALS Townsville laboratory for analysis. The assay results were sent from the Laboratory directly to the database Assay results and certification were then sent from the laboratory directly to the manager and geologist by email.

AUSTRAL RESOURCES

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 FinOre Mining Consultants undertook an audit of the drill hole QAQC including an audit of the laboratory in 2005 for the CopperCo Lady Annie Project Feasibility Study, which included the Flying Horse/ Mt Kelly/ Mt Clarke resource models shown here. In 2007 and 2008 Maxwell GeoServices assessed the CopperCo QAQC data. Snowden in 2010 assessed the QAQC data collected since 2008. Golder completed a high-level database review in 2012, including undertaking a small number of checks of the hard-copy data with the digital data and rudimentary checks of the drill hole database. The most recent review was undertaken by CSA in 2022 as part of a Pit Optimisation study which included the Lady Colleen Resource. No major issues with the sampling and assaying were identified by the reviews. The RC and diamond drilling data are appropriate for Mineral Resource estimations used here. Drilling data presented here is exploratory in nature and has not yet been incorporated into a resource model.

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The drilling reported here took place on what is referred to as the "Mt Kelly Mining Leases", which is a collection of contiguous ML's which remain in good standing. These ML's are: ML5476, ML90168, ML90169, ML90170, 5435, ML5446, ML5447, ML5448 and ML5478. Austral Resources Lady Annie Pty Ltd holds 15 Mining Leases (ML) and 12 Exploration Permit for Minerals (EPM) and 1 Exploration Permit for Minerals Application (EPMA) around the Lady Annie Copper Project. Mineral Resources, Ore Reserves and all mining and processing infrastructure are located on ML's. 12 EPM's and 1 ML form part of the a JV agreement with Glencore, but do not affect the Flying Horse Project. A further 18 EPM's are held by Austral Resources Exploration Pty Ltd, a 100% subsidiary of Austral Resources.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Buka Minerals Limited (Buka) purchased the Lady Annie and Lady Loretta deposits in 1996 and commissioned a pre-feasibility study into the development of a standalone cathode copper operation at Lady Annie. In June 2004, Avon Resources was renamed to CopperCo Limited (CopperCo) and acquired 100% of the Lady Annie Project from Buka. The Lady Annie Project was developed by CopperCo and mining commenced at Mount Clarke with pre-stripping in April 2007 and at Lady Annie in October 2008. The Mount Kelly process plant was commissioned in October 2007. Exploration primarily utilised RC and diamond drilling to test the Lady Annie, Mt Kelly and Anthill areas. Drilling at Lady Annie and Mt Kelly was conducted from 1964 to present-day with the majority of the drilling completed in 2004 using predominantly modern reverse circulation (61% of drilling) and diamond drilling (11% of drilling) methods. The rest of the drilling is predominately rotary air blast (RAB 12% of drilling) and unspecified drilling methods (10%).
Geology	Deposit type, geological setting and style of mineralisation.	The Mount Kelly mining area, where drilling reported here took place, is dominated by early to mid-Proterozoic siltstones and dolomitic siltstones of the McNamara Group, with exposures of older 'basement' lithologies of the Surprise Creek Formation, Torpedo Creek Formation and mafic to intermediate volcanics inferred to be temporally equivalent to the Fiery Creek Volcanics. Copper mineralisation occurs within units of the McNamara Group and is reportedly related to the north-west-trending Mount Kelly and Spinifex Faults, which intersect and cut the McNamara Fault. The known mineralisation is associated with multiple phases of brecciation and veining along the fault zones. The copper sulphide mineralisation appears to be shear and fault controlled, however is only hosted within the McNamara Group (not in basement sequences) and especially in carbonaceous sequences indicating chemical reduction as a major control.

Criteria	JORC Code explanation	Commentary
Drillhole	A summary of all information material to the	Drillhole information is considered to be of a good standard.
information	understanding of the exploration results	
	including a tabulation of the following	
	information for all Material drillholes:	
	easting and northing of the drillhole collar	
	elevation or RL (Reduced Level – elevation above	
	sea level in metres) of the drillhole collar	
	dip and azimuth of the hole	
	down hole length and interception depth	
	hole length.	
	If the exclusion of this information is justified on	
	the basis that the information is not Material	
	and this exclusion does not detract from the	
	understanding of the report, the Competent	
	Person should clearly explain why this is the	
	case.	
Data	In reporting Exploration Results, weighting	Data aggregation methods, where utilized, are listed in association with the
aggregation	averaging techniques, maximum and/or	data (i.e. Table 1). Reported intervals and intersections are reported using
methods	minimum grade truncations (e.g. cutting of high	weighted average array calculations. "Significant Intercepts" are calculated
	grades) and cut-off grades are usually Material	using a 0.3% Cu cut-off, 2m internal dilution, no external dilution, no minimum
	and should be stated.	interval and a significance threshold of >0.7% Cu for Sulphide, >0.3% Cu for
	Where aggregate intercepts incorporate short	Oxide/ Transitional.
	lengths of high grade results and longer lengths	
	of low grade results, the procedure used for such	
	aggregation should be stated and some typical	
	examples of such aggregations should be shown	
	in detail.	
	The assumptions used for any reporting of metal	
	equivalent values should be clearly stated.	
Relationship	These relationships are particularly important in	Drill intersections are reported as downhole intersections and may not reflect
between	the reporting of Exploration Results.	true widths. Where geological information is known (i.e. structural
mineralisation	If the geometry of the mineralisation with	measurements in drillcore), calculated true widths are provided for
widths and	respect to the drillhole angle is known, its nature	transparency.
intercept	should be reported. If it is not known and only the down hole lengths	
lengths	are reported, there should be a clear statement	
	to this effect (e.g. 'downhole length, true width not known').	
Diagrams		All diagrams contained in this document are generated from spatial data
Diagranis	tabulations of intercepts should be included for	displayed in industry standard mining and GIS packages.
	any significant discovery being reported These	displayed in industry standard mining and GIS packages.
	should include, but not be limited to a plan view	
	of drill hole collar locations and appropriate	
	sectional views.	
Balanced	Where comprehensive reporting of all	Balanced reporting principles are being applied.
reporting	Exploration Results is not practicable,	
- 1 0	representative reporting of both low and high	
	grades and/or widths should be practiced to	
	avoid misleading reporting of Exploration	
	Results.	
Other	Other exploration data, if meaningful and	Historic geophysical data was reprocessed late 2021 to confirm projections
substantive	material, should be reported including (but not	and apply new processing methods where possible. Metallurgical, hydrological
exploration	limited to): geological observations; geophysical	and geotechnical test works are ongoing and not yet substantively completed
data	survey results; geochemical survey results; bulk	to bare reporting at the time of writing.
	samples – size and method of treatment;	
	metallurgical test results; bulk density,	

Criteria	JORC Code explanation	Commentary
	groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	urther work The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	The evaluation, identification, design and completion of required further drilling, including evaluation of the potential strike extent of the high-grade core, as indicated in Figure 2. By Sept, 2024.
		Completion of the drilling program at Flying Horse, receipt of all assays, geological evaluation (including mineralogy) and updating the Flying Horse resource model to enable generation of a new Mineral Resource. By Late 2024.
		Completion of a pre-feasibility study (PFS) of the potential for extraction of Flying Horse sulphide resource through open pit mining, including all costs relevant to having the material transported and processed at an appropriate sulphide concentrator. By End 2024.
		Evaluation of the appropriate Mineral Resource and Ore Reserve (dependent on the PFS outcomes) classification and reporting in accordance with the JORC Code. By End 2024.