

LinkedIn: @gateway-mining Twitter: @gateway mining

www.gatewaymining.com.au

ASX Announcement

ASX: GML

2 July 2025

Amendment to Announcement Acquisition of Yandal Gold Project from Strickland Metals Ltd

Gateway Mining Limited (ASX: GML) (**Gateway** or **Company**) advises that following consultation with the ASX, the Company provides an amendment to the Company's announcement (**Amended Announcement**) released on 30 June 2025 titled "Acquisition of Yandal Gold Project from Strickland Metals Ltd".

At the request of the ASX, the Amended Announcement includes:

- (a) additional plan views showing all of the drill holes used in the Horse Well Gold Camp and Dusk 'til Dawn Gold Camp Mineral Resources Estimates;
- (b) additional sectional views C-C' and D-D' for the Dusk 'til Dawn IRG targets;
- (c) drill collar and significant intercept information in Appendix D for HWAC112, as well as the geochemical results in Appendix D;
- (d) further JORC Table 1 disclosure for the Dusk 'til Dawn geophysical survey (3D inversion models); and
- (e) further commentary in relation to metallurgical testwork in the Other Material Information Summary section, inclusion of Appendix E detailing sample composite and testwork results, and related JORC Table 1 disclosure (Sections 1 and 2).

An amended version of the announcement is included hereafter.

This released has been authorised by:

Peter Langworthy
Executive Chairman

For and on behalf of GATEWAY MINING LIMITED

Investors
Peter Langworthy
Executive Chairman
T: 08 6383 9969

Media Nicholas Read Read Corporate T: 08 9388 1474

or

Kar Chua Company Secretary T: 02 8316 3998

Click here to subscribe to investor updates

Follow us on:

LinkedIn: @gateway-mining
Twitter: @gateway mining

ASX Announcement

ASX: GML

2 July 2025

Acquisition of Yandal Gold Project from Strickland Metals Ltd

Gateway to acquire Strickland's Yandal Gold Project for \$45 million in GML equity

HIGHLIGHTS

- Binding Agreement signed for the purchase of Strickland Metals Limited's (ASX:STK) 400,400 oz Au Yandal Gold Project¹.
- The total consideration payable to Strickland is \$45 million in Gateway shares; Strickland to distribute 80% of the consideration shares to existing Strickland shareholders.
- The Yandal Gold Project currently contains a JORC 2012 Inferred Resource of 8.17Mt @ 1.52g/t Au for 400,400 Au,¹ with excellent potential to significantly expand the Resource.
- The initial focus of work on the Yandal Project will be to progress the Mining Licence application for the Horse Well resource (291,500 oz Au) that Strickland had already started – several possible toll treating options within the region.
- Drilling of the intrusive-related gold targets at Dusk 'til Dawn identified by Strickland planned for late 2025 / early 2026.
- Subject to shareholder approval by both Gateway and Strickland shareholders, the transaction is expected to complete by the second half of August.
- Gateway remains well capitalised to undertake planned 2025 and 2026 exploration, with cash and liquid ASX listed securities of approximately \$13.6m, as at the end of the March quarter.

¹ Refer to "Table 1: Yandal Inferred Mineral Resource Estimate" and Appendix C within this announcement for further details regarding the Yandal Estimate, as well as Strickland Metals Limited's ASX announcement dated 31 March 2025.

Gateway's Executive Chairman, Mr Peter Langworthy, said: "I have had significant involvement with the Yandal asset in recent years, and am delighted that Gateway has secured the Yandal Project and can now focus on various development options in what is a highly strategic part of the West Australian goldfields. The project's advancement will be pursued alongside our existing Montague and Barrelmaker projects at Sandstone.

The initial focus at Yandal will be to progress the Mining Licence application which Strickland has already commenced. Strickland's work to date has defined a 400,400 oz Au resource¹, which is an excellent platform from which to also build a more substantial resource inventory. Both Strickland and Gateway's technical work has identified several areas that warrant drill testing, notably the intrusive related gold targets at Dusk 'til Dawn. It is expected these targets will be drilled later this year or in early 2026."

Gateway Mining Limited (ASX: GML) (**Gateway** or **Company**) is pleased to announce that it has entered into a binding tenement sale agreement (**Agreement**) with Strickland Metals Limited (ASX: STK) (**Strickland**) to acquire Strickland's interest in the Yandal Gold Project in Western Australia (**Acquisition**).

The Acquisition is subject to shareholder approval from both Gateway and Strickland shareholders.

The Yandal Gold Project contains a JORC 2012 Inferred Resource totalling 8.17Mt @ 1.52g/t Au for 400,400oz Au¹ with additional significant exploration potential.

The tenements which make up the Yandal Gold Project are listed in Appendix A (**Tenements**), and further information with respect to the Yandal Gold Project's Mineral Resource Estimates and Exploration Results are set out in Appendices C and D.

Yandal Gold Project, Western Australia

The Yandal Gold Project covers 1,780 square kilometres of the prospective eastern flank of the Yandal Greenstone Belt in the northeastern Yilgarn of Western Australia.

Gateway believes that the entire eastern extent of the Yandal Greenstone belt is relatively underexplored, with less than 6 kilometres of the total 75 kilometres Greenstone Belt, having been covered by modern exploration techniques.

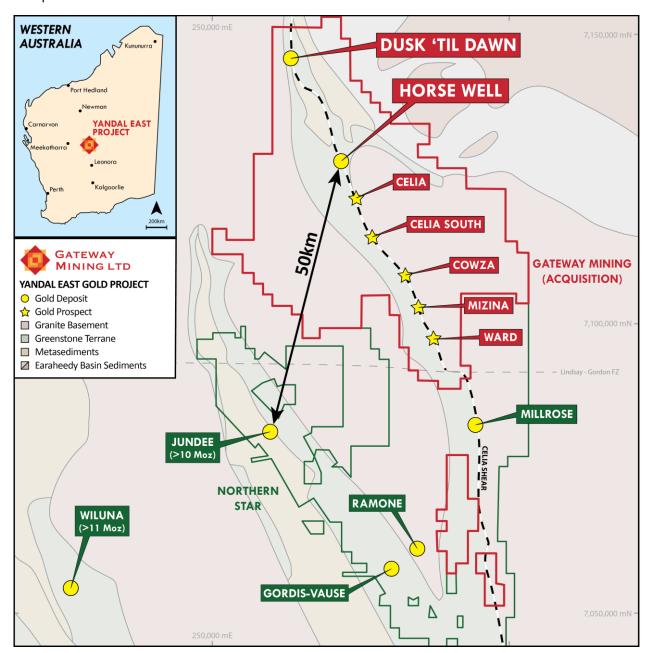


Figure 1. Strickland's Yandal Project, highlighting the key target areas in relation to the key gold and base metal prospects.

Yandal Project JORC 2012 Inferred Resource

The Yandal Gold Project contains a JORC 2012 Inferred Resource of 8.17Mt @ 1.52g/t Au for 400,400 oz Au (MRE).

Table 1: Yandal Inferred Mineral Resource Estimate

Prospect	Tonnes (t)	Au (g/t)	Au (oz)	Cut-off
Palomino Pit	1,963,000	1.84	116,000	0.5
Palomino UG	155,000	2.69	13,500	2.0
Palomino Total	2,118,000	1.90	129,500	-
Warmblood	1,656,000	2.37	126,000	0.5
Filly	581,000	1.15	21,500	0.5
Bronco	324,000	1.38	14,500	0.5
HWGC Subtotal	4,679,000	1.94	291,500	-
Dusk 'til Dawn	3,495,600	1.00	108,900	0.5
Yandal Project Total	8,174,600	1.52	400,400	

Table Notes:

- Mineral Resources are based on JORC Code Definitions as defined by the Australasian Code for Reporting Results, Mineral Resources and Ore Reserves.
- All figures are rounded to reflect appropriate levels of confidence. Apparent differences may occur due to rounding.
- The Mineral Resource Estimate has been estimated using appropriate high-grade cuts, minimum mining widths and dilutions.
- Tonnes rounded to the nearest 1,000t, ounces rounded to the nearest 500oz.
- Refer to Appendix C for further information.

Horse Well Gold Camp Resource

The Horse Well Gold Camp is a large-scale gold system consisting of a series of what are now believed to be a network of interconnected mineralised structures. The gold mineralised system has currently been defined over a strike length of 4 kilometres. However, it is clear that the system has strong potential to extend for at least the same distance under transported cover to the north where previous shallow drilling is deemed to be largely ineffective (Figure 2).

The Project is adjacent to Northern Star's Yandal Operations Centre, with the Horse Well Gold Camp located within 50km of the Jundee Gold Mine.

The Warmblood and Palomino Gold Deposits are currently the most advanced prospects within the broader Horse Well Gold Camp.

Drilling by Strickland in 2024 at the Horse Well Gold Camp continued to delineate extensions to mineralisation both along strike and at depth, with significant results received from the Warmblood, Palomino, Bronco and Marwari Gold Deposits (Figure 3).

Future drilling will focus on depth extensions at the Warmblood (Figure 4) and Palomino (Figure 5) Deposits, where the pit optimisation was restricted by the drilling depth and extent, with high-grade mineralisation present at the bottom of the pit shell and remaining completely open at depth and down plunge. Additional drilling will also be conducted along the 1.6km-long Marwari Trend, with a view of adding the high-grade currently unclassified mineralisation at the Marwari and Filly North prospects into a future resource upgrade. Mineralised gold trends identified through AC drilling, including the 3km Bronco-Konik Trend and 1.6km Marwari trend, remain open along strike to the north where they trend undercover. The MRE currently covers a combined 2.3km of strike length, with over 10km of the mineralised strike length of gold trends yet to be tested by RC or Diamond drilling. This will be the focus of future exploration at the Horse Well Gold Camp.

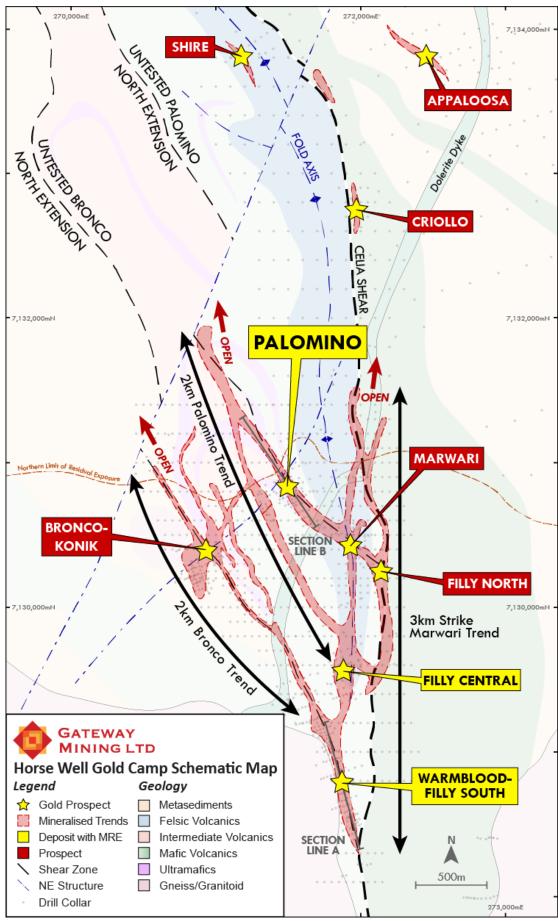


Figure 2. Schematic geological interpretation of the Horse Well Gold Camp.

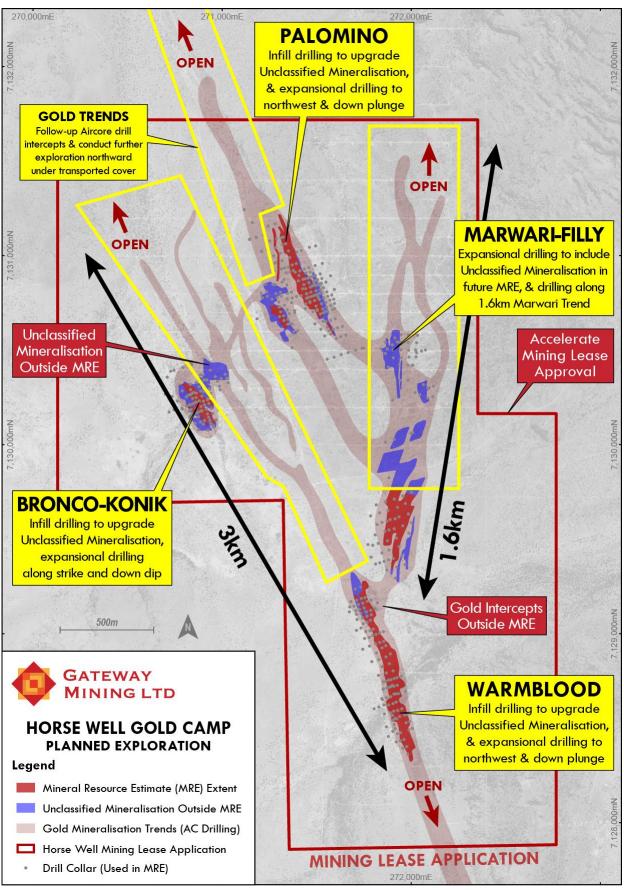


Figure 3. Horse Well Gold Camp topographic map showing mineralisation included in the MRE (dark red), unclassified mineralisation outside the MRE (blue) and mineralised trends delineated from AC drilling (pale red). Drill collar locations used in 2025 MRE for Horse Well displayed. Target zones for future drilling shown by yellow boxes.

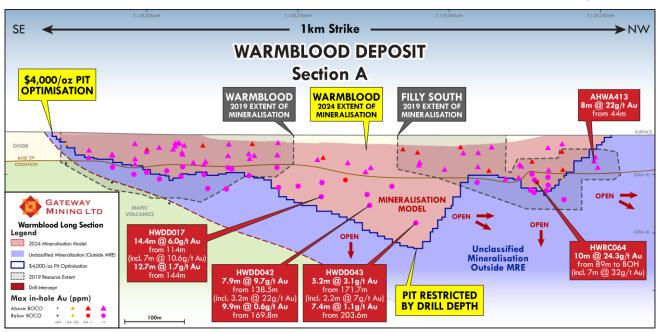


Figure 4. Warmblood Deposit Long Section A: Significant gold intercepts in relation to the 2024 mineralisation model (red) and optimised pit (dark blue linework). Note the lack of drilling below the pit optimisation extent, where mineralisation remains open.

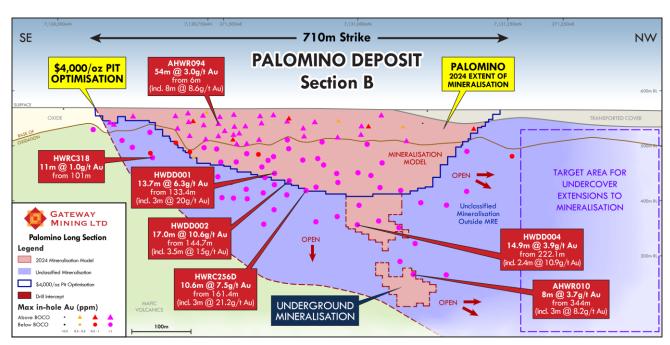


Figure 5. Palomino Deposit Long Section B: Significant gold intercepts in relation to the 2024 mineralisation model (red) and optimised pit (dark blue linework).

Mining Licence Application

The Company has lodged a Mining Licence application for the Horse Well Gold Camp and will progress the application as a matter of priority. Upcoming work at the immediate Horse Well Gold Camp will include environmental and Native Title surveys.

Receipt of a Mining Licence is a critical step for unlocking significant value within the Horse Well Gold Camp and will pave the way for continued advancement of the project.

Updates will be provided in due course as the Mining Licence application advances.

Dusk 'til Dawn Resource

Strickland commissioned consulting group Trepanier to complete a JORC Mineral Resource Estimate for gold mineralisation at Dusk 'til Dawn (Figures 6 and 7). Drilling is sufficiently detailed to enable geological and grade modelling to be completed with confidence.

Based on the work completed, an Inferred Mineral Resource above a cut-off of 0.5 g/t Au is defined over a 400-metre strike and to a depth of 200 metres and includes:

- 3,495,600 tonnes at 1.0 g/t Au for 108,900 ounces, including:
- Higher grade of 987,400 tonnes at 1.6 g/t Au for 51,800 ounces above a cut-off of 1.0g/t Au.

The Dusk 'til Dawn prospect hosts Archaean granitoids and intermediate volcanics/volcaniclastics metamorphosed to upper greenschist—lower amphibolite facies. Dusk 'til Dawn sits in a magnetic low adjacent to a NNW-trending magnetic high along the western margin of a granitoid body. Finely laminated, magnetite-rich horizons within the volcanics/volcaniclastics form stratigraphic layers with significant strike continuity, likely responsible for the regional magnetic highs.

The Dusk 'til Dawn prospect sits within a broad shear zone-hosted orogenic gold system, marked by abundant (biotite) potassic alteration, a strong planar fabric, high sulphidation, and magnetite destruction - evidence of the significant hydrothermal alteration of the inner mineralised zone. Metamorphosed intermediate volcanics/volcaniclastics, of dacitic-andesitic composition, and minor magnetite-rich chemical sediments (BIF) are host to the most significant gold mineralisation, though mineralised granitoids have also been intersected.

Future drilling will target west of the 108,900 oz resource, following up a 750 m coherent gold corridor identified by 2024 aircore drilling. Most anomalous gold was detected at end-of-holes (except HWAC1982, which was entirely oxide), with no fresh rock intersected. The primary mineralised western structure remains untested in fresh rock and is open down-dip and down-plunge. Drilling will focus on the interpreted intersection of the two sub-parallel shear zones. The target area also offers potential for multiple stacked lodes.

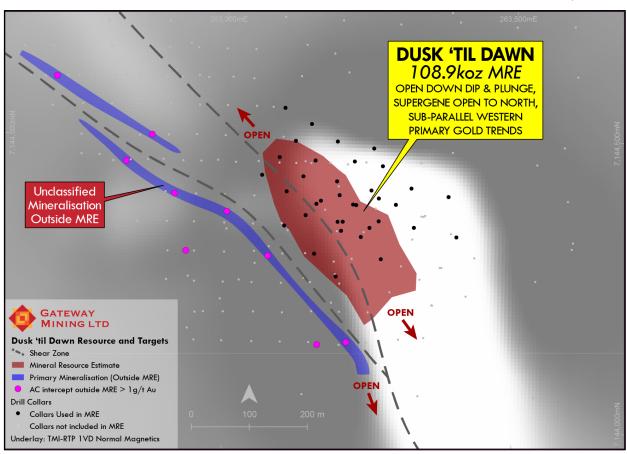


Figure 6. Dusk 'til Dawn Gold Camp topographic map. Drill collar locations used in MRE displayed.

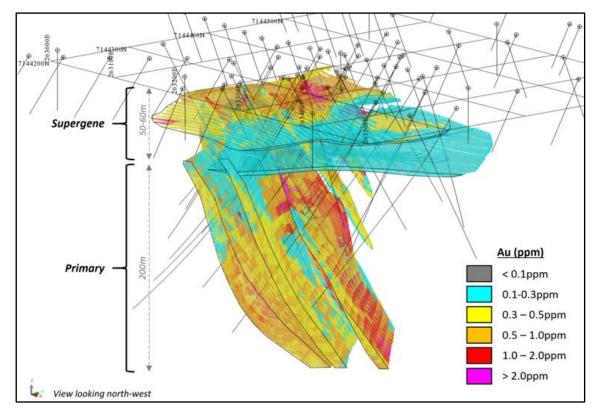


Figure 7. Dusk 'til Dawn 108.9koz Resource Model coloured by Au ppm.

Exploration Strategy

Orogenic Gold Targeting

The Gateway team considers the Yandal Project to remain largely underexplored, noting that historical shallow, vertical RAB and aircore drilling often failed to penetrate the weathered overburden and was analysed for gold only. For example, the gold mineralised system across Horse Well has currently been defined over a strike length of 4 kilometres, however it is clear that the system (based on geophysical datasets) has strong potential to extend for at least the same distance under transported cover to the north where previous shallow drilling is deemed to be largely ineffective.

In addition to this historic drilling, large areas of residual outcrop have not been geologically mapped or sampled. The initial focus for the team is to undertake detailed mapping and sampling of these area, while testing areas to the north of Horse Well with close spaced, angled aircore drilling for both gold and multi element analysis.

The aim from this work is to build a comprehensive geological model across the Project, while at the same time, undertake effective low-cost exploration to expand the existing 400,000oz mineral inventory.

Gateway's maiden drilling campaign at Yandal is expected to commence later this year or early 2026.

Dusk 'til Dawn IRG targets

The Dusk 'til Dawn Gold Camp has always been an area of interest for Strickland, given the Dusk 'til Dawn 108,900 oz Au Mineral Resource³ and expansive historic aircore drilling that has delineated several areas of significant gold mineralisation.

Two significant bottom-of-hole (>0.1g/t Au) gold trends span a total combined strike length of 7.5 kilometres, that to date have only been tested with wide spaced shallow aircore drilling (Figure 7).

Recently, the Strickland team focused on re-logging the bottom-of-hole chips across both trends and identified laterally extensive propylitic alteration. This type of alteration is typical of the alteration assemblage around large intrusion-related gold (IRG) deposits. The alteration is spatially associated with geochemical zonation characterised by an inner zone of gold-molybdenum-copper-bismuth-tellurium anomalism, zoning outwards to silver-antimony-lead-zinc-arsenic anomalism. Geochemical zonation such as this is a common characteristic of IRG systems.

In conjunction with the above work, gravity inversion modelling was completed with the aim of potentially mapping intrusive units at depth.

The results from this work are extremely encouraging, with both the geochemically significant Au-Mo-Cu-Bi-Te assemblage and propylitic alteration corridors underlain by deeper modelled low gravity units. Importantly these features are untested to date and are interpreted to be the intrusives at the core of the hydrothermal system that are driving both the alteration and coincident anomalism.

