

White Energy Company Limited Lobby 1, Level 2, 76 Skyring Terrace Newstead Queensland 4006 ABN 62 071 527 083 Phone +61 7 3229 9035 info@whiteenergyco.com ASX: WEC | OTC: WECFF whiteenergyco.com

ASX RELEASE

The Manager Company Announcements Office Australian Securities Exchange

Drilling and Ionic Sampling results for the Coronation Prospect in South Australia

Highlights

- White Energy reports analysis of the results from its recent drilling campaign at the Coronation prospect in South Australia.
- The drilling campaign has confirmed the presence of key lithologies that elsewhere host major iron oxide-copper-gold ("IOCG") mineral deposits.
- The holes tested a combination of structural, geochemical and geophysical targets located within the Olympic Dam G9 structural corridor and Geoscience Australia IOCG domain.
- Ionic soil geochemistry sampling close to the area targeted by the drilling is also reported.

12 March 2025 - White Energy Company Limited (ASX: WEC, OTC: WECFF) ("White Energy" or "the Company") reports on its drilling program announced to the market on 24 August 2024 and ionic sampling undertaken in the Coronation prospect, part of its Robin Rise project, approximately 70 km southwest of Coober Pedy in South Australia.

The Company has two exploration tenements in South Australia: EL6987, Lora Creek and EL6566, Robin Rise as shown in **Figure 1**. The Coronation prospect is located in EL6566 which covers approximately 1,361 km² and is situated between the Prominent Hill (BHP, Cu) and Challenger (Barton Gold, Au) mines with which it shares a similar Archaean and Proterozoic basement geology.

Figure 1: Location of EL6566, Robin Rise project southwest of Coober Pedy and the Geoscience Australia G9 and G2 structural corridors in the Gawler Craton.

Background

Drill testing in the Robin Rise area in 2009 intersected anomalous molybdenum (Mo), which was interpreted to be distal to an IOCG system and Balta Granite equivalent age rocks have been identified in numerous drillholes in the tenement. Balta Granite is considered to be the source rock at both Prominent Hill and Carapateena and is also associated with significant IOCG mineralising events in the Gawler Craton.

The area of the Coronation prospect was identified as prospective as early as 2011. In 2021, biochemical sampling of juvenile mulga phyllodes in EL6566 identified a zoned polymetallic anomaly comprising elevated Au, Ag, Ce, Co, La, Re and light rare earth elements ("**LREE's**") in the Coronation prospect (**Figure 2**). Ce and La are vector elements identified at BHP's Carrapateena and Prominent Hill copper mines. Peak biochemical Au values were recorded up to 1.9 ppb.

Figure 2: Location of the Coronation prospect highlighting the anomalous ionic LREE grid finalised prior to the commencement of drilling on the 23rd August 2024.

These results were followed up with several biochemical and ionic geochemical sampling programs which confirmed coincident biochemical and ionic anomalies in four geochemically anomalous areas of interest within the Coronation prospect (**Figure 3**). A review of the close spaced magnetic (100 m) and gravity data (200 m x 200 m) was undertaken including inversion modelling in GEOSOFT and a drilling program was designed to test the major geochemical anomalies observed as shown in **Figure 3**.

Figure 3: The four areas identified by coincident ionic and biochemical anomalies that were drill tested in late 2024.

In June 2024, the Company undertook a cultural heritage survey over the areas of the planned drilling program with members of the Antakirinja Matu-Yankunytjatjara People. In early July 2024, all proposed drill sites were cleared for drilling and the Company received final regulatory approval to undertake the drilling program in early August 2024.

The December Quarterly report noted that the drilling tested a combination of structural, geochemical anomalies and geophysical targets in a drill program that totalled 1,706 metres drilled to a maximum depth of 416.3 m. The drillholes intersected a variety of lithologies dominated by massive gabbroic and megacrystic granitoid bodies including syenite, granitic gneiss, schist, dolerite and magnetite gabbro. Early geological observations in drillhole C24C04 indicate rare blebby Cu sulphides and thin monomictic haematite breccia zones hosted in gneiss with intermittent pervasive haematite alteration overprinting also evident in hole C24C02 being consistent with an iron oxide-copper-gold (IOCG) style of mineralisation.

The program results were encouraging in defining the likely wider distribution of Mt Woods and Balta Granite aged equivalents in the area and the shallow nature of basement which averaged approximately 37 m in depth. The location of the drill hole collars and of a recent ionic sampling grid to the southeast is shown in **Figure 4** together with peak assay results from selected holes.

Sampling of the holes was completed in early October 2024 with samples submitted for assay to ALS Global in Adelaide. A total of Forty-five (45) half core samples from 3 holes (C24C02, C24C04 and C24C05) were submitted for multi element analysis (Lab method ME-MS61r). Holes C24C01, C24C03 and C24C06 did not show mineralisation so were not sampled. The results of the samples submitted have now been received with, as noted above, maximum results presented in **Figure 4**.

Figure 4. Location of the six drillhole sites and summary of the peak geochemical values and depth intervals for samples

The drillholes intersected a variety of lithologies dominated by massive gabbroic and megacrystic granitoids including syenite, granite, granitic gneiss, dolerite, and magnetite gabbro. Assay results from core samples did not reflect the anomalous values in biochemical and ionic soil sampling, although while not anomalous in ionic results, the core sample in hole C24C04 at 133.4-134.4 m recorded 296 ppm Cu. This result was 71 times the background copper values and in the presence of magnetite altered gabbro, this indicates potential for mineralisation. However, given the absence of anomalous LREE and HREE these results should be viewed with caution.

Brief summary logs for the drillholes and assay results for selected elements are shown in Appendix B

As shown in Figure 4, 88 regional scale ionic samples were collected on a 200 x 400 m grid to the southeast of the area tested by the drill holes. The results did not return material anomalies save for weakly anomalous uranium results, with a maximum value of 16.95 ppb or 45 times background (BG). Assay results for selected raw elements are shown in Appendix C.

A JORC Table 1 covering both the drilling and the ionic sampling reported is attached as Appendix A.

Rehabilitation

All rehabilitation related to the drilling program has been completed.

Future on-ground activities in EL6566

The Company is not presently planning to undertake further on-ground exploration work on EL6566 whilst it focusses its on-ground exploration activities at its other exploration projects.

Conclusion

The drilling program results were encouraging in defining the wider distribution of Mt Woods and Balta Granite aged equivalents. The haematite and red-rock alteration and structure intersected in C24C02 and the magnetic target intersected in drillhole C24C05 characterized as magnetite altered gabbro suggests there is potential for mineralisation.

The ionic soil results appear to have litho-geochemically mapped the basement geology, broadly indicating the presence of the Balta Granite intrusive event and their intruded equivalents.

