ASSAYS UP TO 997 G/T SILVER, 28 G/T GOLD TARGET 1 EXPANSION #### **HIGHLIGHTS** Mithril Silver and Gold Limited ("Mithril" or "the Company") (MTH:ASX) announces further drill results for the Target 1 resource expansion programme at its Copalquin District project, Mexico. - 4.60 m @ 5.51 g/t gold, 182.4 g/t silver, from 99m (CDH-162), including - 2.40m @ 10.24 g/t gold, 335 g/t silver, from 100.40m, Including 0.60m @ 28.0 g/t gold, 997 g/t silver, from 100.40m **CDH-162** was part of the first drilling into an area **shallower** than the maiden resource model, at the **historic El Refugio** mine workings on the western side of the Target 1 resource area. - 9.00m @ 2.06 g/t gold, 90.26 g/t silver, from 98m (CDH-161) - o Including 1.00m @ 2.14 g/t gold, 259 g/t silver from 99m plus - 1.60m @ 5.09 g/t gold, 299 g/t silver from 125.60m including - o 0.50m @ 12.15 g/t gold, 758 g/t silver from 126.7m **CDH-161** was drilled at **El Cometa** on the eastern side of the Target 1 resource area, again adding to the expanded resource footprint. The recent **33.00m @31.8 g/t gold, 274 g/t silver from surface (CDH-159)** was drilled into a shallower and parallel structure **100 metres west of CDH-161** (see Figure 2). Further drilling will be completed in this area ahead of the scheduled Target 1 resource update Q1 2025. ### John Skeet, Mithril's Managing Director and CEO commented: "Drilling into untested areas in and around the Target 1 maiden resource area continues to successfully expand the footprint with high to exceptionally high grade results, as we progress our aim to double the resource at this first of multiple targets in the district with a further 5,000m of drilling to complete over the coming months. Ongoing LiDAR survey interpretation, together with mapping and drill/channel sample results, further demonstrate a very large epithermal gold-silver system with significant depth potential across this 10 km wide district. There are at least three further Target 1 size areas for future drilling plus several areas identified for field work. Our Copalquin District property is advancing to become the next of the many world-class gold-silver districts in Mexico's prolific Sierra Madre Gold-Silver Trend." ## **COPALQUIN GOLD-SILVER DISTRICT, MEXICO** With 100 historic underground gold-silver mines and workings plus 198 surface workings/pits throughout 70km² of mining concession area, Copalquin is an entire mining district with high-grade exploration results and a maiden JORC resource. To date there are several target areas in the district with one already hosting a high-grade gold-silver JORC resource at El Refugio (529koz AuEq @6.81 g/t AuEq)¹ supported by a conceptional underground mining study completed on the maiden resource in early 2022 (see ASX announcement 28 February 2022) and metallurgical test work (see ASX Announcement 24 February 2024). There is considerable strike and depth potential to increase the resource at El Refugio and at other target areas across the district, plus the underlying geologic system that is responsible for the widespread gold-silver mineralisation. With the district-wide gold and silver occurrences and rapid exploration success, it is clear the Copalquin District is developing into another significant gold-silver district like the many other districts in this prolific Sierra Madre Gold-Silver Trend of Mexico. These districts can host 1 – 5 million ounces of gold plus 50 – 100+ million ounces of silver. **DIRECTORS** $^{^{1}}$ see 'About Copalquin Gold Silver Project' section for JORC MRE details and AuEq. calculation. #### **Drillhole Discussion** A total of 4,881.50 metres have been drilled since June 2024, testing Soledad, Cometa and Refugio to better define dimensions along strike and depth of the mineral evidence that already has shown exceptional silver and gold potential and multi-event quartz deposition. Additionally, the first drill holes at the historic Copalquin mine, 300m lower elevation and 900m SE of the Target 1 area, has provided evidence of an epithermal, multi-phase banded quartz vein, interpreted to be part of the conduit system responsible for the widespread gold-silver mineralization throughout the district and supporting our model of a large and long lived epithermal gold-silver system. CDH-161 intersected 9.00m @ 2.06 g/t gold, 90.26 g/t silver, from 98m, including 1.00m @ 2.14 g/t gold, 259 g/t silver from 99m plus 1.60m @ 5.09 g/t gold, 299 g/t silver