



# HALLECK CREEK EXPANSION POTENTIAL

# ASSAYS RETURN TREO GRADES UP TO 5,280 PPM

## Highlights

- Mapping and sampling across unsampled areas at the new Bluegrass Resource Area completed
  - 40 surface geochemical samples collected and assayed with Total Rare Earth Oxide ("TREO") grades up to 4,815 ppm
  - The Bluegrass and Overton Mountain geology consists of homogenous target mineralised material
  - Reconnaissance scale mapping and sampling across the Sommer's Flat Resource Area performed
    - 48 surface geochemical samples collected and assayed with TREO grades up to 5,280 ppm
- Results continue to demonstrate upside potential of the Halleck Creek district.

American Rare Earths (ASX: ARR | OTCQX: ARRNF | ADR: AMRRY) ("ARR" or the "Company") is pleased to announce the release surface geochemistry samples across the Bluegrass, northern Overton Mountain, and Sommers Flat Area at the Halleck Creek Rare Earths project. ARR geologists collected 88 surface samples in June 2024 across previously unmapped or sparsely mapped expansion areas at Halleck Creek. ALS Global assayed the samples which contain TREO values ranging to 5,280 ppm.

Most of the surface samples at Overton Mountain and Bluegrass show TREO values exceeding 2,770 ppm with four samples exceeding 4,000 ppm TREO. The mapped geology in this area consists almost exclusively of clinopyroxene quartz monzonite (**"CQM"**), which is the chief rare earth bearing rock type within the Red Mountain Pluton (**"RMP"**).

The surface samples at the Sommers Flat area vary with changes in the geology. At Sommers Flat the biotite hornblende syenite (**"BHS"**) is the primary rock type within the RMP. The BHS rocks have lower TREO grades than the CQM. Thin dikes of higher grade CQM cross-cut the BHS rocks at Sommers Flat and range in thickness between 5 and 50 centimetres. Two CQM dike samples contained TREO values of 4,726 ppm and 5,250 ppm.

## **Dwight Kinnes, Chief Technical Officer, commented:**

"The recent mapping and sampling from our geologists clearly show that the Bluegrass area will be a high priority exploration / expansion area for ARR. This area is contiguous to prior drilling at the Overton area, and we plan to perform expanded exploration at Bluegrass and will be updating exploration permits with the Bureau of Land Management (BLM) and Wyoming Department of Environmental Quality ("**WDEQ**") for 2024-2025. Additional field mapping and sampling at Sommers Flat will provide details on the CQM dikes and help us to determine if long-range exploration of Sommers Flat is warranted."

GPO Box 1546 Sydney NSW 2001 Australia US Office 1658 Cole Boulevard, Suite G30 Lakewood, Colorado 80401

ABN 83 003 453 503

### **Technical Information**

ARR geologists collected 88 surface rock samples across the northern Overton Mountain, Bluegrass and Sommers Flat resource areas at the Halleck Creek Rare Earths Project, Figure 1. 40 surface samples were collected at the Overton Mountain and Bluegrass areas, Figure 2, and 48 samples were collected at the Sommers Flat area, Figure 3. The entire list of surface sample assays resides in Appendix B below.

| Table 1 – Sur | mmary of Tl | REO and N | /lagREO val | ues of 2024 | 4 Surface S | amples  |  |  |  |  |  |  |  |  |
|---------------|-------------|-----------|-------------|-------------|-------------|---------|--|--|--|--|--|--|--|--|
| TREO MagREO   |             |           |             |             |             |         |  |  |  |  |  |  |  |  |
| Area          | Min         | Max       | Average     | Min         | Max         | Average |  |  |  |  |  |  |  |  |
| Bluegrass     | 700         | 4,815     | 2,770       | 210         | 1,231       | 757     |  |  |  |  |  |  |  |  |
| Sommers Flat  | 133         | 5,280     | 1,483       | 30          | 1,479       | 412     |  |  |  |  |  |  |  |  |
| Grand Total   | 133         | 5,280     | 2,068       | 30          | 1,479       | 569     |  |  |  |  |  |  |  |  |

The average TREO values at Bluegrass are 2,770 ppm and 1,483 ppm at Sommers Flat.

Each rock sample was logged, photographed and submitted to ALS Global for assay. The data for each sample was then added to the DHDB database. ARR geologists updated geological maps to reflect the new surface samples.

After the current exploration drilling at the Cowboy State Mine (CSM) area concludes, ARR geologists will update exploration drilling plans for Bluegrass and northern Overton Mountain and submit applications to the BLM and the WDEQ for 2025. ARR is also working to secure long-term exploration agreements with surface owners adjacent to the Bluegrass area.

## **Bluegrass and northern Overton Mountain**

As mentioned above, the geology of the Bluegrass area is dominated by the CQM unit of the RMP. The exposed outcrops show homogenous material across most of the Bluegrass area, Figure 2. The new surface samples tie directly into existing surface samples and exploration drilling at Overton Mountain. ARR will focus exploration at Bluegrass on the central and northwestern side of Bluegrass.

The lithology in the northeastern part of Bluegrass changes to reflect the geology of the County Line area which is dominated by low-grade RMP with higher-grade medium grained quartz monzonite dikes.

#### **Sommers Flat**

Mapping and sampling at Sommers Flat had been very limited prior to 2024. Existing surface samples were collected by Zenith prior to ARR acquiring the Halleck Creek project. The 2024 mapping and sampling shows that Sommers Flat consists of low-grade RMP cross-cut by thin higher-grade CQM dikes. As time permits, additional mapping of dikes will occur at Sommers Flat to determine if additional exploration should be conducted in the area.

Several surface samples at Sommers Flat contain TREO values of 4,726 ppm and 5,250 ppm. These samples were collected from CQM dikes approximately 20 cm thick. Samples of the surrounding RMP range from TREO of 1,500 ppm and less.

Archean rocks of Elmer's Rock Greenstone Belt (**"ERGB"**) also occur in the Sommers Flat area. The ancient ERGB is barren of rare earth minerals, but occurrences of graphite in the ERGB are known to exist in areas north of Halleck Creek. No indication of graphite was observed by ARR geologists in the ERGB at Halleck Creek.

This announcement is authorised for release by the Board of American Rare Earths.

## **Further information**

Jane Morgan Investor and Media Relations im@janemorganmanagement.com.au

#### **Competent Persons Statement:**

The information in this document is based on company work performed in June 2024. This work was reviewed and approved for release by Mr Dwight Kinnes (Society of Mining Engineers #4063295RM) who is employed by American Rare Earths and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 JORC Code. Mr Kinnes consents to the inclusion in the report of the matters based upon the information in the form and context in which it appears.

#### About American Rare Earths Limited:

<u>American Rare Earths</u> (ASX: ARR | OTCQX: ARRNF | ADR: AMRRY) owns the Halleck Creek, WY rare earth deposit which has the potential to become the largest and most sustainable rare earth project in North America. The Company is developing environmentally friendly and cost-effective extraction and processing methods to meet the rapidly increasing demand for resources essential to the clean energy transition and US national security. The Company continues to evaluate other exploration opportunities and is collaborating with US Government-supported R&D to develop efficient processing and separation techniques of (REEs) elements to help ensure a renewable future.

