

ASXANNOUNCEMENT

20 March 2025

2024 Exploration Program results for the Northern Silica Project

- The 2024 drilling was completed in late December 2024, with 3,420 metres drilled across 154 holes at the Si2 deposit.
- The program was designed to complete infill and extensional drilling and collection of samples for ongoing metallurgical testwork and optimisation.
- New assaying regime developed focusing on the 0.71mm to 0.106mm fraction to enable better predictability
 of production quality and alignment with end-user product requirements.
- The 2024 samples as well as 683 composite samples produced from the 2023 program, were screened and assayed using the newly developed methods.
- 2024 drilling results will now be assessed and form the basis for a Mineral Resource Estimate update for the Si2 deposit as the project works towards delivering maiden Ore Reserves for the project.

Emerging silica sands developer, Diatreme Resources Limited (ASX:DRX) is pleased to provide an update on its recent drilling program and ongoing development milestones at the Northern Silica Project, underscoring the Company's progress toward delivering high-purity, low-iron silica for the expanding global photovoltaic glass market.

Diatreme's CEO, Neil McIntyre commented: "Completion of the 2024 drilling program safely and on time marks another important milestone for the project. Results continue to confirm an extraordinary silica deposit highly amenable for onsite processing, high product recoveries and use as a direct feed product by photovoltaic grade glass manufacturers"

"The 2024 drilling results will now be used for an updated Mineral Resource Estimate at the Si2 deposit, which is fundamental as we work towards delivering the maiden Ore Reserves and final stage Feasibility Study for the NSP. Diatreme also looks forward to results due in April from the 1-tonne bulk testwork at Mineral Technologies, which will further validate the product's quality and support commercial discussions.

diatreme.com.au

"The Company continues to advance this important project for Queensland's critical minerals industry, which will help power global decarbonisation while delivering valuable new jobs and investment for Hope Vale and the Far North Queensland region."

EXPLORATION UPDATE

The 2024 drilling program was successfully completed with 3,420 metres of air core drilling across 154 drillholes (*Figure* 1), delivering encouraging results that underscores Mineral Resource upgrade potential. Strategic infill drilling targeted zones requiring increased geological and grade continuity for mineral resource upgrades, while step-out holes tested a southeastern area that could open the door to further resource expansion beyond the current model.

This campaign was planned to further our understanding of dune sand thickness, continuity, and quality in key regions that hold the greatest promise for development of the Northern Silica Project. The 2024 exploration program concluded before the onset of the wet season (late December), ensuring field operations remained safe and efficient.

During the 2024 campaign, Diatreme changed the sampling methodology by collecting 1,152 three-metre composites, rather than 1m intervals. With assays on both head grade samples and a -<0.71mm >0.106mm fraction representative of product specification requirements, and the amount of -<0.71mm >0.106mm material in a bulk fraction. This approach ensures a comprehensive understanding of processing amenability, while targeting both overall deposit characteristics and the specific criteria required by end-users seeking low iron - high-purity silica. In addition, 683 composited intervals from the 2023 drilling program were characterised using the same analysis methodology (Appendix 1)

The -<0.71mm >0.106mm fraction from these samples underwent ME-ICP64 analysis at ALS Brisbane to pinpoint impurity levels and potential ferrous and clay contaminants. In parallel, head grade samples were assayed by ME-XRF26, to aid in refining process flowsheets and confirming alignment with market specifications.

Across 154 holes drilled, mineralised intercepts averaged around 20m in thickness, highlighting solid continuity of silicarich material. Notably, a 48m drillhole Si220097 tapped into 46m of high-quality silica sand, with **96.7%** falling within <0.71mm >0.106mm fraction, with an average grade of 0.082% Fe₂O₃ on the -<0.71mm >0.106mm fraction and 0.11% Fe₂O₃ on the raw sample, across the mineralised interval. These results reinforce both the scale and consistency of the resource and further bolster Diatreme's confidence in the project's commercial potential, paving the way for future resource updates and feasibility studies. All results, and locations are reported in **Appendix 1.**

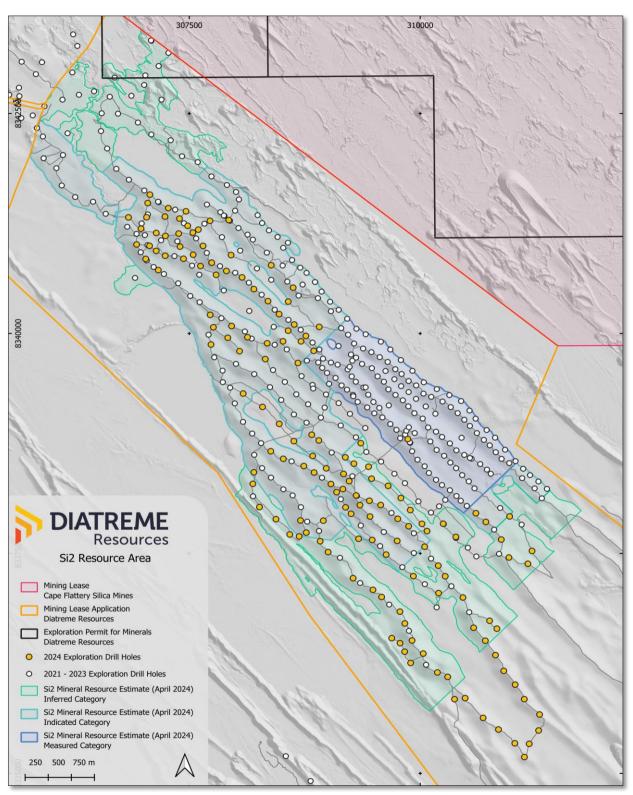


Figure 1: Si2 Exploration to Date

Page 3 of 26

PROCESSING TESTWORK UPDATE

Recent benchtop characterisation tests on a subset of the 1-tonne bulk sample at Mineral Technologies have confirmed the ability to produce a low-iron, high-purity silica sand with Fe_2O_3 grade at 100ppm—directly meeting the specification under Chinese National Industrial Standard JC/T2314–2015.

Chinese National	Standard Criteria	Benchtop Characterisation Results
Fe ₂ O ₃	≤100ppm	100ppm
TiO ₂	≤300ppm	140ppm
Cr ₂ O ₃	≤5ppm	2ppm
0.104mm Fraction	≤5%	0.3%

Achieving these standards confirms the project's capacity to meet the PV glass market's expectations on our silica sand and showcases a strong **94.8%** recovery rate using the benchtop characterisation test from a subset of the bulk feed.

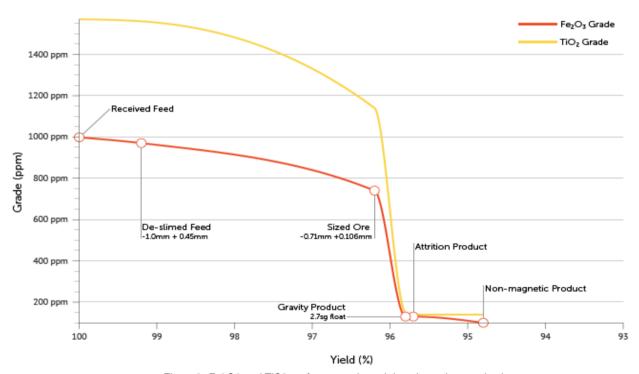


Figure 2: Fe2O3 and TiO2 performance through benchtop characterisation

By meeting the rigorous JC/T2314–2015 standards and achieving such a high recovery rate, Diatreme is well positioned to engage with prospective PV glass manufacturers on offtake agreements. The Company looks forward to the results of the 1-tonne bulk test work at Mineral Technologies, which will further validate the product's quality and support commercial discussions in the expanding photovoltaic market.

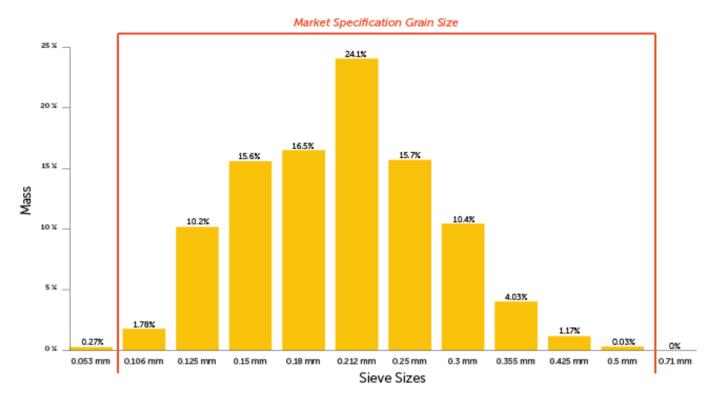


Figure 3: NSP Product Grain Size

NEXT STEPS

Ongoing bulk test work with Mineral Technologies in Carrara is focused on producing demonstrative product from sands at the Northern Silica Project. This work includes a 1-tonne bulk sample program, with results due in April 2025. These findings will validate the proposed flow sheet at scale, providing material suitable for securing offtake agreements.

Building on recent drilling and metallurgical data, Diatreme plans to undertake an updated Mineral Resource Estimate (MRE) in Q2 2025. This update will refine the geological model, incorporate the latest assay results, extents of environmental and cultural constraints identified during the ongoing EIS, and metallurgical test results to form the basis for subsequent development milestones.

Upon completion of the MRE update and bulk metallurgical test work Diatreme will then focus on delivering maiden Ore Reserves and next phase of Feasibility Study for the Northern Silica Project. Diatreme also continues to advance the environmental approvals process for the NSP, following receipt of the final Terms of Reference from the Office of the Coordinator-General (refer ASX release 22 January 2025).

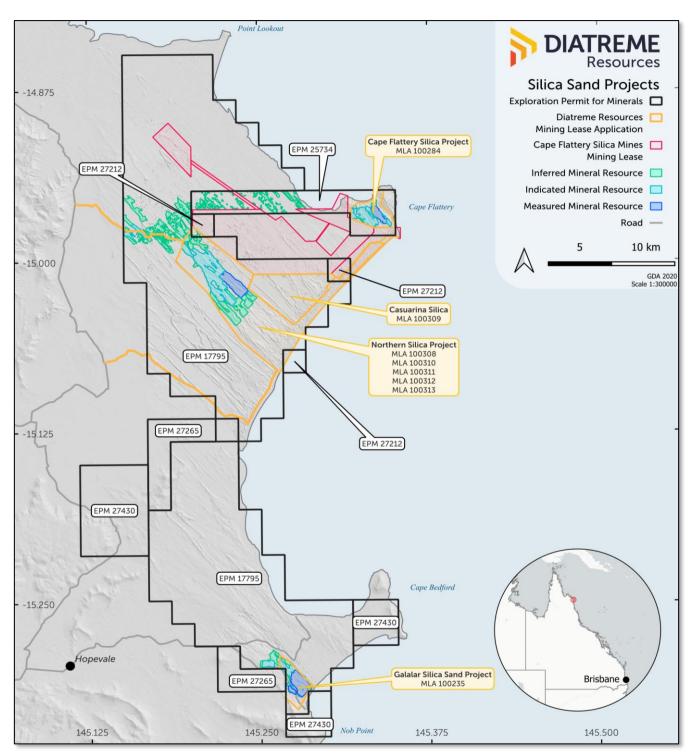


Figure 4: Diatreme's regional silica sand projects in FNQ

Page 6 of 26

This announcement is authorised for release by the Board.

Neil McIntyre

Chief Executive Officer
Mr Neil McIntyre
Ph: +61 (0)7 3397 2222
manager@diatreme.com.au

www.diatreme.com.au

For investor/media queries, please contact: Anthony Fensom, Fensom Advisory anthony@fensom.com.au

Ph: +61 (0)407 112 623

Wayne Swan

Chairman

About Diatreme Resources

Diatreme Resources (ASX:DRX) is an emerging Australian producer of mineral and silica sands based in Brisbane. Our key projects comprise the Northern Silica Project and Galalar Silica Sand Project in Far North Queensland, located next to the world's biggest silica sand mine at Cape Flattery, together with the recently acquired Cape Flattery Silica Project.

Both the Northern Silica and Cape Flattery projects have been designated "Coordinated Projects" by the Queensland Government and are strategically located near the export focused Cape Flattery Port.

In Western Australia's Eucla Basin, Diatreme's Cyclone Zircon Project is considered one of a handful of major zirconrich discoveries of the past decade. Diatreme also owns 100% of the Clermont Copper-Gold Project in central Queensland.

Global material solutions group Sibelco is Diatreme's development partner on its Queensland silica projects portfolio. Sibelco has completed an investment of circa \$49 million into both the silica sands projects and Diatreme at the corporate level.