Based on this independent modelling, the peak alteration and geochemical responses from historic shallow aircore drilling are located at the surface projection of these gravity features, representing compelling targets for drill-testing to be carried out by Gateway following completion of the Acquisition.

An initial four-hole diamond program is expected to commence at Dusk 'til Dawn later this year or early 2026.

³Refer to "Table 1: Yandal Inferred Mineral Resource Estimates" and Appendix C of this announcement for further details regarding the Yandal Mineral Resource.

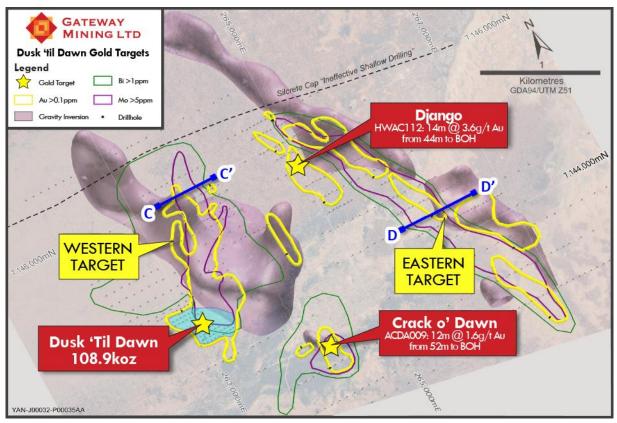


Figure 8. Shallow Au-Mo-Bi geochemical trends in relation to the 3D gravity inversion models.

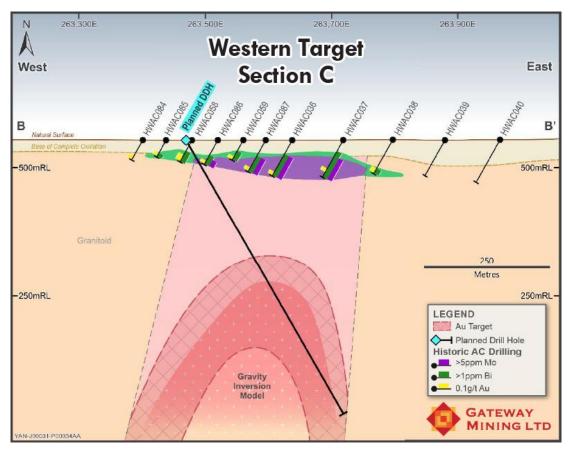


Figure 9. Cross Section showing the Au and multi-element geochemical anomalism in relation to the gravity inversion model.

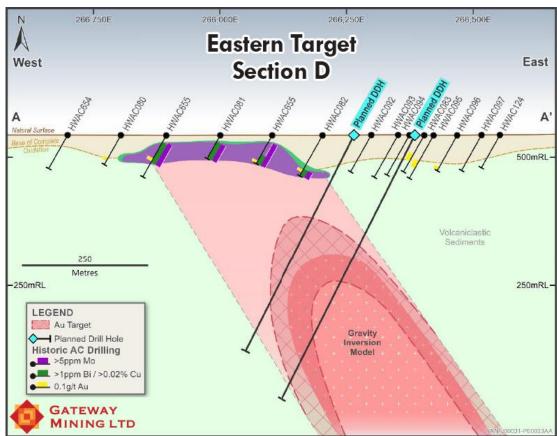


Figure 10. Cross Section showing the Au and multi-element geochemical anomalism in relation to the gravity inversion model.

Iroquois Project, Western Australia

As part of the Acquisition, the Company will also acquire Strickland's Iroquois Project. The Iroquois Project area is located to the north of the Company's Yandal Project, Western Australia. The project is subject to a joint venture, 80% of which is held by Strickland who is also the manager of the Joint Venture.

The Earaheedy Basin margin is emerging as a significant new mineralised province and is highly prospective for zinc-lead discoveries. Strickland controls approximately 30 kilometres of strike in the region.

Terms of the Acquisition

On satisfaction of the conditions precedent and completion of the Acquisition, the Company will issue to Strickland 1,500,000,000 in convertible preference shares in Gateway (**GML CP Shares**), worth \$45 million, based on Gateway's 15 day volume weighted average share price (VWAP) of \$0.03 per share as of 25 June 2025.

The GML CP Shares are convertible preference shares with limited voting rights which will automatically convert into fully paid ordinary shares in Gateway on a one for one basis following completion of an In-specie Distribution to eligible Strickland shareholders holding shares on a yet to be determined record date (In-specie Distribution). The full terms and conditions of the CP Shares are set out in Appendix B of this announcement.

Completion of the Acquisition is subject to:

- (a) the assumption and assignment of Strickland's obligations under a number of existing joint venture agreements and private royalties associated with the Yandal Project Tenements, and subject to any consents being obtained and the waiver of any pre-emptive rights under these agreements;
- (b) Gateway obtaining shareholder approval for the issue of the GML CP Shares;

- (c) Strickland obtaining shareholder approval for the In-specie Distribution;
- (d) any third party approvals and consents required to be obtained prior to the transfer of the Tenements to Gateway; and
- (e) no material adverse event occurring that could reasonably be expected to have a material effect on Gateway or the price of Gateway shares, that in turn, results in a materially adverse taxation consequence for Strickland or any eligible shareholder under the In-specie Distribution, as determined by Strickland.

(collectively, the Conditions).

ASX has confirmed that Listing Rules 11.1.2 and 11.1.3 do not apply to the Acquisition. Also, Listing Rule 10.1 does not apply to the Acquisition (see further below on management of director conflicts).

The Conditions must be satisfied or waived within 90 days of execution of the Agreement (or such later date as is agreed).

1,200,000,000 GML CP Shares will be distributed to Strickland shareholders (representing approximately 63.0% of the fully paid ordinary shares on issue in Gateway post-Acquisition) and Strickland will retain 300,000,000 GML CP Shares (representing approximately 15.7% of the fully paid ordinary shares on issue in Gateway post-Acquisition).

The GML CP Shares will automatically convert into fully paid ordinary shares in Gateway on a one for one basis on the business day after the In-specie Distribution is complete.

Conflict Management Procedure

Gateway acknowledges the following:

Mr Trent Franklin is a non-executive director of both Gateway and Strickland. Mr Franklin is also a shareholder of both Gateway and Strickland – his participation in the In-specie Distribution is subject to Gateway shareholder approval under Listing Rule 10.11. Mr Franklin has not been involved in any negotiations in relation to the Acquisition and has not been present at, or participated or voted on, any consideration by the board of the Acquisition.

Mr Peter Langworthy is the current Executive Chairman of Gateway and is a past non-executive director of Strickland (until 14 March 2025). Mr Langworthy is also a shareholder of both Gateway and Strickland – his participation in the In-specie Distribution is subject to Gateway shareholder approval under Listing Rule 10.11. Mr Langworthy has assisted the independent directors in an advisory capacity, and at their request. This is because of Mr Langworthy's longstanding knowledge of the Yandal Project through years of involvement with the asset.

Mr Langworthy and Mr Franklin have abstained from voting on all matters relating to the Acquisition at Gateway Board meetings.

The independent directors of Gateway Mr Peter Lester and Mr David Crook were responsible for negotiating the Acquisition on behalf of Gateway.

The Company will keep the market updated as the Acquisition progresses.

The Company requests that its securities are reinstated to official quotation with immediate effect.

This released has been authorised by:

Peter Langworthy Executive Chairman

For and on behalf of GATEWAY MINING LIMITED

<u>Investors</u> Peter Langworthy
Executive Chairman T: 08 6383 9969

or

Kar Chua

Company Secretary T: 02 8316 3998

Click here to subscribe to investor updates

Media

Nicholas Read **Read Corporate**

T: 08 9388 1474

Follow us on:

LinkedIn: @gateway-mining Twitter: @gateway mining

Yandal Gold Project MRE - Other Material Information Summary

A summary of other material information pursuant to ASX Listing Rules 5.8.1 is provided below for the Horse Well Gold Camp and Dusk 'til Dawn Mineral Resource Estimates. The Assessment and Reporting Criteria in accordance with the 2012 JORC Code and Guidelines are presented in Appendix C (JORC Table 1, Sections 1 to 3) to this announcement. Significant intercepts for Yandal Project drilling are listed in Appendix D.

Geology and Geological Interpretation

The Horse Well Project is located in the Eastern Goldfields portion of the Yilgarn Craton, on the northeastern 'Millrose' arm of the Yandal Greenstone Belt. This Archaean greenstone belt predominantly comprises a steeply dipping series of tholeiitic basalts, mafic volcaniclastics, ultramafic rocks, felsic volcanic rocks and sediments surrounded by younger Archaean granitoids. Transported cover is prevalent with aeolian sand plains, alluvial flood plains and minor colluvium. The Horse Well Gold Camp is concealed under approximately 5-10m of transported cover, with outcropping sparse greenstone that displays a deep weathering profile. The topography is of generally low relief, with low granite hills to the east and a small siliceous ridge along the granite-greenstone boundary.

The Warmblood-Filly-Palomino prospects lie at a widening of the greenstone belt and diverging stratigraphy at the northern end of two adjacent large external granitoids. The dominant lithotype in the prospect area is fine grained metasediments with intercalated basalt, ultramafic and felsic units. In the south, tholeiltic and high-magnesian basalts predominate. The Celia Shear Zone is located on the eastern edge of the Belt, with NW-trending splay faults that appear to be closely associated with gold mineralisation in the Prospect area, probably as an existing zone of weakness that has been reactivated. The area is dominated by a series of NW-trending magnetic units, which are reflective of the stacked imbricate thrust faulting system that controls mineralisation.

The Dusk 'til Dawn prospect hosts Archaean granitoids and intermediate volcanics/volcaniclastics metamorphosed to upper greenschist—lower amphibolite facies. Dusk 'til Dawn sits in a magnetic low adjacent to a NNW-trending magnetic high along the western margin of a granitoid body. Finely laminated, magnetite-rich horizons within the volcanics/volcaniclastics form stratigraphic layers with significant strike continuity, likely responsible for the regional magnetic highs.

The Dusk 'til Dawn prospect sits within a broad shear zone-hosted orogenic gold system, marked by abundant (biotite) potassic alteration, a strong planar fabric, high sulphidation, and magnetite destruction - evidence of the significant hydrothermal alteration of the inner mineralised zone. Metamorphosed intermediate volcanics/volcaniclastics, of dacitic-andesitic composition, and minor magnetite-rich chemical sediments (BIF) are host to the most significant gold mineralisation, though mineralised granitoids have also been intersected.

Drilling Techniques and Hole Spacing

Horse Well Gold Camp

Since gold mineralisation was discovered at the Horse Well Project in 1993, it has been owned and operated by several previous companies, including Eagle Mining, Great Central Mines, Doray, and Strickland Metals (formerly Alloy Resources). The table below sets out the companies that operated on the Project, their years of operation, and the type, number, and metres drilled (Table 2).

Table 2: Holes drilled at the Horse Well Gold Camp by Company.

Company	Year	Drillhole Type	Number of Holes	Metres
Eagle Mining	1993-1997	Diamond Drilling	2	228
Eagle Milling	1990-1991	Reverse Circulation	227	28,266
Great Central Mines	1999-2000	Reverse Circulation	22	6,050
Doray Minerals	2016	Reverse Circulation	2	210
Strickland Metals		Reverse Circulation	231	29,014
(formerly Alloy	2011-2024	Diamond Drilling	48	11.271
Resources)		Diamond Drilling	40	11,211
	Total			75,040

All drill collars were surveyed using a differential global positioning system (DGPS). Most holes have downhole surveys, which include Eastman single-shot, electronic multi-shot, or gyroscopic surveys. Two holes could not be surveyed at the Palomino deposit due to hole collapses, and 36 holes at Warmblood/Filly were not surveyed due to unknown reasons. The historic drilling information with the respective metadata has been loaded into the Strickland Metals SQL database. This database is managed by an external database management company, Mitchell River Group.

Drill spacing on the rotated local grids varies by deposit: Palomino has been predominantly drilled at $25mX \times 25mY$ spacing, with recent Strickland drilling to the northwest along strike completed at $25mX \times 40mY$; Warmblood has been drilled at $25mX \times 40mY$, with recent Strickland drilling to the northwest and down plunge completed at $40mX \times 80mY$; Bronco has been drilled at multiple orientations across each program, with average spacing of $25mX \times 25mY$; and Filly Central has been drilled at a nominal $50mX \times 50mY$ spacing. Drilling of outside of the MRE that makes up the unclassified mineralisation has been drilled at $40mX \times 40mY$ at the Marwari Prospect, and $40mX \times 100mY$ at all other prospects.

Dusk 'til Dawn Gold Camp

Drilling at Dusk 'til Dawn Gold Camp commenced in 2013 by Alloy Resources (later Strickland Metals) and Doray Minerals, in Joint Venture between 2014-2015. At Dusk 'til Dawn, a total of 90 aircore (AC) for 4,758m, 39 reverse circulation (RC) holes for 7,583m and one diamond hole for 298.8m have been drilled. The drilling programs have been carried out by Alloy Resource and Doray Minerals over a period between 2013 and 2018. Of these holes drilled one AC, one diamond and 26 RC holes have been used in the Mineral Resource Estimate. The table below sets out the companies that operated on the Project, their years of operation, and the type, number, and metres drilled (Table 3).

Table 3: Holes drilled at the Dusk 'til Dawn Gold Camp by Company.

Company	Year	Drillhole Type	Number of Holes	Metres
Strickland Metals (formerly Alloy Resources)	2013 -2018	Aircore	26	1,716
Strickland Metals (Ionnerly Alloy Resources)	2013 -2010	Reverse Circulation	14	2,022
		Aircore	64	3,042
Doray Minerals	2014-2015	Reverse Circulation	25	5,561
		Diamond Drilling	1	298.8
Total	130	12,639.8		

All drill collars were surveyed using a global positioning system (GPS). Reverse circulation and diamond drillholes were downhole surveyed using a reflex gyroscopic tool. An external database management company, Mitchell River Group, manages this database.

Drilling spacing is on a nominal 40mX x 50mY grid.

Sampling and Sub-Sampling Techniques

Horse Well Gold Camp

The sample information used in resource estimation was derived from reverse circulation and diamond drilling. Aircore and RAB holes were drilled through the different resources; these were used to assist in the interpretation but were excluded from the estimation.

The Horse Well Gold Camp has been subject to many different drill programs, each using slightly different variations in drilling, assay laboratory, sampling and QAQC protocols. Generally, for RC drilling, samples were collected at 1m intervals using an inline rig-mounted cyclone and split using a 75:25 riffle splitter or a cone splitter in later programs. The reject samples were collected in green bags and piled neatly on the drill pad. Four-metre composites were collected in anticipated unmineralised areas using a spear and submitted to the laboratory. If the sample returned a gold grade of 0.1g/t, the original 1-metre split calico bag was collected and submitted for assay.

For diamond holes, the core was cut in half using an automatic core saw. Half was sent for assay, and the other half was retained for future use. Diamond drilling is sampled at geological intervals ranging from 0.1m to 2m for early programs, and 0.5-1.2m by Strickland Metals.

The most frequently used sample interval at the Yandal Project is 1m.

All RC holes were sampled, logged and assayed in accordance with industry standards at the time of drilling. The RC chips were logged geologically for lithology, mineralisation, veining, alteration and/or weathering, where inconsistency in logging was identified, the holes have been relogged to the current understanding of the Project.

Dusk 'til Dawn Gold Camp

RC drilling was completed using face sampling hammers of either 5 $\frac{1}{2}$ " or 5 $\frac{3}{4}$ " (140mm – 146mm) diameter. One-metre samples were recovered via cyclone under high pressure and split using a riffle splitter from an original 35 kg to a 2-3 kg sample for laboratory submission. Duplicate sampling was completed every 25 samples by Strickland Metals and every 50th sample by Doray Minerals. The sample splitter was cleaned at the end of each rod to ensure no sample hang-ups have occurred. During drilling the geologist recorded occasions when sample quality was poor, sample return was low, or when the sample was contaminated or compromised in any way.

Diamond Drilling was completed using HQ sized core. Core was orientated relative to the bottom of the hole with metre marks determined from the driller's blocks and core loss determined from the distance drilled against the length of core collected. HQ Core was sawn to quarter core in one metre intervals; one quarter sent for analysis, one quarter retained in the core library.

Sample Analysis Method

Horse Well Gold Camp

Samples have been assayed in six different laboratories: Australian Assay Laboratory Group, Leonora Laverton Assay Laboratory, Analabs, Minanalytical, ALS Chemex, and Intertek. The method of analysis varied depending on the company and program. (Table 4).

Quality assurance procedures and quality control samples were sparse in the historic drilling completed by Eagle Mining and Great Central Mines. However, from 2006 onwards, quality assurance procedures were implemented, and quality control samples, which included certified reference material, blanks, and field duplicates, were incorporated.

Table 4: Sample Analysis Methods at the Horse Well Gold Camp.

Analysis Method	Eagle Mining	Great Central Mines	Doray Minerals	Strickland Metals
Aqua Regia with AAS Finish	27576	2635	-	136
Aqua Regia with ICPMS Finish	-	-	-	6
Fire Assay with AAS Finish	262	-	210	-
Fire Assay 30g with unknown Finish	651	-	-	-
Fire Assay with ICPES Finish	-	-	-	25223
Fire Assay 25g with ICPES Finish	-	-	-	12
Fire Assay 50g with Gravimetric Finish	-	-	-	35
Fire Assay Ore Grade with AAS Finish	-	-	-	638
Photon Assay	-	-	-	3953
Unknown method and analysis	-	-	-	66

Dusk 'til Dawn Gold Camp

Primary analysis of drilling samples collected by Alloy Resources were undertaken by ALS Laboratories in Perth, whilst all Doray samples (Dusk 'til Dawn only) were assayed by Minanalytical Laboratories in Perth.

Samples were collected directly from the drill rig under the custody of Alloy Resources or Doray Minerals where they were collected in a tied numbered calico bag, grouped into larger polyweave bags and cable tied. Polyweave bags are placed into larger Bulky Bags with a sample submission sheet and tied shut. Consignment notes and delivery address details were written on the side of the bag and delivered to McMahon Burnett Transport in Wiluna.

These samples were delivered to the laboratories where their sample security procedures were followed.

Dusk 'til Dawn samples taken by Alloy Resources were assayed at ALS Laboratories (Perth) using Aqua Regia (2012 AC program) and Fire Assay with ICP_MS finish (RC programs) to detection limits of 0.01 and 0.001 ppm, respectively. Samples taken by Doray Minerals were analysed at Minanalytical Laboratories (Perth) by aqua-regia digest and finished with ICP-MS at 1m intervals for multi-element assays, and 25 g Fire assay with AAS finish for gold assays.

Certified Reference Material (CRM) is included at a rate of 1 per 50 samples for all assay submissions. Duplicate field samples for the RC drilling were routinely inserted by Alloy Resources at a 1 per 25 sample ratio (Doray Minerals sampling 1 duplicate per 50 samples). CRM and laboratory checks have been assessed. Analysis of the QC samples showed that the CRMs submitted with the samples show results within acceptable tolerances and there were no significant differences between CRMs analysed by ALS or Minanalytical.

Cut-off Grades

Horse Well Gold Camp

The sample composites in the mineralised domains and unmineralised waste have been reviewed on a domain-by-domain basis. In domains with a co-efficient of variation (CV) approaching and greater than 2.0, histograms and log-probability plots have been used to identify the influence of extreme values and determine the impact of top-cutting and the values at which top-cuts should be applied. Top-cutting has been applied to sample composites in nine (9) domains.

The Resource has been reported as both in-pit and potential underground. The in-pit resources have been reported using a cut-off grade of 0.5g/t Au within an optimised AUD \$4,000/oz Au pit.

For the potential underground resource, a cut-off of 2.0g/t Au has been used to report the resource below the AUD \$4,000/oz Au optimised open pit. Potential underground resource has only been reported at Palomino.

Dusk 'til Dawn Gold Camp

Top-cuts were decided by completing an outlier analysis using a combination of methods including grade histograms, log probability plots and other statistical tools. Based on this statistical analysis of the data population, some top-cuts were applied and typically varied between 12.5 ppm and 17.5 ppm. Some domains did not require top-cutting.

A simple cut-off grade of 0.5 g/t Au was selected based on industry standard practise and the fact that it was a maiden Inferred Resource for the Dusk 'til Dawn prospect.

Estimation methodology

Horse Well Gold Camp

Three-dimensional wireframes were created to constrain the mineralisation to the block model. Micromine software was utilised for wireframing ore and weathering profiles. The mineralisation wireframe models for the Horse Well Gold Camp were constructed based on a 0.3g/t Au cut-off grade using sectional interpretation and visualisation of the mineralisation in three dimensions, using a combination of sectional mineralisation strings and 3D wireframes generated with the Micromine software implicit vein modeller module. Geological logging and structural measurements from drillholes have been used to guide mineralisation interpretation and subsequent mineralisation wireframe modelling. In total, 124 individual domain wireframes were created.

Grade estimation for gold was completed by Ordinary Kriging using Micromine software. Five different rotated block models were created for the Horse Well Gold Camp to reflect the orientation of different orebodies. The Palomino resource was rotated -18°, Warmblood -22°, Filly +18°, Marwari no rotation, and Bronco -60°. The parent block size used for estimation was 5mX, 12.5mY, and 5mZ. A sub-block size of 1mX, 1.25mY, and 1mZ was used to reflect the geometry of the wireframes.

Variography was undertaken on domains in Snowden's Supervisor, and the variography was used to undertake Kriging neighbourhood analysis to optimise the block size, search distances and min/max sample numbers used. The block model grades were estimated using ordinary kriging (OK) grade interpolation techniques constrained within the mineralisation wireframes. All work was completed in the GDA/MGA coordinate system. Search ellipses were developed from variography.