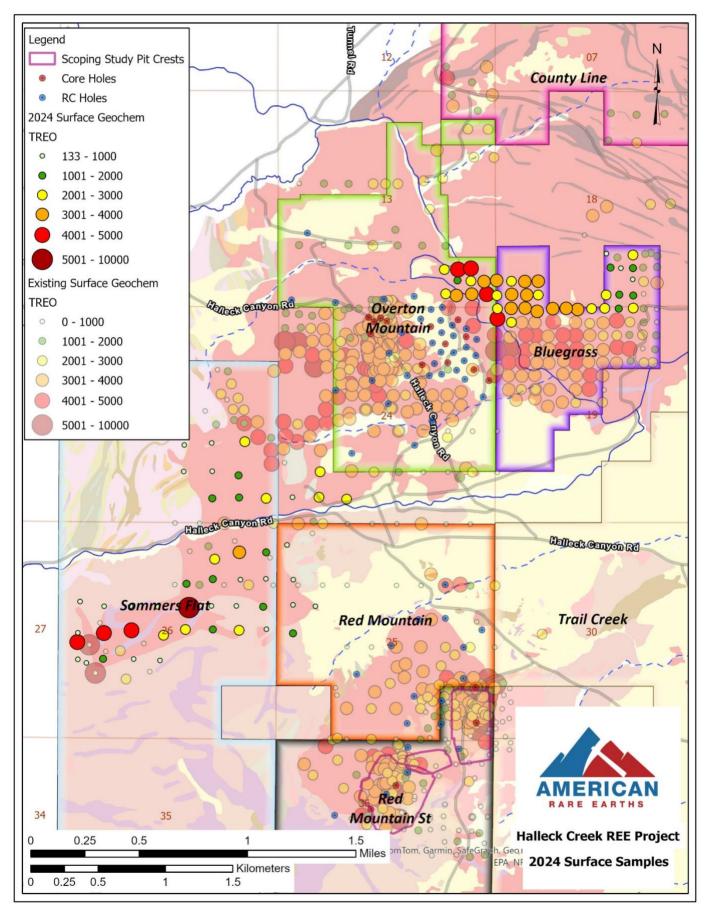



Figure 1 – 2024 Surface Sample Locations

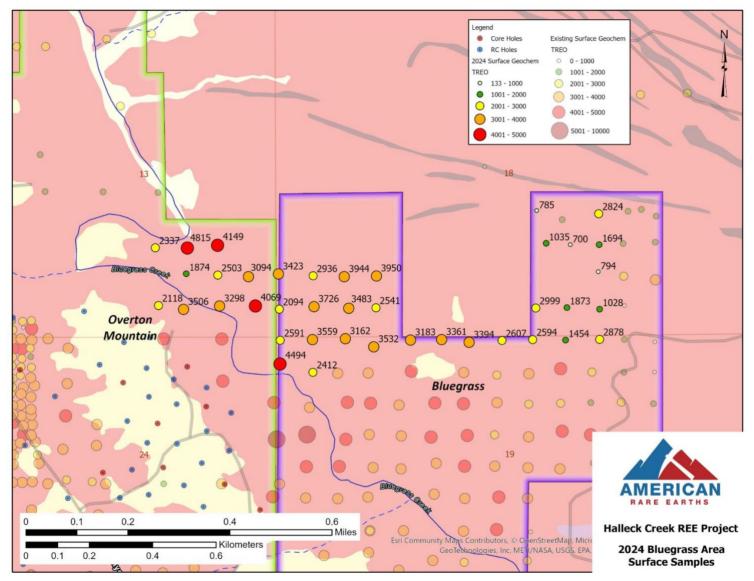



Figure 2 – 2024 Surface Samples in the Bluegrass Area

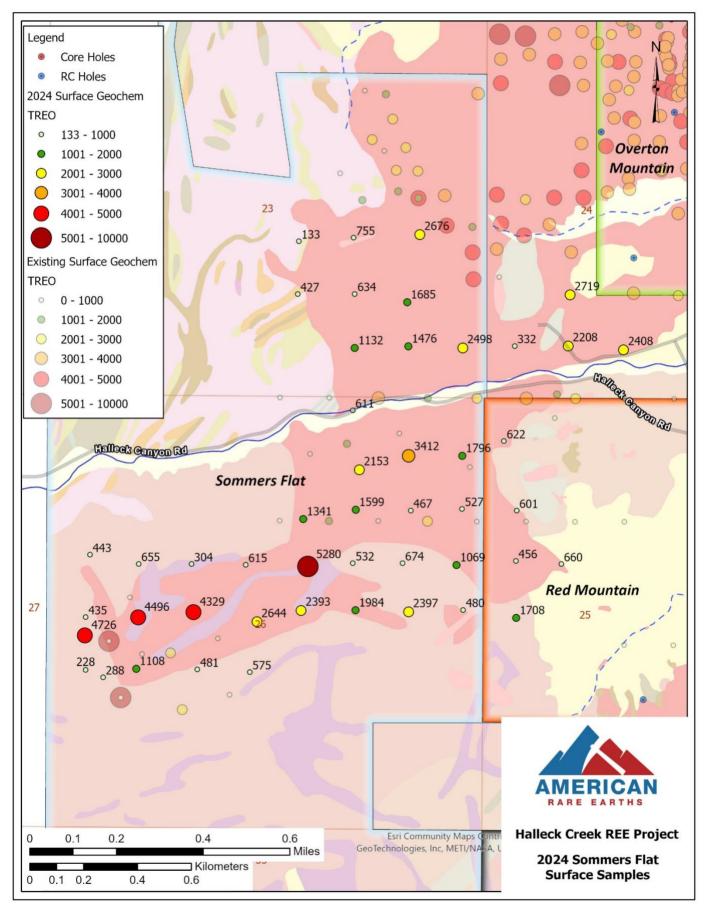



Figure 3 – 2024 Surface Samples in the Sommers Flat Area

| Section 1 Sampling        | Techniques and Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Criteria in this section | on apply to all succeeding sections.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Criteria                  | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                           | Nature and quality of sampling (e.g. cut channels, random chips, or<br>specific specialised industry standard measurement tools appropriate<br>to the minerals under investigation, such as downhole gamma<br>sondes, handheld XRF instruments, etc.). These examples should not<br>be taken as limiting the broad meaning of sampling.                                                                                                                                                              | <ul> <li>ARR collected 88 surface rock samples from the northern Overton<br/>Mountain, Bluegrass, and Sommers Flat resource area.</li> <li>818 surface rock samples already exist in the Halleck Creek<br/>database. Surface rock samples collected by ARR are logged,<br/>photographed and located using handheld GPS units.</li> </ul>                                                                                                                                 |
|                           | Include reference to measures taken to ensure sample represe6ntivity<br>and the appropriate calibration of any measurement tools or systems<br>used.                                                                                                                                                                                                                                                                                                                                                 | Rock samples were collected from various rock outcrops across the Halleck Creek study areas.                                                                                                                                                                                                                                                                                                                                                                             |
| Sampling<br>techniques    | Aspects of the determination of mineralisation that are Material to the Public Report.                                                                                                                                                                                                                                                                                                                                                                                                               | The Red Mountain Pluton (RMP) of the Halleck Creek Rare Earths<br>Project is a distinctly layered monzonitic to syenitic body which<br>exhibits significant and widespread REE enrichment. Enrichment is<br>dependent on allanite abundance, a sorosilicate of the epidote<br>group. Allanite occurs in all three units of the RMP, the<br>clinopyroxene quartz monzonite, the biotite-hornblende quartz<br>syenite, and the fayalite monzonite, in variable abundances. |
|                           | In cases where 'industry standard' work has been done, this would be<br>relatively simple (e.g. 'reverse circulation drilling was used to obtain 1<br>m samples from which 3 kg was pulverised to produce a 30 g charge<br>for fire assay'). In other cases, more explanation may be required,<br>such as where there is coarse gold that has inherent sampling<br>problems. Unusual commodities or mineralisation types (e.g.<br>submarine nodules) may warrant disclosure of detailed information. | Surface samples were mapped, logged, and photographed prior to<br>being bagged for sample analysis. The data for each sample was<br>added to the DHDB database.                                                                                                                                                                                                                                                                                                          |
| Drilling techniques       | Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air<br>blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple<br>or standard tube, depth of diamond tails, face-sampling bit or<br>another type, whether the core is oriented and if so, by what method,<br>etc.).                                                                                                                                                                                          | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

## APPENDIX A – JORC TABLE 1

|                                | Techniques and Data<br>n apply to all succeeding sections.)                                                                                                                                                |                                                                                                                                                                   |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria                       | JORC Code explanation                                                                                                                                                                                      | Commentary                                                                                                                                                        |
|                                | Method of recording and assessing core and chip sample recoveries and results assessed.                                                                                                                    | n/a                                                                                                                                                               |
| Drill sample<br>recovery       | Measures are taken to maximise sample recovery and ensure the representative nature of the samples.                                                                                                        | n/a                                                                                                                                                               |
|                                | Whether a relationship exists between sample recovery and grade<br>and whether sample bias may have occurred due to preferential<br>loss/gain of fine/coarse material.                                     | n/a                                                                                                                                                               |
| Logging                        | Whether core and chip samples have been geologically and<br>geotechnically logged to a level of detail to support appropriate<br>Mineral Resource estimation, mining studies and metallurgical<br>studies. | All rock samples were geologically logged and photographed by ARR geologists familiar with the deposit.                                                           |
| Logging                        | Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.                                                                                                    | Logging of rock samples are quantitative adhering to methods established by ARR.                                                                                  |
|                                | The total length and percentage of the relevant intersections logged.                                                                                                                                      | n/a                                                                                                                                                               |
|                                | If core, whether cut or sawn and whether quarter, half or all core taken.                                                                                                                                  | Sub-samples were not prepared.                                                                                                                                    |
| Sub-sampling<br>techniques and | If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.                                                                                                             | n/a                                                                                                                                                               |
| sample preparation             | For all sample types, the nature, quality and appropriateness of the sample preparation technique.                                                                                                         | All core samples were dry. Sample preparation: 1kg samples split t 250g for pulverising to -75 microns. Sample analysis: 0.5g charge assayed by ICP-MS technique. |
|                                | Quality control procedures adopted for all sub-sampling stages to maximise the representivity of samples.                                                                                                  | Quality control measures from ALS Global were used for these samples.                                                                                             |

| Section 1 Sampling                               | Techniques and Data                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| (Criteria in this sectio                         | n apply to all succeeding sections.)                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|                                                  | Measures are taken to ensure that the sampling is representative of<br>the in situ material collected, including, for instance, results for field<br>duplicate/second-half sampling.                                                       | n/a                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|                                                  | Whether sample sizes are appropriate to the grain size of the material being sampled.                                                                                                                                                      | Allanite is generally well distributed across the core and the sample sizes are representative of the fine grain size of the Allanite.                                                                                                                                                       |  |  |  |  |  |  |  |
|                                                  | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.                                                                                           | ALS uses a 5-acid digestion and 32 elements by lithium borate<br>fusion and ICP-MS (ME-MS71h). For quantitative results of all<br>elements, including those encapsulated in resistive minerals. These<br>assays include all rare earth elements.                                             |  |  |  |  |  |  |  |
| Quality of assay<br>data and laboratory<br>tests | For geophysical tools, spectrometers, handheld XRF instruments, etc.,<br>the parameters used in determining the analysis including instrument<br>make and model, reading times, calibrations factors applied and their<br>derivation, etc. | n/a                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|                                                  | Nature of quality control procedures adopted (e.g. standards, blanks,<br>duplicates, external laboratory checks) and whether acceptable levels<br>of accuracy (i.e. lack of bias) and precision have been established.                     | Quality control measures from ALS Global were used for these samples.                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|                                                  | The verification of significant intersections by either independent or alternative company personnel.                                                                                                                                      | Surface samples have not yet been verified by independent personnel.                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Verification of                                  | The use of twinned holes.                                                                                                                                                                                                                  | n/a                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| sampling and<br>assaying                         | Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.                                                                                                                 | Data entry was performed by ARR personnel and checked by ARR geologists. All field logs were scanned and uploaded to company file servers. All photographs were also uploaded to the file server daily. All scanned documents are cross-referenced and directly available from the database. |  |  |  |  |  |  |  |