Diatreme's silica sand resources will contribute to global decarbonisation by providing the necessary high-grade, premium-quality silica for use in the solar PV industry. The Company has a strong focus on ESG, working closely with its local communities and all other key stakeholders to ensure the long-term sustainability of our operations, including health, safety and environmental stewardship.

Diatreme has an experienced Board and management, with expertise across all stages of project exploration, mine development and project financing together with strong community and government engagement skills.

For more information, please visit www.diatreme.com.au

ASX releases referenced for this release:

- Quarterly Activities/Appendix 5B Cash Flow Report 31 January 2025
- NSP environmental studies progress to final stages 22 January 2025
- Mineral Resource upgrade paves way for Northern Silica Project PFS 17 April 2024.

The above referenced announcement is available to view on both the Diatreme and ASX Websites. Diatreme Resources Limited confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources or Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. Diatreme Resources Limited confirms that the form and context in which the Competent Persons findings are presented have not been materially modified from the original market announcements.

COMPETENT PERSONS STATEMENT

The information in this report that relates to Exploration Results is based on information compiled by Mr Frazer Watson, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy, and the Australian Institute of Geoscientists. Mr Watson is a full-time employee of Diatreme Resources Limited. Mr Watson has sufficient experience that is relevant to the style of mineralisation and the type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' Mr Watson consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to the processing of samples from the Galalar Silica Project is based on information provided by Mineral Technologies in Carrara. The information has been reviewed by Mr Phillip McMurtrie, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy. Mr McMurtrie is a director of Tisana Pty Ltd, and is a technical consultant to Diatreme Resources Limited. Mc McMurtrie has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to quality as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr McMurtrie consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

APPENDIX 1: ASX Listing Rule 5.7 Summary

Table of Material Drillholes and Results

	<u>'</u>	able of ivi	ateriai	אטוווווטופ	3 and	Mesuits													
		Collar Inform	nation				Mineralise	ed Interval		Grain Size Fractions			>0.106mm ade			Hea	d Grade		
Hole ID	Northing GDA 2020 Zone 55	Easting GDA 2020 Zone 55	RL m	Azimuth	Dip	Depth m	From m	To m	< 0.71mm %	< 0.71mm>0.106mm %	> 0.106mm %	Al₂O₃ %	Fe ₂ O ₃ %	SiO ₂ %	Al ₂ O ₃	Fe ₂ O ₃ %	TiO ₂ %	LOI %	Total %
SI21001 *	8339979	309213	53	0°	-90°	30	1	30	0.1	95.2	4.6	0.069	0.106				#		
SI21002 *	8339831	309383	61	0°	-90°	39	1	37	0.1	96.3	3.7	0.060	0.097				#		
SI21003 *	8339731	309562	60.3	0°	-90°	36	1	36	0.2	97.0	2.8	0.065	0.104				#		
SI21004 *	8339590	309728	51.8	0°	-90°	27	1	27	0.1	97.3	2.6	0.059	0.072				#		
SI21005 *	8339460	309875	50.8	0°	-90°	27	1	27	0.4	97.1	2.5	0.056	0.065				#		
SI21006 *	8339317	310036	48.5	0°	-90°	24	1	24	0.1	97.1	3.0	0.068	0.091				#		
SI21007 *	8339233	310245	44.1	0°	-90°	21	1	21	0.1	97.4	2.6	0.081	0.103				#		
SI21008 *	8339094	310405	55.5	0°	-90°	33	1	33	0.1	96.0	4.0	0.091	0.172				#		
SI21009 *	8338948	310535	44.5	0°	-90°	24	1	24	0.1	96.6	3.4	0.075	0.124				#		
SI21010 *	8338784	310685	47.6	0°	-90°	30	1	30	0.1	97.0	2.9	0.118	0.112				#		
SI21011	8338651	310818	40.1	0°	-90°	24	1	24	0.1	97.3	2.7	0.095	0.109				#		
SI21012	8338525	310962	35.4	0°	-90°	15	1	15	0.1	97.0	2.9	0.099	0.128				#		
SI21013 *	8338672	310392	65.8	0°	-90°	40	1	36	0.2	96.9	2.9	0.065	0.084				#		
SI21014 *	8338826	310239	56.3	0°	-90°	33	1	33	0.1	95.4	4.6	0.105	0.090				#		
SI21015 *	8338932	310086	58.2	0°	-90°	34	1	32	0.1	96.4	3.6	0.062	0.089				#		
SI21016 *	8339096	309940	53	0°	-90°	30	1	30	0.4	94.3	5.3	0.175	0.102				#		
SI21017 *	8339240	309811	56.5	0°	-90°	33	1	33	0.9	96.2	3.0	0.087	0.071				#		
SI21018 *	8339370	309660	59.6	0°	-90°	42	1	39	0.1	95.8	4.1	0.072	0.085				#		
SI21019 *	8339515	309541	58.2	0°	-90°	36	1	36	0.1	96.6	3.3	0.099	0.071				#		
SI21020 *	8339650	309367	60.1	0°	-90°	36	1	36	0.2	96.5	3.3	0.061	0.097				#		
SI21021 *	8339760	309253	69.6	0°	-90°	45	1	45	0.2	95.9	4.0	0.068	0.108				#		
SI21022 *	8339691	309266	66.9	0°	-90°	42	1	39	0.2	96.0	3.8	0.062	0.086				#		
SI21023 *	8339591	309216	63.4	0°	-90°	33	1	28	0.1	95.5	4.5	0.144	0.192				#		
SI21024 *	8339643	309105	62.4	0°	-90°	27	1	24	0.1	93.1	6.9	0.083	0.117				#		
SI21025 *	8339674	309035	58.9	0°	-90°	21	1	20	0.2	96.0	3.8	0.107	0.155				#		
SI21026	8339818	308909	52.4	0°	-90°	15	1	15	0.3	97.2	2.6	0.076	0.102				#		
SI21027	8339668	308894	64.2	0°	-90°	24	1	24	0.1	96.5	3.4	0.101	0.134				#		
SI21028 *	8339552	308992	55.2	0°	-90°	30	1	15	0.2	95.7	4.1	0.081	0.089				#		
SI21029 *	8339495	309084	60.4	0°	-90°	21	1	16	0.1	97.6	2.4	0.085	0.064				#		
SI21030 *	8339360	309205	59	0°	-90°	21	1	16	0.1	98.0	2.0	0.063	0.045				#		
SI21031 *	8339223	309323	48.8	0°	-90°	9	1	6	0.1	98.0	2.0	0.080	0.052				#		
SI21032 *	8339093	309504	55.3	0°	-90°	24	1	18	0.1	97.7	2.3	0.072	0.062				#		
SI21033 *	8338969	309674	59.3	0°	-90°	32	1	27	0.1	97.9	2.1	0.066	0.055				#		
SI21034 *	8338808	309776	60.9	0°	-90°	30	1	30	0.1	97.9	2.0	0.071	0.053				#		
SI21035 *	8338897	309851	70.5	0°	-90°	45	1	42	0.1	97.8	2.1	0.072	0.085		-		#		
SI21036 *	8339158	309562	56.2	0°	-90°	27	1	25	0.1	97.4	2.6	0.074	0.087				#		

		<u> </u>										<0.71mm	>0.106mm						
		Collar Inforn	nation				Mineralise	ed Interval		Grain Size Fractions			ade			Hea	d Grade		
Hole ID	Northing GDA 2020 Zone 55	Easting GDA 2020 Zone 55	RL m	Azimuth	Dip	Depth m	From m	To m	< 0.71 mm %	< 0.71mm>0.106mm %	> 0.106mm %	Al ₂ O ₃ %	Fe₂O₃ %	SiO ₂ %	Al ₂ O ₃ %	Fe ₂ O ₃ %	TiO ₂ %	LOI %	Total %
SI21037 *	8339224	309498	55.8	0°	-90°	36	1	25	0.2	96.9	3.0	0.086	0.151				#		
SI21038	8339305	309438	56.5	0°	-90°	27	1	24	0.1	97.4	2.5	0.094	0.121				#		
SI21039 *	8339386	309386	60.4	0°	-90°	27	1	23	0.2	98.1	1.7	0.083	0.088				#		
SI21040	8339452	309303	63.2	0°	-90°	30	1	26	0.1	97.2	2.7	0.073	0.082				#		
SI21041 *	8339512	309259	64.5	0°	-90°	30	1	28	0.1	96.7	3.3	0.107	0.155				#		
SI21042	8338756	309887	62.8	0°	-90°	33	1	30	0.1	97.2	2.8	0.099	0.115				#		
SI21043	8338846	309829	66.5	0°	-90°	39	1	36	0.1	97.4	2.6	0.076	0.094				#		
SI21044 *	8338660	309909	58.9	0°	-90°	24	1	20	0.1	96.2	3.8	0.070	0.098	# 					
SI21045 *	8338489	310044	56.3	0°	-90°	21	1	20	0.1	97.3	2.6	0.064	0.057	#					
SI21046 *	8338336	310171	52.7	0°	-90°	24	1	20	0.2	97.7	2.1	0.055	0.047				#		
SI21047 *	8338217	310321	49.1	0°	-90°	15	1	12	0.1	98.2	1.8	0.061	0.043				#		
SI21048 *	8338146	310386	49.1	0°	-90°	15	1	13	0.1	98.9	1.1	0.063	0.033				#		
SI21049 *	8338099	310439	48	0°	-90°	15	1	10	0.1	98.6	1.4	0.075	0.063				#		
SI21050 *	8338869	309942	62.2	0°	-90°	39	1	34	0.1	96.9	3.1	0.090	0.104				#		
SI21051 *	8338673	310174	53.5	0°	-90°	24	1	21	0.1	96.5	3.5	0.075	0.074				#		
SI21052 *	8338533	310327	40.2	0°	-90°	12	1	7	0.4	94.2	5.6	0.068	0.077				#		
SI21053 *	8338390	310455	38.1	0°	-90°	18	1	15	0.4	97.1	2.6	0.200	0.108				#		
SI21054 *	8338324	310529	33.3	0°	-90°	12	1	12	0.2	94.4	5.5	0.074	0.046				#		
SI21055 *	8338577	310556	43.4	0°	-90°	21	1	20	0.2	98.2	1.6	0.065	0.035				#		
SI21056	8338516	310650	38.5	0°	-90°	16	1	15	0.1	98.3	1.7	0.105	0.073				#		
SI21057	8338450	310720	36.4	0°	-90°	15	1	12	0.1	97.9	2.1	0.084	0.083				#		
SI21058	8338406	310764	34.5	0°	-90°	15	1	12	0.1	98.1	1.9	0.148	0.044				#		
SI21059	8338236	311235	40.9	0°	-90°	21	1	21	0.1	96.4	3.6	0.149	0.139				#		
SI21060	8338109	310272	36.3	0°	-90°	12					No miner	alisation inter	cepted.#						
SI21061	8338036	310205	38	0°	-90°	18					No miner	alisation inter	cepted. #						
SI21062	8337830	310250	37.3	0°	-90°	15	1	3	0.3	97.0	2.7	0.082	0.042				#		
SI21063	8337561	310510	46.9	0°	-90°	16					No miner	alisation inter	cepted.#						
SI21064	8338092	309981	37.3	0°	-90°	15						alisation inter							
SI21065	8338406	309721	39.6	0°	-90°	14					No miner	alisation inter	cepted. #						
SI21066	8338656	309418	38.1	0°	-90°	18						alisation inter							
SI21067	8338951	309137	33.1	0°	-90°	12					No miner	alisation inter	cepted. #						
SI21068	8339158	308966	31.7	0°	-90°	9	1	7	0.1	96.4	3.5	0.076	0.037				#		
SI21069	8339209	309117	34.7	0°	-90°	14	1	3	0.3	92.1	7.6	0.096	0.052				#		
SI21070	8339087	309240	33.9	0°	-90°	12	1	4	0.5	96.4	3.1	0.463	0.065				#		
SI21071	8338926	309406	34.9	0°	-90°	12					No miner	alisation inter							
SI21072 *	8339428	309014	43.9	0°	-90°	9	1	9	0.8	97.4	1.8	0.926	0.338				#		
SI21073	8339307	308981	37.2	0°	-90°	9	1	7	0.2	97.0	2.8	0.071	0.033				#		
SI21074	8339415	308835	34.7	0°	-90°	12	1	6	0.2	98.3	1.6	0.091	0.027				#		
SI21075	8339516	308716	31.9	0°	-90°	12	1	10	0.3	97.6	2.0	0.109	0.030				#		
SI21076	8339450	308535	32.4	0°	-90°	12	1	10	0.5	96.5	3.0	0.121	0.054				#		
SI21077	8339192	308783	42.3	0°	-90°	23	1	15	0.1	97.5	2.5	0.117	0.073	#					
										NAME AND ADDRESS OF THE PARTY O									