Geological understanding of the Coronation prospect is advancing with the true prospectivity yet to be determined.

Announcement authorised by: Greg Sheahan, Chief Executive Officer

For further information contact: Mr Greg Sheahan Chief Executive Officer E: info@whiteenergyco.com P: +61 7 3229 9035

Competent Person's Statement

The information which relates to Exploration Results, Mineral Resources or Ore Reserves from the Robin Rise project is based on information compiled by Peter Beier, who is the Company's Exploration Manager and is a fellow of the Australasian Institute of Mining and Metallurgy and a member of the Australian Institute of Geoscientists. He has sufficient experience which is relevant to the style of mineralisation and the type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined is the 2012 Edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Peter Beier consents to the inclusion in this document of the matters based on his information in the form and context in which it appears.

The text and appendices to this report were compiled by Mr Keith Whitehouse, who is a director of White Energy, provides geological services to the Company through a related company, Obsidian Minerals Pty Ltd, and is a Member of the Australasian Institute of Mining and Metallurgy. He has sufficient experience which is relevant to the styles of mineralisation and types of deposits under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves." Mr Whitehouse consents to the inclusion in this report of the matters based on this information in the form and context in which it appears

Forward Looking Statements

This press release contains forward-looking statements that are subject to risks and uncertainties. These forward-looking statements include information about possible or assumed future results of our business, financial condition, liquidity, results of operations, plans and objectives. In some cases, you may identify forward-looking statements by words such as "may," "should," "plan," "intend," "potential," "continue," "believe," "expect," "predict," "anticipate" and "estimate," the negative of these words or other comparable words. These statements are only predictions. One should not place undue reliance on these forward-looking statements. The forward-looking statements are qualified by their terms and/or important factors, many of which are outside the Company's control, involve a number of risks, uncertainties and other factors that could cause actual results and events to differ materially from the statements made. The forward-looking statements are based on the Company's beliefs, assumptions and expectations of our future performance, taking into account information currently available to the Company. These beliefs, assumptions and expectations can change as a result of many possible events or factors, not all of which are known to the Company. Neither the Company nor any other person assumes responsibility for the accuracy or completeness of these statements. The Company will update the information in this press release only to the extent required under applicable securities laws. If a change occurs, the Company's business, financial condition, liquidity and results of operations may vary materially from those expressed in the aforementioned forward-looking statements.

Company Profile

White Energy Company (ASX: WEC, OTC: WECFF) is a global resource company, harnessing emerging technologies in mineral exploration and coal beneficiation.

1. Exploration for Essential High-Value Minerals

White Energy merges upper mantle/lower crustal imaging and structural mapping with deep sensing ionic geochemistry, enhanced using AI with advanced machine learning algorithms. Legacy and company generated geology, geophysics, geochemistry, biogeochemistry data are combined with this data to develop prioritised targets.

White Energy's five exploration projects are: Robin Rise (Cu, IOCG) and Lora Creek (Cu, IOCGU)) in the Gawler Craton, South Australia; Specimen Hill farm-in (Cu, Au) and Maranoa (Cu, Au, Co) in Queensland; and Tindal (Cu, Au, U, REE, Pb/Zn) in the Beetaloo/Greater McArthur Basin, Northern Territory.

2. Coal Technology – Power Generation

White Energy is the exclusive worldwide licensee of Binderless Coal Briquetting (**"BCB**") technology, developed by a consortium led by the CSIRO. This innovative process upgrades high moisture, low value sub-bituminous and lignite coals into more valuable, higher energy briquettes for power generation. Significantly, the technology also offers a sustainable solution for agglomerating coal fines, previously discarded and stored as waste, using a low-cost process of dehydration and compaction.

A pilot plant has been established by WEC's joint venture partner in Johannesburg, South Africa, with a view to securing contracts with South African coal mines to use the BCB technology to produce briquettes from coal fines for much needed power generation.

Appendix A

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling	 Nature and quality of sampling (eg cut channels, 	Drilling
techniques	random chips, or specific specialised industry	Drill core was photographed and logged by a company geologist to
	standard measurement tools appropriate to the	industry standard.
	minerals under investigation, such as down hole	Sample intervals were nominally 1 m.
	gamma sondes, or handheld XRF instruments, etc).	Whole core was transported to the Company's yard in Coober Pedy for
	These examples should not be taken as limiting the	cutting and sample preparation. Samples from selected intervals,
	broad meaning of sampling.	identified from lithology, alteration and mineralisation observations
	 Include reference to measures taken to ensure 	aided by portable XRF analysis were dispatched for assay at ALS
	sample representivity and the appropriate	Adelaide.
	calibration of any measurement tools or systems	
	used.	Soils
	• Aspects of the determination of mineralisation that	Soil geochemistry samples taken pursuant to ALS Ionic Leach
	are Material to the Public Report.	Bulletin_V7 and analysed using ALS method ME-MS23.
	 In cases where 'industry standard' work has been 	
	done this would be relatively simple (eg 'reverse	
	circulation drilling was used to obtain 1 m samples	
	from which 3 kg was pulverised to produce a 30 g	
	charge for fire assay'). In other cases more	
	explanation may be required, such as where there	
	is coarse gold that has inherent sampling	
	problems. Unusual commodities or mineralisation	

Criteria	JORC Code explanation	Commentary
	types (eg submarine nodules) may warrant	
	disclosure of detailed information.	
Drilling	 Drill type (eg core, reverse circulation, open-hole 	Diamond drilling HQ size (63.1 mm) or NQ2 (50.6 mm) from surface.
techniques	hammer, rotary air blast, auger, Bangka, sonic, etc)	
	and details (eg core diameter, triple or standard	
	tube, depth of diamond tails, face-sampling bit or	
	other type, whether core is oriented and if so, by	
	what method, etc).	
Drill sample	 Method of recording and assessing core and chip 	Core recovery determined during logging by reference to drillers marker
recovery	sample recoveries and results assessed.	blocks. Core recovery generally exceeded 95%.
	 Measures taken to maximise sample recovery and 	
	ensure representative nature of the samples.	
	 Whether a relationship exists between sample 	
	recovery and grade and whether sample bias may	
	have occurred due to preferential loss/gain of	
	fine/coarse material.	
Logging	 Whether core and chip samples have been 	All drill core was photographed and logged to industry standard.
	geologically and geotechnically logged to a level of	
	detail to support appropriate Mineral Resource	
	estimation, mining studies and metallurgical	
	studies.	
	Whether logging is qualitative or quantitative in	
	nature. Core (or costean, channel, etc)	
	photography.	
	• The total length and percentage of the relevant	
	Intersections logged.	
Sub-	• If core, whether cut or sawn and whether quarter,	
sampling	halt or all core taken.	Core has been cut longitudinally using a manual core saw.
techniques	• If non-core, whether riffled, tube sampled, rotary	Samples are nominally on 1 m intervals with ½ core being sampled.
	split, etc and whether sampled wet or dry.	