| Section 1 Sampling                    | Techniques and Data                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Criteria in this sectio              | n apply to all succeeding sections.)                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |
| Criteria                              | JORC Code explanation                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                       |
|                                       |                                                                                                                                                                                                                                       | Assay data from the surface samples was imported into the database directly from electronic spreadsheets sent to ARR from ALS.                                                                                                                                                                                   |
| riteria<br>Location of data<br>points | Discuss any adjustment to assay data.                                                                                                                                                                                                 | Assay data is stored in the database in elemental form. Reporting<br>of oxide values are calculated in the database using the molar mass<br>of the element and the oxide.                                                                                                                                        |
| •                                     | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.                                                           | Surface samples have been located using handheld GPS units.<br>Sample locations are based on GPS coordinates +/- 10 ft (3 m)<br>accuracy.                                                                                                                                                                        |
| points                                | Specification of the grid system used.                                                                                                                                                                                                | The grid system used to compile data was NAD83 Zone 13N.                                                                                                                                                                                                                                                         |
|                                       | Quality and adequacy of topographic control.                                                                                                                                                                                          | Topography control is +/- 10 ft (3 m).                                                                                                                                                                                                                                                                           |
|                                       | Data spacing for reporting of Exploration Results.                                                                                                                                                                                    | Surface samples vary between 200 metre spacing and 100m spacing depending on area.                                                                                                                                                                                                                               |
| Data spacing and<br>distribution      | Whether the data spacing and distribution is sufficient to establish<br>the degree of geological and grade continuity appropriate for the<br>Mineral Resource and Ore Reserve estimation procedure(s) and<br>classifications applied. | These data will not be sued for resource estimates.                                                                                                                                                                                                                                                              |
|                                       | Whether sample compositing has been applied.                                                                                                                                                                                          | Composite have not been applied.                                                                                                                                                                                                                                                                                 |
| Orientation of data<br>in relation to | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.                                                                            | Mineralization at Halleck Creek is a function of fractional<br>crystallization of allanite in syenitic rocks of the Red Mountain<br>Pluton. Mineralization is not structurally controlled and exploration<br>drilling to date does not reveal any preferential mineralization<br>related to geologic structures. |
| geological structure                  | If the relationship between the drilling orientation and the orientation<br>of key mineralised structures is considered to have introduced a<br>sampling bias, this should be assessed and reported if material.                      | n/a                                                                                                                                                                                                                                                                                                              |
| Sample security                       | The measures are taken to ensure sample security.                                                                                                                                                                                     | All rock samples were in the direct control of company geologists until dispatched to American Assay Labs.                                                                                                                                                                                                       |

| Section 1 Sampling                                           | Section 1 Sampling Techniques and Data                                |                                                                                                                                       |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| (Criteria in this section apply to all succeeding sections.) |                                                                       |                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| Criteria                                                     | JORC Code explanation                                                 | Commentary                                                                                                                            |  |  |  |  |  |  |  |  |  |
| Audits or reviews                                            | The results of any audits or reviews of sampling techniques and data. | No external audits or reviews have been conducted to date.<br>However, sampling techniques are consistent with industry<br>standards. |  |  |  |  |  |  |  |  |  |

|                                               | Section 2 Reporting of Explorat                                                                                                                                                                                                                                                        | ion Results                                                                                                                                                                                                                                                                                       |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | (Criteria listed in the preceding section also                                                                                                                                                                                                                                         | apply to this section.)                                                                                                                                                                                                                                                                           |
| Criteria                                      | JORC Code explanation                                                                                                                                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                        |
|                                               |                                                                                                                                                                                                                                                                                        | ARR acquired 5 unpatented federal lode claims on BLM US Federal<br>Land totalling 71.6 acres (29 has) from Zenith Minerals, Ltd (Zenith).<br>in 2021.<br>67 unpatented federal lode claims were staked by ARR that totalled                                                                       |
| Mineral tenement<br>and land tenure<br>status | Type, reference name/number, location and ownership, including<br>agreements or material issues with third parties such as joint ventures,<br>partnerships, overriding royalties, native title interests, historical sites,<br>wilderness or national park and environmental settings. | 1193.3 acres (482 ha) in summer 2021. ARR staked 182 unpatented<br>federal lode claims in March 2022 covering an area of approximately<br>3,088 acres (1,250 ha). ARR staked 118 unpatented federal lode<br>claims in November 2022 covering an area of approximately 2,113<br>acres (855 ha).    |
| 510105                                        |                                                                                                                                                                                                                                                                                        | As of December 31, 2022, ARR controlled 367 unpatented federal<br>lode claims and 4 Wyoming State mineral licenses covering 8,165<br>acres (3,304 ha).                                                                                                                                            |
|                                               | The security of the tenure held at the time of reporting and any known impediments to obtaining a licence to operate in the area.                                                                                                                                                      | No impediments to holding the claims exist. To maintain the claims<br>an annual holding fee of \$165/claim is payable to the BLM. To<br>maintain the State leases minimum rental payments of \$1/acre for 1-<br>5 years; \$2/acre for 6-10 years; and \$3/acre if held for 10 years or<br>longer. |
| Exploration done by other parties             | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                          | Prior to sampling by WIM on behalf of Blackfire Minerals and Zenith<br>there was no previous sampling by any other groups within the ARR<br>claim and Wyoming State Lease blocks.                                                                                                                 |
| Geology                                       | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                          | The REE's occur within Allanite which occurs as a variable constituent<br>of the Red Mountain Pluton. The occurrence can be characterised as<br>a disseminated type rare earth deposit.                                                                                                           |
|                                               | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:                                                                                                                | n/a                                                                                                                                                                                                                                                                                               |
| Drill hole                                    | easting and northing of the drill hole collar                                                                                                                                                                                                                                          | n/a                                                                                                                                                                                                                                                                                               |
| Information                                   | elevation or RL (Reduced Level – elevation above sea level<br>in metres) of the drill hole collar                                                                                                                                                                                      | Drilling information from the Fall 2023 campaign was published in the report "Summary of 2023 Infill Drilling at the Halleck Creek                                                                                                                                                                |
|                                               | dip and azimuth of the hole                                                                                                                                                                                                                                                            | Project Area", November 2023.                                                                                                                                                                                                                                                                     |
|                                               | downhole length and interception depth                                                                                                                                                                                                                                                 | <b>, , , , , , , , , ,</b>                                                                                                                                                                                                                                                                        |

|                                                                              | Section 2 Reporting of Explorati                                                                                                                                                                                                                                                                                                                                                             | ion Results                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                              | (Criteria listed in the preceding section also                                                                                                                                                                                                                                                                                                                                               | apply to this section.)                                                                                                                                                                                                                                                     |
| Criteria                                                                     | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                  |
|                                                                              | Hole length.<br>If the exclusion of this information is justified on the basis that the<br>information is not Material and this exclusion does not detract from the<br>understanding of the report, the Competent Person should clearly<br>explain why this is the case.                                                                                                                     | n/a                                                                                                                                                                                                                                                                         |
|                                                                              | In reporting Exploration Results, weighting averaging techniques,<br>maximum and/or minimum grade truncations (e.g. cutting of high<br>grades) and cut-off grades are usually Material and should be stated.                                                                                                                                                                                 | No cut-offs have been applied to the data                                                                                                                                                                                                                                   |
| Data aggregation<br>methods                                                  | Where aggregate intercepts incorporate short lengths of high-grade<br>results and longer lengths of low-grade results, the procedure used for<br>such aggregation should be stated and some typical examples of such<br>aggregations should be shown in detail.                                                                                                                              | Assays are representative of each sample.                                                                                                                                                                                                                                   |
|                                                                              | The assumptions used for any reporting of metal equivalent values should be clearly stated.                                                                                                                                                                                                                                                                                                  | No metal equivalents used.                                                                                                                                                                                                                                                  |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept lengths | These relationships are particularly important in the reporting of<br>Exploration Results.<br>If the geometry of the mineralisation with respect to the drill hole angle<br>is known, its nature should be reported.<br>If it is unknown and only the downhole lengths are reported, there<br>should be a clear statement to this effect (e.g. 'down hole length, true<br>width not known'). | Allanite mineralization observed at Halleck Creek occurs uniformly<br>throughout the CQM and BHS rocks of within the Red Mountain<br>Pluton. Therefore, the geometry of mineralisation does not vary with<br>drill hole orientation or angle within homogeneous rock types. |
| Diagrams                                                                     | Appropriate maps and sections (with scales) and tabulations of<br>intercepts should be included for any significant discovery being<br>reported. These should include, but not be limited to, a plan view of drill<br>hole collar locations and appropriate sectional views.                                                                                                                 | Location information is presented the text above                                                                                                                                                                                                                            |
| Balanced reporting                                                           | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results.                                                                                                                                                                    | All samples collected during this program are listed in Appendix B                                                                                                                                                                                                          |
| Other substantive exploration data                                           | Other exploration data, if meaningful and material, should be reported,<br>including (but not limited to): geological observations; geophysical<br>survey results; geochemical survey results; bulk samples – size and                                                                                                                                                                       | In hand specimen this rock is a red colored, hard and dense granite<br>with areas of localised fracturing. The rock shows significant iron<br>staining and deep weathering.                                                                                                 |