												40.74	. 0. 400						
		Collar Inforn	nation				Mineralise	ed Interval		Grain Size Fractions			>0.106mm ade			Head	d Grade		
Hole ID	Northing GDA 2020 Zone 55	Easting GDA 2020 Zone 55	RL m	Azimuth	Dip	Depth m	From m	To m	< 0.71mm %	< 0.71 mm> 0.106 mm %	>0.106mm %	Al ₂ O ₃ %	Fe ₂ O ₃ %	SiO ₂ %	Al ₂ O ₃ %	Fe ₂ O ₃ %	TiO ₂ %	LOI %	Total %
SI21078	8339080	308633	45.9	0°	-90°	19	1	10	0.3	97.2	2.5	0.087	0.057				#		
SI21079	8339386	308370	43.6	0°	-90°	9	1	6	0.1	97.3	2.7	0.082	0.067				#		
SI21080	8339651	308002	59.5	0°	-90°	30	1	27	0.1	98.4	1.6	0.071	0.088				#		
SI21081	8339574	307851	49.5	0°	-90°	18	1	18	0.1	97.6	2.4	0.088	0.098				#		
SI21082	8339444	307858	51	0°	-90°	21	1	21	0.1	97.6	2.4	0.066	0.087				#		
SI21083	8339206	307991	43.3	0°	-90°	15	1	15	0.2	97.5	2.3	0.065	0.055				#		
SI21084	8338858	308178	57.2	0°	-90°	24	1	24	0.1	95.6	4.4	0.076	0.151				#		
SI21085	8338615	308194	57.6	0°	-90°	27	1	27	0.2	97.7	2.1	0.062	0.058				#		
SI21086	8338361	308383	52.7	0°	-90°	21	1	21	0.1	96.9	3.1	0.057	0.050				#		
SI21087	8338160	308619	62.7	0°	-90°	27	1	23	0.3	97.8	2.0	0.061	0.070				#		
SI21088	8337859	308773	62.1	0°	-90°	30	1	27	0.3	97.3	2.4	0.068	0.055				#		
SI220001	8339318	308084	40.7	0°	-90°	12	1	12	0.4	94.5	5.0	0.098	0.043	98.74	0.13	0.07	0.11	0.23	99.39
SI220002	8339166	308293	40.4	0°	-90°	15					No mine	ralisation inte	rcepted.						
SI220003	8338973	308474	38.2	0°	-90°	15					No mine	ralisation inte	rcepted.						
SI220004	8338777	308633	40.3	0°	-90°	15					No mine	ralisation inte	rcepted.						
SI220005	8338609	308836	44.3	0°	-90°	12					No mine	ralisation inte	rcepted.						
SI220006	8338468	308983	48.7	0°	-90°	9	1	4	0.3	94.7	4.9	0.085	0.049	98.84	0.08	0.07	0.10	0.15	99.33
SI220007	8338405	309170	84.3	0°	-90°	39	1	37	0.1	95.6	4.3	0.061	0.086	99.05	0.07	0.15	0.18	0.12	99.68
SI220008	8338323	309232	79.5	0°	-90°	34	1	32	0.2	96.6	3.2	0.066	0.058	98.97	0.07	0.09	0.09	0.14	99.44
SI220009	8338050	309348	85.2	0°	-90°	42	1	42	0.2	96.4	3.4	0.132	0.087	99.00	0.12	0.13	0.15	0.14	99.64
SI220010	8337920	309457	78.4	0°	-90°	36	1	30	0.2	96.5	3.3	0.137	0.094	98.91	0.18	0.14	0.17	0.14	99.66
SI220011	8337643	309751	67.9	0°	-90°	23	1	16	0.3	97.2	2.6	0.080	0.058	98.91	0.09	0.08	0.07	0.13	99.37
SI220012	8338099	309451	79.2	0°	-90°	41	1	33	0.1	95.8	4.1	0.073	0.080	98.83	0.10	0.10	0.11	0.15	99.38
SI220013	8338051	309572	78.9	0°	-90°	57	1	36	0.1	95.4	4.5	0.074	0.100	98.86	0.09	0.12	0.15	0.16	99.49
SI220014	8337894	309758	70.6	0°	-90°	39	1	30	0.2	95.0	4.9	0.115	0.146	98.62	0.14	0.18	0.21	0.16	99.44
SI220015	8337808	309872	64.8	0°	-90°	30	1	24	0.2	95.8	4.0	0.185	0.107	98.65	0.20	0.13	0.14	0.18	99.42
SI220016	8337577	310047	55.5	0°	-90°	30	1	10	0.1	95.4	4.5	0.084	0.057	98.94	0.09	0.08	0.12	0.16	99.47
SI220017	8337361	310196	65.4	0°	-90°	27	1	13	0.1	95.8	4.1	0.116	0.147	98.69	0.13	0.19	0.29	0.15	99.58
SI220018	8337241	310271	66.4	0°	-90°	27	1	9	0.1	95.1	4.8	0.109	0.121	98.34	0.16	0.18	0.29	0.15	99.25
SI220019	8336999	310463	71.6	0°	-90°	24	1	13	0.1	93.3	6.7	0.101	0.131	98.49	0.14	0.21	0.33	0.12	99.43
SI220020	8337049	310199	72.6	0°	-90°	18	1	9	0.1	96.0	3.9	0.086	0.086	98.75	0.14	0.12	0.13	0.15	99.41
SI220021	8337242	309926	67.6	0°	-90°	12	1	5	0.3	93.2	6.5	0.222	0.212	98.29	0.29	0.29	0.28	0.27	99.56
SI220022	8337487	309632	73.7	0°	-90°	24	1	15	0.2	94.4	5.5	0.115	0.165	98.54	0.18	0.26	0.35	0.15	99.66
SI220023	8337653	309480	77.5	0°	-90°	24	1	18	0.3	94.0	5.7	0.112	0.112	98.73	0.17	0.17	0.23	0.16	99.60
SI220024	8337951	309252	54.6	0°	-90°	18	1	5	0.3	93.0	6.8	0.168	0.089	98.62	0.20	0.14	0.18	0.19	99.46
SI220025	8338024	309192	53.6	0°	-90°	12	1	5	0.5	93.5	5.9	0.127	0.049	98.68	0.23	0.08	0.13	0.40	99.66
SI220026	8338197	309096	64.3	0°	-90°	18	1	15	0.1	94.8	5.2	0.090	0.066	98.83	0.11	0.08	0.12	0.17	99.41
SI220027	8338232	309163	69.5	0°	-90°	24	1	21	0.2	95.8	4.0	0.076	0.066	99.19	0.10	0.08	0.10	0.15	99.72
SI220028	8338290	309034	70.7	0°	-90°	25	1	23	0.5	95.9	3.6	0.147	0.139	98.78	0.16	0.15	0.11	0.22	99.54
SI220029	8338420	308852	64.7	0°	-90°	21	1	17	0.1	94.6	5.3	0.102	0.128	98.82	0.12	0.17	0.25	0.12	99.60
SI220030	8338495	308740	60.6	0°	-90°	21	1	17	0.2	95.5	4.3	0.075	0.078	98.99	0.12	0.11	0.17	0.13	99.62
					'					11 11 0 55 4		0200							