from 125.60m including 0.50m @ 12.15 g/t gold, 758 g/t silver from 126.7m In order to establish the vertical and horizontal continuity of **Cometa Zone** (Refugio E-W Structure and crosscutting of NW structures) drill testing at depth and along strike of both **CDH-159** (33.00m @31.8 g/t gold, 274 g/t silver from surface) and **CDH-161** is planned over the coming months. After completion of detailed mapping and sampling in the underground workings at El Cometa, we can now say that Fault/Breccias and Fault/Veins along drift are occurring both as high and low angle structures. There is a dominant 220-250 degree oriented, 50-70 degree angle SE structure offset by a NW structure that has been developed with channel sample assays pending. Drilling is the follow in this area. CDH-162 intersected 4.60 m @ 5.51 g/t gold, 182.43 g/t silver, from 99m, including 2.40m @ 10.24 gold g/t gold, 335.03 g/t silver, from 100.40m, plus including 0.60m @ 28 gold g/t gold, 997 g/t silver, from 100.40m CDH-164 intersected 6.80 m @ 0.70 g/t Au, 36.98 g/t silver, from 87.20m, Including 4m @ 0.93 gold g/t gold, 45.83 g/t silver, from 88m, plus Including 0.60m @ 28 gold g/t gold, 997 g/t silver, from 100.40m **CDH-162, CDH-163 and CDH-164** were drilled in Refugio historic workings shallower than the maiden resource. A wide quartz breccia zone was intercept along a hydrothermal breccia in all holes. **CDH-162** hit Refugio Structure 4.60m @ 5.51 g/t Au, 182.43 g/t Ag, from 99m. **CDH-163** hit the El Refugio historic workings from 86.60m to 88.30m returning with anomalous intercepts of 2.70m @ 0.28 g/t Au, 19.28 g/t Ag from 88.30m, CDH-164 also hit a breccia zone intercepting 6.80m @ 0.70 g/t Au, 36.98 g/t Ag from 87.20m, including 4m @ 0.93 g/t Au, 45.83 g/t Ag, from 88.00 m **CDH-165 and CDH-166** both holes were drilled on the western margin to provide geological information to support the development of the geological model. No reportable intercepts from these exploration holes. Drilling is scheduled to recommence for the second half of the 9,000m program, late this month. Figure 1 Cross-section at the historic El Refugio mine workings where the first drilling has been recently completed (CDH-162 to 164). Figure 2 Plan view of drilling at El Cometa in the eastern side of the Target 1 resource area showing the recent drill intercepts into two separate and parallel structures 100m apart. Further drilling is planned to establish the continuity the mineralisation in this area. Figure 3 Central area around the Target 1 Maiden JORC resource area, where all the drilling to date has been completed. ## **ENVIRONMENTAL, SOCIAL AND GOVERNANCE** The Company philosophy operating in the Copalquin district is to support communities via children's education and providing employment opportunities. This includes supporting community schools in the district, employing twenty people from within the district under the federal employment laws, supporting routine medical visits and developing infrastructure in the district for long term benefit. This includes the municipal access road, connecting to the township of El Durazno 12 km east of the Copalquin District, with support for the municipal upgrade works scheduled for commencement in Q3 2024. ## ABOUT THE COPALQUIN GOLD SILVER PROJECT The Copalquin mining district is located in Durango State, Mexico and covers an entire mining district of 70km² containing several dozen historic gold and silver mines and workings, ten of which had notable production. The district is within the Sierra Madre Gold Silver Trend which extends north-south along the western side of Mexico and hosts many world-class gold and silver deposits. Multiple mineralisation events, young intrusives thought to be system-driving heat sources, widespread alteration together with extensive surface vein exposures and dozens of historic mine workings, identify the Copalquin mining district as a major epithermal centre for Gold and Silver. Within 15 months of drilling in the Copalquin District, Mithril delivered a maiden JORC mineral resource estimate demonstrating the high-grade gold and silver resource potential for the district. This maiden resource is detailed below (see <u>ASX release 17 November 2021</u>)[^]. - 2,416,000 tonnes @ 4.80 g/t gold, 141 g/t silver for 373,000 oz gold plus 10,953,000 oz silver (Total 529,000 oz AuEq*) using a cut-off grade of 2.0 g/t AuEq* - 28.6% of the resource tonnage is classified as indicated | | Tonnes