At the Palomino, Warmblood and Filly prospects, estimation was completed in three passes with the following parameters:

- Pass 1: Search dimensions were based upon variogram limit with a minimum of 4 samples and a maximum of 20 samples, and a minimum of 3 drillholes with a minimum of 2 samples per drillhole.
- Pass 2: Search ellipse expanded by 50% with a minimum of 4 samples and a maximum of 20 samples, and a minimum of 3 drillholes with a minimum of 2 samples per drillhole.
- Pass 3: Search ellipse expanded by 100% with a minimum of 2 samples and a maximum of 20 samples, and a minimum of 1 drillhole with a minimum of 2 samples per drillhole.

At Bronco, the estimation was completed in three passes with the following parameters:

- Pass 1: Search dimensions were based upon variogram limit with a minimum of 4 samples and a maximum of 22-26 samples (dependent on domain), and a minimum of 3 drillholes with a minimum of 2 samples per drillhole.
- Pass 2: Search ellipse expanded by 50% with a minimum of 4 samples and a maximum of 22-26 samples (dependent on domain), and a minimum of 3 drillholes with a minimum of 2 samples per drillhole.
- Pass 3: Search ellipse expanded by 100% with a minimum of 2 samples and a maximum of 22-26 samples (dependent on domain), and a minimum of 1 drillhole with a minimum of 2 samples per drillhole.

All estimation was completed at the parent cell scale.

The block model was validated using various techniques, including visual checking, domain assay versus block model grade, Swathe plots, and quantitative kriging measures.

Dusk 'til Dawn Gold Camp

Three-dimensional mineralisation wireframes and weathering surfaces were created using Leapfrog software. Five primary and three supergene domains were defined on geological and grade distribution trends.

Estimation parameters were based on the variogram models, data geometry and kriging estimation statistics. Top cuts were decided by completing an outlier analysis using a combination of methods, including grade histograms, log probability plots and other statistical tools. Based on this statistical analysis of the data population, some top-cuts were applied and typically varied between 12.5ppm and 17.5ppm. Some domains did not require top-cutting.

Grade estimation was completed using Ordinary Kriging ("OK") for Au using GEOVIA Surpac[™] software. The estimate was estimated into 10m (E) x 10m (N) x 10m (RL) parent cells for Dusk 'til Dawn, which has been subcelled to $0.5mX \times 1.25mY \times 0.625mZ$ to reflect the geometry of the wireframes.

Estimation parameters at Dusk 'til Dawn were based on a three-pass strategy for grade estimation consisting of:

- Pass 1: Search dimensions consisting of 60m in the major direction with a minimum of 6 samples and a maximum of 12 samples, and a minimum of 4 drillholes with a maximum of 4 samples per drillhole.
- Pass 2: Search ellipse major direction expanded to 120m with a minimum of 6 samples and a maximum of 12 samples, and a minimum of 4 drillholes with a maximum of 4 samples per drillhole.
- Pass 3: Search ellipse expanded to 1000m in the third pass to ensure that the vast majority of cells are estimated with a minimum of 6 samples and a maximum of 12 samples, and a minimum of 4 drill holes with a maximum of 4 samples per drill hole.

The block model was validated using various techniques, including visual checking, domain assay versus block model grade and Swathe plots.

Bulk Density

Horse Well Gold Camp

Bulk density readings were collected from diamond core at the Palomino and Warmblood deposits. 388 samples were collected at Palomino, and 128 samples were collected at Warmblood. From these samples average densities for oxidation profiles or rock type (transition and fresh rock) were assigned to the block model using the three-dimensional weathering model. No bulk density information has been collected at Filly and Bronco. For these deposits the Warmblood density for the different weathering profiles were assigned.

Dusk 'til Dawn Gold Camp

No bulk density samples have been measured at Dusk 'til Dawn. The bulk density for oxide, transitional and fresh has been assumed from nearby comparable operations and assigned to the respective weathering horizons.

Classification Criteria

The Mineral Resource remains classified as Inferred in accordance with the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC, 2012). This classification reflects the relative confidence in the estimate and considers the confidence in the geological interpretation, grade continuity, drilling spacing, historical data, quality assurance and quality control information, estimation passes, and other estimation parameters.

Horse Well Gold Camp

The in-pit classification for Palomino, Warmblood, Filly and Bronco was constrained to an AUD \$4,000/oz Au optimised pit shell using estimation passes 1 and 2. For the potential underground resource at Palomino, the model was reported using a 2.0g/t Au cut off below the AUD \$4,000/oz Au pit. The material that did not meet this criterion remains unclassified, including mineralisation at the Marwari prospect.

The Palomino and Warmblood resource close spaced drilling, 25mX x 25mY, was completed by Eagle Mining between 1993 and 1999. The assay results from this drilling cannot be verified due to lack of QA/QC information, therefore these resources are classified as inferred.

Dusk 'til Dawn Gold Camp

The Dusk 'til Dawn Mineral Resources have been classified as Inferred based on confidence in the geological model, continuity of mineralised zones, drilling density, confidence in the underlying database and the available bulk density information.

The resource was reported at a cut-off grade of 0.5 g/t Au which was based on industry standard practice for the type, location and size of the deposit.

Mining and Metallurgical Methods, Parameters and other modifying factors considered to date

Horse Well Gold Camp

Due to the from-surface nature of mineralisation and deep weathering profile, open-pit mining methods were considered to complete open-pit optimisations across the Horse Well Gold Camp Deposits at an AUD \$4,000/oz gold price. The Resource Estimate is reported at a cut-off grade of 0.5g/t Au for in-pit constrained material at Warmblood, Palomino, Bronco and Filly. A cut-off of 2.0g/t Au has been applied to potential underground material at Palomino that is reflective of typical underground mining operation grades in Western Australia. No underground potential has been assessed outside of the open-pit optimisations at Warmblood, Filly and Bronco due to the resources being almost entirely contained within the optimised pits.

Metallurgical testwork was recently completed at the Horse Well Gold Camp on fresh rock samples from the Palomino Deposit showing gravity-recoverable gold recoveries up to 32.5% and total gold (gravity + cyanide leach) recoveries ranging between 78.5% and 88.6%. Drillhole details and metallurgical testwork results for each composite sample can be found in the Strickland ASX Announcement "Metallurgical Testwork Confirms High Gold Recovery at Horse Well Gold Camp" dated 13 March 2025.

In March 2020, Alloy Resources undertook Metallurgical testwork on RC chip samples of oxide material from the Palomino Deposit showing total gold recovery, via gravity-amalgam and cyanide leaching, at 89.03% and 87.2%, respectively.

No metallurgical factors were considered in this Horse Well Gold Camp Resource Estimation, and no dilution factors were applied.

Dusk 'til Dawn Gold Camp

For Dusk 'til Dawn, based on the orientations, thicknesses and depths to which the gold-bearing zones have been modelled, plus their estimated grades for Au, the potential mining method is considered to be open pit mining. Strickland Metals selected twenty mineralised pulp samples from Dusk 'til Dawn hole ACDD001 in fresh rock and confirmed very high cyanide recoverable gold from Leachwell analysis following residue analysis and comparison with original fire assays. These results confirm that the gold is not refractory in nature and highly likely to be recoverable by conventional milling and CIP recovery.

Horse Well Metallurgical Testwork 2025

The testwork was undertaken by ALS Metallurgy, Perth and managed and reviewed by external consultants MineScope Services Pty Ltd. A total of 140 lengths of quartered diamond drill core of fresh mineralisation was selected from six drill holes spanning the Palomino Deposit at the Horse Well Gold Camp (Table 5; Figure 11). Six composites of 10-20kg were created, as well as a master composite. Specimens were selected across all composites for Drop-Weight Index (DWi) testing followed by crushing of each composite, a subsample of each of the -3.35mm product was blended to form a single master sample for Bond Ball Mill Work Index (BWi) testing. Drillhole details and individual assay data for each interval for all composites are presented in Appendix E.

Table 5: Composite sample selection details.

Composite	Hole ID	Depth From (m)	Depth To (m)	Total Mass (kg)	Expected Grade (g/t)
Composite 1	HWDD001	128.6	147.0	12.6	3.73
Composite 2	HWDD002	145.6	160.6	13.2	5.11
Composite 3	HWDD004	223.5	236.0	15.4	3.24
Composite 4	HWDD009	104.7	123.0	19.9	2.17
Composite 5	HWDD011	150.7	168.0	17.6	2.09
Composite 6	HWDD020	182.0	190.0	10.5	1.28

Methodology Summary

Each composite was submitted for head assay, dry solids specific gravity determination and grind establishment testing to achieve a P80 of 75 μ m. Each composite was run through a Knelson gravity concentrator to produce a gravity gold concentrate.

The tailings from the gravity concentrator underwent bottle roll cyanide leach testing in Perth tap water at 40% solids with a NaCN dose of 1.50 kg/t, a target of 20 ppm dissolved O2 and a target pH of 10.5 (via a lime dose of 0.40 kg/t) for a total of 48 hours. Subsamples of the leach solution were taken after 2, 4, 8, 12, 24, 36 and 48 hours to produce a leaching profile over time. The leach residue was submitted for fire assay and aqua regia.

Gold Head Assays and Mineralogy

The composites have average head grades ranging from 1.16g/t Au to 6.19g/t Au, providing good grade variability for the testwork and are representative of grade variation within ore zones at the Palomino Deposit.

Multi-element testwork shows that the silver contents of the composites are low and that neither arsenic nor carbon are present in these samples above the detection limit (Table 6). This suggests that there is low potential for preg-robbing in the solution during cyanidation and low possibility of excess cyanide consumption through complexing with preferential metals.

Comminution Testwork

Comminution testwork was undertaken on the master composites and shows that fresh ore at Palomino is categorised as hard with a BWi of 16.8 kWh/t and SCSE of 11.45 kWh/t (Table 7). The ore at Palomino shows similar properties to other deposits in the region and results indicate that it can be processed using conventional SABC milling or three-stage crushing.

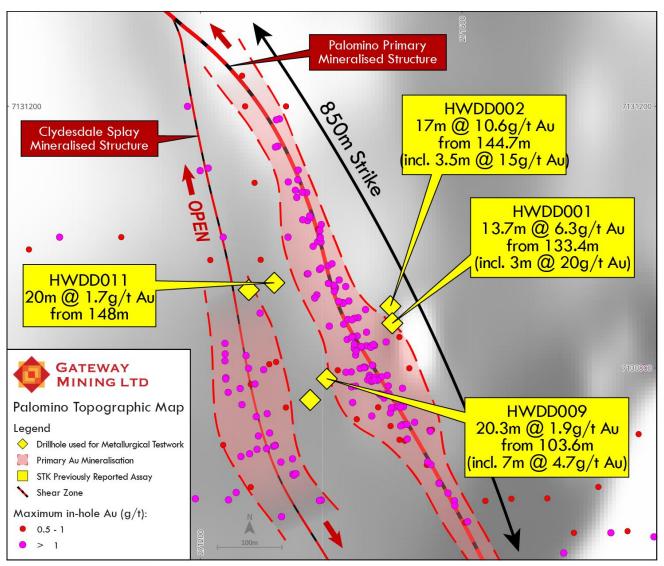


Figure 11: Palomino Deposit showing location of drill holes utilised for metallurgical testwork.

Table 6: Composite Multi-element head assay summary.

Analyte	Composite 1	Composite 2	Composite 3	Composite 4	Composite 5	Composite 6
Au1 (g/t)	4.00	5.58	5.90	2.90	2.89	1.12
Au2 (g/t)	3.37	6.79	4.44	2.94	2.86	1.19
Au Average (g/t)	3.69	6.19	5.17	2.92	2.88	1.16
Ag (ppm)	< 0.3	0.6	< 0.3	0.6	< 0.3	< 0.3
As (ppm)	< 10	< 10	< 10	< 10	< 10	< 10
S (%)	0.26	0.62	0.34	0.28	0.30	0.26
S-2 (%)	0.22	0.48	0.24	0.26	0.22	0.20
C Total (%)	0.45	0.78	0.24	0.51	0.51	0.39
C Organic (%)	< 0.03	< 0.03	0.06	0.03	< 0.03	< 0.03
C Carbonate (%)	2.2	3.8	0.9	2.4	2.5	1.9
Fe (%)	7.52	7.26	8.10	8.38	7.78	7.94
SG (t/m3)	3.014	2.96	3.035	3.007	3.001	3.021

Table 7: Comminution testwork results of the Palomino Master Composite.

Parameter	Unit	Master Composite Result
BWi	kWh/t	16.8
SG	t/m3	2.94
Axb	-	33.2
ta	-	0.29
SCSE	kWh/t	11.45

Gravity Gold and Cyanide Leach Testwork

Gravity-recoverable gold was assessed before the cyanide leach test and shows all composites are amenable to gravity concentration with high recoveries of up to 32.5% (Table 8).

Cyanide leaching results for all composites were similar, with the majority of the gold entering solution after two hours. Total gold recoveries ranged between 78.5% and 88.6% (Table 8). Cyanide consumption ranged from 0.25 to 0.32 kg/t for the six composites.

Table 8: Gravity and Cyanide Leach gold recoveries for each composite sample.

Composite ID	Gold Grade Average (g/t)	Gravity Gold Recovery (%)	Leaching Gold Recovery (%)	Total Gold Recovery (%)
Composite 1	3.69	32.5	56.1	88.6
Composite 2	6.19	29.3	58.7	88.1
Composite 3	5.17	31.5	57.1	88.6
Composite 4	2.92	16.6	65.4	82.0
Composite 5	2.88	17.7	60.8	78.5
Composite 6	1.16	18.2	68.5	86.7

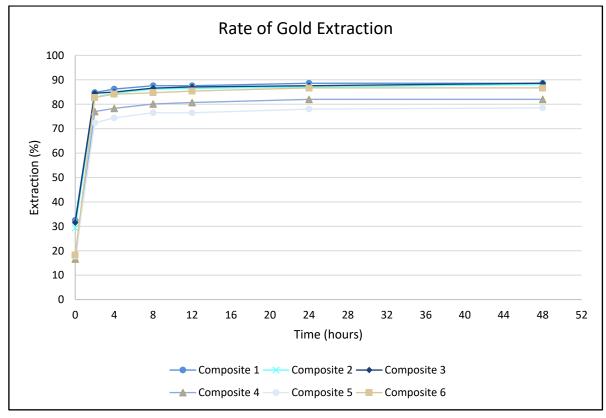


Figure 12. Cumulative gold cyanide leaching profile. Refer to Appendix E for data.

Competent Person Statement

The information in this report that relates to Mineral Resources for the Horse Well Gold Camp at the Yandal Project, including Mineral Resources for the Horsewell and Dusk 'til Dawn Camps in Western Australia is based on information compiled by Mr Michael Martin who is a Director at Omni GeoX Pty Ltd and a Member of the Australian Institute of Geoscientists (AIG). Mr Martin has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration to qualify as a Competent Person for resource estimation as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Martin consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

The information in this report that relates to Exploration Results is based on information compiled or reviewed by Mr Richard Pugh who is the Strickland Metals Limited Executive Technical Director and is a current Member of the Australian Institute of Geoscientists (AIG). Mr Pugh has sufficient experience, which is relevant to the style of mineralisation and types of deposit under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code of Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Pugh consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

Forward Looking Statement

This announcement may contain certain forward-looking statements, guidance, forecasts, estimates, prospects, projections or statements in relation to future matters that may involve risks or uncertainties and may involve significant items of subjective judgement and assumptions of future events that may or may not eventuate (**Forward-Looking Statements**). Forward-Looking Statements can generally be identified by the use of forward-looking words such as "anticipate", "estimates", "will", "should", "could", "may", "expects", "plans", "forecast", "target" or similar expressions and may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production and expected costs. Indications of, and guidance on future earnings, cash flows, costs, financial position and performance are also Forward Looking Statements.

Persons reading this announcement are cautioned that such statements are only predictions, and that actual future results or performance may be materially different. Forward-Looking Statements, opinions and estimates included in this announcement are based on assumptions and contingencies which are subject to change, without notice, as are statements about market and industry trends, which are based on interpretation of current market conditions. Forward-Looking Statements are provided as a general guide only and should not be relied on as a guarantee of future performance.

No representation or warranty, express or implied, is made by Gateway that any Forward-Looking Statement will be achieved or proved to be correct. Further, Gateway disclaims any intent or obligation to update or revise any Forward-Looking Statement whether as a result of new information, estimates or options, future events or results or otherwise, unless required to do so by law.

APPENDIX A: YANDAL PROJECT TENEMENTS

Yandal Project, Western Australia			
Tenement Holder	Location	Tenement Number	Percentage owned
Eskay Resources Pty Ltd – Application	WA	M69/147	100%1
Eskay Resources Pty Ltd – Granted	WA	E69/1772	100%1
Strickland Metals Limited – Granted	WA	E53/1466	100%²
Strickland Metals Limited – Granted	WA	E53/1471	100%²
Strickland Metals Limited – Granted	WA	E69/2765	100%²
Strickland Metals Limited – Granted	WA	E53/1924	100%²
Strickland Metals Limited – Granted	WA	E69/2492	100% ^{2,3}
Strickland Metals Limited – Granted	WA	E69/3427	100%²
Earaheedy Zinc Pty Ltd – Granted	WA	E69/2820	80%4
Strickland Metals Limited – Granted	WA	E53/1548	75% ^{2,5,6}
Strickland Metals Limited – Granted	WA	E53/1835	75% ^{2,5,6}
Strickland Metals Limited – Granted	WA	E53/1970	75% ^{2,5,6}
Strickland Metals Limited – Granted	WA	E53/1971	75% ^{2,5,6}
Strickland Metals Limited – Granted	WA	E53/2265	75% ^{2,5,6}
Strickland Metals Limited – Granted	WA	E53/2266	75% ^{2,5,6}

Yandal Project, Western Australia			
Tenement Holder	Location	Tenement Number	Percentage owned
Strickland Metals Limited – Granted	WA	E69/3929	100%²
Strickland Metals Limited – Granted	WA	E53/2179	100%²
Strickland Metals Limited – Granted	WA	E53/2177	100%²
Strickland Metals Limited – Granted	WA	E53/2178	100%²
Strickland Metals Limited – Granted	WA	E53/2180	100%²
Strickland Metals Limited - Granted	WA	E53/2153	100%²
Strickland Metals Limited - Granted	WA	E53/2154	100%²
Earaheedy Zinc Pty Ltd - Granted	WA	E69/3811	100%²
Strickland Metals Limited - Granted	WA	E53/2160	100%²
Strickland Metals Limited – Application	WA	E53/2357	75% ^{2,5,6}

Notes

- 1. 1% Gross Revenue Royalty held by MW Royalty Co Pty Ltd
- 2. 1% Gross Revenue Royalty held by L11 Capital Pty Ltd
- 3. Wayne Jones 2% NSR
- 4. Gibb River Diamonds Limited retain 20% free carried to BFS
- 5. 25% free carried by Zebina Minerals Pty Ltd as part of Exploration Joint Venture Agreement
- 6. 0.5% Net Smelter Royalty to Renegade Exploration Limited over a 75% interest in these tenements.

APPENDIX B: TERMS AND CONDITIONS OF THE GML CP SHARES

1. Glossary

- (a) Unless the context otherwise requires words and expressions used in this appendix have the meanings ascribed to them respectively in the Constitution;
- (b) If a word or phrase is defined, its other grammatical forms have a corresponding meaning;
- (c) a reference to a clause relates to a clause of these Terms; and
- (d) The following expressions have the following meanings:

ASTC means ASX Settlement and Transfer Corporation Pty Ltd (ABN 49 008 504 532) or any successor.

Automatic Conversion has the meaning given to that term in clause 3(a).

Automatic Conversion Date means the first Business Day after the CPS are registered in the name of the Eligible Shareholder or the Sale Agent (as the case may be) as a result of the Distribution.

Board means the board of directors of the Company.

CHESS means the Clearing House Electronic Subregister System operated by ASTC.

Company means Gateway Mining Limited.

Constitution means the constitution of the Company as amended from time to time.

Conversion means in relation to a CPS, the taking effect of the rights specified in clauses 3(a), 5 and 6(d) in relation to that CPS, where Convert and Converted have corresponding meanings.

Conversion Date means the Automatic Conversion Date or the New Conversion Date, as applicable.

Corporations Act means the Corporations Act 2001 (Cth).

CPS means the convertible preference shares in the capital of the Company known as "CPS" issued on the Terms, where the context requires, each convertible preference share.

CPS Holder means each person registered in the Register from time to time as a holder of CPS.

Distribution means the distribution in specie of the CPS to Eligible Shareholders, pursuant to the Distribution Resolution.

Distribution Resolution means a resolution passed at a meeting of ordinary shareholders of Strickland authorising the Distribution pursuant to the Corporations Act.

Dividend means the non-cumulative dividend payable on each CPS at the Dividend Rate.

Dividend Rate means 5% per annum based on the Face Value of each CPS.

Eligible Shareholders means a holder of fully paid ordinary shares in the issued capital of Strickland as at the Record Date with a registered address in Australia, New Zealand and any other jurisdictions determined by Strickland.

Face Value means \$0.000001 per CPS.

Ineligible Foreign Shareholders means holders of fully paid ordinary shares in the issued capital of Strickland as at the Record Date who are not Eligible Shareholders.

New Conversion Date has the meaning given to that term in clause 6(d).

Record Date means the date determined by Strickland.

Register means the register of CPS maintained by the Company and includes any sub register of that register.

Sale Agent means the sale agent to be appointed by Strickland that will be distributed CPS by Strickland on behalf of the Ineligible Foreign Shareholders.

Shares means a fully paid ordinary share in the capital of the Company.

Strickland means Strickland Metals Limited.

Terms means the terms and conditions for the issue of CPS in the Company as these terms and conditions are amended, supplemented or replaced from time to time and as set out herein.

2. CPS

- (a) The CPS are fully paid convertible preference shares in the capital of the Company. They are issued and are automatically Converted according to these Terms.
- (b) Each CPS will be issued fully paid at the Face Value.