Criteria	JORC Code explanation	Commentary		
and sample preparation	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	Sample were fine crushed, rotary split, 250g pulverized (ALS prep codes CRU-21, PUL-23).		
	 Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Soils Regional ionic sampling was conducted on 200 m x 400 m grid and no duplicate samples were collected given the early-stage sample spacing. Ionic soil samples were collected in accordance with published guidelines (ALS Ionic Leach Bulletin V7) under the supervision of geologists with extensive experience collecting and analysing partial leach geochemistry.		
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Drilling Samples were assayed for base metals at ALS Laboratories by multi- element ultra trace, 4 acid digest, ICP-MS instrumentation (ALS code ME-MS61r). Gold was assayed by fire assay of a 50 g aliquot with an ICP-AES finish (ALS Code Au-ICP22). Quality control was assessed as adequate for this batch with known standards introduced by the Company every 20 samples, results of the standards were within acceptable limits. Soils Ionic soils were analysed at ALS Perth method ME-MS23. All results were reviewed by WEC and consultants to WEC, GlobEx Solutions P/L, for accuracy prior to results being released. Blanks and standards are not considered to be appropriate at this stage of the sampling program. 		
Verification	• The verification of significant intersections by either	Drilling		
of sampling	 independent or alternative company personnel. The use of twinned holes. 	No significant intersections were observed. Data is stored electronically in a company managed system.		
		, , , , , , ,		

Criteria	JORC Code explanation	Commentary
and	 Documentation of primary data, data entry 	No adjustments have made to any assays.
assaying	procedures, data verification, data storage	
	(physical and electronic) protocols.	Soils
	 Discuss any adjustment to assay data. 	Spatial trends in multielement data values consistently observed
		between adjacent samples are considered to be sufficient verification
		of data at this stage of exploration.
Location of	Accuracy and quality of surveys used to locate drill	Drilling
data points	holes (collar and down-hole surveys), trenches,	Drill collar coordinates were determined by HandyGPS with an
	Posource estimation	Down hole survey data was collected systematically at approximately
	 Specification of the grid system used 	30 m intervals using an industry standard GYRO digital directional
	 Operation of the grid system used. Operative and adequacy of topographic control 	survey tool.
		• Grid references are provided in MGA1994 Zone 53.
		• Topographical control has been obtained from handheld GPS and
		DTM based on gravity stations collected by differential GPS survey on a
		200 m x 200 m grid.
		Soils
		All sample locations were recorded using handheld GPS (HandyGPS)
		with a positional accuracy of +/- 5 m referenced to the MGA 1994 Z53
		grīd.
Data	Data spacing for reporting of Exploration Results.	Drilling
spacing and	Whether the data spacing and distribution is	The dritting was designed to test a combination of structural,
distribution	sufficient to establish the degree of geological and	that totalled 1 706 metres drilled to a maximum depth of 416 m. The
	grade continuity appropriate for the Mineral	holes did not encounter significant mineralisation but did confirm the
	and classifications applied	accuracy of previous lithological interpretations
	 Whether sample compositing has been applied 	The drilling was not designed to assess mineral resources.
		No compositing was applied to sample data.

Criteria	JORC Code explanation	Commentary
		Soils Initial data was collected on a regional 200 m x 400 m grid along lines which were designed to test areas of interest. No sample compositing was carried out. Sample spacing is considered to be adequate for the current stage of exploration.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	DrillingThe drillhole orientations were considered to be appropriate to test the mineralisation potential of individual targets.SoilsSampling is part of initial exploration and is considered to be appropriately oriented and unbiased. The deposit type is not currently known but an IOCG model is being followed.
Sample security	• The measures taken to ensure sample security.	DrillingCore is processed on site under the supervision of a company geologist. Whole core is palleted and strapped for transport by commercial carrier to the Company's yard in Adelaide for sample preparation.SoilsSamples were collected by company staff and contractors and maintained by company personnel and or contractors until submitted to the laboratory. No special sample security protocols were applied however the handling of samples was in line with industry practice and was suitable for the current stage of exploration.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audits of data have been performed, however rigorous checks by company personnel of the data collected and the results have confirmed that it is fit for purpose.

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Comme	ntary					
Mineral	• Type, reference name/number, location and	All work was conducted over EL6566. The tenement is in good						
tenement and	ownership including agreements or material	standing. Relevant ILUA agreements have been signed and a recent						
land tenure	issues with third parties such as joint ventures,	Heritage	survey in co	onjunction w	ith Trad	itional C	ustodians h	as been
status	partnerships, overriding royalties, native title	complet	ed. EL6566	is due for real	newal in	2025.		
	interests, historical sites, wilderness or national	The tene	ments are h	eld by South	n Austra	lian Coal	Pty Ltd, a s	ubsidiary
	park and environmental settings.	of White Energy Company Limited.						
	• The security of the tenure held at the time of	The tenement is within the Woomera Prohibited zone and work on the						
	reporting along with any known impediments to	tenemen	it is conduc	ted in accord	dance w	ith appro	priate clea	rance
	obtaining a licence to operate in the area.	from the	Departmen	t of Defence				
Exploration	Acknowledgment and appraisal of exploration by	The proje	ect area has	had limited	historic	al explor	ation.	
done by other	other parties.	Apart fro	m work con	ducted by So	outh Au	stralian C	Coal the onl	y other
parties		work of r	iote was Ca	lcrete samp	ling und	ertaken b	by Meekath	arra
		Minerals	Ltd in the 1	990's.				
Geology	 Deposit type, geological setting and style of 	South Australian Coal consider the Robin Rise project an early-stage						
	mineralisation.	project a	nd no depo	sit type has l	been de [.]	fined, cu	rrent explor	ation
		work ove	r the Coron	ation prospe	ect is usi	ing an IO	CG model a	is a
		working	nypothesis.					
Drill hole	 A summary of all information material to the 	Hole loca	ations and o	prientation d	etails ar	e as follo	ows:	
Information	understanding of the exploration results including		Fasting	Northing		Din	Azimuth	End of
	a tabulation of the following information for all	Drillh	GDA94	GDA94 7	RL	(degr	(degree	Hole
	Material drill holes:	ole	753	53	(m)		(ucgicc	Depth
	 easting and northing of the drill hole collar 		200	00		003)	3)	(m)
	 elevation or RL (Reduced Level – elevation above 	C24C01	455781	6747601	154	-70	225	195.80
	sea level in metres) of the drill hole collar	C24C02	455029	6747855	149	-70	120	342.30
	 dip and azimuth of the hole 	C24C03	454939	6746863	148	-90	Vertical	186.30
	down hole length and interception depth	C24C04	456227	6748096	151	-70	205	400.40
	• hole length.	C24C05	455230	6747666	150	-70	110	416.30
	• If the exclusion of this information is justified on	C24C06	455647	6747570	145	-90	Vertical	165.30
	the basis that the information is not Material and							