|              | Section 2 Reporting of Explorat                                                                                                                                                                         | ion Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | (Criteria listed in the preceding section also                                                                                                                                                          | apply to this section.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Criteria     | JORC Code explanation                                                                                                                                                                                   | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | method of treatment; metallurgical test results; bulk density,<br>groundwater, geotechnical and rock characteristics; potential<br>deleterious or contaminating substances.                             | Microscopic description: In hand specimen the samples represent<br>light colored, fairly coarse-grained granitic rock composed of visible<br>secondary iron oxide, amphibole, opaques, clear quartz and pink to<br>white colored feldspar. All of the specimens show moderate to<br>strong weathering and fracturing. Allanite content is variable from<br>trace to 2%. Rare Earths are found within the Allanite.<br>Historical metallurgical testing consisted of concentrating the<br>Allanite by both gravity and magnetic separation. The current<br>program employs sequential high gradient magnetic separation and<br>flotation to produce a concentrate suitable for downstream rare<br>earth elements extraction. |
| Further work | The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).                                                                  | Further drilling is planned to increase the area of the project, and to<br>increase confidence levels of resources. Geological mapping and<br>surface sampling will also be performed to define and prioritize<br>drilling targets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | Diagrams clearly highlighting the areas of possible extensions,<br>including the main geological interpretations and future drilling areas,<br>provided this information is not commercially sensitive. | Additional drilling is planned in new exploration areas and to increase resource confidence levels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| 2024 Surface Geochemistry Samples |           |         |           |       |       |       |      |       |    |    |    |    |    |     |    |     |     |    |     |    |    |     |    |
|-----------------------------------|-----------|---------|-----------|-------|-------|-------|------|-------|----|----|----|----|----|-----|----|-----|-----|----|-----|----|----|-----|----|
| Area                              | Sample_ID | Lat     | Long      | TREO  | MREO  | LREO  | HREO | Ce    | Dy | Er | Eu | Gd | Но | La  | Lu | Nd  | Pr  | Sc | Sm  | Тb | Tm | Y   | Yb |
| Bluegrass                         | HC24-024  | 41.8718 | -105.2787 | 2,878 | 806   | 2,565 | 313  | 1,175 | 40 | 18 | 11 | 59 | 7  | 615 | 2  | 540 | 137 | 5  | 82  | 8  | 2  | 163 | 15 |
| Bluegrass                         | HC24-025  | 41.8727 | -105.2787 | 1,028 | 313   | 843   | 185  | 347   | 22 | 11 | 12 | 29 | 4  | 193 | 2  | 202 | 49  | 5  | 36  | 4  | 1  | 103 | 10 |
| Bluegrass                         | HC24-026  | 41.8737 | -105.2788 | 794   | 238   | 652   | 142  | 282   | 17 | 8  | 7  | 22 | 3  | 139 | 1  | 155 | 36  | 7  | 28  | 3  | 1  | 79  | 7  |
| Bluegrass                         | HC24-027  | 41.8745 | -105.2787 | 1,694 | 444   | 1,489 | 206  | 738   | 26 | 12 | 5  | 36 | 5  | 325 | 2  | 291 | 75  | 7  | 47  | 5  | 2  | 110 | 10 |
| Bluegrass                         | HC24-028  | 41.8754 | -105.2788 | 2,824 | 775   | 2,572 | 252  | 1,215 | 32 | 14 | 10 | 51 | 5  | 609 | 2  | 525 | 136 | 2  | 75  | 6  | 2  | 127 | 12 |
| Bluegrass                         | HC24-029  | 41.8745 | -105.2798 | 700   | 210   | 570   | 130  | 240   | 15 | 8  | 12 | 21 | 3  | 117 | 1  | 137 | 31  | 9  | 25  | 3  | 1  | 72  | 7  |
| Bluegrass                         | HC24-030  | 41.8755 | -105.2811 | 785   | 242   | 626   | 160  | 258   | 19 | 9  | 13 | 24 | 3  | 120 | 1  | 156 | 35  | 14 | 30  | 3  | 1  | 89  | 9  |
| Bluegrass                         | HC24-031  | 41.8745 | -105.2808 | 1,035 | 317   | 834   | 201  | 356   | 24 | 12 | 12 | 32 | 4  | 173 | 2  | 204 | 46  | 6  | 38  | 4  | 2  | 110 | 11 |
| Bluegrass                         | HC24-032  | 41.8727 | -105.2800 | 1,873 | 542   | 1,594 | 279  | 720   | 34 | 16 | 10 | 47 | 6  | 355 | 2  | 357 | 86  | 7  | 59  | 6  | 2  | 151 | 14 |
| Bluegrass                         | HC24-033  | 41.8727 | -105.2811 | 2,999 | 852   | 2,690 | 309  | 1,240 | 38 | 17 | 13 | 59 | 7  | 625 | 3  | 578 | 145 | 5  | 84  | 7  | 2  | 161 | 16 |
| Bluegrass                         | HC24-034  | 41.8717 | -105.2837 | 3,394 | 900   | 3,079 | 315  | 1,555 | 40 | 18 | 11 | 62 | 7  | 657 | 2  | 610 | 153 | 4  | 90  | 8  | 2  | 161 | 15 |
| Bluegrass                         | HC24-035  | 41.8718 | -105.2824 | 2,607 | 716   | 2,343 | 264  | 1,150 | 33 | 15 | 12 | 50 | 6  | 500 | 2  | 484 | 122 | 4  | 72  | 6  | 2  | 136 | 13 |
| Bluegrass                         | HC24-036  | 41.8718 | -105.2813 | 2,594 | 745   | 2,311 | 283  | 1,070 | 35 | 16 | 12 | 53 | 6  | 521 | 2  | 506 | 123 | 5  | 74  | 7  | 2  | 148 | 14 |
| Bluegrass                         | HC24-037  | 41.8718 | -105.2800 | 1,454 | 421   | 1,251 | 203  | 545   | 24 | 12 | 12 | 33 | 4  | 297 | 2  | 283 | 68  | 4  | 43  | 4  | 2  | 112 | 10 |
| Bluegrass                         | HC24-038  | 41.8718 | -105.2884 | 3,162 | 859   | 2,879 | 283  | 1,395 | 36 | 16 | 12 | 58 | 6  | 652 | 2  | 584 | 149 | 3  | 83  | 7  | 2  | 143 | 14 |
| Bluegrass                         | HC24-039  | 41.8708 | -105.2896 | 2,412 | 614   | 2,163 | 250  | 1,140 | 32 | 14 | 10 | 47 | 6  | 433 | 2  | 410 | 103 | 3  | 64  | 6  | 2  | 129 | 13 |
| Bluegrass                         | HC24-040  | 41.8711 | -105.2909 | 4,494 | 1,215 | 4,101 | 393  | 2,030 | 50 | 22 | 12 | 84 | 9  | 899 | 3  | 827 | 209 | 4  | 120 | 10 | 3  | 194 | 19 |
| Bluegrass                         | HC24-041  | 41.8718 | -105.2908 | 2,591 | 663   | 2,329 | 261  | 1,225 | 33 | 15 | 9  | 48 | 6  | 468 | 2  | 444 | 112 | 3  | 68  | 6  | 2  | 136 | 14 |
| Bluegrass                         | HC24-042  | 41.8718 | -105.2896 | 3,559 | 994   | 3,246 | 313  | 1,520 | 39 | 17 | 13 | 65 | 7  | 764 | 2  | 676 | 174 | 3  | 97  | 8  | 2  | 158 | 15 |
| Bluegrass                         | HC24-043  | 41.8727 | -105.2872 | 2,541 | 712   | 2,299 | 242  | 1,055 | 30 | 13 | 11 | 47 | 5  | 553 | 2  | 485 | 123 | 3  | 69  | 6  | 2  | 126 | 12 |
| Bluegrass                         | HC24-044  | 41.8727 | -105.2882 | 3,483 | 955   | 3,160 | 323  | 1,520 | 40 | 18 | 13 | 63 | 7  | 716 | 3  | 649 | 166 | 4  | 93  | 8  | 2  | 166 | 16 |
| Bluegrass                         | HC24-045  | 41.8727 | -105.2896 | 3,726 | 1,026 | 3,400 | 326  | 1,605 | 41 | 18 | 13 | 66 | 7  | 801 | 3  | 702 | 179 | 4  | 97  | 8  | 2  | 166 | 16 |
| Bluegrass                         | HC24-046  | 41.8726 | -105.2909 | 2,094 | 591   | 1,816 | 278  | 814   | 34 | 16 | 7  | 48 | 6  | 440 | 2  | 390 | 99  | 4  | 62  | 6  | 2  | 151 | 14 |
| Bluegrass                         | HC24-047  | 41.8727 | -105.2918 | 4,069 | 1,119 | 3,724 | 345  | 1,725 | 42 | 19 | 12 | 70 | 7  | 915 | 3  | 767 | 199 | 4  | 104 | 8  | 2  | 177 | 16 |
| Bluegrass                         | HC24-048  | 41.8727 | -105.2932 | 3,298 | 892   | 3,030 | 268  | 1,460 | 32 | 15 | 11 | 53 | 6  | 702 | 2  | 600 | 167 | 4  | 87  | 6  | 2  | 139 | 13 |
| Bluegrass                         | HC24-049  | 41.8736 | -105.2944 | 1,874 | 512   | 1,709 | 164  | 818   | 20 | 9  | 10 | 30 | 3  | 389 | 1  | 348 | 93  | 3  | 48  | 4  | 1  | 88  | 9  |
| Bluegrass                         | HC24-050  | 41.8744 | -105.2956 | 2,337 | 713   | 2,104 | 233  | 862   | 28 | 13 | 12 | 44 | 5  | 545 | 2  | 481 | 130 | 5  | 69  | 5  | 2  | 123 | 12 |
| Bluegrass                         | HC24-051  | 41.8744 | -105.2944 | 4,815 | 1,231 | 4,448 | 368  | 2,300 | 45 | 20 | 14 | 72 | 8  | 949 | 3  | 831 | 230 | 7  | 117 | 9  | 3  | 191 | 18 |
| Bluegrass                         | HC24-052  | 41.8744 | -105.2932 | 4,149 | 1,147 | 3,803 | 346  | 1,785 | 41 | 19 | 13 | 68 | 7  | 901 | 2  | 776 | 213 | 6  | 109 | 8  | 3  | 182 | 17 |
| Bluegrass                         | HC24-053  | 41.8736 | -105.2932 | 2,503 | 685   | 2,267 | 236  | 1,080 | 28 | 13 | 10 | 44 | 5  | 522 | 2  | 461 | 123 | 3  | 68  | 5  | 2  | 126 | 12 |
| Bluegrass                         | HC24-054  | 41.8736 | -105.2921 | 3,094 | 846   | 2,791 | 303  | 1,355 | 38 | 17 | 11 | 56 | 7  | 619 | 2  | 564 | 152 | 5  | 85  | 7  | 2  | 159 | 15 |
| Bluegrass                         | HC24-055  | 41.8736 | -105.2909 | 3,423 | 920   | 3,148 | 275  | 1,495 | 33 | 15 | 11 | 54 | 6  | 758 | 2  | 620 | 173 | 3  | 88  | 6  | 2  | 145 | 13 |
| Bluegrass                         | HC24-056  | 41.8736 | -105.2896 | 2,936 | 783   | 2,663 | 273  | 1,320 | 33 | 15 | 11 | 50 | 6  | 583 | 2  | 524 | 143 | 4  | 77  | 6  | 2  | 146 | 14 |
| Bluegrass                         | HC24-057  | 41.8736 | -105.2884 | 3,944 | 997   | 3,648 | 296  | 1,910 | 36 | 16 | 12 | 60 | 6  | 767 | 2  | 673 | 184 | 5  | 97  | 7  | 2  | 151 | 15 |
| Bluegrass                         | HC24-058  | 41.8736 | -105.2872 | 3,950 | 1,061 | 3,647 | 304  | 1,760 | 37 | 16 | 13 | 62 | 6  | 853 | 2  | 715 | 200 | 5  | 102 | 7  | 2  | 156 | 15 |
| Bluegrass                         | HC24-059  | 41.8716 | -105.2873 | 3,532 | 921   | 3,246 | 286  | 1,645 | 35 | 16 | 11 | 56 | 6  | 707 | 2  | 619 | 170 | 4  | 91  | 7  | 2  | 148 | 15 |