3. Automatic Conversion

- (a) Subject to:
 - (i) the completion of the Distribution;
 - (ii) the Company not providing written notice to Strickland prior to 5:00pm (Perth time) on the Business Day prior to the Automatic Conversion Date that it is unable to provide a Cleansing Notice; and
 - (iii) clause 6(d),

each CPS will be Converted on the Automatic Conversion Date in accordance with clause 5.

(b) The Company does not have the right to automatically Convert the CPS other than in the circumstances listed in clauses 3(a) or 6(d).

4. No Holder conversion right

Save as provided for in these Conditions, no CPS Holder has a right to Convert a CPS.

5. Conversion

- (a) In the event of a Conversion all CPS will convert into Shares on the basis of one Share for each CPS.
- (b) A CPS, upon Conversion, confers all of the rights attaching to one Share but these rights do not take effect until 5.00pm (Perth time) on the Conversion Date. At that time:
 - (i) all other rights conferred or restrictions imposed on that CPS under these Terms will no longer have effect; and
 - (ii) the Share resulting from the Conversion will rank equally with all other Shares.

- (c) Conversion does not constitute a redemption, buy-back, cancellation or termination of CPS or an issue, allotment or creation of a new Share.
- (d) Upon Conversion the Company shall provide the CPS Holder with a certificate or statement of holding for the Shares the subject of a Conversion.
- (e) Despite anything else in these Terms, upon Conversion of the relevant CPS, any entitlement to a Dividend (accrued or otherwise) with respect to CPS, will cease to accrue and be deemed to be written off.

6. Quotation of Shares

- (a) Each Share arising from Conversion will rank pari passu with all other fully paid Shares, except that such Shares arising from Conversion will not be entitled to any dividend or any other distribution or entitlement that has been declared or determined but not paid as at the Conversion Date.
- (b) On the Automatic Conversion Date, subject to clause 6(c), the Company must provide to ASX a notice complying with sections 708A(5)(e) and 708A(6) of the Corporations Act (**Cleansing Notice**).
- (c) If on the Automatic Conversion Date the Company would be unable to provide to ASX a Cleansing Notice in respect of a Conversion because it is unable to comply with the requirements of sections 708A(5)(e) and 708A(6) of the Corporations Act (including where trading in the Shares on ASX was suspended for more than a total of five days in the preceding 12 month period) or for any other reason is unable to provide to ASX a Cleansing Notice (for the purposes of clause 6(b), the Company must within 20 Business Days after the Automatic Conversion Date lodge with ASIC a prospectus complying with section 708A(11) of the Corporations Act (Cleansing Prospectus).
- (d) If the Company is under an obligation to lodge a Cleansing Prospectus, and the Automatic Conversion Date would occur prior to actual lodgement of the Cleansing Prospectus then the Conversion of the CPS will not occur until the date on which the Company has complied with its obligations under clause 6(c) (for the purposes of this clause 6(d), the **New Conversion Date**) and each CPS will be Converted on the New Conversion Date in accordance with clause 5.
- (e) Shares arising from Conversion will be issued in uncertificated form through CHESS.
- (f) Statements of holdings for Shares arising from Conversion will be dispatched by the Company free of charge as soon as practicable but in any event within 10 Business Days after the relevant Conversion Date.

7. General CPS Terms

(a) Register

The Company shall maintain the Register.

- (b) General Rights
 - (i) CPS rank equally amongst themselves in all respects.
 - (ii) Until Conversion, the CPS shall have an entitlement to the payment of Dividends equal to the Dividend Rate before payment of a dividend to holders of Shares or any other class of shares ranking behind the CPS.
 - (iii) Until Conversion, if there is a return of capital on a winding up of the Company, CPS Holders will be entitled to receive out of the assets of the Company available for distribution to holders of CPS, in respect of each CPS held, a cash payment equal to the Face Value and any accrued and unpaid Dividend before any return of capital is made to holders of Shares or any other class of shares ranking behind the CPS.

- (iv) CPS do not confer on their holders any right to participate in profits or property except as set out in these Terms or in the Constitution.
- (v) If, upon a return of capital, there are insufficient funds to pay in full the amounts referred to above and the amounts payable in respect of any other shares in the Company ranking as to such distribution equally with the CPS on a winding up of the Company, the CPS Holders and the holders of any such other shares will share in any distribution of assets of the Company in proportion to the amounts to which they respectively are entitled.
- (vi) Until Conversion, the CPS do not confer on the CPS Holders any further right to participate in the surplus assets of the Company on a winding up then those set out in these Terms.
- (vii) Until all CPS have been converted, the Company must not, without approval of the CPS Holders, issue shares ranking in priority to the CPS or permit the variation of any rights of any existing shares to shares ranking equally or in priority to the CPS, but the Board are at all times authorised to issue further CPS ranking equally with any existing CPS.
- (viii) If a takeover bid is made for ordinary shares, acceptance of which is recommended by the Board, or the Board recommend a member's scheme of arrangement, the Board will use reasonable endeavours to procure that equivalent takeover offers are made to the CPS Holder or that they participate in the scheme of arrangement.
- (ix) Until Conversion, the CPS confer no rights to subscribe for new securities in the Company or to participate in any bonus issues.
- (x) A CPS does not entitle a CPS Holder to vote at any general meeting of the Company except in the following circumstances:
 - (A) on a proposal:
 - (1) to reduce the share capital of the Company;
 - (2) that affects rights attached to the CPS;
 - (3) to wind up the Company; or
 - (4) for the disposal of the whole of the property, business and undertaking of the Company;
 - (B) on a resolution to approve the terms of a buy back agreement;
 - (C) on a resolution during a period in which a Dividend or part of a Dividend on the CPS is in arrears; or
 - (D) on a resolution during the winding up of the Company.
- (xi) In accordance with the Constitution, a Holder will have the same rights as the holders of Shares with respect to receiving notices at general meetings and financial reports and attending the Company's general meetings.
- (xii) Subject to complying with all applicable laws, the Company may, without the authority, assent or approval of the CPS Holders, amend or add to these terms of issue if such amendment or addition is, in the opinion of the Company:
 - (A) of a formal, minor or technical nature;
 - (B) made to correct a manifest error; or
 - (C) not likely (taken as a whole and in conjunction with all other modifications, if any, to be made contemporaneously with that modification) to be materially prejudicial to the interests of the CPS Holders.

APPENDIX C: JORC TABLE 1 – HORSE WELL GOLD CAMP AND DUSK 'TIL DAWN GOLD CAMP Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Eagle Mining Eagle Mining operated in the Horse Well Project between 1993 and 1997. Drillex, Drillcorp and Apex drilling completed RC drilling. Sampling of initial drilling programs undertaken in 1993 consisted of samples collected at 1m intervals split into 1-2kg samples by an inline riffle splitter mounted on the rig's side. Samples were analysed for Au at AAL Kalgoorlie by single-stage mix and grind preparation, with an aqua-regia digest and an AAS. Repeats (approximately 10%) were fire-assayed to a detection limit of 0.01 ppm Au. In follow up program, consisted of samples were collected at 1m intervals split into 1-2kg samples by an inline riffle splitter. Samples were submitted to AAL in Kalgoorlie for analysis of Au using a single stage and grind preparation, with an aqua regia digest and an AAS finish. Holes HWRC015 to HWRC021 repeat analyses were by 50gm Fire Assay, HWRC022 repeat analyses were Aqua regia, HWRC023 to 027 were assayed by FA30 (30gram fire assay) repeated using the same method. The remaining holes drilled by Eagle Mining were sent to Leonora and Laverton Assay Laboratory (LLAL), which used the Aqua Regia method SA30 with an SA30 repeat on 10% of samples and some samples greater than 0.1 ppm. SA30 is an aqua regia method with an AAS finish (Solvent Assay 30-gram charge); duplicates are repeats from the pulp. It is unknown whether certified reference material samples and field duplicate were submitted. Diamond Drilling was completed by Apex drilling. The core was cut with a diamond saw, and half is submitted for assay. Sample lengths vary and are based on the core's geology. Half-core samples were taken and submitted for analysis to Leonora Laverton Assay Laboratory (LLAL) for an SA30 Aqua regia analysis with an SA30 laboratory repeat on 10% of samples or samples greater than 0.1 ppm.

Criteria	JORC Code explanation	Commentary
		Great Central Mines
		 Great Central Mines completed 22 drillholes in 1999. Samples were collected and recovered via cyclone under high pressure and split using a 75:25% riffle splitter from an original 35kg to a 2-3kg sample for laboratory submission. Samples were initially collected as a 4m composite, and a composite sample that returns a gold grade of 0.1g/t or better or has intersected a structural target has the one-metre samples submitted for assay.
		 Analabs analysed the Samples, which were oven-dried, pulverised to a nominal 75 microns, and split into 400–500 grams. They determined gold using Aqua Regia acid digest (40gram) with fire assay repeats. It is unknown whether certified reference material samples and field duplicates were submitted.
		Alloy Resources
		Aircore drilling was completed by Raglan Drilling and were completed to blade refusal, usually at saprock or fresh bedrock to an average depth of 66 metres.
		This reconnaissance drilling was carried out a widely spaced pattern of 200 metres by 400 metres, with drill samples composited over 4 metre intervals and assays for gold down to 0.001ppm or 1ppb Au. Any gold values greater than 0.05ppm Au in the 4-metre composite were considered significant to warrant follow up drilling.
		 Drilling samples were transported by trailer to Wiluna, where they were placed in bulky bags and shipped to Perth via Toll-Ipec for assay. The drilling samples were analysed by ALS-Chemex in Perth. All samples and blind standards were analysed for gold using 30g fire assay and ICP-AES finish (range 0.001-10ppm Au). Assays greater than 10ppm were analysed using the AA25 methos, but only standard samples were above this level.
		The initial RC program at Warmblood was carried out by Easternwell Drilling. RC samples were split directly from the cyclone into 2kg bags for every metre drilled. Samples were assayed as 4 metre composites. For all 4 metre composite samples which returned greater than 0.5g/t.

Criteria	JORC Code explanation	Commentary
		Au, 1 metre samples were collected from the original 'split' one metre samples and assayed.
		Alloy Resources & Doray Minerals Ltd (JV)
		From 2013 to 2021 exploration work was undertaken by Alloy Resources and Doray Minerals Ltd under the pre-existing JV agreement. The details regarding RC sampling from this work is outlined below:
		 Reverse circulation (RC) percussion drill chips collected through a cyclone and cone splitter at 1m intervals.
		Spitter was cleaned regularly during drilling.
		Splitter was cleaned and levelled at the end of each hole.
		 Mineralisation determined qualitatively through rock type, sulphide and quartz content and intensity of alteration.
		 Mineralisation determined quantitatively via assay (aqua-regia digest followed by ICP-MS for multi-element data and 25g Fire Assay and AAS determination for gold at 1m intervals). RC samples pulverized to 75 pm
		 All samples analysed by aqua-regia digest followed by ICP-MS for multi-element data and 25g Fire Assay and AAS determination for gold at 1 m intervals.
		Strickland Metals Ltd
		Diamond Drilling
		 Diamond coring was undertaken predominantly as HQ sizing, with PQ utilized to maximise recovery, where required, particularly within saprolite and clay zones.
		Triple-tubing was utilised throughout to maximise recovery.
		Diamond core samples were collected at geologically defined intervals, with a minimum sample length of 0.5m and a maximum of 1.2m.

-		
Criteria	JORC Code explanation	Commentary
		 Core samples were cut using an automated variable-speed diamon saw with half core, weighing approximately 3kg, submitted for analysis.
		 OREAS certified reference material (CRM) was inserted at a ratio of 1:20 throughout sampling. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology weathering, and analysis method of the sample.
		 Density measurements were collected as per Water Displacement Method 3 (Lipton, 2001) with paraffin wax coatings used for oxide an porous samples. Selected core samples were 0.1 – 0.2 m in size Aluminium cylinders of 0.1 and 0.2 m in length, with known mass an density were measured at regular intervals at a ratio of 1:20, as reference material. Duplicate sample weights were measured in fres rock at a ratio of 1:20.
		 Handheld instruments, such as an Olympus Vanta pXRF an Terraplus KT-10 meter were used to aid geological interpretation CRMs were tested at regular intervals at a ratio of 1:20.
		RC Drilling
		2-3 kg samples were split from dry 1 m bulk samples. The sample wa initially collected from the cyclone in an inline collection box, wit independent upper and lower shutters. Once the full metre was drille to completion, the drill bit was lifted off the bottom of the hole, creatin a gap between samples; ensuring the entirety of the 1 m sample wa collected, and over-drilling did not occur. When the gap of air entere the collection box, the top shutter was closed off. Once the top shutter was closed, the bottom shutter was opened, dropping the sampl under gravity over a cone splitter.
		 Two even 2 – 3 kg duplicate sample splits, from the A- and B-chute of the splitter, were collected at the same time for each metre, with th remaining reject bulk sample being collected in labelled green bag directly below the cyclone, minimising external contamination.

Criteria	JORC Code explanation	JORC Code explanation Commentary		
Onteria	JONO Gode explanation	•	Original sample bags were consistently collected from the A-chute, whilst duplicate sample splits were collected from the B-chute. During the sample collection process, the original and duplicate calico sample splits, and green bag of bulk reject sample were weighed to test for sample splitting bias and sample recovery.	
		•	Green bags were then placed in neat lines on the ground, with tops folded over to avoid contamination. Duplicate B-chute sample bags are retained and stored on site for follow up analysis and test work.	
		•	In mineralised zones, the original A-chute sample split was sent to the laboratory for analysis. In non-mineralised 'waste' zones, a 4 m composite scoop sample was collected from the green bags and the A-chute bag retained on site for follow up analysis test work. All composite intervals over 0.1 g/t Au were resampled at 1 m intervals using the original A-chute bag from the cyclone splitter.	
		•	QA samples were inserted at a combined ratio of 1:20 throughout. Field duplicates were collected at a 1:40 ratio from the B-chute of the cone splitter at the same time as the original sample was collected from the A-chute. OREAS certified reference material (CRM) was inserted at a ratio of 1:40. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample.	
		•	The cyclone was cleaned after each rod, at the base of oxidation, and when deemed necessary by the geologist to minimise contamination of samples. Sample condition was recorded for bias analysis. The cyclone was balanced at the start of each rod and checked after each sample to avoid split bias. Dual air-vibrators on the cyclone transfer box were utilised, when necessary, to aid sample throughput. Vibrators were placed on opposite sides of the cyclone and perpendicular to the chutes to avoid vibration-induced splitting bias.	
		•	Handheld instruments, such as an Olympus Vanta pXRF and Terraplus KT-10 meter were used to aid geological interpretation. CRMs were tested at regular intervals at a ratio of 1:20.	

		*	
Criteria	JORC Code explanation	Commentary	
Drilling	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Eagle Mining	
techniques		The original Eagle Mining was completed by Drillex using a Warman 1000 Multi-Purpose all-hydraulic top-drive rig- with a Sullair rated at 900 CFM @ 350 psi, Apex drilling, and Drillcorp.	
		Early drilling programs were surveyed by Downhole surveys using a magnetic, electronic multi-shot probe. Two holes at Palomino couldn't be surveyed due to hole collapse. One program drilled by Apex drilling downhole surveys were taken using an Eastman single shot. Later programs were downhole surveys by Total Borehole Services (now WSG), downhole surveys, and driller-operated electronic multishots.	
		Great Central Mines	
		Great Central Mines completed 22 RC drillholes in 1999. Holes were downhole at 10m intervals.	
		Alloy Resources	
		In 2019 Alloy Resources undertook Reverse Circulation Drilling with an 120mm bit.	
		Strickland Metals Ltd	
		Diamond Drilling	
		Diamond Drilling was undertaken by Terra Drilling using a truck-mounted KWL1600 drill rig.	
		Diamond coring was undertaken predominantly as HQ sizing, with PQ utilised to maximise recoveries where necessary. Triple-tubing was utilised to maximise recovery.	
		REFLEX Sprint IQ and OMNI-Tool North-Seeking Gyroscopes were used for downhole dip and azimuth calculation, with multi-shot measurements taken every 30m during drilling, and a continuous IN and OUT readings taken at end-of-hole (EOH).	
		RELFEX TN-14 Rig Aligner was used to align the rig to within 0.01 degrees of the planned azimuth, dip and roll at the start of each hole.	
		Boart Longyear Orientation tools were used for core orientation.	

Criteria	JORC Code explanation	Commentary
Ontona	Octo Coac Oxpianation	RC Drilling
		RC drilling was undertaken by Ranger Drilling, using a truck-mounted Hydco 350RC Rig with a 1350 cfm @ 500 psi on-board compressor, a 1150 cfm onboard Booster, and a truck-mounted Sullair 900 cfm @ 350 psi Auxiliary Compressor.
		RC holes were drilled with a 5 ½" hammer.
		REFLEX Sprint IQ and OMNI-Tool North-Seeking Gyroscopes were used for downhole dip and azimuth calculation, with multi-shot measurements taken every 30m during drilling, and a continuous IN and OUT readings taken at end-of-hole (EOH).
		RELFEX TN-14 Rig Aligner was used to align the rig to within 0.01 degrees of the planned azimuth, dip and roll at the start of each hole.
		Dusk 'til Dawn
		The Dusk 'til Dawn Deposit was drilled predominantly with Aircore (90 holes for 4,758m) and Reverse Circulation (39 holes for 7,583m) drilling. One HQ diamond core hole was also drilled (ACDD001 for 298.9m). The diamond core hole, 1 AC and 26 RC holes have been used in the resource estimation. Holes were drilled either by Alloy or Doray Minerals between 2012 and 2018.
Drill sample	Method of recording and assessing core and chip sample recoveries	Eagle Mining
recovery	and results assessed.	No sample recovery information is available.
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain 	Great Central Mines
		No sample recovery information is available.
		Alloy Resources
	of fine/coarse material.	RC Drilling: sample splitter is cleaned at the end of each rod to ensure no sample hang-ups have occurred. Sample bag weights are recorded and in general should be approximately 3kg.
		No sample recovery information is available.
		Wet samples due to excess ground water were noted when present.

Criteria	JORC Code explanation	Commentary
		Strickland Metals Ltd
		Diamond Drilling
		Diamond core samples are considered dry.
		Triple-tubing and the appropriate drill tube diameter was selected (PQ, HQ, or NQ) depending on ground competency to maximise sample recovery.
		Sample recovery is recorded every run (average run length of 3m) and is generally above 98%, except for in very broken ground.
		Core was cut in half, with the same half of the core submitted to the laboratory for analysis.
		From the collection of recovery data, no identifiable bias exists.
		RC Drilling
		During the RC sample collection process, the original and duplicate cone split samples, and green bag reject bulk samples were weighed to test for bias and sample recoveries. The majority of this work was undertaken in ore zones.
		Once drilling reached fresh rock, a fine mist of water was used to suppress dust and limit loss of fines through the cyclone chimney.
		At the end of each metre, the bit was lifted off the bottom of hole to separate each metre drilled.
		The majority of samples were of good quality, with ground water having minimal effect on sample quality or recovery.
		From the collection of recovery data, no identifiable bias exists.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	Eagle Mining
		• Logging of lithology, structure, alteration, veining, mineralisation, oxidation state, weathering, mineralogy, colour. RC Holes were
		logged to a level of detail to support future mineral resource estimation. Logging was qualitative and quantitative in nature.

Criteria	JORC Code explanation	Commentary
	The total length and percentage of the relevant intersections logged.	Qualitative: lithology, alteration, foliation.
		Quantitative: vein percentage; mineralisation (sulphide) percentage.
		All holes logged for the entire length of hole.
		All RC holes were chipped and archived.
		Holes have been relogged where necessary to provide consistent logging through the project.
		Great Central Mines
		Logging of lithology, structure, alteration, veining, mineralisation, oxidation state, weathering, mineralogy, colour. Logging was qualitative in nature. All holes logged for the entire length of hole.
		Alloy Resources
		Logging of lithology, structure, alteration, veining, mineralisation, oxidation state, weathering, mineralogy, colour. Logging was qualitative in nature.
		All RC holes were chipped and archived.
		RC Holes were logged to a level of detail to support future mineral resource estimation. Logging was qualitative and quantitative in nature.
		Qualitative: lithology, alteration, foliation.
		Quantitative: vein percentage; mineralisation (sulphide) percentage.
		Strickland Metals Ltd
		Logging of lithology, structure, alteration, veining, mineralisation, oxidation state, weathering, mineralogy, colour, magnetic susceptibility and pXRF geochemistry were recorded.
		Logging was both qualitative and quantitative in nature.
		Diamond Drilling

0.14			
Criteria	JORC Code explanation	Commentary	
		Diamond core was geotechnically logged at 1cm resolution; recording recovery, RQD, orientation confidence, joint density, joint sets, joint asperity and fill mineralogy.	
		Core trays were photographed wet and dry.	
		Structural measurements were collected utilizing the IMDEX IQ- Logger 2, with reference measurements taken at the start of each logging session and every 20 measurements throughout the drill hole to ensure instrument calibration and data quality.	
		RC Drilling	
		RC chips were washed, logged and a representative sub-sample of the 1 m drill sample retained in reference chip trays for the entire length of a hole.	
		Reference chip trays were photographed wet and dry.	
Sub-sampling	If core, whether cut or sawn and whether quarter, half or all core taken.	Eagle Mining	
techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were split from a 1m bulk sample via an inline riffle splitter directly from the cyclone.	
, ,,,,,,,,,	 For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	QC sample consisted of repeat samples and laboratory duplicates. These laboratory duplicates and repeats samples were analysed by the samples were analysed by the samples were analysed by the samples were analysed.	
		mixture of aqua regia or fire assay for samples above 0.1 by aqua regia or fire assay.	
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	 Diamond Drilling consisted of the core being cut with a diamond saw, and half is submitted for assay. Sample lengths vary and are based on the core's geology. 	
	, ,	Alloy Resources	
	Whether sample sizes are appropriate to the grain size of the material being sampled.	RC chips were cone split every metre, sampled dry where possible and wet when excess ground water could not be prevented. Sample condition (wet, dry or damp) was recorded at the time of logging.	
		Where mineralisation was unlikely, the samples were composited by spear sampling — four x 1 metre subsamples combined to approximately 3kg and submitted for assay.	