Criteria	JORC Code explanation	Commentary		
	this exclusion does not detract from the	Datum MGA94 Zone 53		
	understanding of the report, the Competent			
	Person should clearly explain why this is the case.			
Data	 In reporting Exploration Results, weighting 	Drilling		
aggregation	averaging techniques, maximum and/or minimum	Significant intercepts are reported in the body of the report to which		
methods	grade truncations (eg cutting of high grades) and	this JORC Table 1 refers. There is no composition of results over		
	cut-off grades are usually Material and should be stated.	multiple intervals.		
	Where aggregate intercepts incorporate short	Soils		
	lengths of high grade results and longer lengths of	Raw assay results were log transformed, analysed to determine a		
	low grade results, the procedure used for such	background or threshold level of each element with observed results		
	aggregation should be stated and some typical	converted to an anomaly value above background. Element		
	examples of such aggregations should be shown	relationships have then been established and for groups of elements		
	in detail.	anomaly values summed to give a total anomaly value.		
	• The assumptions used for any reporting of metal			
	equivalent values should be clearly stated.			
Relationship	These relationships are particularly important in	The drill program was designed to test geophysical and geochemical		
between	the reporting of Exploration Results.	targets and no significant mineralisation was encountered. The		
mineralisat-	• If the geometry of the mineralisation with respect	drilling did confirm the presence of key lithologies, Balta Granite a		
ion widths and	to the drill hole angle is known, its nature should	Mt Woods formation identified elsewhere as being source and hosting		
intercept	be reported.	formation of mineralisation.		
lengths	• If it is not known and only the down hole lengths			
	are reported, there should be a clear statement to			
	this effect (eg 'down hole length, true width not			
	known').			
Diagrams	Appropriate maps and sections (with scales) and	See the body of the report to which this JORC Table 1 refers.		
	tabulations of intercepts should be included for			
	any significant discovery being reported These			
	should include, but not be limited to a plan view of			

Criteria	JORC Code explanation	Commentary
	drill hole collar locations and appropriate	
	sectional views.	
Balanced	Where comprehensive reporting of all Exploration	The report to which this Table 1 refers provides all information to date
reporting	Results is not practicable, representative	on the area reported and is considered to represent a balanced report.
	reporting of both low and high grades and/or	
	widths should be practiced to avoid misleading	
	reporting of Exploration Results.	
Other	• Other exploration data, if meaningful and material,	All relevant geological data has been reported, there is no other
substantive	should be reported including (but not limited to):	substantive exploration on the area which is the subject of the report
exploration	geological observations; geophysical survey	to which this JORC Table 1 refers.
data	results; geochemical survey results; bulk samples	
	– size and method of treatment; metallurgical test	
	results; bulk density, groundwater, geotechnical	
	and rock characteristics; potential deleterious or	
	contaminating substances.	
Further work	• The nature and scale of planned further work (eg	Drilling
	tests for lateral extensions or depth extensions or	Further work to understand anomalous geochemistry results with the
	large-scale step-out drilling).	drilling results is underway but no further drilling is currently planned.
	Diagrams clearly highlighting the areas of possible	
	extensions, including the main geological	Soils
	interpretations and future drilling areas, provided	No further work will be carried out based on the current reported ionic
	this information is not commercially sensitive.	results.

Section 3 Estimation and Reporting of Mineral Resources

No Section 3 information is reported as the report to which this JORC Table 1 refers does not discuss Mineral Resources

Section 4 Estimation and Reporting of Ore Reserves

No Section 4 information is reported as the report to which this JORC Table 1 refers does not discuss Ore Reserves

Section 5 Estimation and Reporting of Diamonds and Other Gemstones

No Section 5 information is reported as the report to which this JORC Table 1 refers does not discuss Diamonds or Other Gemstones

Appendix B

Summary Drill hole logs and assay results for selected elements

Summary Drillhole Log Hole ID C24C01						
Hole ID	C24C01					
MGA94 Zone	53					
East	455,781					
North	6,747,601					
Elevation	154					
Dip	-70					
Azimuth (true)	225					
EOH depth	195.80					
Project	Hole ID	Depth From	Depth To	Lithology	Comment	
CORONATION	C24C01	0.00	0.50	SOIL		
CORONATION	C24C01	0.50	21.00	SAND		
CORONATION	C24C01	21.00	21.01	Core Loss		
CORONATION	C24C01	21.01	22.57	GRANITE		
CORONATION	C24C01	22.57	22.60	Core Loss		
CORONATION	C24C01	22.60	24.03	GRANITE		
CORONATION	C24C01	23.73	24.03	GRANITE		
CORONATION	C24C01	24.03	24.08	Core Loss		
CORONATION	C24C01	24.08	25.25	GRANITE		
CORONATION	C24C01	25.25	25.30	Core Loss		
CORONATION	C24C01	25.30	49.78	GRANITE		
CORONATION	C24C01	49.78	50.28	MAGNETITE GNEISS		
CORONATION	C24C01	50.28	61.80	GRANITE		
CORONATION	C24C01	61.80	61.88	VEIN BRECCIA		
CORONATION	C24C01	61.88	68.68	GRANITE		
CORONATION	C24C01	68.68	78.59	MAGNETITE GNEISS		
CORONATION	C24C01	78.59	195.80	GRANITE	possible 1% sphalerite 124.96 - 128.04 m	
EOH 195.80 m NO SAMPLES						

Summary Drillhole Log Hole ID C24C02						
Hole ID	C24C02					
MGA94 Zone	53					
East	455,029					
North	6,747,855					
Elevation	149					
Dip	-70					
Azimuth (true)	120					
EOH depth	342.30					
Project	Hole ID	Depth From	Depth To	Lithology	Comment	
CORONATION	C24C02	0.00	0.50	SOIL		
CORONATION	C24C02	0.50	50.90	SAND		
CORONATION	C24C02	50.9	52.93	GRANITE		
CORONATION	C24C02	52.93	52.97	Core Loss		
CORONATION	C24C02	52.97	54.13	GRANITE		
CORONATION	C24C02	54.13	54.83	Core Loss		
CORONATION	C24C02	54.83	56.18	GRANITE		
CORONATION	C24C02	56.18	56.78	Core Loss		
CORONATION	C24C02	56.78	130.24	GRANITE		
CORONATION	C24C02	130.24	173.79	MAGNETITE GNEISS		
CORONATION	C24C02	173.79	342.30	GRANITE	Possible elevated Zn 267.02 - 267.46 m	
EOH 342.3 m See Sample Results below						