(kt) | Tonnes
(kt) | Gold
(g/t) | Silver
(g/t) | Gold Eq.*
(g/t) | Gold
(koz) | Silver
(koz) | Gold Eq.*
(koz) | |------------|----------------|----------------|---------------|-----------------|--------------------|---------------|-----------------|--------------------| | | 1 1 | (NL) | (g/ t) | | (g/ t) | (KUZ) | ` , | | | El Refugio | Indicated | 691 | 5.43 | 114.2 | 7.06 | 121 | 2,538 | 157 | | | Inferred | 1,447 | 4.63 | 137.1 | 6.59 | 215 | 6,377 | 307 | | La Soledad | Indicated | - | - | - | - | - | - | - | | | Inferred | 278 | 4.12 | 228.2 | 7.38 | 37 | 2,037 | 66 | | Total | Indicated | 691 | 5.43 | 114.2 | 7.06 | 121 | 2,538 | 157 | | | Inferred | 1,725 | 4.55 | 151.7 | 6.72 | 252 | 8,414 | 372 | | | TOTAL | 2,416 | 4.80 | 141 | 6.81 | 373 | 10,953 | 529 | Table 1 - Mineral resource estimate El Refugio – La Soledad using a cut-off grade of 2.0 g/t AuEq* The Company confirms that it is not aware of any new information or data that materially affects the information
included in the original market announcement and that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement. Mining study and metallurgical test work supports the development of the El Refugio-La Soledad resource with conventional underground mining methods indicated as being appropriate and with high gold-silver recovery to produce metal on-site with conventional processing. Mithril is currently exploring in the Copalquin District to expand the resource footprint, demonstrating its multimillion-ounce gold and silver potential. Mithril has an exclusive option to purchase 100% interest in the Copalquin mining concessions by paying US\$10M on or any time before 7 August 2026 (option has been extended by 3 years). Mithril has reached an agreement with the vendor for an extension of the payment date by a further 2 years (bringing the payment date to 7 August 2028). ^{*} The gold equivalent (AuEq.) values are determined from gold and silver values and assume the following: AuEq. = gold equivalent calculated using and gold:silver price ratio of 70:1. That is, 70 g/t silver = 1 g/t gold. The metal prices used to determine the 70:1 ratio are the cumulative average prices for 2021: gold USD1,798.34 and silver: USD25.32 (actual is 71:1) from kitco.com. Metallurgical recoveries are assumed to be approximately equal for both gold and silver at this early stage. Actual metallurgical recoveries from test work to date are 96% and 91% for gold and silver, respectively. In the Company's opinion there is reasonable potential for both gold and silver to be extracted and sold. Actual metal prices have not been used in resource estimate, only the price ratio for the AuEq reporting. [^] The information in this report that relates to Mineral Resources or Ore Reserves is based on information provided in the following ASX announcement: 17 Nov 2021 - MAIDEN JORC RESOURCE 529,000 OUNCES @ 6.81G/T (AuEq*), which includes the full JORC MRE report, also available on the Mithril Resources Limited Website. Figure 4 – Copalquin District location map with locations of mining and exploration activity within the state of Durango #### -ENDS- Released with the authority of the Board. For further information contact: ### John Skeet Managing Director and CEO jskeet@mithrilresources.com.au +61 435 766 809 ## **Mark Flynn** Investor Relations mflynn@mithrilresources.com.au +61 416 068 733 ### **Competent Persons Statement** The information in this announcement that relates to metallurgical test results, mineral processing and project development and study work has been compiled by Mr John Skeet who is Mithril's CEO and Managing Director. Mr Skeet is a Fellow of the Australasian Institute of Mining and Metallurgy. This is a Recognised Professional Organisation (RPO) under the Joint Ore Reserves Committee (JORC) Code. Mr Skeet has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Skeet consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release. The information in this announcement that relates to sampling techniques and data, exploration results and geological interpretation for Mithril's Mexican project, has been compiled by Mr Ricardo Rodriguez who is Mithril's Project Manager. Mr Rodriguez is a Member of the Australasian Institute of Mining and Metallurgy. This is a Recognised Professional Organisation (RPO) under the Joint Ore Reserves Committee (JORC) Code. Mr Rodriguez has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Rodriguez consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The information in this announcement that relates to Mineral Resources is reported by Mr Rodney Webster, Principal Geologist at AMC Consultants Pty Ltd (AMC), who is a Member of the Australasian Institute of Mining and Metallurgy. The report was peer reviewed by Andrew Proudman, Principal Consultant at AMC. Mr Webster is acting as the Competent Person, as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves, for the reporting of the Mineral Resource estimate. A site visit was carried out by Jose Olmedo a geological consultant with AMC, in September 2021 to observe the drilling, logging, sampling and assay database. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release. Figure 5 LiDAR hill shade image with the historic workings identified across the district and 2020-2022 highlight drill and channel sample results. Several new areas highlighted across the district for follow-up work. # **ASX ANNOUNCEMENT** 18 October 2024 Table 2 Mineralised intercepts in reported drillholes above 0.1 g/t AuEq. | HOLE_ID | Sample_ID | From m | To m | Length m | Au_ppm | Ag_ppm | AuEQ_70 | AgEQ_70 | |---------|-----------|--------|--------|----------|--------|--------|---------|---------| | CDH-161 | 229287 | 19.80 | 20.40 | 0.60 | 0.217 | 7.7 | 0.33 | 22.89 | | CDH-161 | 229288 | 20.40 | 21.00 | 0.60 | 0.473 | 22.8 | 0.80 | 55.91 | | CDH-161 | 229289 | 21.00 | 22.00 | 1.00 | 0.39 | 14.4 | 0.60 | 41.7 | | CDH-161 | 229290 | 22.00 | 23.00 | 1.00 | 0.144 | 6.8 | 0.24 | 16.88 | | CDH-161 | 229295 | 27.00 | 27.5 | 0.5 | 0.221 | 4.8 | 0.29 | 20.27 | | CDH-161 | 229327 | 97.00 | 98.00 | 1.00 | 0.117 | 2.5 | 0.15 | 10.69 | | CDH-161 | 229328 | 98.00 | 99.00 | 1.00 | 0.307 | 10.1 | 0.45 | 31.59 | | CDH-161 | 229329 | 99.00 | 99.60 | 0.60 | 10.75 | 206 | 13.69 | 958.5 | | CDH-161 | 229330 | 99.60 | 100.35 | 0.75 | 1.82 | 53.4 | 2.58 | 180.8 | | CDH-161 | 229331 | 100.35 | 100.95 | 0.60 | 2.83 | 61.9 | 3.71 | 260 | | CDH-161 | 229332 | 100.95 | 101.70 | 0.75 | 2.06 | 41.1 | 2.65 | 185.3 | | CDH-161 | 229333 | 101.70 | 102.40 | 0.70 | 0.699 | 15.4 | 0.92 | 64.33 | | CDH-161 | 229334 | 102.40 | 103.00 | 0.60 | 0.822 | 46.4 | 1.48 | 103.94 | | CDH-161 | 229335 | 103.00 | 104.00 | 1.00 | 1.75 | 112 | 3.35 | 234.5 | | CDH-161 | 229336 | 104.00 | 105.00 | 1.00 | 1.53 | 83.5 | 2.72 | 190.6 | | CDH-161 | 229337 | 105.00 | 106.00 | 1.00 | 0.738 | 77.5 | 1.85 | 129.16 | | CDH-161 | 229338 | 106.00 | 107.00 | 1.00 | 2.14 | 259 | 5.84 | 408.8 | | CDH-161 | 229340 | 107.65 | 108.35 | 0.70 | 0.113 | 10.2 | 0.26 | 18.11 | | CDH-161 | 229341 | 108.35 | 109.05 | 0.70 | 0.122 | 13.6 | 0.32 | 22.14 | | CDH-161 | 229342 | 109.05 | 109.75 | 0.70 | 0.197 | 19.2 | 0.47 | 32.99 | | CDH-161 | 229343 | 109.75 | 110.25 | 0.50 | 0.446 | 47.3 | 1.12 | 78.52 | | CDH-161 | 229344 | 110.25 | 111.00 | 0.75 | 0.48 | 52.4 | 1.23 | 86 | | CDH-161 | 229345 | 111.00 | 112.00 | 1.00 | 0.118 | 10.9 | 0.27 | 19.16 | | CDH-161 | 229346 | 112.00 | 112.70 | 0.70 | 0.729 | 34.8 | 1.23 | 85.83 | | CDH-161 | 229358 | 125.60 | 126.70 | 1.10 | 1.885 | 90.8 | 3.18 | 222.75 | | CDH-161 | 229359 | 126.70 | 127.20 | 0.50 | 12.15 | 758 | 22.98 | 1608.5 | | CDH-161 | 229363 | 129.40 | 130.00 | 0.60 | 0.283 | 2.4 | 0.32 | 22.21 | | CDH-161 | 229387 | 204.10 | 205.20 | 1.10 | 0.748 | 3.6 | 0.80 | 55.96 | | CDH-161 | 229388 | 205.20 | 206.20 | 1.00 | 0.342 | 7.1 | 0.44 | 31.04 | | CDH-161 | 229389 | 206.20 | 206.70 | 0.50 | 0.293 | 25.7 | 0.66 | 46.21 | | CDH-161 | 229391 | 206.70 | 207.20 | 0.50 | 0.163 | 15.9 | 0.39 | 27.31 | | CDH-161 | 229392 | 207.20 | 208.20 | 1.00 | 0.473 | 40.3 | 1.05 | 73.41 | | CDH-161 | 229393 | 208.20 | 209.20 | 1.00 | 0.69 | 62.1 | 1.58 | 110.4 | | CDH-161 | 229395 | 210.25 | 211.25 | 1.00 | 0.249 | 16.2 | 0.48 | 33.63 | | CDH-161 | 229396 | 211.25 | 211.95 | 0.70 | 0.296 | 18.9 | 0.57 | 39.62 | | CDH-161 | 229397 | 211.95 | 213.00 | 1.05 | 0.145 | 6.7 | 0.24 | 16.85 | | CDH-161 | 229398 | 213.00 | 214.10 | 1.10 | 0.222 | 32.6 | 0.69 | 48.14 | | CDH-161 | 229399 | 214.10 | 215.10 | 1.00 | 0.322 | 29 | 0.74 | 51.54 | REGISTERED OFFICE | | | | | | 1 | 1 | 1 | 1 | |----------|--------|--------|--------|------|-------|------|-------|-------| | CDH-161 | 229400 | 215.10 | 215.75 | 0.65 | 0.225 | 29.8 | 0.65 | 45.55 | | CDH-161 | 229407 | 219.30 | 220.00 | 0.70 | 0.124 | 22.4 | 0.44 | 31.08 | | CDH-161 | 229408 | 220.00 | 221.00 | 1.00 | 0.106 | 6.4 | 0.20 | 13.82 | | CDH-161 | 229415 | 226.80 | 227.30 | 0.50 | 0.102 | 2.6 | 0.14 | 9.74 | | CDH-161 | 229416 | 227.30 | 228.00 | 0.70 | 0.185 | 9.3 | 0.32 | 22.25 | | CDH-161 | 229419 | 229.40 | 230.40 | 1.00 | 0.192 | 2.7 | 0.23 | 16.14 | | CDH-161 | 229420 | 230.40 | 231.40 | 1.00 | 0.218 | 3.1 | 0.26 | 18.36 | | CDH-161 | 229421 | 231.40 | 232.40 | 1.00 | 0.151 | 1.4 | 0.17 | 11.97 | | CDH-161 | 229422 | 232.40 | 233.40 | 1.00 | 0.157 | 1.7 | 0.18 | 12.69 | | CDH-161 | 229423 | 233.40 | 234.30 | 0.90 | 0.11 | 1.5 | 0.13 | 9.2 | | CDH-161 | 229428 | 237.25 | 238.25 | 1.00 | 0.149 | 2.9 | 0.19 | 13.33 | | CDH-161 | 229429 | 238.25 | 239.25 | 1.00 | 0.144 | 1.7 | 0.17 | 11.78 | | CDH-161 | 229433 | 241.00 | 242.00 | 1.00 | 0.117 | 0.8 | 0.13 | 8.99 | | CDH-162 | 229477 |
99.00 | 99.80 | 0.80 | 0.527 | 30.1 | 0.96 | 66.99 | | CDH-162 | 229478 | 99.80 | 100.40 | 0.60 | 0.166 | 12.2 | 0.34 | 23.82 | | CDH-162 | 229479 | 100.40 | 101.00 | 0.60 | 28 | 997 | 42.24 | 2957 | | CDH-162 | 229480 | 101.00 | 102.00 | 1.00 | 6.79 | 197 | 9.60 | 672.3 | | CDH-162 | 229481 | 102.00 | 102.80 | 0.80 | 1.225 | 11.1 | 1.38 | | | CDH-162 | 229482 | 102.80 | 103.60 | 0.80 | 0.29 | 4.6 | 0.36 | 96.85 | | CDH-162 | 229500 | 132.75 | 133.25 | 0.50 | 0.121 | 2.2 | 0.15 | 24.9 | | CDH-162 | 229502 | 133.25 | 134.00 | 0.75 | 0.107 | 5.1 | 0.18 | 10.67 | | CDH-162 | 229503 | 134.00 | 135.00 | 1.00 | 0.137 | 1 | 0.15 | 12.59 | | CDH-162 | 229504 | 135.00 | 136.00 | 1.00 | 0.1 | 3.3 | 0.15 | 10.59 | | CDH-162 | 229506 | 137.00 | 138.00 | 1.00 | 0.131 | 2.5 | 0.17 | 10.3 | | CDH-162 | 229507 | 138.00 | 139.00 | 1.00 | 0.219 | 3 | 0.26 | 11.67 | | CDH-162 | 229508 | 139.00 | 140.00 | 1.00 | 0.17 | 2.1 | 0.20 | 18.33 | | CDH-162 | 229509 | 140.00 | 141.00 | 1.00 | 0.154 | 2 | 0.18 | 13.70 | | CDH-163 | 229541 | 88.30 | 89.00 | 0.70 | 0.413 | 29.1 | 0.83 | 12.78 | | CDH-163 | 229542 | 89.00 | 89.55 | 0.55 | 0.286 | 16.1 | 0.52 | 58.01 | | CDH-163 | 229543 | 89.55 | 90.30 | 0.75 | 0.284 | 19.6 | 0.56 | 36.12 | | CDH-163 | 229544 | 90.30 | 91.00 | 0.70 | 0.144 | 11.6 | 0.31 | 39.48 | | CDH-163 | 229546 | 92.00 | 93.00 | 1.00 | 0.214 | 17.8 | 0.47 | 21.68 | | CDH-163 | 229548 | 94.10 | 94.60 | 0.50 | 0.157 | 31.6 | 0.61 | 32.78 | | CDH-163 | 229549 | 94.60 | 95.60 | 1.00 | 0.102 | 11.6 | 0.27 | 42.59 | | CDH-163 | 229554 | 97.10 | 97.75 | 0.65 | 0.356 | 24.4 | 0.70 | 18.74 | | CDH-163 | 229560 | 102.25 | 102.90 | | 0.146 | 17 | 0.39 | 49.32 | | CDH-163 | 229561 | 102.90 | | | 0.209 | | 0.92 | 27.22 | | CDH-163 | 229564 | 105.00 | 106.00 | | 0.123 | 12.8 | 0.31 | 64.53 | | CDH-163 | 229565 | 106.00 | 107.00 | | 0.113 | 10.7 | 0.27 | 21.41 | | CDH-163 | 229570 | 111.00 | 112.00 | | 0.155 | 3 | 0.20 | 18.61 | | CDH-163 | 229575 | 116.00 | 117.00 | | | 10 | 0.48 | 13.85 | | CDH-163 | | 135.00 | | | 0.128 | 2 | 0.16 | 33.45 | | CDH-163 | 229608 | 142.00 | | | 0.102 | 1.2 | 0.10 | 10.96 | | CDH-163 | 229622 | 156.00 | 157.00 | | | 0.5 | 0.12 | 8.34 | | CDH-163 | 229678 | 87.20 | 88.00 | | 0.458 | | 0.80 | 9.25 | | CDH-164 | 229678 | 88.00 | 89.00 | | 0.762 | 37.5 | 1.30 | 55.66 | | CD11-104 | 223013 | 55.00 | 55.00 | 1.00 | 0.702 | 37.3 | 1.30 | 90.84 | | CDH-164 | 229680 | 89.00 | 90.00 | 1.00 | 0.694 | 34 | 1.18 | 82.58 | |---------|--------|--------|--------|------|-------|------|------|-------| | CDH-164 | 229681 | 90.00 | 91.00 | 1.00 | 1.43 | 64.1 | 2.35 | 164.2 | | CDH-164 | 229682 | 91.00 | 92.00 | 1.00 | 0.82 | 47.7 | 1.50 | 105.1 | | CDH-164 | 229683 | 92.00 | 93.00 | 1.00 | 0.323 | 18.9 | 0.59 | 41.51 | | CDH-164 | 229684 | 93.00 | 94.00 | 1.00 | 0.376 | 30.4 | 0.81 | 56.72 | | CDH-164 | 229685 | 94.00 | 95.00 | 1.00 | 0.142 | 15.8 | 0.37 | 25.74 | | CDH-164 | 229686 | 95.00 | 96.00 | 1.00 | 0.271 | 23.8 | 0.61 | 42.77 | | CDH-164 | 229687 | 96.00 | 97.00 | 1.00 | 0.376 | 18.5 | 0.64 | 44.82 | | CDH-164 | 229688 | 97.00 | 98.00 | 1.00 | 0.54 | 36.6 | 1.06 | 74.4 | | CDH-164 | 229691 | 100.00 | 100.75 | 0.75 | 0.11 | 7.1 | 0.21 | 14.8 | | CDH-164 | 229694 | 101.75 | 102.30 | 0.55 | 0.143 | 13 | 0.33 | 23.01 | | CDH-164 | 229695 | 102.30 | 103.00 | 0.70 | 0.158 | 21.1 | 0.46 | 32.16 | | CDH-164 | 229698 | 105.00 | 105.50 | 0.50 | 0.488 | 46.4 | 1.15 | 80.56 | | CDH-164 | 229700 | 106.35 | 107.00 | 0.65 | 0.149 | 5.3 | 0.22 | 15.73 | | CDH-164 | 229702 | 107.00 | 108.00 | 1.00 | 0.128 | 7.9 | 0.24 | 16.86 | | CDH-164 | 229703 | 108.00 | 108.50 | 0.50 | 0.182 | 11.7 | 0.35 | 24.44 | | CDH-164 | 229707 | 110.90 | 111.40 | 0.50 | 0.113 | 1 | 0.13 | 8.91 | | CDH-164 | 229708 | 111.40 | 