Ouitouio			
Criteria	JORC Code explanation	Commentary	
		 The entire ~3kg RC sample was pulverised to 75um (85% passing). This is considered best practice and is standard throughout the industry. 	
		Pulp duplicates taken at the pulverizing stage and selective repeats conducted at the laboratory's discretion.	
		Duplicate samples were taken every 50 th sample.	
		Sample size is appropriate for the grain size of the sample material.	
		 Historic pulp samples from Warmblood were stored at the STK warehouse in sealed carboard boxes that were labelled with the key lab job number from the historic gold only Fire Assay analysis. The lab job number was referenced with the existing drill database to determine each representative hole ID. The samples/holes requiring multi-element analysis were then subsequently placed in new cardboard boxes with new sample submission numbers and sent to ALS laboratory in Perth for full four-acid multi element analysis – code MS61. 	
		Strickland Metals Ltd	
		Diamond Drilling	
		Diamond core samples were collected at geologically defined intervals, with a minimum sample length of 0.5m and maximum of 1.2m.	
		Samples were cut using an automated variable-speed diamond saw.	
		Core was cut in half, with the same half of the core submitted to the laboratory for analysis.	
		Diamond core samples are considered dry.	
		 Triple-tubing and the appropriate drill tube diameter was selected (PQ, HQ, or NQ) depending on ground competency to maximise sample recovery. 	
		Sample recovery is recorded every run (average run length of 3m) and is generally above 98%, except for in very broken ground.	

		_
Criteria	JORC Code explanation	Commentary
		 Handheld instruments, such as an Olympus Vanta pXRF and Terraplus KT-10 Magnetic Susceptibility meter, were used to aid geological interpretation. Core was analysed at 1m intervals for 60 seconds (3 x 20 second beams) utilising an Olympus Vanta pXRF instrument. CRMs were tested at regular intervals at a ratio of 1:20.
		RC Drilling
		 RC samples were split from dry, 1m bulk sample via a cone splitte directly from the cyclone.
		 Weighing of calico and reject green samples to determine sample recovery compared to theoretical sample recovery, and check sample bias through the splitter.
		 Field duplicates collected from the B-chute of the splitter through the entire hole at the same time as the original sample collection from the A-chute.
		Quality Control Procedures
		 Approximately 3kg of sample was submitted to ALS, Perth WA for analysis via 50g fire assay with an ICP-AES finish (method code: Au- ICP22). Samples that over-ranged are subsequently analysed by 50g fire assay and gravimetric finish (method code: Au-GRA22).
		Ore zones were additionally analysed via 250g Photon Assay (method code: Au-PA01).
		Detection limits of utilised methods:
		Method Unit Lower Upper Limit Limit
		Au- ppm 0.001 10 ICP22
		Au- ppm 0.01 100 GRA22
		Au-PA01 ppm 0.03 350

0.11			
Criteria	JORC Code explanation	Col	mmentary
		•	Sample duplicates (DUP) were inserted at a ratio of 1:20 throughout sampling of ore zones, and 1:40 throughout sampling of waste material.
		•	OREAS certified reference material (CRM) was inserted at a ratio of 1:20 throughout sampling of ore zones, and 1:40 throughout sampling of waste material. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample.
		•	The total combined QAQC (DUPs and CRMs) to sample ratio through ore zone material was 1:10. For waste zones the combined QAQC to sample ratio was 1:20.
		•	Field Duplicates and CRMs were submitted to the lab using unique Sample IDs.
		•	For Fire Assay, all samples were sorted, dried at 105°C and weighed prior to crushing to 2mm. Crushed samples were then split and pulverised to 75 μ m, with a QC specification of ensuring >85% passing < 75 μ m. 50g of pulverised sample was then analysed for Au by fire assay and ICP-AES (low-grade) or gravimetric (ore-grade) finish.
		•	Sample size and preparation is appropriate for the grain size of the sample material.
		Me	tallurgical Testwork
		•	For selected metallurgical sample intervals, the remaining core was quartered, with quarter core submitted to ALS, Perth, for metallurgical analysis.
		•	Sampled intervals were blended to produce six composite samples.
		•	Each composite was separately control crushed to <3.35mm, homogenised three times through a rotary sample divider and split into the following charges:
			 1 x 2 kg, combined to form an equi-mass composite sample for Bond ball mill work index (BWi) determination.

Criteria	JORC Code explanation	Commentary
		 1 x 0.5 kg which was dried to determine moisture contents and submitted for head assay and true SG determination.
		 2 x 1 kg, for grind establishment testwork.
		 Multiple 1 kg sub-samples for extractive testwork.
		Duplicate assays were collected for each head assay.
Quality of	1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Eagle Mining
assay data and laboratory tests	 procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, 	The majority of samples were analysed using Aqua Regia which is a partial analysis. fire assay was also used for some analyses, which is a total analysis.
10010	the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their	QC samples consisted of laboratory repeats and duplicates.
	derivation, etc.	Great Central Mines
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Great Central Mines submitted samples to Analabs, where the samples were analysed for gold using Aqua Regia acid digest (40gm) with fire assay repeats. Aqua Regia method is a partial analysis and Fire assay is a total analysis.
		QC samples consisted of laboratory repeats and duplicates.
		Alloy Resources
		Fire assay was used and is a total digest technique.
		Certified reference material standards, 1 in every 50 samples.
		Blanks: a lab barren quartz flush is requested following a predicted high-grade sample (i.e., visible gold).
		Lab: Random pulp duplicates were taken on average 1 in every 10 samples.
		Accuracy and precision levels have been determined to be satisfactory after analysis of these QAQC samples.
		Dusk 'til Dawn samples taken by Alloy were assayed by ALS Laboratories (Perth) using Aqua Regia (2012 AC program) and Fire Assay with ICP_MS finish (RC programs) to detection limits of 0.01

and 0.001ppm respectively. Samples taken by Doray Minerals were analysed by Minanalytical Laboratories of Perth by aqua-regia digest followed by ICP-MS at 1m intervals for multi-element assays, 25 g Fire assay with AAS finish for gold assays.

Strickland Metals Ltd

Diamond Drilling

- Sample duplicates (DUP) were inserted at a ratio of 1:20 throughout sampling of ore zones, and 1:40 throughout sampling of waste material.
- OREAS certified reference material (CRM) was inserted at a ratio of 1:20 throughout sampling of ore zones, and 1:40 throughout sampling of waste material. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample.
- The total combined QAQC (DUPs and CRMs) to sample ratio through ore zone material was 1:10. For waste zones the combined QAQC to sample ratio was 1:20.
- Field Duplicates and CRMs were submitted to the lab using unique Sample IDs.
- ALS, Perth WA conduct CRM analysis and laboratory check assays at a combined ratio of 1:25 samples as part of standard laboratory QAQC protocols.
- Blank quartz 'flushes' were inserted into the sample sequence throughout high-grade ore zones. After each high-grade sample (usually determined by the presence of visible gold) is crushed, a quartz flush is crushed. A second quartz flush is run after each sample is pulverised, prior to the quartz crush flush undergoing pulverisation. In total, two quartz flushes are conducted (one for each preparation stage) for each suspected high-grade sample to determine the level of potential contamination across samples.
- No bias or contamination is seen across samples.
- Core was analysed at 1m intervals for 60 seconds (3 x 20 second

beams) utilising an Olympus Vanta pXRF instrument. CRMs were tested at regular intervals at a ratio of 1:20. Olympus Vanta pXRF instruments cannot accurately measure elemental Au and whole-suite elemental data are not considered appropriate for reporting. pXRF data are used as a guide for logging only.

RC Drilling

- 2-3 kg samples were split from dry 1 m bulk samples. The sample was initially collected from the cyclone in an inline collection box, with independent upper and lower shutters. Once the full metre was drilled to completion, the drill bit was lifted off the bottom of the hole, creating a gap between samples; ensuring the entirety of the 1 m sample was collected, and over-drilling did not occur. When the gap of air entered the collection box, the top shutter was closed off. Once the top shutter was closed, the bottom shutter was opened, dropping the sample under gravity over a cone splitter.
- Two even 2 3 kg duplicate sample splits, from the A- and B-chutes
 of the splitter, were collected at the same time for each metre, with the
 remaining reject bulk sample being collected in labelled green bags
 directly below the cyclone, minimising external contamination.
- Original sample bags were consistently collected from the A-chute, whilst duplicate sample splits were collected from the B-chute. During the sample collection process, the original and duplicate calico sample splits, and green bag of bulk reject sample were weighed to test for sample splitting bias and sample recovery.
- Green bags were then placed in neat lines on the ground, with tops folded over to avoid contamination. Duplicate B-chute sample bags are retained and stored on site for follow up analysis and test work.
- In mineralised zones, the original A-chute sample split was sent to the laboratory for analysis. In non-mineralised 'waste' zones, a 4 m composite scoop sample was collected from the green bags and the A-chute bag retained on site for follow up analysis test work. All composite intervals over 0.1 g/t Au were resampled at 1 m intervals using the original A-chute bag from the cyclone splitter.
- QA samples were inserted at a combined ratio of 1:20 throughout. Field duplicates were collected at a 1:40 ratio from the B-chute of the

cone splitter at the same time as the original sample was collected from the A-chute. OREAS certified reference material (CRM) was inserted at a ratio of 1:40. The grade ranges of the CRMs were selected based on grade populations and economic grade ranges. The reference material type was selected based on the geology, weathering, and analysis method of the sample.

- The cyclone was cleaned after each rod, at the base of oxidation, and when deemed necessary by the geologist to minimise contamination of samples. Sample condition was recorded for bias analysis. The cyclone was balanced at the start of each rod and checked after each sample to avoid split bias. Dual air-vibrators on the cyclone transfer box were utilised, when necessary, to aid sample throughput. Vibrators were placed on opposite sides of the cyclone and perpendicular to the chutes to avoid vibration-induced splitting bias.
- Handheld instruments, such as an Olympus Vanta pXRF and Terraplus KT-10 meter were used to aid geological interpretation. CRMs were tested at regular intervals at a ratio of 1:20.

Metallurgical Testwork

- Samples were analysed by ALS, Perth for the following:
 - Sample preparation.
 - Comminution: SMC testwork and Bond ball mill work index (BWi) determination.
 - Head assays and true Specific Gravity.
 - Grind establishment testwork.
 - Gravity separation, concentrate amalgamation, and direct leach of the gravity tailings.
 - Simple diagnostic assay on leach residues.
- Sampled intervals were blended to produce six composite samples.
- Each composite was separately control crushed to <3.35mm, homogenised three times through a rotary sample divider and split into the following charges:

- 1 x 2 kg, combined to form an equi-mass composite sample for Bond ball mill work index (BWi) determination.
- 1 x 0.5 kg which was dried to determine moisture contents and submitted for head assay and true Specific Gravity determination.
- o 2 x 1 kg, for grind establishment testwork.
- Multiple 1 kg sub-samples for extractive testwork.

• BWi test procedure:

- The composite (100% passing 3.35 mm) was blended in a rotary sample divider and test portions were extracted for the work index test.
- 700 mL of ore was ground in the standard mill for a counted number of revolutions.
- $_{\odot}$ The ground material was screened at a test aperture of 106 μm to remove the <106 μm material.
- Fresh feed was added to the >106 μm fraction to make-up to the original test weight.
- The number of mill revolutions was adjusted at each cycle until a stable recirculating load was achieved.
- The work index was calculated from the formula:

$$(Wi)_B = \frac{44.5}{(Pi)^{0.23} \times (Gbp)^{0.82} \times \left(\frac{10}{\sqrt{P_{90}}} - \frac{10}{\sqrt{F_{90}}}\right)} \times 1.102$$

Where:

 $(Wi)_B$ = Work index value expressed in kWh/tonne

Pi = Grindability test aperture (micrometres)

Gbp = Mean of equilibrium grindability values (g/rev)

 P_{80} = 80% passing size of the equilibrium product (micrometres)

 F_{80} = 80% passing size of the feed to period 1 (micrometres)

- All assay samples generated during the test program were submitted to the ALS analytical laboratory in Balcatta for analysis. The following analytical techniques were used:
 - Gold in ores and leach residues: Fire assay/ICP-MS.
 - Gold in solution: Direct ICP-MS.
 - O Ctotal, Corganic: CS2000 analysis.
 - O StotaL, Ssulphide: CS2000 analysis.
 - o Multi-element scan of solids: Acid digestion with ICP-OES.
 - Silver in solution: Direct ICP-MS.
 - o Gold in mercury amalgam: Acid digest/ICP.
- All testwork was performed using Perth potable tap water.
- For grind establishment testwork, the following procedure was used:
 - One-kilogram sub-samples were ground in a stainless-steel laboratory rod mill at 50% solids (w/w) for various times.
 - The ground solids from each grind were wet screened over a 75 μm aperture sieve.
 - The screen oversize material was dried and then re-screened over a nest of sieves from 250 μm to 75 μm. The screen undersize material was combined with the undersize material from step 2.
 - Each size fraction was dried, weighed, and the masses were used to determine the particle size distribution (PSD).
 - \circ The resultant sizing data were then used to determine the grinding times necessary to achieve the target P_{80} grind size.
- The gravity extraction was conducted using the following procedure:
 - Two, 1 kg sub-samples were ground to P80: 75 μm and passed through a laboratory Knelson KC-MD3 gravity concentrator at 0.12 kW drive, 1500 rpm, and 3.5 L/min fluidisation flow rate.
 - o The Knelson gravity concentrate was panned to ∼50 g (DWE) and transferred into a 1-litre bottle and 5 g of mercury was

added before placing it on a mechanical roller for 2 hours. On completion of the amalgamation, the mercury was recovered and submitted to the assay laboratory for the determination of the total gold contents (µg).

- The Knelson gravity tail, Knelson concentrate hand pan tails and amalgamation tailings were combined for direct cyanidation.
- Direct leach was undertaken using the following procedure:
 - Perth tap water was added to the gravity tails to establish a slurry of 40% solids (w/w).
 - o Lime (70.8% CaO) was added to establish a pH of 10.5.
 - Sodium cyanide was added to the slurry to establish an initial cyanide concentration of 0.10% (w/v).
 - The slurry was sparged with oxygen to maintain an elevated slurry dissolved oxygen (DO) content of >15 mg/L throughout the leach.
 - At intervals of 2, 4, 8, 12 and 24 hours, slurry pH, DO, and cyanide concentration were monitored and recorded. If required, cyanide was added to maintain the cyanide level ≥0.05% (w/v).
 - o Intermediate solution samples were assayed for gold.
 - At the conclusion of the test (48 hours), the terminal pH, oxygen, and cyanide levels were determined.
 - o The terminal leach solution was assayed for gold.
 - The terminal leach slurry sample was filtered, washed, and dried. A sub-sample of the dried filter cake was assayed for gold (duplicate).
 - A sub-sample of the tailings from step (9) was submitted for diagnostic residue assay, consisting of an aqua regia digest, with fire assay of the aqua regia digest residue.

Verification of sampling and assaying

- The verification of significant intersections by either independent or alternative company personnel.
- The use of twinned holes.
- Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.

Eagle Mining

- Logging and sampling were recorded on paper logs. Alloy Resources transferred these logs to digital format and loaded them into the corporate database.
- Drill intersections were checked by repeat analyses and laboratory duplicates at the Laboratory.
- Two twin diamond holes were completed.

Doray Mining

 Logging and sampling were recorded electronically. Alloy Resources transferred these logs to digital format and loaded them into the corporate database.

Alloy Resources

- All sampling was routinely inspected by senior geological staff. Significant intercepts were inspected by senior geological staff.
- No twinned holes were drilled during the program.
- Data was hard keyed into Excel data capture software and merged with Datashed SQL based database on Strickland's internal company server. Data is validated by a Database Administrator, import validation protocols in place.
- Visual checks of data were completed within Surpac software by consultant geologists.
- No adjustments were made to any of the assay data.

Strickland Metals Ltd

- Logging and sampling were recorded directly into LogChief, utilising lookup tables and in-file validations, on a Toughbook by a geologist at the rig.
- Logs and sampling were imported daily into Micromine for further validation and geological confirmation.
- When received, assay results were plotted on section and verified against neighbouring drill holes.

		From time to time, assays will be repeated if they fail company QAQC
		protocols.
		All data is verified by Strickland's senior geologists.
		No adjustments to assay data are made.
		All data is now managed and hosted by Mitchell River Group.
Location of	Accuracy and quality of surveys used to locate drill holes (collar and	Eagle Mining
data points	down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	The grid system used was MGA94 Zone 51. All historic holes have been surveyed by DGPS by Strickland Metals.
	Specification of the grid system used.	Downhole surveys were collected using magnetic Downhole multi-
	Quality and adequacy of topographic control.	shot measurements by either drillers or by contract downhole wireline surveyors in open hole. Some holes were not able to be surveyed due to collapsed holes.
		Topography was built using collar surveys surveyed by DGPS.
		Alloy Resources
		Collars: surveyed with GPS with expected relative accuracy of approximately 2-3m.
		Downhole: surveyed with in-rod reflex Gyro tool continuously.
		Holes are located in MGA94 zone 51.
		Estimated RL's were assigned during the drilling.
		Strickland Metals Ltd
		The grid system used was MGA94 Zone 51 and drillhole collar positions surveyed using DGPS.
		REFLEX Sprint IQ and OMNI-Tool North-Seeking Gyroscopes were used for downhole dip and azimuth calculation, with multi-shot measurements taken every 30m during drilling, and a continuous IN and OUT readings taken at end-of-hole (EOH).
		RELFEX TN-14 Rig Aligner was used to align the rig to within 0.01 degrees of the planned azimuth, dip and roll at the start of each hole.

		Boart Longyear Orientation tools were used for core orientation.	
		Strickland engaged with an independent surveyor to pick up and locate all collars that had not been subject to a DGPS pick-up previously.	
		Ground Gravity Survey	
		Atlas Geophysics are utilising a Scintrex CG5 digital gravity meter to collect the ground gravity data. The survey was positioned with CHC GNSS receivers operating in PPK mode. All data were tied to the AFGN using a single control stations. Expected accuracy of the gravity survey would be better than 0.02 mGal with recorded elevations accurate to better than 3cm. Gravity stations were routinely collected at 200m metre intervals.	
Data spacing and	Data spacing for reporting of Exploration Results.	Reported intercepts include internal waste averaging 3m unless stated otherwise.	
distribution	Whether the data spacing and distribution is sufficient to establish the		
	degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. • Whether sample compositing has been applied.	Eagle Mining	
		Holes were drilled on a variable collar spacing of approximately 40m across the Horse Well Project with up to 80 to 100 metre spacings.	
		Intercepts are reported as composites of individual 1m assay results from a cut-off of 0.5g/t Au.	
		Reported intercepts include internal waste averaging 3m.	
		Great Central Mines	
		Holes were drilled to extend deeper mineralisation along strike of the Palomino deposit at 100m spacing.	
		<u>Doray Minerals</u>	
		Two drill holes were drilled testing the long strike extension to the Palomino mineralisation. Holes were drilled on same line, but 25m apart.	
		The Dusk 'til Dawn Resource area has been drilled on 50m x 40m spacing.	
		Mineralisation at Dusk 'til Dawn is sufficient geological and grade continuity that may be appropriate for the Mineral Resource and Ore	

				Reserve estimation procedure(s) and classifications to be applied in the future.
			•	Samples were on 1m length, with some 4m composites Samples have been composted to 1m for resource estimation.
			Stı	rickland Metals Ltd
			•	Diamond Drilling at Palomino is located between existing 40m-spaced historic drill holes, to achieve 20m x 20m spacing within the Mineral Resource.
			•	Assay results show good continuity of grade and width of intercepts between STK and Historic drill holes, both along strike, down-dip and down-plunge.
			•	The data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralised horizon to support the classification of the Mineral Resources reported.
			•	Intercepts are reported as composites of individual 1m assay results from a cut-off of 0.5g/t Au.
				Ground Gravity Survey
			•	Gravity stations were planned at 200 metre by 200 metre station spacings.
relation a	n	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of 	•	Based on the drilling completed to date, the orientation (both dip and plunge) of mineralisation is based on numerical Au assay values and confirmed by structural data collected from Strickland Metals' diamond drilling.
structure		key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	•	The orientation of key structures and any relationship to mineralisation at Dusk 'til Dawn is preliminary and inferred using competent person experience and interpretation at this stage.
			•	The orientation of primary mineralisation is approximately vertical. Oxide mineralisation is approximately flat. STK-drilling has been completed at -60 degrees and perpendicular to the strike of mineralisation to avoid the introduction of bias to results.
				Drilling intercepts are reported as down-hole width.

		 For metallurgical samples, expected assay gold grades are determined as the mass-weighted composite value of selected downhole assay grades for each interval. It is unlikely that the drilling orientation has introduced a sampling bias.
Sample	The measures taken to ensure sample security.	Eagle Mining
security		The data was originally maintained by Eagle Mining Corporation and forwarded to Normandy Jundee Operation.
		Doray Minerals
		 All DRM historic samples were selected, cut and bagged in a tied numbered calico bag, grouped into larger polyweave bags and cable tied. Polyweave bags were placed into larger Bulky Bags with a sample submission, Doray Minerals Ltd, 21st October 2015, Criteria JORC Code explanation, Commentary sheet and tied shut. A consignment notes and delivery address details were written on the side of the bag, and it was delivered to Toll Express in Meekatharra. The bags were delivered directly to MinAnalytical in Canning Vale, WA, who are NATA-accredited for compliance with ISO/IEC17025:2005.
		Alloy Resources
		 Alloy Resources' historic samples were assayed by ALS Laboratories (Perth) using Aqua Regia (2012 AC program) and Fire Assay with ICP_MS finish (RC programs) to detection limits of 0.01 and 0.001 ppm, respectively.
		Strickland Metals Ltd
		Strickland Metals Ltd managed chain of Custody of digital data.
		All samples were bagged in tied numbered calico bags, grouped into larger polyweave bags and cabled-tied. Polyweave bags were placed into larger Bulky Bags with a sample submission sheet and tied shut. Delivery address details were written on the side of the bag.