Summary Drillhole Log Hole ID C2403						
Hole ID	C24C03					
MGA94 Zone	53					
East	454,939					
North	6,746,863					
Elevation	148					
Dip	-90					
Azimuth (true)	Vertical					
EOH depth	186.30					
Project	Hole ID	Depth From	Depth To	Lithology	Comment	
CORONATION	C24C03	0.00	0.50	SOIL		
CORONATION	C24C03	0.50	68.50	SAND		
CORONATION	C24C03	0.00	183.60	MAGNETITE GNEISS		
EOH 86.03 m NO SAMPLES						

Summary Drillhole Log Hole ID C2404							
Hole ID	C24C04						
MGA94 Zone	53						
East	456,227						
North	6,748,096						
Elevation	151						
Dip	-70						
Azimuth (true)	205						
EOH depth	400.40						
		Depth					
Project	Hole ID	From	Depth To	Lithology	Comment		
CORONATION	C24C04	0.00	0.50	SOIL			
CORONATION	C24C04	0.50	35.60	SAND			
CORONATION	C24C04	35.60	37	MAGNETITE GNEISS			
CORONATION	C24C04	37	37.04	Core Loss			
CORONATION	C24C04	37.04	90.30	MAGNETITE GNEISS			
				UNDIFFERENTIATED			
CORONATION	C24C04	90.30	90.67	BRECCIA			
CORONATION	C24C04	90.67	96.60	MAGNETITE GNEISS			
	004004	00.00	00.05	UNDIFFERENTIATED			
CORDINATION	024004	96.60	96.85				
CORONATION	C24C04	96.85	101.41				
CORONATION	C24C04	101 /1	101 62	BRECCIA			
	C24C04	101.41	101.02				
	C24C04	101.02	108.70				
CORONATION	C24C04	108.20	205.60				
CORONATION	C24C04	205.60	205.09				
CORONATION	C24C04	205.77	205.89	MAGNETITE GNEISS			

CORONATION	C24C04	205.89	206.00	DIORITE										
CORONATION	C24C04	206.00	226.19	MAGNETITE GNEISS										
CORONATION	C24C04	226.19	229.73	GABBRO										
CORONATION	C24C04	229.73	237.73	MAGNETITE GNEISS										
CORONATION	DRONATION C24C04 232.77 233.61 MAGNETITE GNEISS													
CORONATION	ORONATION C24C04 237.73 324.00 GABBRO													
CORONATION	C24C04	240.83	241.88	GABBRO										
CORONATION	C24C04	324.00	400.40	MAGNETITE GNEISS										
CORONATION	ORONATION C24C04 335.75 349.34 MAGNETITE GNEISS													
				EOH 400.40 m See Sampl	e Results below									

				Summary Drillhole Log H	łole ID C24C05
Hole ID	C24C05				
MGA94 Zone	53				
East	455,230				
North	6,747,666				
Elevation	150				
Dip	-70				
Azimuth (true)	110				
EOH depth	416.30				
		Depth			
Project	Hole ID	From	Depth To	Lithology	Comment
CORONATION	C24C05	0.00	7.00	SAND	
CORONATION	C24C05	7.00	8.00	GRAVEL	
CORONATION	C24C05	8.00	20.00	SAND	
CORONATION	C24C05	20.00	27.00	CLAY	
CORONATION	C24C05	27.00	52.65	GRANITE	
CORONATION	C24C05	52.65	54.00	DOLERITE	
CORONATION	C24C05	54.00	108.21	GABBRO	
CORONATION	C24C05	108.21	130.52	GRANITE	
CORONATION	C24C05	130.52	131.57	FAULT	
CORONATION	C24C05	131.57	132.10	DOLERITE	
CORONATION	C24C05	132.10	167.40	GABBRO	
CORONATION	C24C05	167.40	170.85	FAULT	
CORONATION	C24C05	170.85	193.45	GABBRO	
CORONATION	C24C05	193.45	193.66	DOLERITE	
CORONATION	C24C05	193.66	208.37	GRANITE	
CORONATION	C24C05	208.37	208.95	PEGMATITE	
CORONATION	C24C05	208.95	302.84	GRANTIE	

CORONATION	C24C05	302.84	303.21	DOLERITE										
CORONATION	C24C05	303.21	316.72	GABBRO										
CORONATION	C24C05	316.72	348.59	DOLERITE										
CORONATION	DRONATION C24C05 348.59 350.77 GRANTIE													
CORONATION	C24C05	350.77	351.82	GNEISS										
CORONATION	ORONATION C24C05 351.82 416.30 GRANTIE													
	EOH 416.30 m See Sample Results below													

				Summary Drillhole Log H	lole ID C24C06
Hole ID	C24C06				
MGA94 Zone	53				
East	455,647				
North	6,747,570				
Elevation	145				
Dip	-90				
Azimuth (true)	Vertical				
EOH depth	165.30				
Project	Hole ID	Depth From	Depth To	Lithology	Comment
CORONATION	C24C06	0.00	1.00	SOIL	
CORONATION	C24C06	1.00	6.00	SILTSTONE	
CORONATION	C24C06	6.00	10.00	SANDSTONE	
CORONATION	C24C06	#REF!	12.00	SILTSTONE	
CORONATION	C24C06	12.00	19.60	SANDSTONE	
CORONATION	C24C06	#REF!	19.70	Core Loss	
CORONATION	C24C06	19.70	63.70	GRANITE	
CORONATION	C24C06	#REF!	72.82	SYENITE	
CORONATION	C24C06	72.82	73.65	MYLONITE	
CORONATION	C24C06	73.65	81.10	SYENITE	
CORONATION	C24C06	81.10	84.15	GRANITE	

CORONATION	C24C06	84.15	121.00	MAGNETITE GNEISS						
CORONATION	C24C06	121.00	165.60	GRANITE						
EOH 165.60 m NO SAMPLES										