## APPENDIX B – SUMMARY OF 2024 SURFACE SAMPLES AT HALLECK CREEK

| beymC2 40034177310152783.3185743.515050606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 2024 Surface Geochemistry Samples |         |           |       |       |       |      |       |    |    |    |     |    |       |    |     |     |    |     |    |    |     |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------|---------|-----------|-------|-------|-------|------|-------|----|----|----|-----|----|-------|----|-----|-----|----|-----|----|----|-----|----|
| black         High         High         Jac                                                                                                                                                                                                                                       | Area         | Sample_ID                         | Lat     | Long      | TREO  | MREO  | LREO  | HREO | Ce    | Dy | Er | Eu | Gd  | Но | La    | Lu | Nd  | Pr  | Sc | Sm  | Тb | Tm | Y   | Yb |
| blackpress       HC24087       H12472       H3505       L118       500       H316       202       H3       H       H       4428       L       L107       L108       L108      <                                                                                                                                                                                                                                                                                        | Bluegrass    | HC24-060                          | 41.8718 | -105.2859 | 3,183 | 874   | 2,911 | 272  | 1,375 | 33 | 15 | 10 | 53  | 6  | 686   | 2  | 591 | 160 | 4  | 84  | 6  | 2  | 142 | 13 |
| blueyenss       HC24 088       41.8720       105.939       7.08       9.26       7.07       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0       7.0 <t< td=""><td>Bluegrass</td><td>HC24-061</td><td>41.8718</td><td>-105.2847</td><td>3,361</td><td>911</td><td>3,029</td><td>332</td><td>1,465</td><td>41</td><td>19</td><td>11</td><td>60</td><td>7</td><td>686</td><td>2</td><td>607</td><td>165</td><td>4</td><td>91</td><td>8</td><td>3</td><td>176</td><td>17</td></t<>          | Bluegrass    | HC24-061                          | 41.8718 | -105.2847 | 3,361 | 911   | 3,029 | 332  | 1,465 | 41 | 19 | 11 | 60  | 7  | 686   | 2  | 607 | 165 | 4  | 91  | 8  | 3  | 176 | 17 |
| sommers File       HC24001       415500       1.078       5.78       1.84       5.8       8.4       8       8       8       8       8       8       8       8       8       1       10       800       10       10       800       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       <                                                                                                                                                                                                                                                                                                                                                                                  | Bluegrass    | HC24-087                          | 41.8727 | -105.2955 | 2,118 | 560   | 1,916 | 202  | 942   | 23 | 11 | 9  | 37  | 4  | 428   | 2  | 376 | 103 | 4  | 54  | 4  | 2  | 109 | 10 |
| Sammers Fiat       HC24002       41.8503       -105.313       480       125       -115       641       640       647       64       74       75       73       74       74       75       74       76       74       76       74       76       74       76       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74       74                                                                                                                                                                                                                                                                                                                                                                             | Bluegrass    | HC24-088                          | 41.8726 | -105.2945 | 3,506 | 946   | 3,235 | 272  | 1,570 | 33 | 15 | 12 | 57  | 6  | 742   | 2  | 642 | 176 | 4  | 90  | 7  | 2  | 139 | 13 |
| Sommers Flat       HC24003       418502       -1053162       239       705       1.5166       2.81       88       60       28       10       49       7       3       34       40       85       8       10       43       76       10       10       10       49       7       3       34       41       10       7       3       84       40       40       10       10       41       10       41       10       10       10       41       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                                    | Sommers Flat | HC24-001                          | 41.8500 | -105.3090 | 1,708 | 524   | 1,360 | 348  | 597   | 41 | 20 | 9  | 56  | 8  | 261   | 2  | 332 | 79  | 18 | 64  | 8  | 3  | 194 | 16 |
| Sommers Flat       MC24-004       41.8502       -105.316       1.94       5.36       1.66       22       27       17       1.04       18       4.10       17       1.03       18       2.033       647       2.022       271       1.00       18       4.80       1.01       17       1.03       18       1.02       17       1.03       18       1.02       17       1.03       18       1.03       18       1.03       17       1.03       18       1.03       1.04       1.05       1.0       1.0       17       1.0       17       1.03       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0                                                                                                                                                                                                                                                                                                                             | Sommers Flat | HC24-002                          | 41.8503 | -105.3114 | 480   | 125   | 416   | 64   | 207   | 8  | 4  | 3  | 11  | 1  | 82    | 1  | 80  | 22  | 8  | 15  | 2  | 0  | 34  | 3  |
| Sommers Flat       HC24-005       41.8502       -105.317       2,33       647       2,02       371       970       44       22       9       58       8       430       3       41       10       17       72       8       3       207       21         Sommers Flat       HC24-006       41.8498       -105.323       461       733       302       90       17       10       5       3       12       2       88       1       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                              | Sommers Flat | HC24-003                          | 41.8502 | -105.3139 | 2,397 | 705   | 1,916 | 481  | 880   | 60 | 28 | 10 | 74  | 10 | 357   | 3  | 441 | 108 | 34 | 86  | 10 | 4  | 268 | 23 |
| Sommers Flat       HC24-007       41.8489       -1.05.3200       2,644       728       2,227       4.17       1,030       51       25       10       56       9       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50       50     <                                                                                                                                                                                                                                                                                                                                                                         | Sommers Flat | HC24-004                          | 41.8502 | -105.3162 | 1,984 | 538   | 1,660 | 324  | 760   | 37 | 19 | 10 | 49  | 7  | 372   | 3  | 343 | 91  | 24 | 60  | 7  | 3  | 184 | 17 |
| Sommers Flat       HC24 007       41.8482       -105.329       5.75       166       466       109       19       13       6       5       17       2       8       1       105       25       19       20       2       1       65       25         Sommers Flat       HC24008       41.8483       -105.3225       288       79       223       65       95       7       4       4       9       1       40       10       49       10       49       10       40       10       40       10       40       10       40       10       40       10       40       10       40       10       40       10       40       10       40       10       40       10       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40                                                                                                                                                                                                                                                                                                                                                                            | Sommers Flat | HC24-005                          | 41.8502 | -105.3187 | 2,393 | 647   | 2,022 | 371  | 970   | 44 | 22 | 9  | 58  | 8  | 430   | 3  | 414 | 110 | 17 | 72  | 8  | 3  | 207 | 18 |
| Sommers Flat       HC24-009       41.8482       -105.323       481       133       92       90       177       10       5       3       12       2       81       1       85       21       9       15       2       1       52       5         Sommers Flat       HC24-009       41.8480       -105.3257       228       70       23       65       73       75       8       1       30       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10     10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td>Sommers Flat</td> <td>HC24-006</td> <td>41.8498</td> <td>-105.3206</td> <td>2,644</td> <td>728</td> <td>2,227</td> <td>417</td> <td>1,030</td> <td>51</td> <td>25</td> <td>10</td> <td>66</td> <td>9</td> <td>505</td> <td>3</td> <td>463</td> <td>124</td> <td>15</td> <td>81</td> <td>9</td> <td>3</td> <td>231</td> <td>20</td>                                        | Sommers Flat | HC24-006                          | 41.8498 | -105.3206 | 2,644 | 728   | 2,227 | 417  | 1,030 | 51 | 25 | 10 | 66  | 9  | 505   | 3  | 463 | 124 | 15 | 81  | 9  | 3  | 231 | 20 |
| Sommers Flat       HC24 009       41.8483       -105.3207       2.88       79       2.23       65       95       7       4       4       9       1       43       1       49       11       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                                    | Sommers Flat | HC24-007                          | 41.8482 | -105.3209 | 575   | 166   | 466   | 109  | 199   | 13 | 6  | 5  | 17  | 2  | 94    | 1  | 105 | 25  | 19 | 20  | 2  | 1  | 61  | 6  |
| Sommers Flat       HC24-010       41.8480       -105.3275       -28       79       223       65       75       7       6       7       6       7       6       7       8       1       1       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       <                                                                                                                                                                                                                                                                                                                                                                                  | Sommers Flat | HC24-008                          | 41.8482 | -105.3233 | 481   | 133   | 392   | 90   | 177   | 10 | 5  | 3  | 12  | 2  | 81    | 1  | 85  | 21  | 9  | 15  | 2  | 1  | 52  | 5  |
| Sommers Flat       HC24011       41.8482       -105.328       228       64       175       53       73       6       3       5       8       1       93       9       8       9       1       0       03       3         Sommers Flat       HC24013       41.8500       -105.328       4.76       1.33       4.08       66       1.89       7       8       12       16       16       91       4       862       26       3<       147       16       5       30       77         Sommers Flat       HC24013       41.8500       -105.329       4.35       117       32       12       10       13       73       13       13       13       78       13       13       14       14       14       14       14       14       14       14       14       14       14       14       14       15       161       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151       151                                                                                                                                                                                                                                                                                                                                                                | Sommers Flat | HC24-009                          | 41.8483 | -105.3260 | 1,108 | 240   | 738   | 370  | 411   | 44 | 26 | 1  | 34  | 9  | 136   | 2  | 124 | 34  | 0  | 32  | 7  | 3  | 225 | 20 |
| Sommers Flat       HC24012       41.8490       -105.3283       435       117       362       72       164       9       4       5       1       7       8       10       10       2       7       8       10       10       2       10       10       10       10       2       1       4       4       105.328       435       117       362       72       164       9       4       5       10       10       10       10       2       1       4       2       1       4       4       45       4       4       45       5       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10      10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td>Sommers Flat</td> <td>HC24-010</td> <td>41.8480</td> <td>-105.3275</td> <td>288</td> <td>79</td> <td>223</td> <td>65</td> <td>95</td> <td>7</td> <td>4</td> <td>4</td> <td>9</td> <td>1</td> <td>43</td> <td>1</td> <td>49</td> <td>11</td> <td>10</td> <td>10</td> <td>1</td> <td>1</td> <td>38</td> <td>4</td>                                                                    | Sommers Flat | HC24-010                          | 41.8480 | -105.3275 | 288   | 79    | 223   | 65   | 95    | 7  | 4  | 4  | 9   | 1  | 43    | 1  | 49  | 11  | 10 | 10  | 1  | 1  | 38  | 4  |