		 Sample material was stored on site and, when necessary, delivered to the assay laboratory by Strickland Metals personnel and a nominated courier (DFS).
		Thereafter, laboratory samples were controlled by the nominated laboratory.
		Digital sample control files and hard-copy ticket books-controlled sample collection.
		For metallurgical samples, original assay data was provided to MineScope for sample interval selection for metallurgical testwork with quarter core samples selected, numbered and delivered to the assay laboratory by Strickland Metals personnel and a nominated courier. Thereafter, laboratory samples were controlled by the nominated laboratory.
Audits or	The results of any audits or reviews of sampling techniques and data.	Eagle Mining
reviews		All drilling has been plotted, checked in section and three dimensions to recent drilling to ensure that historic drilling, geology, drill intercepts, and hole locations are more thoroughly documented valid.
		Doray Minerals
		All drilling has been plotted, checked in section and three dimensions to recent drilling to ensure that historic drilling, geology, drill intercepts, and hole locations are more thoroughly documented valid.
		Performance meetings held between a DRM and MinAnalytical representative were conducted monthly. QAQC data were reviewed with each assay batch returned, and on regular monthly intervals (trend analysis).
		Alloy Resources
		All drilling has been plotted, checked in section and three dimensions to recent drilling to ensure that historic drilling, geology, drill intercepts, and hole locations are more thoroughly documented valid.

	Strickland Metals
	 All assay data is audited and reviewed by Mitchell River Group (MRG), with weekly performance meetings held between Strickland Personnel and the Database Manager at MRG.
	Gravity Inversion models were processed by Terra Resources, external geophysical consultants.
	The multi-element geochemistry from the historic drill pulps was reviewed by Dr Nigel Brand (Geochemical Services Pty Ltd), who determined the key pathfinder element suite.
	Metallurgical testwork was managed and reviewed by external consultants at MineScope.

Section 2: Reporting of Exploration Results

(Criteria listed in section 1, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and	agreement or material records man a parties calculated and remained,	Warmblood and Palomino are located on 100% owned STK tenure (tenement ID) E 69/1772.
land tenure status	partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Dusk 'til Dawn is located within E69/2492.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	MW Royalty Co Pty Ltd holds a 1% gross revenue royalty over the above tenure.
		Wayne Jones holds a 2% net smelter return royalty over E69/2492.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Exploration prior to Strickland in the region was conducted by Eagle Mining and Great Central Mines Ltd. Drilling included shallow RAB and RC drilling that was completed in the mid – 1990s, all of which had been sampled, assayed, and logged and records held by Strickland. This early work, including aeromagnetic data interpretation, was focused on gold and provided anomalous samples which was the focus of this period of exploration.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	Palomino, Warmblood, Filly and Bronco are Archean aged gold prospects with common host rocks and structures related to mesothermal orogenic gold mineralisation as found throughout the Yilgarn Craton of Western Australia.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Historic gold intercepts have been compiled, with a summary of all information documented in Appendix C Tables 1 and 2. Historic drill holes relating to the re-assay of existing pulps for multi-element pathfinder geochemistry and maximum multi-elemental data can be found in Appendix D. Tabulated summaries of all metallurgical results, including assay data, are documented throughout the body of the announcement and in Appendix E.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No top-cuts have been applied when reporting results. A cut-off of 0.3g/t Au was applied for all significant gold assay results. The geochemical intervals referred to in the Dusk 'til Dawn 'intrusion-related' portion of this announcement can be found in the announcement under Table 3 and are reported as: >1m @ 0.1g/t Au >1m @ 5ppm Mo >1ppm Bi >0.02% Cu No metal equivalent values were used for reporting of exploration results.

Criteria	JORC Code explanation	Commentary
		 Expected assay gold grades (metallurgical) are determined as the mass-weighted composite value of selected down-hole assay grades for each interval.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	• The orientation of primary mineralisation is approximately vertical. Oxide mineralisation is approximately flat. STK-drilling at Warmblood, Palomino and Marwari has been completed at -60 degrees and perpendicular to the strike of mineralisation to avoid the introduction of bias to results. Drilling at Bronco has been conducted at multiple dip angles and azimuths as understanding of the orientation of mineralisation progressed. All drill holes are within 20 degrees of the perpendicular angle to mineralisation and no bias in grade is found to be related to the angle of drilling.
		 At Dusk 'til Dawn the exact structural geometry of the mineralisation is not yet known due to insufficient diamond drilling in the targeted areas. Broad geological and mineralisation features have been interpreted from available drilling sections.
		Drilling intercepts are reported as down-hole width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Please refer to the main body of text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration	 All Au assays are presented in the appendix to this announcement for clarity, including drill holes that returned no significant mineralisation above 0.3g/t Au.
	Results.	Representative higher-grade intervals have been presented in the text and section.
		All metallurgical test results, including individual intervals selected for composite samples are reported in the body of text and in Appendix E.
Other substantive	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and	All meaningful and material information has been included in the body of the text.

Criteria	JORC Code explanation	Commentary
exploration data	method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 In March 2020, Alloy Resources engaged with Australian Laboratory Services (ALS) to undertake Metallurgical Testwork on Palomino RC chip samples. From the samples received, six composites were generated. Overall gold recovery, via gravity-amalgam and cyanide leaching at a 75um grind was high, at 89.03% and 87.2% respectively.
		• In March 2024, Strickland Metals completed metallurgical testwork on fresh rock drill core from Palomino. Results show total gold recoveries ranged between 78.5% and 88.6%.
		A project wide ground gravity survey was completed by Atlas Geophysics in 2021. Recent inversion modelling by Terra Resources has delineated several gravity low features that have a constrained density value of 2.56g/cm³. These features have been modelled at depth, underlying the extensive alteration and Au-Mo-Bi-Te-Cu pathfinder geochemistry identified from the historic aircore drilling.
		The multi-element data has been reviewed by Dr Nigel Brand (Geochemical Services Pty Ltd), who confirmed this intrusion related gold signature.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Continued RC and diamond drilling along strike and down plunge to determine the overall economic potential of each target area.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Exploration Drilling along strike from mineralised trends to the north and northwest testing for continuation of mineralisation under transported cover.
		Further metallurgical testwork of the Warmblood Deposit.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used Output Description of keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used	 All data is managed by Mitchell River Group and stored in a Datashed SQL database. Data is logged using Logchief, which has inbuilt validation and uploaded into the database.
		Analytical data was received from the laboratories in electronic ASCII files of varying format, and was merged with sampling data already present in the database.
		Any data files that did not validate were investigated and rectified by field staff or the Database Administrator.
		Historical data has been checked, validated, and merged into the relevant data tables in the database.
		All drill core, RC Drill chips have been photographed both dry and wet and available for viewing from the Strickland's company database.
		Historic RC drill chips available for viewing.
		Drill pulps from Alloy Resources and Strickland Metals are available for reanalysis.
		 All drilling, logging and assay results are viewed in three-dimensional software to validate hole location, assay intercepts and logging consistency.
		Dusk 'til Dawn
		The drilling database was originally held by Eagle Mining Corporation and was passed on to Great Central Mines Limited and then became part of the Normandy Jundee Operation. Original drillhole data was found in Department of Mining and Petroleum, Annual Report.
		The drilling data was imported into a relational SQL server database using DatashedTM (Industry standard drill hole database management software) by Doray Minerals. This was subsequently

Criteria	JORC Code explanation	Commentary
		managed by Mitchell River Group and migrated to a new SQL database model schema.v 4.6.3 as used by DataShedTM.
		 All of the available drilling data was imported into 3D mining and modelling software packages (SurpacTM and LeapfrogTM), which allow visual interrogation of the data integrity and continuity. All of the resource interpretations were carried out using these software packages. During the interpretation process it was possible to highlight drilling data that does not conform to the geological interpretation for further validation.
		Data validation checks were completed on import to the SQL database.
		Data validation was carried out by visually checking the positions and orientations of drill holes.
Site visits	Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken, indicate why this is the case.	The Mineral Resource Competent Person has not visited the site. Other OMNI GeoX personnel have been to the site and have played a significant role in supervising the Strickland Metals drill programs, collecting geological and sampling information and QC analysis. This information has been relayed to the Competent Person.
		During the Dusk 'til Dawn resource drilling, Andy Viner (previous CP) visited the Horse Well project site on numerous occasions.
Geological interpretation	Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any	Confidence in geological interpretation is good. Stratigraphy is consistent and can be correlated between holes and along strike.
	assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology.	Geological logging and structural measurements from drillholes have been used to construct the mineralisation models. Sections were interpreted, digitised and a 3D wireframe model constructed. Geological continuity has been assumed along strike and down-dip.
		The geological interpretation is robust. The geological interpretation was built by on the ground geologists who logged, relogged and interpreted the geology to ensure the geological interpretation was consistent. Mutli-elemental data was analysed in ioGAS software to aid in the geological interpretation of altered and fine-grained units. There is currently sufficient drilling to map the stratigraphic units and

Criteria	JORC Code explanation	Commentary
		mineralisation to an Inferred Classification.
		Geological continuity has been assumed along strike and down-dip based on drilling data. In general, geological and grade continuity within a 0.3ppm Au shell is good. Grades and thickness are consistent down-plunge.
		Dusk 'til Dawn
		 The Dusk 'til Dawn mineralisation interpretation is controlled by an apparent primary steeply plunging trends within a broader shear zone. Cross cutting and abutting these primary zones are three shallow sub horizontal and parallel supergene zones, defined by laterally consistent low to moderate grades.
		 Surfaces were created in LeapFrogTM which define the base of Oxide and the top of Fresh rock. The surface defining the top of the upper most supergene zone was used to flag base of complete weathering
		The key factors affecting continuity are the orientations of the shear zones, and subsequent weathering which has produced the supergene deposits.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The Horse Well Gold Camp Project consists of four main deposits: Palomino, Warmblood, Filly and Bronco. Gold mineralisation extends along strike at Palomino for 600m, Warmblood for 950m, Filly for 650m and Bronco 250m. Gold mineralisation continues below surface at Palomino to 365m, Warmblood to 250m, Filly to 300m and Bronco to 200m. Gold mineralisation is open at depth and down plunge.
		The Warmblood resource has supergene gold mineralisation, which is approximately 200m long, 100m wide and 25m thick.
		The transition/fresh rock boundary is about 60 to 80m m below surface.
		Dusk 'til Dawn (primary mineralisation) has a strike length of 300m by up to 30-40m wide by 250m deep trending NW-SE.

Criteria	JORC Code explanation	Commentary
Estimation and modelling	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values,	Gold grades were estimated by using Ordinary Kriging using Micromine Origin version 2025.
techniques	domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and	• Variography was completed in Snowden's Supervisor geostatistical program 9.0.
	parameters used.	Block size, Search ellipses, discretisation, and minimum and maximum samples were determined using the variogram through a
	The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes	QKNA process in Snowden's Supervisor geostatistical program 9.0.
	 appropriate account of such data. The assumptions made regarding recovery of by-products. 	• The block dimensions were 12.5mY, 5mX and 5mZ for parent cells, sub-blocked to 1.25mY, 1.0mX and 1.0mZ.
	Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).	 Four rotated block models were created to reflect the orientation of different orebodies. The Palomino resource was rotated -18°, Warmblood -22°, Filly +18°, and Bronco -60°.
	In the case of block model interpolation, the block size in relation to the	All estimation was completed at the parent cell scale.
	average sample spacing and the search employed.	Grade estimation was constrained to blocks within each of the
	Any assumptions behind modelling of selective mining units.	mineralisation wireframes.
	Any assumptions about correlation between variables.	 Mineralisation wireframes/domains at Palomino, Warmblood, Filly and Bronco were defined using a 0.3g/t cut-off. The Palomino
	Description of how the geological interpretation was used to control the resource estimates. mineralisation, including Clydesdal domains of varying sizes. Warmblo	mineralisation, including Clydesdale, consists of 32 individual ore domains of varying sizes. Warmblood mineralisation, including Filly
	Discussion of basis for using or not using grade cutting or capping.	SW, consists of 23 individual ore domains. Filly mineralisation consists of 28 individual ore domains, and Bronco comprises 27 ore
	The process of validation, the checking process used, the comparison	domains.
	of model data to drill hole data, and use of reconciliation data if available	 Hard boundaries were used for grade estimation, with each mineralised zone estimated separately, apart from the supergene mineralisation at Warmblood, where the assay data was shared.
		The search directions have been determined by individual and grouped domains from variographic and geological analysis.
		• For the Palomino, Warmblood and Filly Deposits, the estimation was completed in three passes with the following parameters:
		 Pass 1 search dimensions were based upon variogram limit with a minimum of 4 samples and a maximum of 20 samples, and a

Criteria	JORC Code explanation	Commentary
		minimum of 3 drillholes with a minimum of 2 samples per drillhole.
		 Pass 2 – search ellipse expanded by 50%, with a minimum of 4, a maximum of 20 samples, a minimum of 3 drillholes with a minimum of 2 samples per drillhole.
		 Pass 3 – search ellipse expanded by 100%, with a minimum of 2, a maximum of 20 samples, a minimum of 1 drillholes with a minimum of 2 samples per drillhole.
		 For Bronco, the estimation was completed in three passes with the following parameters:
		 Pass 1 search dimensions were based upon variogram limit with a minimum of 4, a maximum of 22 or 26 samples, dependent on domain, a minimum of 3 drillholes with a minimum of 2 samples per drillhole.
		 Pass 2 – search ellipse expanded by 50%, with a minimum of 4, a maximum of 22 or 26 samples dependent on domain, a minimum of 3 drillholes with a minimum of 2 samples per drillhole.
		 Pass 3 – search ellipse expanded by 100%, with a minimum of 2, a maximum of 22 or 26 samples, dependent on domain, a minimum of 1 drillholes with a minimum of 2 samples per drillhole.
		 For the minimum number of drill holes for each block to estimate, the parameters were set to a minimum of 3 for the first pass, minimum of 3 for the second pass and minimum of 1 for the third pass.
		 Top-cuts were established after a study of statistics, histograms, and log-probability plots for the main domains. Domains with CVs above a were top-cut until their CV was below 2. Samples in nine domain were cut.
		The block model is checked visually in Micromine by comparing drillhole assays with block grades. Swath plots are generated to compare block grades with sample composite grades on a sectional

Criteria	JORC Code explanation	Commentary
		and plan slice basis.
		 Rotary Air-blast (RAB) and air core (AC) holes were excluded from the grade estimation.
		No mining has occurred at the Yandal Project.
		No assumptions have been made regarding by-products.
		 No deleterious elements are known or expected. Only Au has been modelled.
		Dusk 'til Dawn
		 Grade estimation using Ordinary Kriging (OK) was completed using Geovia Surpac™ software for Au only.
		 Drill hole samples were flagged with wire framed domain codes. Sample data were composited for Au to 1m using a best fit method. Most holes were sampled on 1m intervals, however there were some 4m composites in the raw assay data.
		 Influences of extreme sample distribution outliers were reduced by top-cutting on a domain basis. Top-cuts were decided by using a combination of methods including grade histograms, log probability plots and statistical tools. Based on this statistical analysis of the data population some top cuts were applied, including Dusk 'til Dawn primary domains D1 and D4 (12.5ppm) and supergene domains D12 & 13 (12.5ppm and 7.5ppm) plus Warmblood primary domains D1 and D2 (17.5ppm and 15ppm) and supergene domain D11 (15ppm).
		 Directional variograms were modelled by domain using traditional variograms. At Warmblood nugget values are moderate to low (around 20-25%) and structure ranges up to 100m in the primary zones. Dusk 'til Dawn showed higher nuggets (45-55%) with ranges of up to 80m.
		Block model was constructed with parent blocks for DTD of 10m (E) by 10m (N) by 1m (RL) and sub-blocked to 1.25m (E) by 1.25m (N) by 1.25m (RL). Block model was constructed with parent blocks for Warmblood of 4m (E) by 10m (N) by 5m (RL) and sub-blocked to 0.5m.

Criteria	JORC Code explanation	Commentary
		(E) by 1.25m (N) by 0.625m (RL). All estimation was completed to the parent cell size. Discretisation was set to 5 by 5 by 2 for all domains.
		Three estimation passes were used. For both DTD and Warmblood, the first pass had a limit of 60m, the second pass 120m and the third pass searching a large distance to fill the blocks within the wire framed zones. Each pass used a maximum of 12 samples, a minimum of 6 samples and maximum per hole of 4 samples.
		Search ellipse sizes were based primarily on a combination of the variography and the trends of the wire framed mineralized zones. Hard boundaries were applied between all estimation domains.
		 Validation of the block model included a volumetric comparison of the resource wireframes to the block model volumes. Validation of the grade estimate included comparison of block model grades to the declustered input composite grades plus swath plot comparison by easting, northing and elevation. Visual comparisons of input composite grades vs. block model grades were also completed.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnages and grades were estimated on a dry in situ basis.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	The mineral resource estimate for the Horse Well has been reported above an arbitrary cut-off of 0.5 g/t within an optimised Au\$4,000 pit shell to reflect an open pit scenario and a cut-off grade of 2g/t to report the resource below the optimised Au\$4,000 pit shell to reflect an underground scenario.
		This cut-off is a commonly used cut-off for similar deposits at the current gold price, mining and processing costs.
		The projects would be amenable to trucking to a mill.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not	The mineral resources for the Horse Well Project have been reported using an optimised AUD \$4,000 pit shell for Palomino, Warmblood, Filly, and Bronco to reflect the reasonable prospects for eventual economic extraction. A cut-off of 2.0g/t Au has been applied to potential underground material at Palomino that is reflective of typical underground mining operation cut-off grades in Western Australia. No

Criteria	JORC Code explanation	Commentary				
	always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	underground potential has been assessed outside of the open-pit optimisations at Warmblood, Filly and Bronco due to the resources being almost entirely contained within the optimised pits.				
		Dusk 'til Dawn				
		It has been assumed that there will be limited attempts made to selectively mine the ore and that the ore will incur maximum dilution.				
		It would be mined using typical Eastern Goldfields open pit methodologies.				
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, it should be reported with an explanation of the basis of the metallurgical assumptions made.	 Metallurgical testwork was recently completed at the Horse Well Gold Camp on fresh rock samples from the Palomino Deposit showing gravity-recoverable gold recoveries up to 32.5% and total gold (gravity + cyanide leach) recoveries ranging between 78.5% and 88.6%. Drillhole details and metallurgical testwork results for each composite sample can be found in Strickland's ASX Announcement "Metallurgical Testwork Confirms High Gold Recovery at Horse Well Gold Camp" dated 13 March 2025. 				
		In March 2020, Alloy Resources undertook Metallurgical testwork on RC chip samples of oxide material from the Palomino Deposit showing total gold recovery, via gravity-amalgam and cyanide leaching, at 89.03% and 87.2%, respectively.				
		No metallurgical factors were considered in this Horse Well Gold Camp Resource Estimation, and no dilution factors were applied.				
		Dusk 'til Dawn				
		Thirty eight higher-grade fresh rock sample pulps from Dusk 'til Dawn diamond hole showed close correlation of Leachwell cyanide recoverable gold analysis with original fire assays. These results confirm that the gold is not refractory in nature and highly likely to be recoverable by conventional milling and CIP recovery.				
Environmenta I factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and	The deposit is in an area of Western Australia with nearby mining operations, both underground and open-cut, and any proposed mine				

Criteria	JORC Code explanation	Commentary
	processing operation. While at this stage the determination of potential environmental impacts, particularly for greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 would comply with the well-established environmental laws and protocols in the Goldfields area of WA. Waste rock from open pit operations would be placed in a waste rock landform adjacent to open pit operations, progressively contoured and revegetated throughout the life of mine. Process plant residue would be disposed of in a surface tailings storage facility (TSF). Adoption of an upstream, central decant design would utilise mine waste material for dam wall construction and facilitate water recovery to supplement process water requirements. It is expected that sufficient volumes of oxide material, able to be made sufficiently impermeable, will be available in the overburden stream to enable acceptable TSF construction.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation 	Bulk density readings were collected from diamond core at the Palomino and Warmblood deposits. 388 samples were collected at Palomino, and 128 samples were collected at Warmblood. From these samples, average densities for oxidation profiles or rock type (transition and fresh rock) were assigned to the block model using the three-dimensional weathering model. No bulk density information has been collected at Filly and Bronco. For these deposits the Warmblood density for the different weathering profiles were assigned. Dusk 'til Dawn'
	process of the different materials.	 The following bulk densities have been assumed from nearby comparable operations: Oxide: 1.8 Transition: 2.3 Fresh: 2.8
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input 	The inferred classification for the Horse Well Project and Dusk 'till Dawn reflects the relative confidence in the estimate. It considers the confidence in the geological interpretation, grade continuity, drilling spacing, historical data, quality assurance and quality control information, estimation passes, and other estimation parameters.

Criteria	JORC Code explanation	Commentary
	 data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The input data has been checked and is considered to be reliable. The results reflect the Competent Person's view of the deposit.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	An internal review has been undertaken, and no material issues were identified.
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.	Classification. The Mineral Resource relates to global tonnage and grade estimates.
	The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.	
	These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.	