Assay results for selected elements

Hole ID	Depth From	Depth To	Sample ID	Au	Ag	Cr	Cu	Mn	Мо	Ni	Pb	U	w	Zn
	m	m		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
C24C02	52.00	53.02	C02G01	0.001	0.01	3	2.7	313	0.59	1	32.5	6.6	0.8	19
C24C02	53.02	54.02	C02G02	0.001	<0.01	3	6.8	280	0.38	1	33.7	7.4	1.5	22
C24C02	84.50	85.50	C02G03	0.001	0.01	5	3	339	0.9	0.9	31.1	6.3	0.6	21
C24C02	130.00	131.00	C02G04	0.001	0.02	4	2.9	427	2.75	1.9	21.7	6.2	0.9	40
C24C02	166.80	167.80	C02G05	0.001	0.02	3	3.3	223	1.14	1.3	11.8	3.7	2.6	22
C24C02	181.00	182.00	C02G06	0.001	0.06	21	23.9	1235	3.23	9.8	15.9	2.3	1.3	78
C24C02	183.03	184.00	C02G07	0.002	0.06	21	21.3	1185	2.57	11.7	19.1	2.5	1	122
C24C02	208.00	209.00	C02G08	0.002	0.11	33	33.6	1195	3.96	11.3	27.1	3.7	1.4	131
C24C02	266.50	267.50	C02G09	0.002	0.08	21	23.3	1010	3.03	8.3	24.7	2.6	2.3	128
C24C02	267.50	268.50	C02G11	0.01	0.09	19	24.9	1010	2.87	9.2	23.8	3.6	1.5	133
C24C02	311.00	312.00	C02G12	0.003	0.06	25	30.4	1825	3.59	11.7	21.6	3.5	1.7	189
C24C02	306.00	307.00	C02G13	0.002	0.04	19	23.4	1120	2.53	8	21.3	2.8	1.1	90
C24C02	341.30	342.30	C02G14	0.002	0.14	25	37.4	1150	3.37	11.7	22.9	4.5	1.5	148
C24C04	57.75	58.75	C04G15	0.001	0.01	8	27.3	582	1.62	3	27.6	9.1	4.8	49
C24C04	51.75	52.75	C04G16	0.001	<0.01	8	13	539	0.66	3.3	18.2	7.7	4.6	36
C24C04	71.50	72.50	C04G17	0.001	0.02	5	13	477	0.54	2.3	26.9	7.3	3.1	31
C24C04	92.75	93.75	C04G18	0.001	0.05	3	7.5	298	0.41	1	21.8	5.8	2.9	24
C24C04	93.75	94.75	C04G19	0.001	0.12	4	13.4	282	0.49	0.8	26.6	7.5	2.2	25
C24C04	94.75	95.75	C04G20	0.001	<0.01	6	3.1	418	0.4	2.5	23.5	7.4	3.2	38
C24C04	101.00	102.00	C04G21	0.002	0.05	7	22.4	860	2.66	3.4	22.5	7.6	1.8	56
C24C04	88.50	89.50	C04G22	0.001	0.01	3	13	293	0.68	0.9	24.9	8.9	1.8	24
C24C04	197.75	198.75	C04G23	0.001	<0.01	4	2.6	396	4.08	0.6	36.8	5.5	0.8	28
C24C04	225.50	226.20	C04G24	0.001	0.03	3	19.9	363	1.82	2	18.7	8.2	2.2	21
C24C04	228.00	229.00	C04G25	0.001	0.07	58	36.4	1515	1	83.7	19.5	1.3	0.6	137
C24C04	229.00	229.75	C04G26	0.001	0.08	55	38.6	1730	1.58	73.7	20.6	2.1	0.7	152

IL'ILE

	Depth			_		_								_
Hole ID	From	Depth To	Sample ID	Au	Ag	Cr	Cu	Mn	Мо	Ni	Pb	U	W	Zn
C24C04	212.00	213.00	C04G27	0.001	0.01	3	4.3	363	3.59	0.8	40.2	9.1	0.6	24
C24C04	213.00	214.00	C04G28	0.001	<0.01	4	4.1	317	2.34	1.2	37.6	9	0.8	20
C24C04	214.00	215.00	C04G29	0.001	0.03	4	1.9	289	6.01	0.7	38	6.8	1	19
C24C04	205.00	206.00	C04G31	0.001	0.03	10	7.7	464	1.46	11.4	47.2	4.1	0.2	56
C24C04	219.00	220.00	C04G32	0.002	0.02	3	2	303	1.84	0.9	33	6.3	0.7	21
C24C04	220.00	221.00	C04G33	0.002	<0.01	30	4.8	592	2.64	2	25.9	6.5	1.6	17
C24C04	241.25	242.25	C04G34	0.001	0.3	52	42.5	1775	1.18	80.5	71.3	2.2	0.7	197
C24C04	329.50	330.50	C04G35	0.002	0.08	55	62.3	1680	1.14	78.5	16.5	2	1.2	132
C24C04	317.50	318.50	C04G36	0.001	0.08	54	38.6	1370	1.12	78.5	18.8	2.2	0.8	118
C24C04	370.00	371.00	C04G37	0.002	0.01	7	5.1	564	2.43	3	27.9	8.7	1.6	44
C24C04	371.00	372.00	C04G38	0.002	0.02	7	8.1	591	2.91	3.4	28.1	9.6	1.7	48
C24C04	333.50	334.50	C04G39	0.001	0.2	47	31.5	1325	3.79	63.6	139	3.5	1.4	247
C24C04	346.50	347.50	C04G40	0.002	<0.01	7	6.1	541	2.85	2.9	31.9	8.7	1.4	43
C24C04	348.75	349.75	C04G41	0.001	<0.01	7	6	579	3.19	2.9	31.5	10.4	1.6	43
C24C05	130.50	131.50	C05G42	0.001	0.27	31	60.9	1395	1.36	41.8	54.1	5.9	1.1	87
C24C05	133.40	134.40	C05G43	0.001	0.28	48	236	1695	1.22	66.3	474	3.1	0.8	955
C24C05	169.50	170.50	C05G44	0.001	0.05	38	35.1	1200	0.88	68.1	5.7	21.2	0.3	83
C24C05	217.50	218.50	C05G45	0.002	0.04	4	9.9	365	1.96	0.8	37.9	7.9	1	32
C24C05	325.50	326.50	C05G46	0.001	0.08	43	45.9	1620	0.57	77.6	16.3	0.3	0.2	138
C24C05	3189.50	319.50	C05G47	0.001	0.09	46	55	1620	0.64	63.4	17.1	0.4	0.3	146

Au is assayed by Method Au-ICP22 all other elements are assayed by method ME-MS61r