112.40 | 1.00 | 0.131 | 10.7 | 0.28 | 19.87 | | CDH-164 | 229721 | 121.00 | 122.00 | 1.00 | 0.175 | 2.2 | 0.21 | 14.45 | | CDH-164 | 229722 | 122.00 | 123.00 | 1.00 | 0.259 | 8.9 | 0.39 | 27.03 | | CDH-164 | 229755 | 147 | 148 | 1 | 0.113 | 2.6 | 0.15 | 10.51 | | CDH-164 | 229759 | 150 | 151 | 1 | 0.1 | 2.5 | 0.14 | 9.5 | | CDH-164 | 229762 | 153 | 154 | 1 | 0.108 | 1.1 | 0.12 | 8.66 | | CDH-164 | 229767 | 158 | 159 | 1 | 0.123 | 0.6 | 0.13 | 9.21 | | CDH-164 | 229781 | 180.8 | 181.3 | 0.5 | 0.1 | 1.7 | 0.12 | 8.7 | | CDH-164 | 229782 | 181.3 | 182 | 0.7 | 0.229 | 3 | 0.27 | 19.03 | ## **ASX ANNOUNCEMENT** 18 October 2024 ## JORC Code, 2012 Edition – Table 1 Section 1 Sampling Techniques and Data | Criteria | JORC Code explanation | Commentary | |--------------------------|---|---| | Sampling techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | Samples for the Copalquin, Mexico drill programs consist of ½ HQ core cut lengthwise with a diamond saw. Intervals are nominally 1 m but may vary between 1.5 m to 0.5 m based on geologic criteria. Deeper portions of holes from CDH-075 onward consist of ½ NQ core. Sample sizes are tracked by core diameter and sample weights. The same side of the core is always sent to sample (left side of saw). Reported intercepts are calculated as either potentially underground mineable (below 120m below surface) or as potentially open-pit mineable (near surface). Potentially underground mineable intercepts are calculated as length weighted averages of material greater than 1 g/t AuEQ_70 allowing up to 2m of internal dilution. Potentially open-pit mineable intercepts are calculated as length weighted averages of material greater than 0.25 g/t AuEQ_70 allowing for up to 2m of internal dilution. Rock chip sampling is done with hammer and chisel along continuous chip lines oriented perpendicular to the mineralized structure. The samples are as representative as possible. | | Drilling
techniques | Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | Drilling is done with an MP500 man-portable core rig capable of
drilling HQ size core to depths of 400 m. Core is recovered in a
standard tube. Less than 7% of the total core drilled is NQ size
core (as of 2022-01-15). | | Drill sample
recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether | Drill recovery is measured based on measured length of core divided by length of drill run. Recovery in holes CDH-001 through CDH-025 and holes CDH-032 through
CDH-077 was always above 90% in the mineralized zones. Detailed core recovery data are maintained in the project database. | | Criteria | JORC Code explanation | Commentary | |---|--|---| | | sample bias may have occurred due to
preferential loss/gain of fine/coarse
material. | Holes CDH-026 through CDH-031 had problems with core recovery in highly fractured, clay rich breccia zones. There is no adverse relationship between recovery and grade identified to date. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | Core samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Core logging is both qualitative or quantitative in nature. Photos are taken of each box of core before samples are cut. Core is wetted to improve visibility of features in the photos. All core has been logged and photographed. | | Sub-sampling
techniques and
sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | Core is sawn and half core is taken for sample. Samples are prepared using ALS Minerals Prep-31 crushing, splitting and pulverizing. This is appropriate for the type of deposit being explored. Visual review to assure that the cut core is ½ of the core is performed to assure representativity of samples. field duplicate/second-half sampling is undertaken for 3% of all samples to determine representativity of the sample media submitted. Sample sizes are appropriate to the grain size of the material being sampled. | | Quality of
assay data and
laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) | Samples are assayed for gold using ALS Minerals Au-AA25 method a 30 g fire assay with an AA finish. This is considered a total assay technique. Samples are assayed for silver using ALS Minerals ME-ICP61 method. Over limits are assayed by AgOG63 and AgGRAV21. These are considered a total assay technique. Standards, blanks and duplicates are inserted appropriately into the sample stream. External laboratory checks will be conducted as sufficient samples are collected. Levels of accuracy (ie lack of bias) and precision have not yet been established. Soil sampling is also subject to a program of standards and blanks using the X-ray florescence (XRF) analyser. Results are | | Criteria | JORC Code explanation | Commentary | | | | | | | |---|--|--|--|--|--|--|--|--| | | and whether acceptable levels of