Page 11 of 26

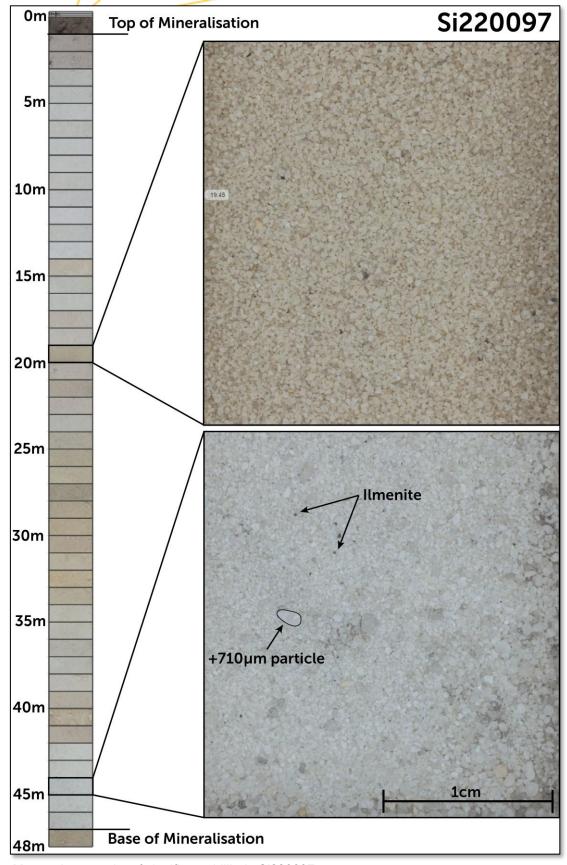
Notwing Casting Research			Collar Inform	nation				Mineralise	ed Interval		Grain Size Fractions			>0.106mm ade			Head	d Grade		
SECOND SESSING SOUTH S	Hole ID	GDA 2020	GDA 2020		Azimuth	Dip				-			Al ₂ O ₃	Fe ₂ O ₃						
S1200222 S138882 S18883 S88 O' 90° 30 1 28 1.7 95.4 2.9 0.081 0.057 92.0 0.10 0.08 0.08 0.08 0.07 0.97 0.10 0.08 0.08 0.08 0.07 0.08 0.08 0.07 0.	SI220031	8338576		56.3	0°	-90°	24	1	18	0.1	96.9	3.1	0.103	0.066	98.84	0.13	0.09	0.09	0.16	99.37
19220033 8338423 306200 44-9 0" 90" 15 1 13 11 19 1 19 1 19 1 19 1 1																				
					0°	-90°														
SEZ20038 S337548 309916 56.9 0° 90° 25 1 18 0.1 96.5 3.5 0.062 0.080 9.08 0.06 0.08 0.11 0.09 99.58 15.20037 38.37514 309920 80.38 0° 90° 29 1 27 0.1 97.6 2.3 0.083 0.116 93.00 0.09 0.13 0.13 0.13 99.81 15.20038 83.37518 309920 80.38 0° 90° 25 1 27 0.1 97.6 2.3 0.083 0.116 93.00 0.09 0.13 0.18 0.08 99.58 15.20039 83.37618 309930 309847 80.6 0° 90° 25 1 23 0.2 98.1 1.7 0.114 0.12 98.83 0.12 0.17 0.22 0.14 99.72 1.23 0.24 0.14 0.14 0.15	SI220034	8338292	308189	48.1	0°	-90°	18	1	18	0.1	95.1	4.9	0.061	0.075	99.03	0.08	0.11		0.15	99.64
SEZ20038 S337548 309916 56.9 0° 90° 25 1 18 0.1 96.5 3.5 0.062 0.080 9.08 0.06 0.08 0.11 0.09 99.58 15.20037 38.37514 309920 80.38 0° 90° 29 1 27 0.1 97.6 2.3 0.083 0.116 93.00 0.09 0.13 0.13 0.13 99.81 15.20038 83.37518 309920 80.38 0° 90° 25 1 27 0.1 97.6 2.3 0.083 0.116 93.00 0.09 0.13 0.18 0.08 99.58 15.20039 83.37618 309930 309847 80.6 0° 90° 25 1 23 0.2 98.1 1.7 0.114 0.12 98.83 0.12 0.17 0.22 0.14 99.72 1.23 0.24 0.14 0.14 0.15	SI220035	8338027	308260	42	0°	-90°	15	1	9	0.1	93.7	6.3	0.072	0.075	98.73	0.07	0.12	0.22	0.16	99.43
\$\frac{\text{Si200038}{\text{Si200038}}\$\$ 8337128\$\$ 309279\$\$\$ 0.03\$\$\$ 0.9\$\$\$\$ 0.9\$\$\$\$ 0.9\$\$\$\$ 0.9\$\$\$\$ 0.9\$\$\$\$ 0.9\$\$\$\$ 0.9\$\$\$\$ 0.9\$\$\$\$ 0.9\$\$\$\$\$ 0.9\$\$\$\$\$ 0.9\$\$\$\$\$ 0.9\$\$\$\$\$\$\$\$\$\$	SI220036	8337638	308916	56.9	0°	-90°	26	1	18	0.1	96.5		0.062	0.060	99.08	0.06	0.08	0.11	0.09	99.50
\$1220038 8337085 309487 80.6 0° 90° 25 1 23 0.2 98.1 1.7 0.14 0.142 88.89 0.12 0.17 0.22 0.14 99.72 \$1220041 8337693 509581 82.1 0° 90° 24 1 24 0.2 97.8 2.1 0.121 0.123 99.1 0.14 0.14 0.13 39.74 \$1220041 8338837 309779 77.1 0° 90° 15 1 1 14 0.1 97.3 2.6 0.095 0.198 88.79 0.12 0.12 0.12 99.64 \$1220041 8338837 309779 77.1 0° 90° 15 1 1 32 0.3 97.75 2.2 0.121 0.132 98.69 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	SI220037	8337514	309002	63.8	0°	-90°	29	1	23	0.1	97.9	2.1	0.135	0.080	98.88	0.19	0.09	0.13	0.13	99.61
S220040 S33703 309581 82.1 0° -90° 24 1 24 0.2 97.8 2.1 0.121 0.123 99.11 0.14 0.14 0.13 0.13 99.74	SI220038	8337218	309270	80.3	0°	-90°	29	1	27	0.1	97.6	2.3	0.083	0.116	99.00	0.09	0.13	0.16	0.08	99.56
Sizzond1 Sizzond1 Sizzond2 Sizzond3 Sizzond3	SI220039	8337085	309487	80.6	0°	-90°	25	1	23	0.2	98.1	1.7	0.114	0.142	98.98	0.12	0.17	0.22	0.14	99.72
Siz20042 8338705 308824 91.2 0° 90° 32 1 32 0.3 97.5 2.2 0.121 0.132 89.85 0.15 0.15 0.16 0.12 99.85	SI220040	8337003	309581	82.1	0°	-90°	24	1	24	0.2	97.8	2.1	0.121	0.123	99.11	0.14	0.14	0.13	0.13	99.74
\$\frac{\text{\$120043}{\text{\$120045}}\$ 8336611 309912 99.9 0° \$\cdot \text{\$-90^{\circ}\$}\$ 39 \$1 \$38 \$0.3 \$6.7 \$3.0 \$0.120 \$0.165 \$8.72 \$0.14 \$0.21 \$0.25 \$0.11 \$99.8\$\$\$\$120045 8336825 300837 76.6 0° \$\cdot \text{\$-90^{\cdot}\$}\$ 25 \$1 \$24 \$0.1 \$97.6 \$2.4 \$0.087 \$0.083 \$99.0 \$0.12 \$0.17 \$0.19 \$0.12 \$98.8\$\$\$\$120046 8336834 309832 80.6 0° \$\cdot \text{\$-90^{\cdot}\$}\$ 25 \$1 \$24 \$0.1 \$97.6 \$2.4 \$0.087 \$0.083 \$99.0 \$0.10 \$0.12 \$98.8\$\$\$\$1220047 833640 309762 73.4 0° \$\cdot \text{\$-90^{\cdot}\$}\$ 27 \$1 \$24 \$0.1 \$97.9 \$2.0 \$0.000 \$0.122 \$98.8\$\$\$\$1220048 8336537 309692 77.6 0° \$\cdot \text{\$-90^{\cdot}\$}\$ 21 \$1 \$2 \$0.1 \$65.0 \$5.0 \$0.078 \$0.000 \$0.90.2 \$0.08 \$0.17 \$0.25 \$0.09 \$99.7\$\$\$\$\$1220048 8336537 309692 67.1 0° \$\cdot \text{\$-90^{\cdot}\$}\$ 21 \$1 \$7 \$0.1 \$6.0 \$5.0 \$0.078 \$0.000 \$9.42 \$0.11 \$0.12 \$0.19 \$0.33 \$10033 \$1220049 \$836057 301686 \$9 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$0.0 \$	SI220041	8336837	309779	77.1	0°	-90°	15	1	14	0.1	97.3	2.6	0.095	0.198	98.79	0.12	0.21	0.29	0.12	99.64
Siz2004 S33662 310033 103 0° 90° 45 1 43 0.1 97.9 2.0 0.109 0.132 99.99 0.12 0.17 0.19 0.12 99.88	SI220042	8336705	309834	91.2	0°	-90°	32	1	32	0.3	97.5	2.2	0.121	0.132	98.95	0.15	0.15	0.16	0.12	99.62
Siz20046 8336255 309897 78.6 0° 90° 25 1 21 0.1 97.6 2.4 0.087 0.083 90.09 0.10 0.12 0.13 0.12 99.63	SI220043	8336511	309912	99.9	0°	-90°	39	1	38	0.3	96.7	3.0	0.120	0.165	98.72	0.14	0.21	0.25	0.11	99.58
Siz20046 S335834 309832 90.6 0° -90° 27 1 24 0.1 97.9 2.0 0.080 0.122 99.03 0.09 0.14 0.15 0.12 99.65 Siz20047 S335480 309782 73.4 0° -90° 27 1 24 0.1 96.7 3.3 0.071 0.111 90.02 0.08 0.17 0.25 0.09 99.70 Siz20048 S335434 310186 92 0° -90° 37 1 30 0.1 95.0 5.0 0.078 0.080 99.42 0.11 0.12 0.19 0.13 100.03 Siz20049 S335444 310186 92 0° -90° 29 1 27 0.1 98.4 1.5 0.100 0.010 99.42 0.11 0.11 0.11 0.14 99.59 Siz20051 S335544 310372 79.9 0° -90° 12 1 9 0.5 96.8 2.7 0.070 0.095 99.90 0.09 0.09 0.08 0.13 99.63 Siz20053 S335856 310487 96.6 0° -90° 26 1 25 0.1 97.3 2.7 0.038 0.10 0.101 98.84 0.12 0.19 99.59 Siz20053 S335856 310847 96.6 0° -90° 34 1 30 0.1 97.6 2.3 0.107 0.108 98.89 0.13 0.13 0.13 0.12 99.58 Siz20055 S335486 310848 96.9 0° -90° 16 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 0.10	SI220044	8336362	310033	103	0°	-90°	45	1	43	0.1	97.9		0.109	0.132	98.99	0.12	0.17	0.19	0.12	99.68
Siz20047 8336480 309782 73.4 0° -90° 15 1 12 0.1 96.7 3.3 0.071 0.111 99.02 0.08 0.17 0.25 0.09 99.70	SI220045	8336255	309897	78.6	0°	-90°	25	1	21	0.1	97.6	2.4	0.087	0.093	99.09	0.10	0.12	0.13	0.12	99.63
Siz20048 8336537 309692 67.1 0° 90° 21 1 7 0.1 95.0 5.0 0.076 0.080 0.942 0.11 0.12 0.19 0.13 100.03	SI220046	8336384	309832	80.6	0°	-90°	27	1	24	0.1	97.9	2.0	0.080	0.122	99.03	0.09	0.14	0.15	0.12	99.65
Siz20050 B33614R 310186 92 0° 90° 37 1 30 0.1 98.3 1.7 0.096 0.076 99.26 0.09 0.09 0.08 0.13 99.73	SI220047	8336480	309782	73.4	0°	-90°	15	1	12	0.1		3.3	0.071	0.111	99.02	0.08	0.17	0.25	0.09	99.70
Siz20050 8336097 310298 89.6 0° 90° 29 1 27 0.1 98.4 1.5 0.100 0.101 99.04 0.11 0.11 0.14 99.59	SI220048	8336537	309692	67.1		-90°		1		0.1	95.0		0.078	0.080	99.42	0.11	0.12	0.19	0.13	100.03
Siz20051 8335844 310372 79.9 0° -90° 12 1 9 0.5 96.8 2.7 0.070 0.095 99.09 0.09 0.09 0.15 0.13 99.66 Siz20052 8335856 310487 96.6 0° -90° 26 1 25 0.1 97.6 2.3 0.107 0.108 99.60 0.13 0.13 0.13 0.13 0.19 99.60 Siz20053 8335531 310861 103 0° -90° 34 1 30 0.1 97.6 2.3 0.107 0.108 99.60 0.13																				