APPENDIX D - SIGNIFICANT INTERCEPTS

Table 1: Horse Well Gold Camp - Significant Intercepts

	Coordinate	s (MGA94 Zor	Hole Details				Intercept Details									
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect			
HWDD017	271,830					-60	186	114	128.4	14.4	6.0	14.4m @ 6.0g/t Au from 114m	Warmblood			
including		7,128,780	569	RC_DD	72.5			115	122	7	10.6	7m @ 10.6g/t Au from 115m				
and								144	156.7	12.7	1.7	12.7m @ 1.7g/t Au from 144m				
HWDD028	271,917	7,128,493	569	DDH	72.5	-68	139.4	74.7	77	2.3	0.5	2.3m @ 0.5g/t Au from 74.7m	Warmblood			
HWDD029								8.6	24	15.4	0.8	15.4m @ 0.8g/t Au from 8.6m				
and								27	46	19	0.3	19m @ 0.3g/t Au from 27m				
and	271,902	7,128,568	569	DDH	72.5	-68	109.6	49.6	57	7.4	5.0	7.4m @ 5g/t Au from 49.6m	Warmblood			
including								49.6	52.6	3	10.6	3m @ 10.6g/t Au from 49.6m				
and								64	65	1	1.2	1m @ 1.2g/t Au from 64m				
HWDD039							155.9	28.6	30.4	1.8	1.6	1.8m @ 1.6g/t Au from 28.6m				
and	271.854	7 100 746	569	DDH	72.5	-60		102.5	117	14.6	1.5	14.6m @ 1.5g/t Au from 102.5m	Warmblood			
including	271,004	7,128,746	509	DDH	72.5	-60		102.5	105.8	3.3	4.2	3.3m @ 4.2g/t Au from 102.5m				
and								127.2	140	12.8	1.6	12.8m @ 1.6g/t Au from 127.2m				
HWDD042		7,128,852		DDH	72.5	-60	222.4	117	121.1	4.1	0.4	4.1m @ 0.4g/t Au from 117m	Warmblood			
and								129.6	131	1.4	0.4	1.4m @ 0.4g/t Au from 129.6m				
and	271,792		569					138.5	146.4	7.9	9.7	7.9m @ 9.7g/t Au from 138.5m				
including								141.8	145	3.2	22.0	3.2m @ 22g/t Au from 141.8m				
and								169.8	179.6	9.9	0.6	9.9m @ 0.6g/t Au from 169.8m				
HWDD043		7,128,920		DDH				171.7	176.9	5.2	3.1	5.2m @ 3.1g/t Au from 171.7m	Warmblood			
including	271,745		569		72.5	-60	245.6	174.7	176.9	3.2	7.0	3.2m @ 7g/t Au from 174.7m				
and	2/1,/45							203.6	211	7.4	1.1	7.4m @ 1.1g/t Au from 203.6m				
and								211.5	215	3.5	0.4	3.5m @ 0.4g/t Au from 211.5m				
HWRC263	271,906	7,128,805	569	RC	72.5	-60	94	39	44	5	0.4	5m @ 0.4g/t Au from 39m	Warmblood			
HWRC264		68 7,128,792				-60	154	32	36	4	0.4	4m @ 0.4g/t Au from 32m	Warmblood			
and			569		72.5			70	76	6	1.5	6m @ 1.5g/t Au from 70m				
including	271,868			RC				72	74	2	3.6	2m @ 3.6g/t Au from 72m				
and								94	103	9	2.6	9m @ 2.6g/t Au from 94m				
including								95	99	4	4.9	4m @ 4.9g/t Au from 95m				
HWRC265	271,885	7,128,840	569	RC	72.5	-60	124	53	56	3	3.5	3m @ 3.5g/t Au from 53m	Warmblood			
HWRC266								109	110	1	3.2	1m @ 3.2g/t Au from 109m	Warmblood			
and	271,855	7,128,704	28,704 569	RC	72.5	-60 154	154	112	114	2	0.7	2m @ 0.7g/t Au from 112m				
and													128	130	2	0.5
HWRC275					72.5	-60		4	5	1	0.4	1m @ 0.4g/t Au from 4m				
and	271,912	7,128,722	569	RC			124	37	43	6	4.0	6m @ 4g/t Au from 37m	Warmblood			
including								38	41	3	7.6	3m @ 7.6g/t Au from 38m				

	Coordinate	es (MGA94 Zor	ne 51)		Hole D	etails					ntercept D	Details	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
and								62	69	7	1.1	7m @ 1.1g/t Au from 62m	
HWRC329	271,817	7,128,902	569	RC	72.5	-60	150	102	108	6	2.5	6m @ 2.5g/t Au from 102m	Warmblood
including	271,017	7,120,902	303	NO	12.5	-00	150	106	108	2	5.0	2m @ 5g/t Au from 106m	Walliblood
HWRC330								24	25	1	0.7	1m @ 0.7g/t Au from 24m	
and	271,830	7,128,864	569	RC	72.5	-60	162	42	44	2	1.1	2m @ 1.1g/t Au from 42m	Warmblood
and								114	119	5	2.0	5m @ 2g/t Au from 114m	
HWRC331								23	24	1	0.3	1m @ 0.3g/t Au from 23m	
and	271,847	7,128,827	569	RC	72.5	-60	162	87	88	1	0.9	1m @ 0.9g/t Au from 87m	Warmblood
and								101	102	1	0.4	1m @ 0.4g/t Au from 101m	
HWRC332	271,931	7,128,771	569	RC	72.5	-60	114					NSR	Warmblood
HWRC333								21	22	1	1.0	1m @ 1g/t Au from 21m	
and	271,893	7,128,758	569	RC	72.5	-60	126	51	54	3	0.6	3m @ 0.6g/t Au from 51m	Warmblood
and								69	70	1	1.1	1m @ 1.1g/t Au from 69m	
HWRC334	271,931	7,128,729	569	RC	72.5	-60	66	35	41	6	1.0	6m @ 1g/t Au from 35m	Warmblood
HWRC335	271,919	7,128,683	569	RC	72.5	-60	114	16	30	14	0.3	14m @ 0.3g/t Au from 16m	Warmblood
HWRC349								94	96	2	1.5	2m @ 1.5g/t Au from 94m	
and	271,779	7,128,934	569	RC	72.5	-60	192	100	101	1	0.7	1m @ 0.7g/t Au from 100m	Warmblood
and								150	155	5	1.9	5m @ 1.9g/t Au from 150m	
HWRC350	271,754	7,128,975	569	RC	72.5	-60	175					NSR	Warmblood
HWRC351	271,714	7,129,075	569	RC	72.5	-60	175	125	127	2	1.0	2m @ 1g/t Au from 125m	Warmblood
HWRC352	271,711	7,129,018	569	RC	72.5	-60	175	126	127	1	1.5	1m @ 1.5g/t Au from 126m	Warmblood
HWRC353								80	84	4	0.5	4m @ 0.5g/t Au from 80m	
and	271,575	7,129,298	569	RC	72.50	-60	174	140	141	1	0.7	1m @ 0.7g/t Au from 140m	Warmblood
and								144	145	1	0.5	1m @ 0.5g/t Au from 144m	
HWRC355	271,544	7,129,383	569	RC	72.5	-60	126					NSR	Warmblood
HWRC356								0	4	4	1.7	4m @ 1.7g/t Au from 0m	
and	274 407	7 100 175	569	RC	73	-60	198	86	87	1	0.5	1m @ 0.5g/t Au from 86m	Marmhland
and	271,497	7,129,475	509	RC	73	-60	190	90	91	1	0.7	1m @ 0.7g/t Au from 90m	Warmblood
and								110	111	1	0.9	1m @ 0.9g/t Au from 110m	
HWRC357	271,497	7,129,359	569	RC	72.5	-60	159					NSR	Warmblood
HWRC358	271,452	7,129,570	569	RC	72.5	-60	181					NSR	Warmblood
AHWA351	271,925	7,128,543	570	AC	360	-90	45	12	20	8	4.4	8m @ 4.4g/t Au from 12m	Warmblood
AHWA352								13	14	1	0.4	1m @ 0.4g/t Au from 13m	
and	271,933	7,128,542	570	AC	360	-90	46	20	28	8	4.8	8m @ 4.8g/t Au from 20m, incl. 3m @	Warmblood
including								22	25	3	11.3	11.3g/t Au	
AHWA353	074.040	7 400 540	F70	4.0	000			0	32	32	3.9	32m @ 3.9g/t Au from 0m, incl 16m @	14/
including	271,943	7,128,549	570	AC	360	-90	52	0	16	16	6.6	6.6g/t Au	Warmblood
AHWA354	271,941	7,128,490	571	AC	360	-90	48	12	16	4	0.3	4m @ 0.3g/t Au from 12m	Warmblood
AHWA355	271,949	7,128,496	571	AC	360	-90	51					NSR	Warmblood

	Coordinate	s (MGA94 Zor	ne 5 <u>1</u>)		Hole D	etails					ntercept D	Details	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
AHWA356 including	271,960	7,128,502	571	AC	360	-90	57	0 28	40 40	40 12	3.4 9.0	40m @ 3.4g/t Au from 0m, incl. 12m @ 9.0g/t Au	Warmblood
AHWA357	271,968	7,128,505	571	AC	360	-90	68	20	28	8	0.6	8m @ 0.6g/t Au from 20m	Warmblood
AHWA358	271,978	7,128,513	571	AC	360	-90	66	20	24	4	0.3	4m @ 0.3g/t Au from 20m	Warmblood
AHWA394	271,837	7,128,956	565	AC	70	-60	69					NSR	Warmblood
AHWA395	271,807	7,128,948	567	AC	70	-60	72	48	52	4	1.3	4m @ 1.3g/t Au from 48m	Warmblood
AHWA396	271,788	7,128,944	567	AC	70	-60	68					NSR	Warmblood
AHWA397	271,764	7,128,933	571	AC	65	-60	53					NSR	Warmblood
AHWA398	271,744	7,128,931	573	AC	70	-60	48					NSR	Warmblood
AHWA399	271,693	7,128,908	573	AC	70	-60	41					NSR	Warmblood
AHWA400	271,782	7,129,046	568	AC	70	-60	60	25	44	19	1.7	19m @ 1.7g/t Au from 25m	Warmblood
AHWA401			500	40	70	00	75	34	35	1	0.7	1m @ 0.7g/t Au from 34m	\\\\ .
and	271,755	7,129,037	569	AC	70	-60		60	75	15	4.2	15m @ 4.2g/t Au from 60m	Warmblood
AHWA402	272,009	7,128,905	568	AC	75	-60	48					NSR	Warmblood
AHWA403	271,961	7,128,892	567	AC	70	-60	58					NSR	Warmblood
AHWA404	271,917	7,128,873	570	AC	70	-60	64					NSR	Warmblood
AHWA405	271,863	7,128,867	567	AC	70	-60	83	68	80	12	1.7	12m @ 1.7g/t Au from 68m	Warmblood
AHWA406	271,844	7,128,850	567	AC	70	-60	84					NSR	Warmblood
AHWA407	271,817	7,128,845	565	AC	70	-60	63					NSR	Warmblood
AHWA408	271,795	7,128,834	567	AC	70	-60	58					NSR	Warmblood
AHWA409	271,769	7,128,828	570	AC	70	-60	59					NSR	Warmblood
AHWA410	271,745	7,128,819	571	AC	70	-60	59					NSR	Warmblood
AHWA411	271,727	7,128,812	571	AC	70	-60	45					NSR	Warmblood
AHWA412	271,746	7,129,247	566	AC	70	-60	72	36	40	4	1.2	4m @ 1.2g/t Au from 36m	Warmblood
AHWA413			505	4.0	70	00		44	52	8	22.0	8m @ 22g/t Au from 44m. Incl. 4m @	14/
including	271,725	7,129,238	565	AC	70	-60	69	44	48	4	43.6	43.6g/t Au	Warmblood
AHWA414	271,696	7,129,229	567	AC	70	-60	71					NSR	Warmblood
AHWA415	271,677	7,129,222	567	AC	70	-60	72					NSR	Warmblood
AHWA416	271,650	7,129,217	569	AC	70	-60	69					NSR	Warmblood
AHWA417	271,628	7,129,205	569	AC	70	-60	65					NSR	Warmblood
AHWA418	271,601	7,129,197	566	AC	70	-60	64					NSR	Warmblood
AHWA419	271,580	7,129,195	565	AC	70	-60	64	44	52	8	0.7	8m @ 0.7g/t Au from 44m	Warmblood
AHWA420	271,555	7,129,188	567	AC	70	-60	63					NSR	Warmblood
AHWR012	271,890	7,128,893	569	RC	70	-60	90	32	36	4	0.5	4m @ 0.5g/t Au from 32m	Warmblood
AHWR013	271,867	7,128,877	569	RC	70	-60	111	56	68	12	0.7	12m @ 0.7g/t Au from 56m	Warmblood
AHWR014	271,866	7,128,936	569	RC	70	-60	99	24	32	8	0.5	8m @ 0.5g/t Au from 24m	Warmblood
AHWR015						00	444	40	48	8	0.4	8m @ 0.4g/t Au from 40m	
and	271,846	7,128,925	569	RC	70	-60	114	56	60	4	0.4	4m @ 0.4g/t Au from 56m	Warmblood
AHWR016	271,855	7,128,959	569	RC	70	-60	63	28	36	8	0.4	8m @ 0.4g/t Au from 28m	Warmblood

	Coordinate	s (MGA94 Zor	ne 51)		Hole D	etails					ntercept D	etails	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
AHWR017	271,833	7,128,953	569	RC	70	-60	108	48	56	8	1.6	8m @ 1.6g/t Au from 48m	Warmblood
AHWR018	271,811	7,128,946	569	RC	70	-60	123					NSR	Warmblood
AHWR019	271,853	7,129,011	569	RC	70	-60	66					NSR	Warmblood
AHWR020	271,834	7,129,004	569	RC	70	-60	90					NSR	Warmblood
AHWR021	271,814	7,128,997	569	RC	70	-60	111					NSR	Warmblood
AHWR022	271,796	7,128,990	569	RC	70	-60	111	52	56	4	0.4	4m @ 0.4g/t Au from 52m	Warmblood
AHWR023	271,778	7,128,981	569	RC	70	-60	111	52	56	4	0.5	4m @ 0.5g/t Au from 52m	Warmblood
AHWR024	271,799	7,129,024	569	RC	70	-60	72	28	36	8	1.9	8m @ 1.9g/t Au from 28m	Warmblood
AHWR025	271,783	7,129,015	569	RC	70	-60	90	20	24	4	0.6	4m @ 0.6g/t Au from 20m	Warmblood
AHWR026	271,760	7,129,012	569	RC	70	-60	120					NSR	Warmblood
AHWR027	271,784	7,129,071	569	RC	70	-60	60	16	24	8	2.3	8m @ 2.3g/t Au from 16m	Warmblood
AHWR028	271,767	7,129,060	569	RC	70	-60	90					NSR	Warmblood
AHWR029	271,746	7,129,053	569	RC	70	-60	120	68	76	8	0.4	8m @ 0.4g/t Au from 68m	Warmblood
AHWR030	074 070	7 400 500	F74	RC	0.40	-54	400	13	36	23	0.5	23m @ 0.5g/t Au from 13m	\//aa.la.la.a.al
and	271,973	7,128,529	571	RC	249	-54	120	40	45	5	0.8	5m @ 0.8g/t Au from 40m	Warmblood
AHWR031								20	21	1	0.7	1m @ 0.7g/t Au from 20m	
and								37	41	4	0.3	4m @ 0.3g/t Au from 37m	
and	074 000	7 400 500	570	50	050		400	48	49	1	0.3	1m @ 0.3g/t Au from 48m	\\/ -
and	271,993	7,128,536	572	RC	256	-54	132	70	102	32	1.7	32m @ 1.7g/t Au from 70m, incl. 8m	Warmblood
including	1							93	101	8	5.5	@ 5.5g/t Au	
and	İ							108	109	1	0.5	1m @ 0.5g/t Au from 108m	
AHWR032								0	7	7	0.4	7m @ 0.4g/t Au from 0m	
and	271,965	7,128,569	570	RC	250	-54	90	18	43	25	0.6	25m @ 0.6g/t Au from 18m	Warmblood
and	1							57	62	5	1.1	5m @ 1.1g/t Au from 57m	
AHWR033								10	12	2	0.3	2m @ 0.3g/t Au from 10m	
and	074 070	7 400 570	F70	RC	250	-55	400	19	61	42	1.1	42m @ 1.1g/t Au from 19m	\^/=
and	271,978	7,128,573	570	RC	250	-55	132	66	68	2	1.0	2m @ 1g/t Au from 66m	Warmblood
and								99	112	13	0.4	13m @ 0.4g/t Au from 99m	
AHWR034								44	47	3	0.5	3m @ 0.5g/t Au from 44m	
and	1							52	55	3	0.7	3m @ 0.7g/t Au from 52m	
and	271,989	7,128,492	572	RC	249	-56	108	60	63	3	1.1	3m @ 1.1g/t Au from 60m	Warmblood
and								71	87	16	2.7	16m @ 2.7g/t Au from 71m, incl. 7m	
including								79	86	7	4.6	@ 4.6g/t Au	
AHWR035	272,006	7,128,499	572	RC	250	-55	162					NSR	Warmblood
AHWR038								12	30	18	2.4	18m @ 2.4g/t Au from 12m, incl. 5m	
including	271,962	7,128,440	571	RC	71	-60	114	14	19	5	5.1	@ 5.1g/t Au	Warmblood
and								38	40	2	6.3	2m @ 6.3g/t Au from 38m	
AHWR039	074 040	7 400 400	F74	DO.	70		400	33	34	1	0.3	1m @ 0.3g/t Au from 33m	\\/
and	271,943	7,128,433	571	RC	70	-59	162	38	45	7	1.0	7m @ 1g/t Au from 38m	Warmblood

	Coordinate	s (MGA94 Zor	ne 51)		Hole Do	etails					ntercept D	etails	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
and								58	64	6	0.6	6m @ 0.6g/t Au from 58m	
AHWR040								18	19	1	0.4	1m @ 0.4g/t Au from 18m	
and	271,976	7,128,402	572	RC	71	-60	156	21	22	1	0.4	1m @ 0.4g/t Au from 21m	Warmblood
and	271,970	7,120,402	312	RC	7 1	-00	130	32	33	1	8.6	1m @ 8.6g/t Au from 32m	Walliblood
and								37	40	3	0.7	3m @ 0.7g/t Au from 37m	
AHWR041	271,955	7,128,395	572	RC	72	-60	126	35	49	14	0.7	14m @ 0.7g/t Au from 35m	Warmblood
AHWR042	271,983	7,128,362	572	RC	71	-59	156	19	20	1	0.4	1m @ 0.4g/t Au from 19m	Warmblood
and	271,903	7,120,302	312	NC.	7 1	-39	130	23	24	1	0.3	1m @ 0.3g/t Au from 23m	Walliblood
AHWR043								3	5	2	0.3	2m @ 0.3g/t Au from 3m	
and	271,923	7,128,549	570	RC	68	-60	39	10	32	22	3.7	22m @ 3.7g/t Au from 10m, incl. 9m	Warmblood
including								10	19	9	5.2	@ 5.2g/t Au	
AHWR044	271,904	7 100 510	570	RC	68	-60	39	14	32	18	0.9	18m @ 0.9g/t Au from 14m, incl. 3m	Warmblood
including	271,904	7,128,542	570	RC	00	-60	39	14	17	3	3.7	@ 3.7g/t Au	warmbiood
AHWR045	271,951	7,128,603	569	RC	68	-61	69	12	34	22	0.4	22m @ 0.4g/t Au from 12m	Warmblood
AHWR046	271,931	7,128,597	569	RC	68	-61	59	19	21	2	0.7	2m @ 0.7g/t Au from 19m	Warmblood
and	2/1,931	7,128,597	569	RC	00	-61	59	24	33	9	0.5	9m @ 0.5g/t Au from 24m	vvarmbiood
AHWR047								14	21	7	1.9	7m @ 1.9g/t Au from 14m, incl. 1m @	
including	074 000	7 400 504	F70	D0	00	0.4	00	15	16	1	10.9	10.9g/t Au	\A/
and	271,908	7,128,591	570	RC	68	-61	69	27	36	9	0.3	9m @ 0.3g/t Au from 27m	Warmblood
and								51	56	5	3.2	5m @ 3.2g/t Au from 51m	
AHWR048								28	39	11	2.3	11m @ 2.3g/t Au from 28m	
and	271,892	7,128,581	570	RC	68	-65	89	54	80	26	1.8	26m @ 1.8g/t Au from 54m, incl. 6m	Warmblood
including								54	60	6	6.5	@ 6.5g/t Au	
AHWR049	271,969	7,128,695	569	RC	68	-60	69					NSR	Warmblood
AHWR050	271,933	7,128,683	569	RC	68	-60	69					NSR	Warmblood
AHWR051								20	47	27	1.2	27m @ 1.2g/t Au from 20m, incl. 8m	
including	271,892	7,128,666	569	RC	74	-60	69	35	43	8	3.0	@ 3g/t Au	Warmblood
AHWR052	271,848	7,128,651	569	RC	68	-60	69					NSR	Warmblood
AHWR053	271,949	7,128,776	569	RC	68	-60	79					NSR	Warmblood
AHWR054	271,910	7,128,763	569	RC	68	-60	69					NSR	Warmblood
AHWR055	271,865	7,128,748	569	RC	68	-60	69	61	63	2	0.4	2m @ 0.4g/t Au from 61m	Warmblood
AHWR056	271,946	7,128,478	571	RC	73	-60	37	15	20	5	1.1	5m @ 1.1g/t Au from 15m	Warmblood
AHWR057	, - ,	, , ,						46	49	3	13.6	3m @ 13.6g/t Au from 46m, incl. 1m	
including	271,929	7,128,472	571	RC	71	-60	55	47	48	1	35.4	@ 35.4g/t Au	Warmblood
and	,	, ,,,,,,,						53	55	2	1.3	2m @ 1.3g/t Au from 53m	
AHWR058	271,920	7,128,638	569	RC	72	-60	48	15	26	11	0.5	11m @ 0.5g/t Au from 15m	Warmblood
AHWR059	271,904	7,128,630	569	RC	70	-61	68	21	42	21	1.0	21m @ 1g/t Au from 21m	Warmblood
AHWR060								30	32	2	0.4	2m @ 0.4g/t Au from 30m	
and	271,881	7,128,623	569	RC	71	-61	88	39	41	2	0.6	2m @ 0.6g/t Au from 39m	Warmblood