| Sommers Flat       HC24-013       41.8500       -105.3283       4345       117       362       72       164       9       4       5       11       2       76       1       74       19       11       14       2       1       44       4       34         Sommers Flat       HC24-014       41.8500       -105.3255       4,390       1,210       3,737       592       1,810       78       3       13       164       4       34       55         Sommers Flat       HC24-015       41.8502       -105.3235       4,320       1,210       3,737       592       1,810       78       3       13       2120       3       13       14       4       315       2       1       56       5       5       5       5       5       5       5       5       5       161       517       98       23       14       14       15       17       61       510       15       16       151       161       517       98       23       14       14       15       16       53       16       15       17       80       1       12       16       16       16       16       16       16 <td>Sommers Flat</td> <td>HC24-011</td> <td>41.8482</td> <td>-105.3283</td> <td>228</td> <td>64</td> <td>175</td> <td>53</td> <td>73</td> <td>6</td> <td>3</td> <td>5</td> <td>8</td> <td>1</td> <td>32</td> <td>0</td> <td>39</td> <td>9</td> <td>8</td> <td>9</td> <td>1</td> <td>0</td> <td>30</td> <td>3</td>                                          | Sommers Flat | HC24-011                          | 41.8482 | -105.3283 | 228   | 64    | 175   | 53   | 73    | 6  | 3  | 5  | 8   | 1  | 32    | 0  | 39  | 9   | 8  | 9   | 1  | 0  | 30  | 3  |
| Sommers Flat       HC24-014       41.8500       -105.325       4.490       1.265       3.904       591       1.850       75       36       13       16       13       865       4       802       217       3<       137       14       4       315       25         Sommers Flat       HC24-015       41.8502       -105.321       615       161       517       98       237       13       62       13       72       120       14       48       14       4       315       2         Sommers Flat       HC24-017       41.8517       -105.3148       520       174       98       237       16       6       3       15       14       14       48       15       16       313       20       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       1                                                                                                                                                                                                                                                                                                                                                         | Sommers Flat | HC24-012                          | 41.8494 | -105.3283 | 4,726 | 1,338 | 4,058 | 668  | 1,890 | 87 | 38 | 12 | 116 | 16 | 919   | 4  | 862 | 226 | 3  | 147 | 16 | 5  | 360 | 27 |
| Sommers Flat       HC24-015       41.8502       -105.3235       4.329       1.210       3.737       592       1.810       78       51       105       13       79       20       3       73       14       4       315       21         Sommers Flat       HC24-016       41.8517       -105.3124       615       1.61       517       98       237       14       61       12       15       1.65       1.6       93       15       1.60       4       973       2.43       3       15       1.6       53         Sommers Flat       HC24-017       41.8518       -105.3143       632       1.32       41       2       16       2       16       2       16       13       19       12       10       13       13       14       15       33       13       14       14       15       33       15       14       14       15       33       15       14       14       15       34       15       14       14       14       15       34       15       14       15       16       15       16       15       16       15       16       15       16       15       16       15      <                                                                                                                                                                                                                                                                                                                                                     | Sommers Flat | HC24-013                          | 41.8500 | -105.3283 | 435   | 117   | 362   | 72   | 164   | 9  | 4  | 5  | 11  | 2  | 76    | 1  | 74  | 19  | 11 | 14  | 2  | 1  | 40  | 4  |
| Sommers Flat       HC24-016       41.8517       -105.3211       615       161       517       98       237       11       6       3       13       2       10       28       8       17       2       1       58       5         Sommers Flat       HC24-017       41.8517       -105.3184       520       1.479       4.582       698       2.10       89       39       14       121       15       1.06       4       973       24       3       16       53       379       30         Sommers Flat       HC24-019       41.8518       -105.3141       674       373       558       116       255       13       7       3       15       1       123       28       10       1       10       2       1       70       3       15       1       121       15       13       1       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10     <                                                                                                                                                                                                                                                                                                                                                              | Sommers Flat | HC24-014                          | 41.8500 | -105.3259 | 4,496 | 1,265 | 3,904 | 591  | 1,850 | 77 | 34 | 13 | 106 | 13 | 865   | 4  | 820 | 217 | 3  | 137 | 14 | 4  | 314 | 25 |
| Sommers Flat       HC24-017       41.8517       -105.3184       5.200       1,479       4,582       668       2,130       89       39       14       121       15       1,060       4       973       243       3       158       16       5       379       30         Sommers Flat       HC24-018       41.8518       -105.3163       532       132       472       61       220       7       4       3       9       1       122       0       87       23       3       13       1       0       34       3         Sommers Flat       HC24-019       41.8518       -105.3141       674       174       558       116       25       13       17       3       15       2       130       1       113       28       10       19       2       1       70       6         Sommers Flat       HC24-020       41.8518       -105.328       443       117       362       32       16       1       1       15       88       2       16       18       10       13       22       1       47       5         Sommers Flat       HC24-023       41.8518       -105.326       655       177 </td <td>Sommers Flat</td> <td>HC24-015</td> <td>41.8502</td> <td>-105.3235</td> <td>4,329</td> <td>1,210</td> <td>3,737</td> <td>592</td> <td>1,810</td> <td>78</td> <td>35</td> <td>12</td> <td>105</td> <td>13</td> <td>794</td> <td>3</td> <td>779</td> <td>204</td> <td>3</td> <td>135</td> <td>14</td> <td>4</td> <td>315</td> <td>25</td> | Sommers Flat | HC24-015                          | 41.8502 | -105.3235 | 4,329 | 1,210 | 3,737 | 592  | 1,810 | 78 | 35 | 12 | 105 | 13 | 794   | 3  | 779 | 204 | 3  | 135 | 14 | 4  | 315 | 25 |
| Sommers Flat       HC24-018       41.8518       -105.3163       532       132       472       61       220       7       4       3       9       1       122       0       87       23       3       13       1       0       34       3         Sommers Flat       HC24-019       41.8518       -105.3117       1,069       337       853       215       344       26       13       1       34       5       18       10       13       28       10       13       28       10       13       28       10       13       28       10       13       21       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10     <                                                                                                                                                                                                                                                                                                                                                                         | Sommers Flat | HC24-016                          | 41.8517 | -105.3211 | 615   | 161   | 517   | 98   | 237   | 11 | 6  | 3  | 13  | 2  | 120   | 1  | 104 | 28  | 8  | 17  | 2  | 1  | 58  | 5  |
| Sommers FlatHC24-01941.8518-105.31416741745581162551373152130113128101921706Sommers FlatHC24-02041.8518-105.31211,069337853215344261311345184221750740521210Sommers FlatHC24-02141.8518-105.3281443117362237671048449145515312881013214753Sommers FlatHC24-02241.8518-105.329665518742123417720145153128810113943Sommers FlatHC24-02341.8518-105.3296651187421234179126697145153128810113943Sommers FlatHC24-06241.8536-105.315527155388139167158851867019323921649121844915538161371615181161<53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sommers Flat | HC24-017                          | 41.8517 | -105.3184 | 5,280 | 1,479 | 4,582 | 698  | 2,130 | 89 | 39 | 14 | 121 | 15 | 1,060 | 4  | 973 | 243 | 3  | 158 | 16 | 5  | 379 | 30 |
| Sommers FlatHC24-02041.8518-105.3171,069337853215344261311345182217507405212011Sommers FlatHC24-02141.8521-105.3284431173622316095411282175181013214755Sommers FlatHC24-02341.8518-105.32630485237671048449145153128<1111345Sommers FlatHC24-02341.8518-105.32630485237671072191266914210151314491451531281111345Sommers FlatHC24-06241.8536-105.31552715538813916715181310132313143415151616545131114241810132414142316151616151616165161616151716161516161616161616161616161616161616 </td <td>Sommers Flat</td> <td>HC24-018</td> <td>41.8518</td> <td>-105.3163</td> <td>532</td> <td>132</td> <td>472</td> <td>61</td> <td>220</td> <td>7</td> <td>4</td> <td>3</td> <td>9</td> <td>1</td> <td>122</td> <td>0</td> <td>87</td> <td>23</td> <td>3</td> <td>13</td> <td>1</td> <td>0</td> <td>34</td> <td>3</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sommers Flat | HC24-018                          | 41.8518 | -105.3163 | 532   | 132   | 472   | 61   | 220   | 7  | 4  | 3  | 9   | 1  | 122   | 0  | 87  | 23  | 3  | 13  | 1  | 0  | 34  | 3  |
| Sommers Flat       HC24-021       41.8521       -105.3281       443       117       362       82       160       9       5       4       11       2       82       1       75       18       10       30       2       1       75       18       10       75       18       10       75       2       1       75       2       13       13       2       1       75       2       105       2       13       13       2       11       75       18       10       13       2       1       47       5         Sommers Flat       HC24-022       41.8518       -105.3259       655       187       421       234       177       20       6       89       1       45       1       53       12       8       11       11       39       43        Sommers Flat       HC24-023       41.8536       -105.315       527       155       388       139       167       15       8       5       18       3       70       1       93       23       9       21       1       83       105       18       10       13       4       13       10       13       4       1                                                                                                                                                                                                                                                                                                                                                                           | Sommers Flat | HC24-019                          | 41.8518 | -105.3141 | 674   | 174   | 558   | 116  | 255   | 13 | 7  | 3  | 15  | 2  | 130   | 1  | 113 | 28  | 10 | 19  | 2  | 1  | 70  | 6  |
| Sommers Flat       HC24-022       41.8518       -105.3259       655       187       421       234       179       30       15       1       29       6       89       2       101       24       0       27       5       2       132       133         Sommers Flat       HC24-023       41.8518       -105.3236       304       85       237       67       104       8       4       9       1       45       1       53       12       8       11       1       1       39       4         Sommers Flat       HC24-062       41.8536       -105.3090       601       165       495       107       219       12       6       9       14       2       108       1       106       27       8       19       2       1       63       6         Sommers Flat       HC24-063       41.8536       -105.3138       467       123       378       89       175       1       5       3       12       2       83       1       77       20       6       14       2       1       5       5       Sommers Flat       HC24-064       41.8536       -105.3138       477       13       37                                                                                                                                                                                                                                                                                                                                                       | Sommers Flat | HC24-020                          | 41.8518 | -105.3117 | 1,069 | 337   | 853   | 215  | 344   | 26 | 13 | 11 | 34  | 5  | 184   | 2  | 217 | 50  | 7  | 40  | 5  | 2  | 120 | 11 |