Siz20052 8335856 310487 96.6 0° -90° 26 1 25 0.1 97.3 2.7 0.093 0.156 98.84 0.12 0.19 0.23 0.11 99.60					_ ~															
Si220053 8335631 310881 103 0° -90° 34 1 30 0.1 97.6 2.3 0.107 0.108 98.96 0.13 0.13 0.13 0.12 99.55																				
Si220054 8335499 310848 96.9 0° -90° 17 1 15 0.1 99.0 0.9 0.102 0.105 98.98 0.12 0.12 0.08 0.12 99.48																				
Si220055 8335342 311025 91.7 0° -90° 6																				
Siz20056 8335186 311129 105 0° -90° 18								1	15	0.1	99.0				98.98	0.12	0.12	0.08	0.12	99.48
Si220057 8335336 311180 86.5 0° -90° 6																				
Siz20058 8335488 311282 81.4 0° -90° 6																				
Si220059 8335670 311292 99.4 0° -90° 24 1 21 0.2 98.3 1.5 0.056 0.068 99.28 0.06 0.08 0.12 0.09 99.71 SI220060 8335844 311127 102 0° -90° 26 1 24 0.3 98.3 1.5 0.058 0.046 99.26 0.08 0.06 0.08 0.10 99.64 SI220061 8336099 311028 101 0° -90° 30 1 27 0.2 98.7 1.1 0.060 0.042 99.30 0.09 0.06 0.07 0.09 99.68 SI220062 8336165 310905 103 0° -90° 25 1 24 0.4 97.6 2.0 0.067 0.083 99.05 0.11 0.11 0.16 0.17 99.70 SI220064 8336508 310705 95.4 0° -90° 30 1 28 </td <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					_		_							•						
Si220060 8335844 311127 102 0° -90° 26 1 24 0.3 98.3 1.5 0.058 0.046 99.26 0.08 0.06 0.08 0.10 99.64 Si220061 8336009 311028 101 0° -90° 30 1 27 0.2 98.7 1.1 0.060 0.042 99.30 0.09 0.06 0.07 0.09 99.68 Si220062 8336165 310905 103 0° -90° 28 1 27 0.1 98.4 1.6 0.076 0.047 99.32 0.11 0.07 0.09 0.07 99.72 Si220063 8336545 310815 102 0° -90° 25 1 24 0.4 97.6 2.0 0.067 0.083 99.05 0.11 0.11 0.16 0.17 99.70 Si220064 8336650 310751 82.6 0° -90° 33 1 31 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.4</td> <td>0.0</td> <td>00.0</td> <td></td> <td></td> <td></td> <td>00.00</td> <td>0.00</td> <td>0.00</td> <td>0.10</td> <td>0.00</td> <td>00.74</td>									0.4	0.0	00.0				00.00	0.00	0.00	0.10	0.00	00.74
Si220061 8336009 311028 101 0° -90° 30 1 27 0.2 98.7 1.1 0.060 0.042 99.30 0.09 0.06 0.07 0.09 99.68 SI220062 8336165 310905 103 0° -90° 28 1 27 0.1 98.4 1.6 0.076 0.047 99.32 0.11 0.07 0.09 0.07 99.72 SI220063 8336345 310815 102 0° -90° 25 1 24 0.4 97.6 2.0 0.067 0.083 99.05 0.11 0.11 0.16 0.17 99.70 SI220064 8336508 310705 95.4 0° -90° 30 1 28 0.4 97.3 2.3 0.056 0.062 99.13 0.10 0.08 0.13 0.10 99.63 SI220066 8336735 310751 82.6 0° -90° 21 1 20 </td <td></td>																				
Si220062 8336165 310905 103 0° -90° 28 1 27 0.1 98.4 1.6 0.076 0.047 99.32 0.11 0.07 0.09 0.07 99.72 Si220063 8336345 310815 102 0° -90° 25 1 24 0.4 97.6 2.0 0.067 0.083 99.05 0.11 0.11 0.16 0.17 99.70 Si220064 8336508 310705 95.4 0° -90° 30 1 28 0.4 97.3 2.3 0.056 0.062 99.13 0.10 0.08 0.13 0.10 99.63 Si220065 8336656 310579 102 0° -90° 33 1 31 0.1 98.1 1.9 0.063 0.079 98.97 0.10 0.11 0.17 0.13 99.57 Si220066 8336735 310751 82.6 0° -90° 15 1 13 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td>							_													
Si22063 8336345 310815 102 0° -90° 25 1 24 0.4 97.6 2.0 0.067 0.083 99.05 0.11 0.11 0.16 0.17 99.70 Si220064 8336508 310705 95.4 0° -90° 30 1 28 0.4 97.3 2.3 0.056 0.062 99.13 0.10 0.08 0.13 0.10 99.63 Si220065 8336656 310579 102 0° -90° 33 1 31 0.1 98.1 1.9 0.063 0.079 98.97 0.10 0.11 0.13 0.10 99.57 Si220066 8336735 310751 82.6 0° -90° 21 1 20 0.1 97.5 2.5 0.068 0.096 98.98 0.12 0.13 0.19 0.10 99.59 Si220067 8336645 310831 78.5 0° -90° 15 1 13 </td <td></td>																				
Si220064 8336508 310705 95.4 0° -90° 30 1 28 0.4 97.3 2.3 0.056 0.062 99.13 0.10 0.08 0.13 0.10 99.63 Si220065 8336656 310579 102 0° -90° 33 1 31 0.1 98.1 1.9 0.063 0.079 98.97 0.10 0.11 0.13 99.57 Si220066 8336735 310751 82.6 0° -90° 21 1 20 0.1 97.5 2.5 0.068 0.096 98.98 0.12 0.13 0.10 99.59 Si220067 8336645 310831 78.5 0° -90° 15 1 13 0.1 97.8 2.2 0.075 0.085 99.24 0.12 0.11 0.17 0.09 99.80 Si220068 8337667 309333 63.5 0° -90° 10 1 9 0.1 96.0 </td <td></td>																				
S1220065 8336656 310579 102 0° -90° 33 1 31 0.1 98.1 1.9 0.063 0.079 98.97 0.10 0.11 0.17 0.13 99.57 S1220066 8336735 310751 82.6 0° -90° 21 1 20 0.1 97.5 2.5 0.068 0.096 98.98 0.12 0.13 0.19 0.10 99.59 S1220067 8336645 310831 78.5 0° -90° 15 1 13 0.1 97.8 2.2 0.075 0.085 99.24 0.12 0.11 0.17 0.09 99.80 S1220068 8337667 309333 63.5 0° -90° 10 1 9 0.1 96.0 4.0 0.057 0.070 99.22 0.09 0.10 0.17 0.15 99.80 S1220070 8337873 308765 70.1 0° -90° 39 1 36<					_							-								
Si220066 8336735 310751 82.6 0° -90° 21 1 20 0.1 97.5 2.5 0.068 0.096 98.98 0.12 0.13 0.19 0.10 99.59 Si220067 8336645 310831 78.5 0° -90° 15 1 13 0.1 97.8 2.2 0.075 0.085 99.24 0.12 0.11 0.17 0.09 99.80 Si220068 8337667 309333 63.5 0° -90° 10 1 9 0.1 96.0 4.0 0.057 0.070 99.22 0.09 0.10 0.15 99.80 Si220069 8337873 308951 57.8 0° -90° 15 1 13 0.5 97.7 1.8 0.060 0.056 99.42 0.10 0.09 0.13 0.91 100.71 Si220070 8337875 308705 70.1 0° -90° 39 1 36 0.3					_															
Si220067 8336645 310831 78.5 0° -90° 15 1 13 0.1 97.8 2.2 0.075 0.085 99.24 0.12 0.11 0.17 0.09 99.80 Si220068 8337667 309333 63.5 0° -90° 10 1 9 0.1 96.0 4.0 0.057 0.070 99.22 0.09 0.10 0.15 99.80 Si220069 8337873 308951 57.8 0° -90° 15 1 13 0.5 97.7 1.8 0.060 0.056 99.42 0.10 0.09 0.13 0.91 100.71 Si220070 8337875 308705 70.1 0° -90° 39 1 36 0.3 98.0 1.7 0.079 0.051 99.22 0.11 0.06 0.07 0.14 99.67 Si220071 8337736 308764 55.6 0° -90° 21 1 19 0.1																				
SI220068 8337667 309333 63.5 0° -90° 10 1 9 0.1 96.0 4.0 0.057 0.070 99.22 0.09 0.10 0.15 99.80 SI220069 8337873 308951 57.8 0° -90° 15 1 13 0.5 97.7 1.8 0.060 0.056 99.42 0.10 0.09 0.13 0.91 100.71 SI220070 8337875 308705 70.1 0° -90° 39 1 36 0.3 98.0 1.7 0.079 0.051 99.22 0.11 0.06 0.07 0.14 99.67 SI220071 8337736 308764 55.6 0° -90° 21 1 19 0.1 97.3 2.7 0.081 0.073 99.21 0.12 0.09 0.14 0.10 99.73																				
SI220069 8337873 308951 57.8 0° -90° 15 1 13 0.5 97.7 1.8 0.060 0.056 99.42 0.10 0.09 0.13 0.91 100.71 SI220070 8337875 308705 70.1 0° -90° 39 1 36 0.3 98.0 1.7 0.079 0.051 99.22 0.11 0.06 0.07 0.14 99.67 SI220071 8337736 308764 55.6 0° -90° 21 1 19 0.1 97.3 2.7 0.081 0.073 99.21 0.12 0.09 0.14 0.10 99.73																	_			
SI220070 8337875 308705 70.1 0° -90° 39 1 36 0.3 98.0 1.7 0.079 0.051 99.22 0.11 0.06 0.07 0.14 99.67 SI220071 8337736 308764 55.6 0° -90° 21 1 19 0.1 97.3 2.7 0.081 0.073 99.21 0.12 0.09 0.14 0.10 99.73							_													
SI220071 8337736 308764 55.6 0° -90° 21 1 19 0.1 97.3 2.7 0.081 0.073 99.21 0.12 0.09 0.14 0.10 99.73																				
	512200/1	833//30	308764	0.00	U°	-90*	21	1	19	0.1	9-10-20 9-10-000 00-9-0-9 Po	part permit to the transfer	20000	0.073	99.21	0.12	0.09	0.14	0.10	99./3