Appendix C

Ionic Geochemistry raw results for selected elements

Sample	Fast	North	Διι	Δσ	Cu	Ph	7n	Cd	Co	Mn	Ni	Sn		v	w
N24880	456000	6743601	0.06	2.06	489	0.9	50	1.36	10.9	0.187	96	<0.2	0.42	6.7	<0.06
N24881	456001	6743799	0.03	0.62	279	18.7	30	0.86	25.6	0.941	36	<0.2	8.03	5.5	< 0.06
N24882	456001	6744001	0.08	1.82	394	0.6	70	1.23	7.9	0.165	117	<0.2	0.1	7.9	<0.06
N24883	456001	6744199	0.03	0.89	386	5.6	60	1.67	27.9	0.827	57	<0.2	2.12	5.1	<0.06
N24884	456000	6744400	0.07	1.71	618	4.7	90	3.73	57.6	1.91	100	<0.2	3.21	8.9	<0.06
N24885	456000	6744600	0.1	1.15	509	6.9	40	1.62	26.7	0.611	73	<0.2	6.4	3.9	<0.06
N24886	456000	6744800	0.07	1.75	570	3.9	20	1.4	11.5	0.289	63	<0.2	2.32	4.4	<0.06
N24887	455999	6745001	0.13	2.93	585	1.7	30	1.54	11.4	0.277	75	<0.2	0.22	14.2	0.06
N24888	456000	6745201	0.07	1.98	488	3.5	30	1.64	18.5	0.555	94	<0.2	1.25	6.9	<0.06
N24889	456400	6745599	0.07	1.17	487	7	70	2.3	33.5	1.05	81	<0.2	4.67	6.1	<0.06
N24890	456401	6745399	0.11	1.84	541	4	50	2.01	48.5	0.824	103	<0.2	2.18	6.8	0.07
N24891	456401	6745200	0.19	3.44	685	2.3	70	1.55	17	0.358	91	<0.2	0.09	16.9	0.08
N24892	456400	6744999	0.09	2.61	611	2.4	60	1.88	22.4	0.536	94	<0.2	0.34	15.8	0.08
N24893	456399	6744800	0.12	3.73	771	2	90	2.18	28.2	0.546	95	<0.2	0.19	14.4	0.06
N24894	456399	6744600	0.13	2.91	652	1.9	30	1.61	12.2	0.309	112	0.2	0.65	12	<0.06
N24895	456400	6743799	0.14	1.25	448	6.9	30	1.56	40.8	0.878	93	<0.2	4.39	6.1	<0.06
N24896	456400	6744000	0.06	1.72	572	10	60	1.92	17.6	0.904	76	<0.2	8.98	7.3	<0.06
N24897	456400	6744198	0.1	1.96	573	39.9	110	1.56	32.7	1.885	60	<0.2	10.85	6.3	<0.06
N24898	456399	6744401	0.07	1.87	607	6	120	3.39	45.4	1.62	105	<0.2	4.3	6.3	<0.06
N24899	456803	6745798	0.07	1.78	604	20.3	180	2.64	50.5	3.08	87	<0.2	8.01	8.8	<0.06
N24900	456797	6745600	0.23	4.63	764	50	150	0.79	30	0.982	48	0.8	16.95	13.6	0.07
N24901	456800	6745399	0.12	1.14	511	22.2	50	1.68	35.3	0.671	68	<0.2	10.35	5.4	<0.06
N24902	456801	6745198	0.11	1.02	418	7.2	70	1.58	73	1.67	90	<0.2	3.93	6.5	<0.06
N24903	456799	6745000	0.16	2.17	516	2.2	20	1.34	20.9	0.534	86	<0.2	0.95	10.2	<0.06
N24904	456774	6744802	0.1	2.8	699	2	40	1.68	93.2	1.65	94	<0.2	0.3	15.8	0.08

Sample															
ID	East	North	Au	Ag	Cu	Pb	Zn	Cd	Co	Mn	Ni	Sn	U	V	W
N24905	456793	6744598	0.11	1.4	440	13.2	60	1.08	60.9	1.015	80	<0.2	7.07	13	<0.06
N24906	456800	6744402	0.08	1.08	459	3.6	90	0.75	42.1	1.1	49	<0.2	4.05	5.3	<0.06
N24907	456806	6744205	0.13	1.32	428	11	40	1.87	40.2	1.255	92	<0.2	7.53	6.8	<0.06
N24908	456807	6743990	0.07	1.25	592	3.7	60	3.11	49.7	1.365	165	<0.2	4.31	7.1	<0.06
N24909	457199	6743801	0.13	0.95	468	4.6	20	1.5	16	0.421	64	<0.2	4.6	4.5	<0.06
N24910	457200	6744000	0.12	2.82	746	3.4	30	1.76	64.2	0.699	138	<0.2	0.54	10.1	0.07
N24911	457201	6744200	0.07	1.09	371	5	20	1.65	22.4	0.524	94	<0.2	4.52	6	<0.06
N24912	457201	6744400	0.1	1.39	469	4.4	30	1.62	21.5	0.451	94	<0.2	3.6	5.8	<0.06
N24913	457199	6744600	0.08	1.16	447	4.3	30	1.99	94.8	2.32	122	<0.2	3.57	13	<0.06
N24914	457200	6744801	0.14	5.41	1000	1.4	60	1.69	12	0.253	90	<0.2	<0.03	16.4	0.07
N24915	457199	6744999	0.14	1.89	651	4.5	20	1.16	12.1	0.301	79	<0.2	2.84	4.9	<0.06
N24916	457199	6745201	0.11	2.25	864	3.3	50	2.33	18.7	0.493	92	<0.2	3.91	5.1	<0.06
N24917	457202	6745399	0.07	1.5	540	2.7	30	1.5	28.6	0.936	106	<0.2	0.61	9.7	<0.06
N24918	457199	6745599	0.11	2.77	1045	4.5	40	3.18	13	0.329	119	<0.2	4.07	4.9	<0.06
N24919	457199	6745799	0.06	1.06	393	17.8	20	1.09	33.4	0.673	64	<0.2	6.56	4.9	<0.06
N24920	457201	6746000	0.14	1.44	661	6.2	10	0.95	16.8	0.247	75	<0.2	3.2	5.3	<0.06
N24921	457600	6746400	0.07	2.05	724	2.9	50	2.91	35.8	1.045	113	0.8	2.21	11.6	0.06
N24922	457599	6746200	0.05	1.14	349	5.9	10	1.56	9.1	0.416	89	<0.2	3.11	5.1	<0.06
N24923	457600	6746000	0.08	1.48	441	4.4	40	1.85	24.8	0.805	76	<0.2	3.31	6.7	<0.06
N24924	457600	6745799	0.11	2.02	456	2	50	1.82	33.6	0.94	84	<0.2	0.61	12.3	<0.06
N24925	457600	6745602	0.15	0.94	283	0.6	30	0.64	5.7	0.064	119	<0.2	0.03	11.2	<0.06
N24926	457599	6745401	0.05	2.03	455	2.5	20	1.74	16.4	0.551	108	<0.2	1.53	7.1	0.07
N24927	457599	6745201	0.08	2.63	704	4.4	20	2.02	20.9	0.445	83	<0.2	2.17	5.8	<0.06
N24928	457598	6745000	0.09	2.04	651	4.7	10	1.26	7.4	0.248	86	<0.2	2.68	5.3	<0.06
N24929	457598	6744800	0.14	4.89	1265	1.4	40	1.16	13.2	0.264	125	<0.2	0.06	21.3	0.06
N24930	457599	6744602	0.03	0.83	292	37.1	30	1.11	16.6	2.65	46	0.7	6.26	18.2	0.09
N24931	457600	6744399	0.12	2.88	678	1.8	50	1.52	25.9	0.495	121	<0.2	0.08	15.2	0.08
N24932	457601	6744199	0.07	0.98	373	27.3	20	0.91	31.2	0.962	77	<0.2	7.45	11	<0.06
N24933	457599	6744000	0.08	1.38	429	3.5	10	1.38	14.7	0.285	103	<0.2	1.83	6.5	<0.06