accuracy (ie lack of bias) and precision
have been established. | 50Kv, 40 Kv and 15 Kv for times of 120 seconds, 30 seconds and 30 seconds respectively. Samples with significant amounts of observed visible gold are also assayed by AuSCR21, a screen assay that analyses gold in both the milled pulp and in the residual oversize from pulverization. This has been done for holes CDH-075 and CDH-077. | | | | | | | | Verification of
sampling and
assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | The verification of significant intersections by either independent or alternative company personnel has not been conducted. A re-assay program of pulp duplicates is currently in progress. The use of twinned holes. No twin holes have been drilled. MTH has drilled one twin hole. Hole CDH-072, reported in the 15/6/2021 announcement, is a twin of holes EC-/002 and UC-03. Results are comparable. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols are maintained in the company's core facility. Assay data have not been adjusted other than applying length weighted averages to reported intercepts. | | | | | | | | Location of
data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | Drill collar coordinates are currently located by handheld GPS. Precise survey of hole locations is planned. Downhole surveys of hole deviation are recorded for all holes. Locations for holes CDH-001 through CDH-048 and CDH-051 through CDH-148 have been surveyed with differential GPS to a sub 10 cm precision. Hole CDH-005 was not surveyed UTM/UPS WGS 84 zone 13 N High quality topographic control from Photosat covers the entire drill project area. | | | | | | | | Data spacing
and
distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | Data spacing is appropriate for the reporting of Exploration Results. The Resource estimation re-printed in this announcement was originally released on 16 Nov 2021 No sample compositing has been applied. | | | | | | | | Criteria | JORC Code explanation | Commentary | |--
--|--| | Orientation of
data in relation
to geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Cut lines are marked on the core by the geologists to assure that the orientation of sampling achieves unbiased sampling of possible structures. This is reasonably well observed in the core and is appropriate to the deposit type. The relationship between the drilling orientation and the orientation of key mineralised structures is not considered to have introduced a sampling bias. | | Sample
security | The measures taken to ensure sample security. | Samples are stored in a secure core storage facility until they are
shipped off site by small aircraft and delivered directly to ALS
Global. | | Audits or
reviews | The results of any audits or reviews of sampling techniques and data. | A review with spot checks was conducted by AMC in conjunction
with the resource estimate published 16 Nov 2021. Results were
satisfactory to AMC. | **Section 2 Reporting of Exploration Results** | Criteria | JORC Code explanation | Commer | ntary | | | | |--|---|----------------------|--|---|--|---| | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership including agreements or material | • | Concessions at (| | | | | | issues with third parties
such as joint ventures, | No. | Concession | Concession
Title number | Area (Ha) | Location | | | partnerships, overriding | 1 | LA SOLEDAD | 52033 | 6 | Tamazula, Durango, Mexico | | | royalties, native title | 2 | EL COMETA | 164869 | 36 | Tamazula, Durango, Mexico | | | interests, historical sites,
wilderness or national park | 3 | SAN MANUEL | 165451 | 36 | Tamazula, Durango, Mexico | | | and environmental settings. | 4 | COPALQUIN | 178014 | 20 | Tamazula, Durango, Mexico | | | The security of the tenure held at the time of reporting along with any known | 5 | EL SOL | 236130 | 6,000 | Tamazula, Durango and
Badiraguato, Sinaloa, Mexico | | | | along with any known | 6 | EL CORRAL | 236131 | 907.3243 | | | impediments to obtaining a
licence to operate in the
area. | | | | | | | Exploration
done by other
parties | Acknowledgment and
appraisal of exploration by
other parties. | • | late 1990's and i
JORC compliant.