diatreme.com.au

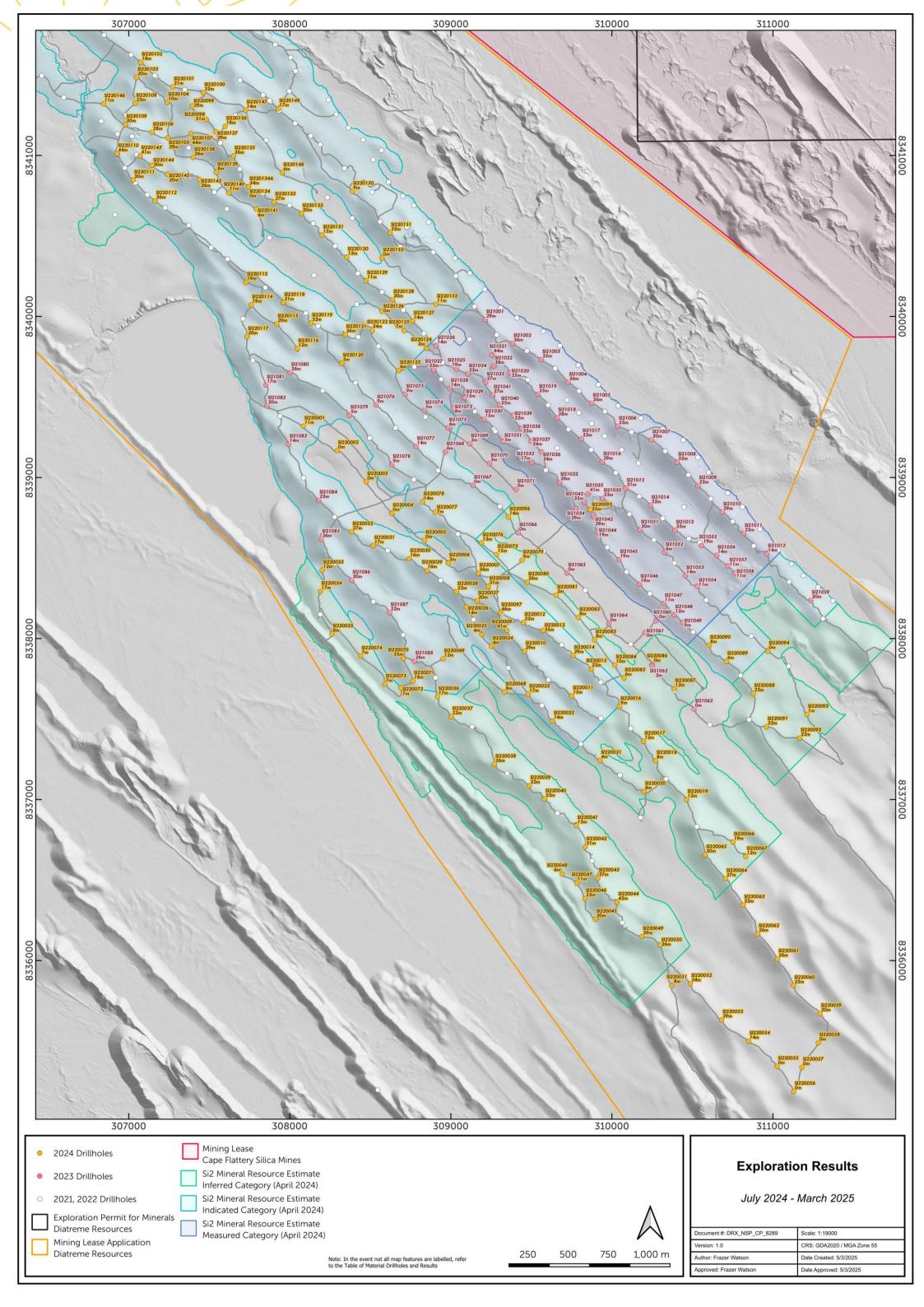
Page 12 of 26

		Collar Inforn	nation				Minoralisa	ed Interval		Grain Size Fractions		<0.71mm	>0.106mm			Нози	d Grade		
	1		IIation				Millerause	- u iiileival		Grain Size Fractions		Gr	ade			пеа	d Grade		
Hole ID	Northing GDA 2020 Zone 55	Easting GDA 2020 Zone 55	RL m	Azimuth	Dip	Depth m	From m	To m	< 0.71mm %	< 0.71mm>0.106mm %	> 0.106 mm %	Al ₂ O ₃ %	Fe ₂ O ₃ %	SiO ₂ %	Al ₂ O ₃ %	Fe ₂ O ₃ %	TiO ₂ %	LOI %	Total %
SI220072	8337694	308690	44.2	0°	-90°	10	1	8	0.2	94.3	5.6	0.070	0.034	99.24	0.10	0.06	0.11	0.08	99.65
SI220073	8337716	308589	47.4	0°	-90°	10	1	8	0.1	97.4	2.6	0.070	0.051	99.05	0.10	0.07	0.11	0.06	99.46
SI220074	8337890	308439	45.8	0°	-90°	9	1	8	0.1	96.7	3.3	0.083	0.068	99.07	0.12	0.10	0.14	0.15	99.64
SI220075	8338521	309283	54.5	0°	-90°	18	1	16	0.4	96.6	3.1	0.072	0.057	99.27	0.12	0.07	0.11	0.16	99.81
SI220076	8338593	309190	54.1	0°	-90°	15	1	14	0.1	97.5	2.4	0.097	0.068	99.29	0.16	0.08	0.11	0.15	99.90
SI220077	8338784	308903	51.3	0°	-90°	9	1	8	0.1	98.6	1.4	0.078	0.045	99.58	0.09	0.07	0.08	-0.01	99.90
SI220078	8338848	308824	54.7	0°	-90°	18	1	15	0.2	99.0	0.8	0.077	0.048	99.49	0.10	0.06	0.06	0.06	99.86
SI220079	8338486	309441	49.3	0°	-90°	12	1	10	0.4	95.8	3.9	0.137	0.095	99.21	0.16	0.11	0.16	0.17	99.93
SI220080	8338350	309474	62.4	0°	-90°	30	1	27	0.1	98.5	1.4	0.081	0.084	99.24	0.12	0.22	0.12	0.07	99.87
SI220081	8338269	309653	43.7	0°	-90°	6	2	4	0.2	92.7	7.1	0.102	0.110	98.93	0.18	0.17	0.26	0.15	99.80
SI220082	8338130	309791	44.8	0°	-90°	15	1	9	0.3	96.2	3.6	0.070	0.066	99.20	0.09	80.0	0.12	0.11	99.70
SI220083	8337991	309892	47.5	0°	-90°	12	1	9	0.2	97.0	2.8	0.132	0.072	99.05	0.16	0.09	0.14	0.18	99.71
SI220084	8337835	310018	46.6	0°	-90°	12	1	11 7	0.3	95.3	4.3	0.072	0.045	99.11	0.11	0.06	0.11	0.09	99.57
SI220085	8337754	310074	46.4	0°	-90°	12 9	1	/	0.6	93.9	5.6	0.057	0.043	99.25	0.07	0.06	0.12	0.03	99.62
SI220086	8337838	310249	37.4	0°	-90°		4	10	1.0	04.0		ralisation inte		00.01	0.00	0.04	0.07	0.00	00.05
SI220087	8337688	310386	37.7	0°	-90°	15 24	1	13	1.3	94.2	4.5	0.054	0.030	99.61	0.06	0.04	0.07	0.08	99.95
SI220088 SI220089	8337657 8337857	310877	47.9	0°	-90°			24 7	0.3	95.9	3.8	0.058	0.057 0.054	99.41	0.09	0.08	0.12	0.14	99.92 99.92
		310710	46.9	0°	-90°	9	1	9	0.1	96.1	3.8	0.062		99.44	0.09	0.09	0.13	0.11	
SI220090	8337957	310603	48.1	0°	-90°	12			0.1	98.3	1.6	0.074	0.050	99.40	0.11	0.06	80.0	0.20	99.94
SI220091 SI220092	8337451 8337381	310960 311166	65.7 53.6	0°	-90°	36 24	1	33 23	0.1	97.5 97.0	2.4 3.0	0.067 0.063	0.126 0.067	98.92	0.11	0.18	0.26	0.09	99.65
	8337528		37.4	0°	-90°	6	1		0.1	93.8	5.8	0.085	0.067	99.19 97.23	0.10	0.10	0.14	0.14	99.73
SI220093 SI220094	8337528	311211 310968	37.4	0°	-90°	6	1	2	0.4	93.8				97.23	0.16	1.56	0.38	0.32	99.78
SI220094 SI220095	8337921	310968	65.1	0°	-90°	39	1	36	0.1	96.9	3.1	ralisation inte	0.093	99.12	0.16	0.12	0.15	0.12	99.73
SI220095 SI220096	8338754	309865	37.6	0°	-90°	39 15	1	15	0.1	93.9	5.8	0.119	0.093	98.58	0.16	0.12	0.15	0.12	99.73
SI220096	8338159	309307	96.4	0°	-90°	48	1	47	0.3	96.7	3.1	0.059	0.082	99.27	0.41	0.09	0.20	0.09	99.72
SI220097 SI220098	8341223	307482	70.2	0°	-90°	35	1	32	0.2	95.9	4.1	0.059	0.082	98.94	0.11	0.11	0.13	0.09	99.77
SI220098	8341223	307462	64.1	0°	-90°	33	1	30	0.1	96.9	3.1	0.084	0.138	99.18	0.13	0.20	0.32	0.13	99.84
SI220100	8341389	307463	54.9	0°	-90°	28	1	23	0.1	97.1	2.8	0.073	0.060	99.13	0.10	0.14	0.13	0.15	99.65
SI220100	8341425	307273	52.2	0°	-90°	24	1	22	0.1	96.4	3.4	0.066	0.084	98.93	0.08	0.08	0.13	0.16	99.62
SI220101	8341578	307273	49.9	0°	-90°	21	1	19	0.2	98.1	1.9	0.065	0.046	99.40	0.09	0.13	0.21	0.10	99.92
SI220102 SI220103	8341484	307074	48.3	0°	-90°	22	1	21	0.1	96.2	3.4	0.065	0.040	99.25	0.09	0.12	0.11	0.17	99.90
SI220103	8341329	307048	43.5	0°	-90°	14	1	11	0.3	97.6	2.4	0.003	0.035	99.22	0.03	0.12	0.09	0.14	99.61
SI220104 SI220105	8341109	307238	52.1	0°	-90°	30	1	30	0.1	96.5	3.2	0.051	0.033	99.24	0.07	0.10	0.03	0.11	99.80
SI220105	8341143	307143	54.6	0°	-90°	30	1	29	0.2	97.1	2.7	0.053	0.070	99.42	0.07	0.06	0.10	0.13	99.84
SI220100	8341136	307386	71.1	0°	-90°	45	1	45	0.2	97.2	2.7	0.000	0.051	99.28	0.07	0.07	0.10	0.12	99.68
SI220107 SI220108	8341322	307039	52.2	0°	-90°	26	1	24	0.3	93.7	6.1	0.055	0.053	99.31	0.07	0.10	0.03	0.13	99.84
SI220108	8341192	306978	58	0°	-90°	33	1	31	0.1	95.8	4.2	0.053	0.031	99.29	0.06	0.09	0.17	0.13	99.76
SI220103	8341010	306927	71.2	0°	-90°	45	1	45	0.1	95.8	3.9	0.053	0.047	99.43	0.06	0.03	0.13	0.12	99.85
SI220110	8340846	307027	59	0°	-90°	33	1	31	0.4	94.9	4.8	0.051	0.043	99.29	0.08	0.12	0.20	0.20	99.98
SI220111 SI220112	8340717	307163	55.7	0°	-90°	27	1	27	0.2	97.0	2.8	0.059	0.007	99.38	0.08	0.09	0.14	0.20	99.90
0.220112	0040717	00,100	00.7						V.2		1 Holdsworth		0.070	00.00	0.00	0.00	0.1-	V.1-	00.00

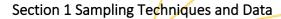
Page 13 of 26


		Collar Inforn	nation				Mineralise	ed Interval		Grain Size Fractions			>0.106mm			Head	d Grade		
			1									Gra	ade						
Hole ID	Northing GDA 2020 Zone 55	Easting GDA 2020 Zone 55	RL m	Azimuth	Dip	Depth m	From m	To m	< 0.71mm %	< 0.71mm>0.106mm %	>0.106mm %	Al ₂ O ₃ %	Fe₂O₃ %	SiO ₂ %	Al ₂ O ₃ %	Fe ₂ O ₃ %	TiO ₂ %	LOI %	Total %
SI220113	8340212	307727	50.3	0°	-90°	21	2	21	0.1	96.6	3.3	0.056	0.052	99.53	0.09	0.07	0.11	0.16	100.03
SI220114	8340071	307759	49.8	0°	-90°	20	1	20	0.1	96.5	3.5	0.063	0.078	99.12	0.08	0.09	0.14	0.13	99.63
SI220115	8339952	307918	49.5	0°	-90°	21	1	21	0.1	96.8	3.2	0.059	0.088	99.44	0.08	0.10	0.17	0.13	100.00
SI220116	8339799	308045	46.1	0°	-90°	16	1	13	0.2	93.1	6.8	0.061	0.071	99.43	0.09	0.09	0.16	0.11	99.95
SI220117	8339874	307734	51.7	0°	-90°	24	1	21	0.1	97.0	2.9	0.069	0.105	99.23	0.09	0.12	0.19	0.06	99.78
SI220118	8340085	307959	50.6	0°	-90°	22	1	22	0.2	96.8	3.0	0.077	0.048	99.36	0.11	0.07	0.08	0.16	99.86
SI220119	8339958	308131	63	0°	-90°	33	1	33	0.6	97.1	2.3	0.071	0.041	99.35	0.13	0.06	0.08	0.22	99.89
SI220120	8339709	308323	35	0°	-90°	9	1	6	0.6	93.4	6.1	0.079	0.044	99.01	0.15	0.08	0.15	0.13	99.59
SI220121	8339887	308343	54.2	0°	-90°	29	1	27	0.1	97.4	2.6	0.062	0.059	99.56	0.09	0.08	0.11	0.10	100.00
SI220122	8339912	308511	66.8	0°	-90°	30	1	25	0.1	98.0	2.0	0.071	0.054	99.53	0.08	0.07	0.10	0.14	99.98
SI220123	8339664	308677	37.6	0°	-90°	11	1	7	0.1	97.5	2.5	0.080	0.043	99.71	0.11	0.06	0.08	0.12	100.13
SI220124	8339802	308848	47.6	0°	-90°	7	1	4	0.6	94.7	4.7	0.079	0.097	99.02	0.11	0.14	0.22	0.12	99.73
SI220125	8339911	308710	44.5	0°	-90°	9	1	8	0.7	96.0	3.4	0.070	0.074	99.33	0.09	0.10	0.18	0.21	100.01
SI220126	8340032	308571	43.9	0°	-90°	6		45	0.4	00.0		ralisation inter		00.44	0.10	0.40	0.40	0.00	100.00
SI220127	8339971	308762	55.1	0°	-90°	18	1	15	0.1	98.0	2.0	0.085	0.113	99.44	0.13	0.13	0.18	0.09	100.06
SI220128	8340104	308637	57.7	0°	-90°	24	1	21	0.3	97.3	2.5	0.166	0.112	99.12	0.21	0.14	0.11	0.26	99.93
SI220129	8340221	308473	56.2	0°	-90°	15	1	12	0.2	97.6	2.2	0.106	0.125	98.72	0.12	0.13	0.15	0.12	99.34
SI220130	8340368	308353	57	0°	-90°	15	1	14	0.1	97.9	2.1	0.088	0.102	99.19	0.13	0.11	0.12	0.18	99.81
SI220131 SI220132	8340505 8340638	308200 308072	55.4 59.2	0°	-90°	18 24	1	16 21	0.2	97.0 96.8	2.8 3.1	0.085 0.097	0.088 0.094	99.02 99.06	0.09	0.10 0.12	0.12	0.22	99.67 99.75
SI220132 SI220133	8340638	308072	64.5	0.0	-90°	28	1	28	0.2	96.8	2.6	0.097	0.056	99.06	0.11	0.12	0.20	0.14	99.75
SI220133	8340805	307902	61.7	0°	-90°	6	1	20	0.1	97.4		ralisation inte		99.24	0.10	0.07	0.10	0.14	99.74
SI220134 SI220134A	8340805	307743	61.7	0°	-90°	36	1	35	0.1	95.5	4.4	0.072	0.092	99.25	0.10	0.12	0.18	0.11	99.84
SI220134A SI220135	8340996	307650	66.4	0°	-90°	39	1	37	0.1	97.4	2.5	0.072	0.032	99.33	0.10	0.12	0.14	0.11	99.81
SI220135	8341180	307598	57.7	0°	-90°	21	1	19	0.1	97.6	2.3	0.089	0.073	99.22	0.12	0.09	0.14	0.13	99.79
SI220137	8341147	307539	68	0°	-90°	33	1	30	0.1	95.9	4.1	0.077	0.122	98.82	0.12	0.16	0.25	0.17	99.62
SI220138	8340987	307400	45.8	0°	-90°	27	1	27	0.1	96.3	3.6	0.057	0.037	99.35	0.08	0.05	0.07	0.17	99.79
SI220139	8340895	307543	39.2	0°	-90°	9	1	9	0.5	94.8	4.7	0.061	0.048	99.30	0.08	0.07	0.14	0.15	99.84
SI220140	8340767	307622	41.4	0°	-90°	12	1	12	0.7	94.1	5.3	0.055	0.043	98.91	0.12	0.23	0.14	0.19	99.66
SI220141	8340667	307791	41.9	0°	-90°	9	1	7	0.1	97.8	2.2	0.051	0.038	99.56	0.10	0.57	0.08	0.16	100.53
SI220142	8340850	307438	54.9	0°	-90°	27	1	27	0.1	97.9	2.1	0.052	0.052	99.27	0.09	0.40	0.10	0.09	100.00
SI220143	8340997	307070	68.8	0°	-90°	42	1	42	0.3	96.9	2.8	0.062	0.060	99.36	0.07	0.07	0.11	0.11	99.78
SI220144	8340939	307143	59.6	0°	-90°	33	1	31	0.1	96.4	3.5	0.056	0.054	99.44	0.06	0.07	0.11	0.10	99.83
SI220145	8340884	307240	49.5	0°	-90°	21	1	21	0.3	96.8	3.0	0.100	0.048	99.39	0.12	0.06	0.10	0.15	99.90
SI220146	8341320	306842	37.7	0°	-90°	12	1	12	0.7	94.6	4.7	0.086	0.034	99.49	0.10	0.05	0.10	0.35	100.14
SI220147	8341281	307725	50.5	0°	-90°	15	1	15	0.2	96.2	3.6	0.082	0.085	99.20	0.10	0.12	0.11	0.23	99.83
SI220148	8340892	307953	44.2	0°	-90°	9	1	7	0.1	96.6	3.4	0.069	0.039	99.74	0.07	0.06	0.08	0.15	100.15
SI220149	8341289	307928	53.6	0°	-90°	20	1	18	0.2	97.7	2.2	0.058	0.037	99.42	0.08	0.05	0.06	0.12	99.77
SI220150	8340776	308387	46.9	0°	-90°	12	1	10	0.2	97.2	2.6	0.065	0.066	99.43	0.07	0.09	0.12	0.14	99.92
SI220151	8340519	308622	60.6	0°	-90°	36	1	34	0.3	97.7	2.0	0.060	0.037	99.64	0.07	0.05	0.05	0.16	100.02
SI220152	8340075	308907	44.5	0°	-90°	15	1	12	0.8	95.9	3.3	0.113	0.077	99.12	0.13	0.10	0.13	0.28	99.82
	•	•	•	•			-		•	Unit 9 EE 6	51 Holdsworth	C+	•	-					

		Collar Inform	ation				Mineralise	ed Interval		Grain Size Fractions			>0.106mm ade			Hea	d Grade		
Hole ID	Northing GDA 2020 Zone 55	Easting GDA 2020 Zone 55	RL m	Azimuth	Dip	Depth m	From m	To m	< 0.71mm %	< 0.71 mm> 0.106 mm %	> 0.106 mm %	Al ₂ O ₃ %	Fe ₂ O ₃ %	SiO ₂ %	Al ₂ O ₃ %	Fe ₂ O ₃	TiO ₂ %	LOI %	Total %
SI220153	8340363	308572	35	0°	-90°	3	No mineralisation intercepted.												


denotes head grade results were prepared and disclosed in accordance with the JORC Code 2012, and reported in an announcement to the Australian Securities Exchange on 17 April 2024 "Mineral Resource upgrade paves way for Northern Silica Project PFS"

^{*} Where Hole ID contains an * asterisk, the respective drillhole and mineralised interval were included in the bulk testwork program. Note: Grainsize fractions are reported in µm by ALS Brisbane, however for market comparability, they are reported in mm in this announcement.