| Sommers Flat       HC24-023       41.8518       -105.3236       304       85       237       67       104       8       4       4       9       1       45       1       53       12       8       11       1       13       4         Sommers Flat       HC24-062       41.8536       -105.3090       601       165       495       107       219       12       6       9       14       2       106       27       8       19       2       1       63       67         Sommers Flat       HC24-063       41.8536       -105.3115       527       155       388       139       167       15       8       5       18       3       70       1       93       23       9       21       3       1       82       8       15       18       1       167       15       8       5       18       3       70       1       93       23       9       21       3       8       3       10       5       3       12       13       4       2       83       1       77       20       6       14       2       15       15       13       11       34       4                                                                                                                                                                                                                                                                                                                                                                                   | Sommers Flat | HC24-021                          | 41.8521 | -105.3281 | 443   | 117   | 362   | 82   | 160   | 9  | 5  | 4  | 11  | 2  | 82    | 1  | 75  | 18  | 10 | 13  | 2  | 1  | 47  | 5  |
| Sommers FlatHC24-06241.8536-105.30906011654951072191269142108110627819216363Sommers FlatHC24-06341.8536-105.31355271553881391671585183701932392131828Sommers FlatHC24-06441.8536-105.313846712337889175105713113452882289766442145253Sommers FlatHC24-06541.8536-105.31621,5994421,382216665251311345288228976647521212131057131310101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010 <td>Sommers Flat</td> <td>HC24-022</td> <td>41.8518</td> <td>-105.3259</td> <td>655</td> <td>187</td> <td>421</td> <td>234</td> <td>179</td> <td>30</td> <td>15</td> <td>1</td> <td>29</td> <td>6</td> <td>89</td> <td>2</td> <td>101</td> <td>24</td> <td>0</td> <td>27</td> <td>5</td> <td>2</td> <td>132</td> <td>13</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sommers Flat | HC24-022                          | 41.8518 | -105.3259 | 655   | 187   | 421   | 234  | 179   | 30 | 15 | 1  | 29  | 6  | 89    | 2  | 101 | 24  | 0  | 27  | 5  | 2  | 132 | 13 |
| Sommers FlatHC24-06341.8536-105.31155271553881391671585183701932392131828Sommers FlatHC24-06441.8536-105.31384671233788917510513113452813177206142<15253Sommers FlatHC24-06441.8536-105.31621,5994421,3822166652513113452882287664752121212Sommers FlatHC24-06441.8536-105.31621,3413841,133209519241211314235225641242421113Sommers FlatHC24-06441.8534-105.31612,1535931,8962579253015124463972206412424214423134231474201414241424142414241424142414241424142414241424142414241424142414241424242424 <td>Sommers Flat</td> <td>HC24-023</td> <td>41.8518</td> <td>-105.3236</td> <td>304</td> <td>85</td> <td>237</td> <td>67</td> <td>104</td> <td>8</td> <td>4</td> <td>4</td> <td>9</td> <td>1</td> <td>45</td> <td>1</td> <td>53</td> <td>12</td> <td>8</td> <td>11</td> <td>1</td> <td>1</td> <td>39</td> <td>4</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sommers Flat | HC24-023                          | 41.8518 | -105.3236 | 304   | 85    | 237   | 67   | 104   | 8  | 4  | 4  | 9   | 1  | 45    | 1  | 53  | 12  | 8  | 11  | 1  | 1  | 39  | 4  |
| Sommers FlatHC24-06441.8536-105.31384671233788917510531228317720614215253Sommers FlatHC24-06541.8536-105.31621,5994421,38221666525131134528228976647521212Sommers FlatHC24-06641.8533-105.31612,1535931,8962579253015124463972801036636425Sommers FlatHC24-06741.8549-105.31612,1535931,89625792530151244639723010366362142141414Sommers FlatHC24-06741.8554-105.31153,4129493,1242881,35533151057684426415101421710366363663614214141414141414141414141414141414141414141414141414141414141414141414141414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sommers Flat | HC24-062                          | 41.8536 | -105.3090 | 601   | 165   | 495   | 107  | 219   | 12 | 6  | 9  | 14  | 2  | 108   | 1  | 106 | 27  | 8  | 19  | 2  | 1  | 63  | 6  |
| Sommers Flat       HC24-065       41.8536       -105.3162       1,599       442       1,382       216       665       25       13       11       34       5       288       2       289       76       6       47       5       2       12       12         Sommers Flat       HC24-066       41.8533       -105.3186       1,341       384       1,133       209       519       24       12       13       34       235       2       250       64       12       42       4       2       118       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31       31 <th< td=""><td>Sommers Flat</td><td>HC24-063</td><td>41.8536</td><td>-105.3115</td><td>527</td><td>155</td><td>388</td><td>139</td><td>167</td><td>15</td><td>8</td><td>5</td><td>18</td><td>3</td><td>70</td><td>1</td><td>93</td><td>23</td><td>9</td><td>21</td><td>3</td><td>1</td><td>82</td><td>8</td></th<>                                                      | Sommers Flat | HC24-063                          | 41.8536 | -105.3115 | 527   | 155   | 388   | 139  | 167   | 15 | 8  | 5  | 18  | 3  | 70    | 1  | 93  | 23  | 9  | 21  | 3  | 1  | 82  | 8  |
| Sommers Flat       HC24-066       41.8533       -105.3186       1,341       384       1,133       209       519       24       12       11       31       4       235       2       250       64       12       42       4       2       118       11         Sommers Flat       HC24-067       41.8539       -105.3161       2,153       593       1,896       257       925       30       15       12       44       6       397       2       391       103       6       63       6       2       140       14         Sommers Flat       HC24-068       41.8554       -105.3139       3,412       949       3,124       288       1,355       33       15       10       57       6       844       2       647       175       5       88       7       2       154       13         Sommers Flat       HC24-069       41.8554       -105.3115       1,796       499       1,574       222       718       25       10       35       5       366       2       332       88       10       50       5       28       10       50       5       12       14       2       133       333                                                                                                                                                                                                                                                                                                                                                | Sommers Flat | HC24-064                          | 41.8536 | -105.3138 | 467   | 123   | 378   | 89   | 175   | 10 | 5  | 3  | 12  | 2  | 83    | 1  | 77  | 20  | 6  | 14  | 2  | 1  | 52  | 5  |
| Sommers Flat       HC24-067       41.8549       -105.3161       2,153       593       1,896       257       925       30       15       12       44       6       397       2       391       103       6       63       6       2       140       14         Sommers Flat       HC24-068       41.8554       -105.3139       3,412       949       3,124       288       1,355       33       15       10       57       6       844       2       647       175       5       88       7       2       154       13         Sommers Flat       HC24-069       41.8554       -105.3115       1,796       499       1,574       222       718       25       12       10       35       5       366       2       332       88       10       50       5       12       14       2       14       13       15       12       14       13       14       14       14       14       14       14       15       13       14       14       14       15       103       16       15       12       14       13       15       15       16       16       15       16       16       16                                                                                                                                                                                                                                                                                                                                                           | Sommers Flat | HC24-065                          | 41.8536 | -105.3162 | 1,599 | 442   | 1,382 | 216  | 665   | 25 | 13 | 11 | 34  | 5  | 288   | 2  | 289 | 76  | 6  | 47  | 5  | 2  | 121 | 12 |
| Sommers Flat       HC24-068       41.8554       -105.3139       3,412       949       3,124       288       1,355       33       15       10       57       6       844       2       647       175       5       88       7       2       154       13         Sommers Flat       HC24-069       41.8554       -105.3115       1,796       499       1,574       222       718       25       12       10       35       5       366       2       332       88       10       50       5       12       12         Sommers Flat       HC24-070       41.8559       -105.3096       622       164       533       89       251       10       51       10       15       10       10       50       647       175       5       88       7       2       154       13         Sommers Flat       HC24-070       41.8559       -105.3096       622       164       533       89       251       10       51       10       14       2       112       1       105       29       8       19       2       1       50       51       50       51       10       10       12       112       13 </td <td>Sommers Flat</td> <td>HC24-066</td> <td>41.8533</td> <td>-105.3186</td> <td>1,341</td> <td>384</td> <td>1,133</td> <td>209</td> <td>519</td> <td>24</td> <td>12</td> <td>11</td> <td>31</td> <td>4</td> <td>235</td> <td>2</td> <td>250</td> <td>64</td> <td>12</td> <td>42</td> <td>4</td> <td>2</td> <td>118</td> <td>11</td>        | Sommers Flat | HC24-066                          | 41.8533 | -105.3186 | 1,341 | 384   | 1,133 | 209  | 519   | 24 | 12 | 11 | 31  | 4  | 235   | 2  | 250 | 64  | 12 | 42  | 4  | 2  | 118 | 11 |
| Sommers Flat       HC24-069       41.8554       -105.3115       1,796       499       1,574       222       718       25       12       10       35       5       366       2       332       88       10       50       5       2       125       12         Sommers Flat       HC24-070       41.8559       -105.3096       622       164       533       89       251       10       5       10       14       2       112       1       105       29       8       19       2       1       50       5       5       5       5       10       14       2       112       1       105       29       8       19       2       1       50       5       5       5       5       5       10       5       10       14       2       112       1       105       29       1       50       5       5       5       5       5       5       10       14       2       112       1       105       29       1       50       5       5       5       5       5       5       1       50       5       1       50       5       5       1       5       5 <td>Sommers Flat</td> <td>HC24-067</td> <td>41.8549</td> <td>-105.3161</td> <td>2,153</td> <td>593</td> <td>1,896</td> <td>257</td> <td>925</td> <td>30</td> <td>15</td> <td>12</td> <td>44</td> <td>6</td> <td>397</td> <td>2</td> <td>391</td> <td>103</td> <td>6</td> <td>63</td> <td>6</td> <td>2</td> <td>140</td> <td>14</td>                                                    | Sommers Flat | HC24-067                          | 41.8549 | -105.3161 | 2,153 | 593   | 1,896 | 257  | 925   | 30 | 15 | 12 | 44  | 6  | 397   | 2  | 391 | 103 | 6  | 63  | 6  | 2  | 140 | 14 |
| Sommers Flat         HC24-070         41.8559         -105.3096         622         164         533         89         251         10         5         10         14         2         112         1         105         29         8         19         2         1         50         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sommers Flat | HC24-068                          | 41.8554 | -105.3139 | 3,412 | 949   | 3,124 | 288  | 1,355 | 33 | 15 | 10 | 57  | 6  | 844   | 2  | 647 | 175 | 5  | 88  | 7  | 2  | 154 | 13 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sommers Flat | HC24-069                          | 41.8554 | -105.3115 | 1,796 | 499   | 1,574 | 222  | 718   | 25 | 12 | 10 | 35  | 5  | 366   | 2  | 332 | 88  | 10 | 50  | 5  | 2  | 125 | 12 |
| Sommers Flat HC24-071 41.8518 -105.3070 660 185 547 113 234 13 6 11 17 2 123 1 118 31 10 21 2 1 65 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sommers Flat | HC24-070                          | 41.8559 | -105.3096 | 622   | 164   | 533   | 89   | 251   | 10 | 5  | 10 | 14  | 2  | 112   | 1  | 105 | 29  | 8  | 19  | 2  | 1  | 50  | 5  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sommers Flat | HC24-071                          | 41.8518 | -105.3070 | 660   | 185   | 547   | 113  | 234   | 13 | 6  | 11 | 17  | 2  | 123   | 1  | 118 | 31  | 10 | 21  | 2  | 1  | 65  | 6  |