incorporate wor
Work done by th | n 2005 – 2007. Wo
Mithril uses these
k done by these co
e Mexican govern | ork done by the historic data ompanies in ament and by | o. and UC Resources was done in the hese companies is historic and non-a only as a general guide and will not resource modelling. / IMMSA and will be used for now inaccessible (void model) | | Criteria | JORC Code explanation | Commer | itary | | | | | | | | |-------------|---|---------|---|----------|-----------|---------|-----|-------------|--|--| | Geology | Deposit type, geological setting and style of mineralisation. | • | Copalquin is a low sulfidation epithermal gold-silver deposit hosted in andesite. This deposit type is common in the Sierra Madre Occidental of Mexico and is characterized by quartz veins and stockworks surrounded by haloes of argillic (illite/smectite) alteration. Veins have formed as both low-angle semi-continuous lenses parallel to the contact between granodiorite and andesite and as tabular veins in high-angle normal faults. Vein and breccia thickness has been observed up to 30 meters wide with average widths on the order of 3 to 5 meters. The overall strike length of the semi-continuous mineralized zone from El Gallo to Refugio, Cometa, Los Pinos, Los Reyes, La Montura to Constancia is almost 6 kilometres. The southern area from Apomal to San Manuel and to Las Brujas-El Peru provides additional exploration potential up to 5km. | | | | | | | | | Drill hole | A summary of all | Drillho | le Easting | Northing | Elevation | Azimuth | Dip | Final Depth | | | | Information | information material to the understanding of the | CDH-1 | 49 289184 | 2823994 | 1248 | 180 | 70 | 182.70 | | | | | exploration results including | CDH-14 | | 2823995 | 1248 | 180 | 70 | 657 | | | | | a tabulation of the following | CDH-1 | | 2823904 | 1242 | 180 | 65 | 469 | | | | | information for all Material
drill holes: | CDH-1 | 51 290225 | 2823182 | 879 | 200 | 75 | 84 | | | | | uriii noies. | CDH-1 | 52 290225 | 2823182 | 879 | 200 | 60 | 129 | | | | | easting and northing of the | CDH-1 | | 2824156 | 1062 | 210 | 60 | 366 | | | | | drill hole collar • elevation or RL (Reduced | CDH-1 | 54 290190 | 2823224 | 915 | 200 | 60 | 150 | | | | | Level – elevation above | CDH-1 | 55 290190 | 2823224 | 915 | 200 | 75 | 210 | | | | | and level in markers) of the | CDH-1 | 56 290138 | 2823244 | 950 | 205 | 60 | 165 | | | | | sea level in metres) of the
drill hole collar | CDH-1 | 57 289729 | 2824241 | 1070 | 210 | 50 | 264 | | | | | | CDH-1 | 58 289710 | 2823879 | 1122 | 250 | 60 | 231 | | | | | dip and azimuth of the hole | CDH-1 | 59 289607 | 2823791 | 1176 | 250 | 50 | 276 | | | | | down hole length and | CDH-1 | 60 289702 | 2823834 | 1122 | 250 | 50 | 261 | | | | | interception depth | CDH-1 | 61 289506 | 2823824 | 1187 | 250 | 55 | 315 | | | | | hole length. | CDH-1 | 62 289173 | 2823711 | 1188 | 180 | 55 | 157.50 | | | | | | CDH-1 | 63 289153 | 2823713 | 1175 | 180 | 55 | 171 | | | | | If the exclusion of this
information is justified on | CDH-1 | 64 289147 | 2823750 | 1157 | 180 | 55 | 192 | | | | | the basis that the | CDH-1 | | 2823680 | 1093 | 360 | 55 | 192.00 | | | | | information is not Material | CDH-1 | 66 288881 | 2823680 | 1093 | 60 | 65 | In progress | | | | | and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | | | | | | | | | | | Criteria | JORC Code explanation | Comme | ntary | | | | | | | | | |---|--|---|--|---|--|--|----------------------------------|----------------------------------|---------------------------------------|--------------------------------|-------------------------------------| | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material | • | using a
interce
Length | a 70:1
Silver
epts.
n weighted a | orted for all
to gold pric
averaging is
f zero assays | e ratio. No
used to rep | upper c | ut-off is | applied t | o repor | ting
DH-002 is | | | grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | Au
raw
7.51
11.85
0
0.306
0.364
3.15
10.7
15.6 | ratio is | s based on t | Au *length 3.755 6.5175 0 0.306 0.364 1.575 5.35 7.8 25.6675 | silver price | _ | | | | | | Relationship
between
mineralisation
widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | • | dip. Ho
to true
the rep
77% o | oles drilled a
e-widths, Ho
ported inter
f the reporte | fugio betwee
at -50 degree
oles drilled at
reept lengths
ed intercept
ot known at | es may be of
t-70 degree
and holes
lengths. | consider
es have
drilled a | red to h
true wid
at -90 d | ave interc
dths appro
egrees ha | ept leng
oximate
ve true | ths equal
ly 92% of
widths of | | Criteria | JORC Code explanation | Commentary | |---|---|--| | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | See figures in announcement | | Balanced
reporting | • Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | All exploration results are reported. | | Other
substantive
exploration
data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | No additional exploration data are substantive at this time. Metallurgical test work on drill core composite made of crushed drill core from the El Refugio drill hole samples has been conducted. The samples used for the test work are representative of the material that makes up the majority of the Maiden Resource Estimate for El Refugio release on 17th November 2021. The test work was conducted by SGS laboratory Mexico using standard reagents and test equipment. | | Criteria | JORC Code explanation | Commentary | |--------------|---|--| | Further work | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | Exploration results from the Copalquin District reporting in this release. |