Macro photography of significant drillhole Si220097

JORC TABLE 1

Criteria	Explanation	Commentary
Gillella	·	·
	Nature and quality of sampling (eg cut channels, random	• For drillholes reported Si21001 to Si21088, Aircore drilling samples were collected in 1m intervals (~2kg) after passing through a single-tiered (50/50) riffle
	chips, or specific specialised industry standard	splitter. This material was then composited into nominal 3m composites and submitted to ALS Brisbane for sieving into three fractions +710µm, -
	measurement tools appropriate to the minerals under	710µm+106µm and -106µm. The respective fractions were then weighed, followed with the 710µm+106µm fraction pulverised and assayed by method
	investigation, such as down hole gamma sondes, or	code ME-ICP64.
	handheld XRF instruments, etc). These examples should	• For drillholes reported Si220001 to Si220153, Aircore drilling samples were collected in 1m intervals, before being composited by scoop into nominal 3m
	not be taken as limiting the broad meaning of sampling.	$samples \ (\sim 1 kg). \ This \ material \ was \ then \ composited \ into \ nominal \ 3m \ composites \ and \ submitted \ to \ ALS \ Brisbane \ for \ sieving \ into \ three \ fractions \ +710 \mu m, -100 \mu m, $
	Include reference to measures taken to ensure sample	710µm+106µm and -106µm. The respective fractions were then weighed, followed with the 710µm+106µm fraction pulverised and assayed by method
	representivity and the appropriate calibration of any	code ME-ICP64. In addition a sample representing the full particle size distribution was split, pulverised and then assayed by ME-XRF26.
	measurement tools or systems used.	The Competent Person considers the quality of the sampling method to be fit for the deposit style, and the stage of exploration.
Compling to obniguo	Aspects of the determination of mineralisation that are	
Sampling techniques	Material to the Public Report.	
	In cases where 'industry standard' work has been done	
	this would be relatively simple (eg 'reverse circulation	
	drilling was used to obtain 1 m samples from which 3 kg	
	was pulverised to produce a 30 g charge for fire assay'). In	
	other cases more explanation may be required, such as	
	where there is coarse gold that has inherent sampling	
	problems. Unusual commodities or mineralisation types	
	(eg submarine nodules) may warrant disclosure of	
	detailed information.	
	Drill type (eg core, reverse circulation, open-hole	Aircore drilling to refusal, which occurs at geologically determined contact such as clayey sands at the base of mineralisation, or a water table. This is due
	hammer, rotary air blast, auger, Bangka, sonic, etc) and	to the limitations of AC drilling at the water table, and limitations of the compressor on the AC drill rig when penetrating the clay layers.
Drilling techniques	details (eg core diameter, triple or standard tube, depth of	AC drilling was by a track mounted drill rig with a 3" blade bit, and a rod length of 3m.
	diamond tails, face-sampling bit or other type, whether	The Competent Person considers the quality of the sampling method to be fit for the deposit style, as mineral sands are easily contaminated, or recoveries
	core is oriented and if so, by what method, etc).	can be poor and not representative using other drilling methods.
	Method of recording and assessing core and chip sample	Sample recovery is monitored at the rig by weighing each 1m interval to observe for the presence or deviation from a consistent sample size.
Drill sample recovery	recoveries and results assessed.	Sample recovery is maximised within a closed system from the drill bit to the riffle splitter.

Unit 8, 55–61 Holdsworth St Coorparoo, Qld, 4151

Page 18 of 26

Criteria	Explanation	Commentary
	Measures taken to maximise sample recovery and ensure	After encountering wet clays, sacrificial rods are drilled into clean dry sand, to flush out any contamination through the drilling hoses, prior to drilling the
	representative nature of the samples.	subsequent drill hole.
	Whether a relationship exists between sample recovery	No relationship between recovery and grade has been observed, as the orebody is relatively homogenous.
	and grade and whether sample bias may have occurred	Correct interval delineation on AC drilling is achieved with metre intervals marked on the drill mast, and samples are collected when the base of the top
	due to preferential loss/gain of fine/coarse material.	drive reaches a metre interval.
	Whether core and chip samples have been geologically	All drillholes have been logged in their entirety, with qualitative descriptions of grain size, sphericity, roundness, moisture content, lithology, and colour
	and geotechnically logged to a level of detail to support	recorded.
	appropriate Mineral Resource estimation, mining studies	Photography is captured on a chip tray basis firstly at the drill rig, and then later on a chiptray compartment by compartment when samples have dried.
Logging	and metallurgical studies.	Sample photography in a controlled setting using Imago software with a Canon EOS R5 and a Canon 24-50mm lens, a hexadecimal colour value is
Logging	Whether logging is qualitative or quantitative in nature.	extracted from the imagery, and the RGB values are derived through python scripts. Colour photography is verified against a Calibrite ColorChecker.
	Core (or costean, channel, etc) photography.	The quality of logging is sufficient for this stage of exploration.
	The total length and percentage of the relevant	
	intersections logged.	
	If core, whether cut or sawn and whether quarter, half or	In 2023, AC samples were riffle split after the cyclone, and placed in sample bags representing 1m intervals.
	all core taken.	In 2024, AC samples were scooped from the sample bags representing 1m intervals, and composited to a nominal 3m composite. The single scoop is
	If non-core, whether riffled, tube sampled, rotary split, etc.	approximately 330g in mass.
	and whether sampled wet or dry.	Sample preparation was completed at ALS in Brisbane. Full samples are dried at 105°C, then weighed (WEI-22g), then a split is screened (SCR-61) into
	For all sample types, the nature, quality and	three size fractions +710µm, -710µm+106µm and -106µm, with a split of the raw sample retained. A nominal 150g split of the raw sample, and a nominal
	appropriateness of the sample preparation technique.	150g split of the -710μm+106μm fraction are then pulverised using a tungsten carbide ring mill (PUL-33), prior to being assayed.
	Quality control procedures adopted for all sub-sampling	• Importantly, the Competent Person remarks that the -710µm+106µm does not represent "product" grade, as heavy minerals are not removed through the
Sub-sampling techniques	stages to maximise representivity of samples.	sieving process.
and sample preparation	Measures taken to ensure that the sampling is	• The PUL-33 method has a QC check on a 20g split to ensure >85% passes -75µm
	representative of the in situ material collected, including	Coarse flushes of an unpulverized sample matching ELIM22 CRM has been introduced to both clean the lab pulveriser between drillholes, and test for any
	for instance results for field duplicate/second-half	contamination. ELIM22 was prepared by OREAS, specifically for ore grade material in the Cape Bedford / Cape Flattery dune systems.
	sampling.	A coarse flush of the raw ELIM22 sample is included after intersecting a deleterious horizon – and this is used to clean the Tungsten Carbide ring mill /
	Whether sample sizes are appropriate to the grain size of	pulveriser at ALS Brisbane. All samples are pulverised sequentially through the same pulveriser.
	the material being sampled	Crushing is not required as the grain size of the sample material is suitable for pulverizing.
		The Competent Person considers the drill sample sizes as appropriate for the grain size of the material, the style of mineralisation and the nature of the
		drilling program.
		+61 7 3397 2222

+61 7 3397 2222

Criteria	Explanation	Commentary
		These methods are determined to be appropriate by the Competent Person to avoid sample carry-over contamination, in addition Cr2O3 is monitored to
		ensure that pulverisation is performed in a non-ferrous pulverising bowl.
	The nature, quality and appropriateness of the assaying	• ME-ICP64 is considered a partial digest, it is considered appropriate for silica sand due to the high purity of the -710µm+106µm sample, and the low
	and laboratory procedures used and whether the	detection limit for Fe $_2$ O $_3$ comparative to XRF methods.
	technique is considered partial or total.	As ME-XRF26 is considered a total digest, it is considered appropriate for silica sand when assessing full sample geochemistry.
	For geophysical tools, spectrometers, handheld XRF	Loss On Ignition (LOI) is determined by thermogravimetric analysis (TGA) using method code ME-GRA05, where a sample is placed in a furnace at ambient
	instruments, etc, the parameters used in determining the	temperature and then heated to 1000°C, and then weighed.
	analysis including instrument make and model, reading	Field duplicates are conducted every 25 th sample which is submitted to the lab as blind duplicate.
Quality of assay data and	times, calibrations factors applied and their derivation,	CRM (ELIM22) is utilised every 33 rd sample
laboratory tests	etc.	Either CRM NCS 60116a or NCS 60117a are used 2 in 100 – for samples drilled in 2024.
	Nature of quality control procedures adopted (eg	ALS Brisbane, and verification of CRM and field duplicate results have indicated that for the method ME-ICP64, Al ₂ O ₃ and Fe ₂ O ₃ are acceptable for the
	standards, blanks, duplicates, external laboratory checks)	broader range of grades, however TiO₂ recovery is poor on lower purity samples. However recovery is acceptable for higher purity samples. For this reason,
	and whether acceptable levels of accuracy (ie lack of	Al_2O_3 and Fe_2O_3 results are considered material and appropriate to report, while reporting TiO_2 recovery would be considered misleading.
	bias) and precision have been established.	The quality control procedures adopted by Diatreme establish an acceptable level of accuracy and precision.
		The variability observed between the primary sample and the field duplicate assay results are considered appropriate for the style of mineralisation by the
		Competent Person.
	The verification of significant intersections by either	The Competent Person and Diatreme Resources' Exploration Geologist have personally inspected all sample intervals.
	independent or alternative company personnel.	2 twinned holes have been completed, with minimal sampling bias observed.
Varification of compling	The use of twinned holes.	Collar and geological logging is captured by and stored within the geological logging/database software MX Deposit, in accordance with company
Verification of sampling	Documentation of primary data, data entry procedures,	procedures.
and assaying	data verification, data storage (physical and electronic)	Photographic data is captured, and stored within Imago, a software package that acts as a repository and analysis tool for geoscientific imagery.
	protocols.	Assay data is recorded, and stored in MX Deposit, a Drillhole Database software.
	Discuss any adjustment to assay data.	No adjustment has been made to assay data.
	Accuracy and quality of surveys used to locate drill holes	All drill hole locations have been surveyed using Spectra Precision SP60, with a Trimble RTX CenterPoint DGPS correction ± 0.05m on the horizontal plane.
	(collar and down-hole surveys), trenches, mine workings	The collar data is recorded in the UTM coordinate system: Map Grid of Australia 1994 (MGA94) Zone 55, this is then reprojected to GDA2020 Zone 55 for
	and other locations used in Mineral Resource estimation.	compatibility with other spatial files.
Location of data points	Specification of the grid system used.	All drill holes are shallow and vertical, no down-hole surveying is conducted.
	Quality and adequacy of topographic control.	Digital elevation models derived from LiDAR (December 2022) were used as the topographic surface to generate RL's for each collar. The DEM was
		generated via a cloth simulation function, using an approximate 10 ground classified points per square metre. Relative accuracy is considered to be ±
		0.1m.
		+61 / 359/ 2222