|              |           |         |           |       | 202  | 4 Surface | Geochemist | ry Sample | s  |    |    |    |    |     |    |     |     |    |    |    |    |     |    |
|--------------|-----------|---------|-----------|-------|------|-----------|------------|-----------|----|----|----|----|----|-----|----|-----|-----|----|----|----|----|-----|----|
| Area         | Sample_ID | Lat     | Long      | TREO  | MREO | LREO      | HREO       | Ce        | Dy | Er | Eu | Gd | Но | La  | Lu | Nd  | Pr  | Sc | Sm | Tb | Tm | Y   | Yb |
| Sommers Flat | HC24-072  | 41.8519 | -105.3091 | 456   | 137  | 335       | 121        | 140       | 13 | 7  | 6  | 16 | 3  | 60  | 1  | 83  | 19  | 8  | 19 | 2  | 1  | 71  | 7  |
| Sommers Flat | HC24-073  | 41.8569 | -105.3164 | 611   | 156  | 481       | 130        | 223       | 14 | 8  | 4  | 15 | 3  | 104 | 1  | 96  | 26  | 10 | 18 | 2  | 1  | 79  | 8  |
| Sommers Flat | HC24-074  | 41.8591 | -105.3091 | 332   | 62   | 201       | 131        | 111       | 15 | 10 | 1  | 8  | 3  | 44  | 1  | 29  | 9   | 0  | 8  | 2  | 2  | 81  | 9  |
| Sommers Flat | HC24-075  | 41.8590 | -105.3115 | 2,498 | 671  | 2,248     | 250        | 1,080     | 30 | 14 | 11 | 44 | 5  | 517 | 2  | 446 | 124 | 5  | 66 | 6  | 2  | 135 | 13 |
| Sommers Flat | HC24-076  | 41.8591 | -105.3139 | 1,476 | 424  | 1,271     | 205        | 582       | 24 | 12 | 11 | 33 | 4  | 277 | 2  | 278 | 72  | 6  | 46 | 4  | 2  | 113 | 11 |
| Sommers Flat | HC24-077  | 41.8590 | -105.3163 | 1,132 | 327  | 948       | 184        | 430       | 21 | 11 | 10 | 28 | 4  | 200 | 1  | 211 | 55  | 6  | 36 | 4  | 2  | 105 | 10 |
| Sommers Flat | HC24-078  | 41.8608 | -105.3189 | 427   | 108  | 315       | 112        | 144       | 12 | 7  | 2  | 12 | 2  | 72  | 1  | 64  | 17  | 3  | 14 | 2  | 1  | 69  | 6  |
| Sommers Flat | HC24-079  | 41.8626 | -105.3188 | 133   | 30   | 108       | 25         | 41        | 3  | 1  | 1  | 3  | 1  | 18  | 0  | 18  | 5   | 21 | 4  | 0  | 0  | 15  | 1  |
| Sommers Flat | HC24-080  | 41.8627 | -105.3164 | 755   | 247  | 555       | 200        | 234       | 24 | 12 | 9  | 29 | 4  | 88  | 2  | 151 | 35  | 5  | 33 | 4  | 2  | 112 | 11 |
| Sommers Flat | HC24-081  | 41.8628 | -105.3134 | 2,676 | 738  | 2,383     | 293        | 1,125     | 35 | 17 | 10 | 50 | 7  | 548 | 2  | 488 | 134 | 4  | 74 | 7  | 2  | 158 | 15 |
| Sommers Flat | HC24-082  | 41.8605 | -105.3140 | 1,685 | 447  | 1,469     | 216        | 686       | 24 | 13 | 7  | 31 | 5  | 353 | 2  | 293 | 82  | 4  | 44 | 4  | 2  | 123 | 12 |
| Sommers Flat | HC24-083  | 41.8608 | -105.3163 | 634   | 223  | 442       | 192        | 133       | 22 | 11 | 10 | 27 | 4  | 98  | 1  | 135 | 31  | 5  | 31 | 4  | 2  | 110 | 10 |
| Sommers Flat | HC24-084  | 41.8608 | -105.3067 | 2,719 | 718  | 2,492     | 227        | 1,195     | 26 | 12 | 9  | 42 | 5  | 596 | 2  | 485 | 137 | 5  | 66 | 5  | 2  | 123 | 11 |
| Sommers Flat | HC24-085  | 41.8591 | -105.3068 | 2,208 | 619  | 1,934     | 274        | 887       | 31 | 16 | 8  | 46 | 6  | 447 | 2  | 409 | 109 | 9  | 65 | 6  | 2  | 152 | 13 |
| Sommers Flat | HC24-086  | 41.8590 | -105.3043 | 2,408 | 656  | 2,179     | 230        | 1,030     | 27 | 13 | 9  | 45 | 5  | 511 | 2  | 436 | 122 | 5  | 66 | 5  | 2  | 121 | 11 |