Sample															
ID	East	North	Au	Ag	Cu	Pb	Zn	Cd	Co	Mn	Ni	Sn	U	V	W
N24934	457602	6743797	0.09	2.4	728	3.6	50	2.32	21.6	0.537	100	<0.2	1.64	7.7	<0.06
N24935	458000	6744398	0.05	1.33	514	4.9	40	2.79	24.1	0.808	93	<0.2	4.74	4.3	<0.06
N24936	458000	6744600	0.13	4.5	797	1.9	30	1.67	8.4	0.21	80	<0.2	0.16	12.8	0.07
N24937	458001	6744798	0.07	4.43	744	2.4	100	2.04	19.4	0.418	96	<0.2	0.06	10.6	0.06
N24938	458001	6745000	0.12	1.27	519	9.4	50	2.65	25.2	0.715	70	<0.2	5.82	4.6	<0.06
N24939	458002	6745200	0.06	1.82	591	5.7	50	2.89	22.2	0.488	72	<0.2	2.55	5.2	0.08
N24940	457999	6745399	0.05	1.9	500	3.7	40	2.04	23.5	0.665	78	<0.2	1.95	5.1	0.06
N24941	458000	6745602	0.02	0.88	346	6.8	120	2.76	44.7	1.95	69	<0.2	2.86	6.2	0.07
N24942	458001	6745801	0.06	1.67	474	3.9	70	2.38	41.1	1.44	64	<0.2	1.88	6.8	<0.06
N24943	457999	6746000	0.08	2.99	471	6.3	20	1.32	6.9	0.207	85	<0.2	0.64	6.9	<0.06
N24944	457998	6746199	0.01	1.02	345	7.2	130	3.69	24	2.4	77	<0.2	2.16	9.8	0.08
N24945	457998	6746400	0.07	2.12	698	3.5	70	2.95	33.6	0.929	87	<0.2	1.48	8.9	0.06
N24946	458001	6746598	0.07	0.65	528	10.1	120	4.39	120.5	4.26	164	<0.2	4.2	15.6	0.08
N24947	458400	6746601	0.08	1.09	464	8.6	60	2.53	35.5	1.015	74	<0.2	5.19	5.1	<0.06
N24948	458400	6746400	0.06	1.3	486	4.4	40	1.86	39.4	1.205	81	<0.2	4.11	6.1	<0.06
N24949	458401	6746199	0.07	1.58	595	3.2	60	2.26	16	0.51	85	<0.2	3.13	5.7	<0.06
N24950	458399	6746002	0.08	1.1	493	5	50	2.1	50.6	1.615	93	<0.2	3.09	7.6	<0.06
N24951	458399	6745803	0.05	1.24	511	6.3	50	2.87	41.2	2.2	87	<0.2	4.98	7.3	<0.06
N24952	458400	6745600	0.03	0.75	277	13.6	30	1.26	25.5	1.23	38	<0.2	4.02	5.5	<0.06
N24953	458399	6745401	0.04	1.44	446	1.3	40	1.58	12.4	0.26	106	<0.2	0.77	5.3	<0.06
N24954	458401	6745200	0.11	3.42	892	1.2	20	1.35	18.4	0.292	176	<0.2	0.28	9.5	0.06
N24955	458400	6745000	0.06	2.69	651	5.3	60	3.76	56.4	1.59	121	<0.2	2.42	6.8	0.07
N24956	458397	6744797	0.06	0.89	450	9.1	60	1.98	37	0.848	59	<0.2	3.66	4.5	<0.06
N24957	458799	6745402	0.08	1.74	628	12.8	180	3.86	81.7	2.53	100	<0.2	6.72	6.3	<0.06
N24958	458799	6745602	0.08	0.87	405	4.9	30	1.82	18.1	0.465	67	<0.2	3.66	4.4	<0.06
N24959	458801	6745798	0.09	1.16	420	8.6	30	1.82	50	1.12	91	<0.2	4.92	5.8	<0.06
N24960	458801	6746000	0.1	1.64	651	6.6	130	3.98	37.1	0.874	114	<0.2	6.92	4.2	<0.06
N24961	458800	6746201	0.06	1.87	637	5.4	90	3.06	46.9	1.445	96	<0.2	3.4	6.3	<0.06
N24962	458797	6746399	0.05	1.48	500	6.5	100	4.18	97.7	3.75	150	<0.2	5.15	8.8	0.1

Sample															
ID	East	North	Au	Ag	Cu	Pb	Zn	Cd	Co	Mn	Ni	Sn	U	V	W
N24963	458998	6746199	0.09	4.7	773	2.5	100	3.16	43.4	0.947	125	<0.2	0.11	16	0.1
N24964	459001	6746000	0.1	2.4	606	3.7	60	2.9	45.1	0.857	126	<0.2	1.08	9.6	0.07
N24965	459002	6745802	0.07	1.1	473	7.2	40	2.58	45.7	1.105	73	<0.2	5.36	4.2	<0.06
N24966	459001	6745600	0.12	1.65	648	7.5	90	4.64	54.7	1.7	123	<0.2	5.44	5.9	<0.06
N24967	459000	6745400	0.12	1.29	596	7.1	60	3.09	45.8	1.285	94	<0.2	5.87	5.7	<0.06

Assay methos MS-MS23

All units are in ppb

Lower Limit of Detection	Au	Ag	Cu	Pb	Zn	Cd	Со	Mn	Ni	Sn	U	V	W
	<0.01	<0.05	<1	1.2	<10	<0.05	<0.3	<0.002	<1	<0.2	<0.03	<0.2	<0.06

Coordinates are in MGA94 Z53