+61 / 339/ 2222

Criteria	Explanation	Commentary
	Data spacing for reporting of Exploration Results.	• First pass drilling spaced nominally at 380m along dune crests, and infill drilling at a nominal 180 - 200m along the trailing arm of an elongate parabolic
	Whether the data spacing and distribution is sufficient to	dune, and in the interdunal valleys, although the Competent Person considers data spacing at these intervals are not a material constraint on the
Data spacing and	establish the degree of geological and grade continuity	development of geological grade or geological continuity, and as such, the Competent Person considers the data spacing to be more than appropriate for
distribution	appropriate for the Mineral Resource and Ore Reserve	this style of deposit, at this stage of exploration.
	estimation procedure(s) and classifications applied.	Samples have been composited to nominal 3m intervals, following recommendations from a variability assessment completed by Measured Group in
	Whether sample compositing has been applied.	2024, and also on an assessment that the 3m compositing also aligns with likely SMU's for the deposit.
	Whether the orientation of sampling achieves unbiased	The deposit style is an unlithified aeolian sand deposit, comprised of a series of complex parabolic and elongate parabolic dune systems which are
	sampling of possible structures and the extent to which	repeatedly deflated and are superimposed upon older dune systems.
Orientation of data in	this is known, considering the deposit type.	The mineralisation process (podsolisation) is gravitationally controlled. The Competent Person has determined that vertical drilling intersects the
relation to geological	If the relationship between the drilling orientation and the	bedforms at an angle which represents the true width of mineralisation.
structure	orientation of key mineralised structures is considered to	No sampling bias is introduced by the orientation of drilling.
	have introduced a sampling bias, this should be assessed	
	and reported if material.	
	The measures taken to ensure sample security	Sample bags were sealed by cable-tie, and transported in polywoven bags, then securely stored in a locked yard on-site until transported by courier to ALS
Comple coourity		in Brisbane.
Sample security		Transport chain of custody forms have been reviewed for each sample dispatch.
		Submission reconciliation reports are provided by the laboratory and checked against the sample submission forms.
	The results of any audits or reviews of sampling	Internal reviews by Diatreme staff on both the drillhole database and sampling techniques have been conducted, indicating compliance to internal
Audits or reviews	techniques and data.	standards.
		No external reviews have been completed at this stage.

Section 2 Reporting of Exploration Results

Criteria	Explanation	Commentary
Mineral tenement and	Type, reference name/number, location and ownership	These Exploration Results comprise exploration on the Si2 Deposit, which is the mineral resource within the Northern Silica Project, which is located
land tenure status	including agreements or material issues with third parties	adjacent to the coastline in Far North Queensland, approximately 53km north of Cooktown. The project is adjacent to the south of the Cape Flattery Silica
	such as joint ventures, partnerships, overriding royalties,	Mines (CFSM) Mining Lease. CFSM has been in operation since 1967 and is Queensland's largest producer of high purity silica and is reported to have the
	native title interests, historical sites, wilderness or	highest production of high purity silica sand of any mine historically.
	national park and environmental settings.	The project is located at the northern end of the Cape Flattery/Cape Bedford dune field complex within the Exploration Permits for Minerals (EPM) 17795 &
	The security of the tenure held at the time of reporting	27212.
	along with any known impediments to obtaining a licence	Most of the EPM, and the entirety of the Si2 Deposit is located on one land title, Lot 35/SP232620, a freehold lot of 110,000 hectares.
	to operate in the area.	• The Project and EPM is in the Mareeba Mining District and falls within the Hope Vale Aboriginal Shire Council area. This lies approximately 35km north of the
		township of Hope Vale, with a population of approximately 1,500 in the Hope Vale Aboriginal Shire Council.
		EPM 17795 is owned by Northern Silica Pty Ltd, a wholly owned subsidiary of the Joint Venture Cape Silica Holdings Pty Ltd between Diatreme Resources
		73.2% and Sibelco Silica Pty Ltd 26.8%.
		Diatreme was granted a renewal on EPM 17795 "Cape Bedford" until 21 June 2026 on the basis of continued targeting of heavy mineral sands and silica
		sand. The EPM was granted under protected Native Title Protection Conditions. As of March 2025, the tenure is in good standing.
		EPM 17795 is an extensive EPM comprising 147 continuous subblocks (approximately 480km2) covering the majority of the Cape Flattery-Cape Bedford
		Quaternary dune field complex.
		Three EPM's contiguous with EPM 17795 have been taken up by Diatreme, EPM 27212 (granted 27th September 2021), EPM 27265 (granted 30th January)
		2020, and currently in renewal) and application EPM 27430 (granted 26th October 2021). These tenements cover small areas of the dune field not covered
		by EPM 17795. EPM 27212 is held by Cape Silica Holdings Pty Ltd, EPM 27430, EPM 27265 are held by Northern Silica Pty Ltd.
		An additional EPM 25734 also targeting silica sand was acquired by Diatreme through a takeover of Metallica Minerals in 2024.
		Cape Silica Holdings and its subsidiaries have two mining lease applications currently undergoing approvals, ML100235, ML100308, and four
		accompanying mining lease infrastructure applications, ML 100310, ML 100311, ML 100312, ML 100313. Casuarina Silica Pty Ltd, a subsidiary of Diatreme
		Resources has a mining lease approval underway (ML100309).
Exploration done by other	Acknowledgment and appraisal of exploration by other	Exploration for silica sand has been undertaken in the Cape Flattery – Cape Bedford area in 11 Authorities to Prospect (ATP's) or Exploration Permits for
parties	parties	Minerals (EPMs) since the 1960's. In general, past exploration of the dune field has primarily focused on the prominent active parabolic dunes of clean
		white silica sand.
		Historical exploration activities appear to have missed the Si2 Deposit in it's entirety, until discovery by Diatreme Resources in late 2021.
		As there are no assay certificates for this historic data, and the locations of which are dubious, the data is considered qualitative and is not used for Mineral
		Resource Estimation, or Exploration Targeting.
<u> </u>	l.	±61 7 7397 2222

+61 7 3397 2222

Criteria	Explanation	Commentary
Geology	Deposit type, geological setting and style of	The Northern Silica Project is comprised of unlithified aeolian dune complexes.
	mineralisation.	The Cape Flattery & Cape Bedford dune fields are aeolian dunes established in the Pleistocene epoch and regularly remobilised during the Pleistocene and
		Holocene epochs. The dune fields are situated on a coastal plain overlying the Hodgkinson Formation basement with Dalrymple Sandstone forming mesa
		on basement highs.
		Mineralisation is thought to be due to repeated eluviation and illuviation events on immobilised dune systems comprised of an existing quartzose sand
		source, with reactivated dune systems also exhibiting mineralisation. Intradunal valleys tend to be a surface expression of the B1 horizon, and typically are
		not considered mineralised.
		Deleterious metals are thought to have been eluviated by organic acids, which are transported by gravity through the stratigraphic column and illuviated
		either by binding to clay rich horizons, or transported away from the deposit through the water table.
Drill hole Information	A summary of all information material to the	All material collar information for drillholes has been aggregated in the Table of Material Drillholes and Results attached in this appendix to the
	understanding of the exploration results including a	announcement.
	tabulation of the following information for all Material drill	
	holes:	
	o easting and northing of the drill hole collar	
	o elevation or RL (Reduced Level – elevation above sea	
	level in metres) of the drill hole collar	
	o dip and azimuth of the hole	
	o down hole length and interception depth	
	o hole length.	
	If the exclusion of this information is justified on the basis	
	that the information is not Material and this exclusion	
	does not detract from the understanding of the report, the	
	Competent Person should clearly explain why this is the	
	case.	

Criteria	Explanation	Commentary
Data aggregation	In reporting Exploration Results, weighting averaging	Data aggregation used in this report is a calculation of the mean average for each reported variable across the respective mineralised profile for that
methods	techniques, maximum and/or minimum grade truncations	drillhole.
	(eg cutting of high grades) and cut-off grades are usually	All intercepts have been aggregated in the Table of Material Drillholes and Results attached in this appendix to this report.
	Material and should be stated.	
	Where aggregate intercepts incorporate short lengths of	
	high grade results and longer lengths of low grade results,	
	the procedure used for such aggregation should be stated	
	and some typical examples of such aggregations should	
	be shown in detail.	
	The assumptions used for any reporting of metal	
	equivalent values should be clearly stated.	
Relationship between	These relationships are particularly important in the	All drilling was vertical (-90°) intersecting undulating flat-lying aeolian dune sands.
mineralisation widths and	reporting of Exploration Results.	Downhole length correlates with true width of mineralisation.
intercept lengths	If the geometry of the mineralisation with respect to the	
	drill hole angle is known, its nature should be reported.	
	If it is not known and only the down hole lengths are	
	reported, there should be a clear statement to this effect	
	(eg 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and	Plan view of drill hole collar locations and appropriate are within the announcement, and a higher resolution image is within this appendix.
	tabulations of intercepts should be included for any	
	significant discovery being reported	
	These should include, but not be limited to a plan view of	
	drill hole collar locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results	All mineralised silica sand results are reported.
	is not practicable, representative reporting of both low	Where the results in the table are not published, the intervals are considered either
	and high grades and/or widths should be practiced to	Not mineralised (podsolisation process was immature)
	avoid misleading reporting of Exploration Results	o 0m to 1m interval – topsoil has not been assayed.
		o B1 sands / sandy clays below the mineralised horizon.

Criteria	Explanation	Commentary
Other substantive	Other exploration data, if meaningful and material, should	• Fe ₂ O ₃ percentage is the most significant limiting factor on conversion of ore to high purity silica sand product and determines value after SiO ₂ percentage.
exploration data	be reported including (but not limited to): geological	• Fe ₂ O ₃ when found in association with TiO ₂ , does not act as a contaminant or barrier to refining high- purity silica sand, with metallurgical testing showing
	observations; geophysical survey results; geochemical	gravity separation to accurately remove this impurity.
	survey results; bulk samples – size and method of	Colour (oranges, yellows, reds) tend to be a significant - but not limiting – indicator on the identification of deleterious or low yielding sands.
	treatment; metallurgical test results; bulk density,	• For the 1t bulk sample, a nominal 850g was composited from each of 1147 intervals drilled in 2023 selected to represent the Measured Category of the Si2
	groundwater, geotechnical and rock characteristics;	Mineral Resource. The relevant drillholes and intervals are included in this Appendix in the Table of Material Drillholes and Results.
	potential deleterious or contaminating substances.	Metallurgical testwork was performed at MT Carrara.
		Geochemical results were performed at ALS Brisbane using ME-XRF26 for head grade & lower purity samples, and ME-PKG85 for higher purity product
		samples. ME-PKG85 and ME-XRF26 are considered a full digest.
		Metallurgical testwork was performed at MT Carrara, and consisted of:
		o Receiving a 1t bulk sample,
		 Sample homogenisation, and then sub sampling 5kg of feed material.
		 Sieving and retaining the -1mm+0.045mm product stream
		 Sieving and retaining the -0.710mm+0.106mm product stream sample
		o Undertaking a Heavy Liquid Separation using Bromoform and Acetone to achieve a SG of 2.7 (This is a benchtop scale testwork method to simulate
		the gravity separation process)
		 The 2.7 SG floats are then attritioned for 5 minutes with 75% solids without any reagents
		o The material is then wet sieved at 0.106mm, with the oversize fraction then passed through two reading IRMS units at 3.0A, 11500 Gauss and 8.0A
		and 18000 Gauss, respectively. Both with a Pole Gap of 4mm and a Roll Speed of 140rpm.
		 The Non Magnetic fraction is then considered representative of final product for this stage of study.

Criteria	Explanation	Commentary
Further work	The nature and scale of planned further work (eg tests for	The Competent Person recommends the following programs to increase geological confidence on the deposit.
	lateral extensions or depth extensions or large-scale step-	o Undertake sizing analysis and ICP (or other suitable low Fe ₂ O ₃ detection limit assay) on samples from 2021 & 2022 programs, and maintaining this on
	out drilling).	future drill programs.
	Diagrams clearly highlighting the areas of possible	o In particular, the B1 horizon needs to be checked and tested in the interdune locations by drilling, or geological observations with hand augering to
	extensions, including the main geological interpretations	assist better defining geological continuity and support potential upgrade areas.
	and future drilling areas, provided this information is not	o Further study stages may require an improved understanding of environmental and cultural constraints (currently being identified through an EIS)
	commercially sensitive.	relevant to the development of the deposit.
		Maintain regular certified bulk density measurements in future drill programs.
		o Complete mineralogical analysis on Fe bearing minerals (such as surface coats, and inclusions) within the silica sands, and with respect to the
		relevant size fractions.
		 Establishment of a geometallurgical model to underpin the relationship between head grade and amenability to processing.
		 Submission of samples for umpire checks and bulk density assessment, is underway.
		Testing of lateral extensions of the deposit toward the Southeast
		o Geochemical analysis of the +710µm and -106µm fractions