	Coordinate	s (MGA94 Zor	ne 51)		Hole D	etails					ntercept D	etails	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
and								65	69	4	1.0	4m @ 1g/t Au from 65m	
AHWR061								21	24	3	0.6	3m @ 0.6g/t Au from 21m	
and	271,909	7,128,681	569	RC	72	-61	48	28	30	2	0.8	2m @ 0.8g/t Au from 28m	Warmblood
and								32	43	11	1.1	11m @ 1.1g/t Au from 32m	
AHWR062								43	49	6	2.3	6m @ 2.3g/t Au from 43m	
and	271,870	7,128,661	569	RC	74	-61	94	57	58	1	4.1	1m @ 4.1g/t Au from 57m	Warmblood
and								70	81	11	1.2	11m @ 1.2g/t Au from 70m	
AHWR063	271,894	7,128,721	569	RC	75	-61	58	24	26	2	0.9	2m @ 0.9g/t Au from 24m	Warmblood
and	271,094	1,120,121	509	KC.	75	-01	50	54	58	4	2.9	4m @ 2.9g/t Au from 54m to BOH	Walliblood
AHWR064	271,872	7,128,713	569	RC	76	-60	78	5	7	2	1.4	2m @ 1.4g/t Au from 5m	Warmblood
and	211,012	1,120,113	509	KC.	70	-00	70	66	68	2	1.8	2m @ 1.8g/t Au from 66m	Walliblood
AHWR065	271,853	7,128,709	569	RC	77	-61	99					NSR	Warmblood
AHWR066	271,880	7,128,755	569	RC	74	-60	59					NSR	Warmblood
AHWR067	271,845	7,128,657	569	RC	71	-60	152					NSR	Warmblood
AHWR068								20	21	1	0.5	1m @ 0.5g/t Au from 20m	
and								36	37	1	0.6	1m @ 0.6g/t Au from 36m	
and	074.055	7 400 000	500	50	74	00	4.40	43	46	3	0.6	3m @ 0.6g/t Au from 43m	\A/
and	271,855	7,128,623	569	RC	71	-60	143	53	75	22	5.6	22m @ 5.6g/t Au from 53m, incl. 4m	Warmblood
including								67	71	4	20.1	@ 20.1g/t Au	
and								89	92	3	1.6	3m @ 1.6g/t Au from 89m	
AHWR069	074.050	7 400 570	500	50	07	00	400	83	107	24	3.7	24m @ 3.7g/t Au from 83m, incl. 10m	\A/
including	271,859	7,128,576	569	RC	67	-60	160	85	95	10	7.8	@ 7.8g/t Au	Warmblood
AHWR070	074 040	7 400 540	F70	50	07	00	440	69	77	8	2.7	8m @ 2.7g/t Au from 69m	\A/
and	271,910	7,128,519	570	RC	67	-60	110	82	92	10	1.1	10m @ 1.1g/t Au from 82m	Warmblood
AHWR071	271,869	7,128,508	570	RC	67	-60	161					NSR	Warmblood
AHWR072	271,902	7,128,483	570	RC	71	-60	130	73	81	8	1.8	8m @ 1.8g/t Au from 73m	Warmblood
AHWR073	271,921	7,128,427	571	RC	71	-60	130	63	72	9	2.2	9m @ 2.2g/t Au from 63m	Warmblood
AHWR074			500	50	74	00	00	52	57	5	0.4	5m @ 0.4g/t Au from 52m	\A/
and	271,733	7,129,247	569	RC	71	-60	80	61	63	2	9.3	2m @ 9.3g/t Au from 61m	Warmblood
AHWR075	271,705	7,129,237	569	RC	71	-60	120					NSR	Warmblood
AHWR101	271,879	7,128,456	570	RC	63	-60	127					NSR	Warmblood
AHWR102	,	, ,						0	1	1	0.3	1m @ 0.3g/t Au from 0m	
and	271,939	7,128,562	570	RC	69	-61	49	9	23	14	1.2	14m @ 1.2g/t Au from 9m	Warmblood
and	,	, , , , , ,						27	43	16	0.8	16m @ 0.8g/t Au from 27m	
AHWR103								22	44	22	0.7	22m @ 0.7g/t Au from 22m	
and	271,913	7,128,552	570	RC	73	-61	79	60	64	4	1.5	4m @ 1.5g/t Au from 60m	Warmblood
AHWR104								103	107	4	1.6	4m @ 1.6g/t Au from 103m, incl. 1m	
including	271,829	7,128,612	569	RC	67	-61	157	106	107	1	5.2	@ 5.2g/t Au	Warmblood
and	,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•			144	145	1	1.9	1m @ 1.9g/t Au from 144m	

	Coordinate	es (MGA94 Zor	ne 51)		Hole D	etails					ntercept D	etails	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
AHWR105	271,804	7,128,603	570	RC	67	-61	199					NSR	Warmblood
AHWR106								72	73	1	1.8	1m @ 1.8g/t Au from 72m	
and	271,884	7,128,717	569	RC	71	-61	109	77	78	1	0.3	1m @ 0.3g/t Au from 77m	Warmblood
and								99	109	10	1.5	10m @ 1.5g/t Au from 99m to BOH	
HWRC064	271,726	7,129,129	568	RC	71	-60	99	89	99	10	24.3	10m @ 24.3g/t Au from 89m to BOH	Warmblood
HWRC065								92	93	1	0.9	1m @ 0.9g/t Au from 92m	
and	271,821	7,129,163	568	RC	253	-58	117	96	98	2	0.7	2m @ 0.7g/t Au from 96m	Warmblood
and								101	102	1	0.4	1m @ 0.4g/t Au from 101m	
HWRC078	271,752	7,129,136	568	RC	75	-60	100	51	52	1	0.7	1m @ 0.7g/t Au from 51m	Warmblood
and	271,732	7,129,130	300	NO	73	-00	100	78	80	2	0.9	2m @ 0.9g/t Au from 78m	Walliblood
HWRC079	271,708	7,129,122	568	RC	75	-59	150	105	106	1	0.5	1m @ 0.5g/t Au from 105m	Warmblood
and	271,700				_			110	117	7	1.2	7m @ 1.2g/t Au from 110m	Walliblood
HWRC080	271,787	7,129,177	568	RC	72	-61	102					NSR	Warmblood
HWRC081	271,768	7,129,171	568	RC	72	-62	111					NSR	Warmblood
HWRC082	271,744	7,129,162	568	RC	72	-61	105	68	69	1	1.2	1m @ 1.2g/t Au from 68m	Warmblood
HWRC083	271,721	7,129,155	568	RC	74	-60	111	22	23	1	2.4	1m @ 2.4g/t Au from 22m	Warmblood
and	2/1,/21	7,129,100	300	KC	74	-00	111	81	92	11	5.3	11m @ 5.3g/t Au from 81m	wannbiood
HWRC084	271,697	7,129,146	568	RC	75	-61	123	113	123	10	0.8	10m @ 0.8g/t Au from 113m to BOH	Warmblood
HWRC085	074 675	7 100 111	568	RC	73	-60	110	100	101	1	0.8	1m @ 0.8g/t Au from 100m	Marmbland
and	271,675	7,129,141						103	104	1	1.0	1m @ 1g/t Au from 103m	Warmblood
HWRC086	271,808	7,129,132	568	RC	74	-60	99	81	82	1	2.1	1m @ 2.1g/t Au from 81m	Warmblood
HWRC087	271,786	7,129,124	568	RC	72	-60	99					NSR	Warmblood
HWRC088	074.764	7 100 116	568	RC	70	-60	105	52	67	15	2.6	15m @ 2.6g/t Au from 52m, incl. 4m	Marmbland
including	271,764	7,129,116	500	RC	70	-60	105	57	61	4	8.2	@ 8.2g/t Au	Warmblood
HWRC089	074 705	7 100 100	F60	RC	75	F0	117	71	72	1	0.4	1m @ 0.4g/t Au from 71m	Warmblood
and	271,735	7,129,108	568	RC	75	-59	117	83	89	6	3.4	6m @ 3.4g/t Au from 83m	vvarmbiood
HWRC090	271,711	7,129,102	568	RC	71	-60	123	59	60	1	4.6	1m @ 4.6g/t Au from 59m	Warmblood
HWRC106	271,755	7,129,190	568	RC	74	-60	99	31	32	1	0.7	1m @ 0.7g/t Au from 31m	Warmblood
HWRC107	271,737	7,129,186	568	RC	74	-60	105	68	69	1	0.5	1m @ 0.5g/t Au from 68m	Warmblood
HWRC108	074 744	7 400 477	500	50	70	00	447	16	17	1	1.1	1m @ 1.1g/t Au from 16m	\\\ /
and	271,711	7,129,177	568	RC	72	-60	117	58	62	4	0.4	4m @ 0.4g/t Au from 58m	Warmblood
HWRC109	271,789	7,129,100	568	RC	73	-59	99					NSR	Warmblood
HWRC110	271,766	7,129,092	568	RC	73	-59	99	68	69	1	0.3	1m @ 0.3g/t Au from 68m	Warmblood
HWRC111			500	DO.	7.4	F^	405	85	86	1	0.5	1m @ 0.5g/t Au from 85m	Manus Island
and	271,743	7,129,083	568	RC	74	-59	105	89	90	1	1.2	1m @ 1.2g/t Au from 89m	Warmblood
HWRC238								116	119	3	2.9	3m @ 2.9g/t Au from 116m	
and	271,673	7,129,115	568	RC	73	-60	240	164	167	3	0.3	3m @ 0.3g/t Au from 164m	Warmblood
and								171	172	1	0.6	1m @ 0.6g/t Au from 171m	
HWRC241	271,682	7,129,170	568	RC	71	-61	227	50	53	3	0.3	3m @ 0.3g/t Au from 50m	Warmblood

	Coordinate	s (MGA94 Zor	ne 51)		Hole D	etails					ntercept D	Details	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
and								62	63	1	0.3	1m @ 0.3g/t Au from 62m	
and								64	65	1	0.3	1m @ 0.3g/t Au from 64m	
and								130	133	3	0.6	3m @ 0.6g/t Au from 130m	
HWRC242	271,735	7,129,030	568	RC	72	-61	250	93	95	2	1.2	2m @ 1.2g/t Au from 93m	Warmblood
and	271,733	7,129,030	300	KC	12	-01		221	223	2	0.3	2m @ 0.3g/t Au from 221m	wannblood
HWAC1774	271,550	7,129,200	572	AC	270	-60	54					NSR	Warmblood
HWAC1775	271,600	7,129,200	572	AC	270	-60	63					NSR	Warmblood
HWAC1776	271,650	7,129,200	572	AC	270	-60	65					NSR	Warmblood
HWAC1777	271,700	7,129,200	572	AC	270	-60	57					NSR	Warmblood
HWAC1778	271,750	7,129,200	572	AC	270	-60	78					NSR	Warmblood
HWAC1779	271,800	7,129,200	572	AC	270	-60	68					NSR	Warmblood
HWAC1780	271,850	7,129,200	572	AC	270	-60	74					NSR	Warmblood
HWAC1781	271,900	7,129,200	572	AC	270	-60	81					NSR	Warmblood
HWAC1782	271,950	7,129,200	572	AC	270	-60	89	20	24	4	0.4	4m @ 0.4g/t Au from 20m	Warmblood
HWAC1791	271,700	7,129,000	572	AC	270	-60	13					NSR	Warmblood
HWAC1792	271,750	7,129,000	572	AC	270	-60	57					NSR	Warmblood
HWAC1793	271,800	7,129,000	572	AC	270	-60	64					NSR	Warmblood
HWAC1794	271,850	7,129,000	572	AC	270	-60	75	64	68	4	1.0	4m @ 1g/t Au from 64m	Warmblood
HWAC1795	271,900	7,129,000	572	AC	270	-60	65					NSR	Warmblood
HWAC1796	271,950	7,129,000	572	AC	270	-60	70					NSR	Warmblood
HWAC1797	272,000	7,129,000	572	AC	270	-60	80					NSR	Warmblood
HWAC1806	271,800	7,128,800	572	AC	270	-60	48					NSR	Warmblood
HWAC1807	271,850	7,128,800	572	AC	270	-60	56					NSR	Warmblood
HWAC1808	271,900	7,128,800	572	AC	270	-60	64					NSR	Warmblood
HWAC1809	,							24	60	36	1.2	36m @ 1.2g/t Au from 24m, incl. 16m	
including	271,950	7,128,800	572	AC	270	-60	87	32	48	16	2.5	@ 2.5g/t Au	Warmblood
HWAC1810	272,000	7,128,800	572	AC	270	-60	69					NSR	Warmblood
HWRC280	272,065	7,130,318	572	RC	110	-60	124	16	21	5	0.8	5m @ 0.8g/t Au from 16m	Marwari-Filly
HWRC281	272,046	7,130,264	572	RC	110	-60	124	47	48	1	0.5	1m @ 0.5g/t Au from 47m	Marwari-Filly
HWRC282	271,901	7,130,528	572	RC	110	-60	106	40	44	4	0.9	4m @ 0.9g/t Au from 40m	Marwari-Filly
HWRC283	•							108	120	12	5.4	12m @ 5.4g/t Au from 108m	,
including	271,863	7,130,542	572	RC	110	-60	160	112	116	4	8.4	4m @ 8.4g/t Au from 112m	Marwari-Filly
HWRC284	271,750	7,130,510	572	RC	110	-60	106	72	76	4	0.5	4m @ 0.5g/t Au from 72m	Marwari-Filly
HWRC285	271,879	7,130,411	572	RC	110	-60	106	80	84	4	0.9	4m @ 0.9g/t Au from 80m	Marwari-Filly
HWRC286	271,864	7,130,482	572	RC	110	-60	106	72	76	4	0.5	4m @ 0.5g/t Au from 72m	Marwari-Filly
HWRC287	•							16	44	28	1	28m @ 1g/t Au from 16m	,
including	272,055	7,130,813	572	RC	110	-60	112	40	44	4	3.8	4m @ 3.8g/t Au from 40m	Marwari-Filly
HWRC288	271,913	7,130,565	572	RC	110	-60	106					NSR	Marwari-Filly
HWRC289	271,927	7,130,544	572	RC	270	-60	124					NSR	Marwari-Filly

	Coordinate	s (MGA94 Zor	ne 51)		Hole D	etails					ntercept De	etails	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
MWRC001	271,950	7,130,500	572	RC	270	-60	184	44	48	4	2.7	4m @ 2.7g/t Au from 44m	Marwari-Filly
and		, ,						152	154	2	1.1	2m @ 1.1g/t Au from 152m	Marwan-i iliy
MWRC002	271,990	7,130,580	572	RC	270	-60	226	16	17	1	1	1m @ 1g/t Au from 16m	Marwari-Filly
MWRC003								19	43	24	7.4	24m @ 7.4g/t Au from 19m	
and								60	61	1	1.2	1m @ 1.2g/t Au from 60m	
and	271,950	7,130,540	572	RC	270	-60	160	69	70	1	8.0	1m @ 0.8g/t Au from 69m	Marwari-Filly
and								79	80	1	0.7	1m @ 0.7g/t Au from 79m	
and								141	143	2	2.3	2m @ 2.3g/t Au from 141m	
MWRC004D	271,990	7,130,540	572	RC_DDH	270	-60	258.8					NSR	Marwari-Filly
MWRC005	271,910	7,130,500	572	RC	270	-60	154	49	50	1	1.3	1m @ 1.3g/t Au from 49m	Marwari-Filly
and	27 1,910	7,130,300	312	NO	210	-00	104	122	125	3	1.2	3m @ 1.2g/t Au from 122m	Iviai wan-i iliy
MWRC006	271,910	7,130,460	572	RC	270	-60	154	69	70	1	0.5	1m @ 0.5g/t Au from 69m	Marwari-Filly
and	271,910	7,130,400	372	NO	210	-00	134	92	93	1	0.6	1m @ 0.6g/t Au from 92m	Marwan-Filly
MWRC007	271,950	7,130,580	572	RC	270	-60	178	36	38	2	1.3	2m @ 1.3g/t Au from 36m	Marwari-Filly
and		7,130,360	312		210	-00		71	74	3	8.9	3m @ 8.9g/t Au from 71m	Iviai wan-riiiy
MWRC008	271,950	7,130,420	572	RC	270	-60	244	19	20	1	1.3	1m @ 1.3g/t Au from 19m	Marwari-Filly
MWRC009	271,990	7,130,420	572	RC	270	-60	145					NSR	Marwari-Filly
MWRC010								2	3	1	0.8	1m @ 0.8g/t Au from 2m	
and	271,950	7,130,340	572	RC	270	-60	220	26	27	1	1.9	1m @ 1.9g/t Au from 26m	Marwari-Filly
and								32	36	4	0.5	4m @ 0.5g/t Au from 32m	
MWRC011								61	62	1	0.6	1m @ 0.6g/t Au from 61m	
and	271,990	7,130,340	572	RC	270	-60	244	80	81	1	0.6	1m @ 0.6g/t Au from 80m	Marwari-Filly
and								106	107	1	0.9	1m @ 0.9g/t Au from 106m	
MWRC012	271,870	7,130,510	572	RC	90	-60	124	83	86	3	6	3m @ 6g/t Au from 83m	Marwari-Filly
and	2/1,0/0	7,130,510	372		90	-00	124	102	103	1	0.6	1m @ 0.6g/t Au from 102m	Iviai wan-Filiy
MWRC013	271,830	7,130,510	572	RC	90	-60	184					NSR	Marwari-Filly
MWDD001								151	152	1	0.7	1m @ 0.7g/t Au from 151m	
and	271,990	7,130,500	572	DDH	270	-60	291.1	216.2	218.7	2.5	1.2	2.5m @ 1.2g/t Au from 216.2m	Marwari-Filly
and	271,990	7,130,300	372	חטט	210	-00	291.1	231	234	3	1.5	3m @ 1.5g/t Au from 231m	Iviai wan-Filiy
and								270	271	1	0.6	1m @ 0.6g/t Au from 270m	
MWDD002								23.4	24	0.7	0.8	0.7m @ 0.8g/t Au from 23.4m	
and	271,950	7 120 460	572	DDH	270	-60	168.5	30	31	1	0.9	1m @ 0.9g/t Au from 30m	Monyori Filly
and	271,950	7,130,460	312	חטט	210	-00	100.5	120.5	121.9	1.5	0.7	1.5m @ 0.7g/t Au from 120.5m	Marwari-Filly
and								163.46	164	0.5	4.8	0.5m @ 4.8g/t Au from 163.46m	
MWDD003	272,030	7,130,500	572	BC DDII	270	-60	314.6	217	222	5	0.6	5m @ 0.6g/t Au from 217m	Monyori Filly
and	212,030	7,130,500	5/2	RC_DDH	270	-60	314.0	247.5	248.5	1	0.9	1m @ 0.9g/t Au from 247.5m	Marwari-Filly
MWDD004								116.0	128.0	12	0.6	12m @ 0.6g/t Au from 116m	
and	272,030	7,130,420	572	RC_DDH	270	-60	302.5	190.2	195.0	4.8	2.7	4.8m @ 2.7g/t Au from 190.23m	Marwari-Filly
and								237.0	238.0	1	0.7	1m @ 0.7g/t Au from 237m	

	Coordinate	s (MGA94 Zor	ne 51)_		Hole D	etails					ntercept D	etails	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
and								239.7	241.0	1.3	1	1.3m @ 1g/t Au from 239.71m	
and								258.7	263.0	4.3	2.2	4.3m @ 2.2g/t Au from 258.71m	
and								280.0	282.0	2	2.2	2m @ 2.2g/t Au from 280m	
MWDD005	272,030	7,130,460	572	RC_DDH	270	-60	299	224	227	3	0.9	3m @ 0.9g/t Au from 224m	Marwari-Filly
and	272,030	7,130,400	312	KC_DDI1	210	-00	299	232	233	1	0.9	1m @ 0.9g/t Au from 232m	Iviai wan-r iliy
MWDD006	272,030	7,130,540	572	RC_DDH	270	-60	304.6	292.7	293.9	1.2	1.8	1.2m @ 1.8g/t Au from 292.65m	Marwari-Filly
MWDD007	272,030	7,130,580	572	RC	270	-60	154	32	36	4	0.6	4m @ 0.6g/t Au from 32m	Marwari-Filly
and	272,030	7,130,360	5/2	RC	270	-60	154	80	84	4	0.6	4m @ 0.6g/t Au from 80m	Marwan-Filly
MWDD008	271,990	7,130,460	572	RC_DDH	270	-60	248	133.6	134.3	0.6	3.2	0.6m @ 3.2g/t Au from 133.63m	Marwari-Filly
HWRC259								58	60	2	1.1	2m @ 1.1g/t Au from 58m	
and	270,886	7,130,369	565	RC	110	-60	148	71	79	8	0.9	8m @ 0.9g/t Au from 71m	Bronco-Konik
including								77	78	1	2.3	1m @ 2.3g/t Au from 77m	
HWRC260	270,937	7,130,393	565	RC	110	-60	166					NSR	Bronco-Konik
HWRC261	270,785	7,130,151	566	RC	110	-60	136	132	133	1	2.2	1m @ 2.2g/t Au from 132m	Bronco-Konik
HWRC262	271,023	7,130,511	565	RC	110	-60	124					NSR	Bronco-Konik
HWRC267	271,221	7,130,412	567	RC	252	-60	100	74	75	1	1.2	1m @ 1.2g/t Au from 74m	Bronco-Konik
HWRC268	271,266	7,130,322	567	RC	252	-60	124					NSR	Bronco-Konik
HWRC269								117	118	1	0.6	1m @ 0.6g/t Au from 117m	
and	270,895	7,130,369	565	RC	40	-60	166	130	138	8	0.7	8m @ 0.7g/t Au from 130m	Bronco-Konik
including	1							130	131	1	1.9	1m @ 1.9g/t Au from 130m	
HWRC270	270,998	7,130,348	570	RC	40	-60	70					NSR	Bronco-Konik
HWRC271								73	79	6	1.1	6m @ 1.1g/t Au from 73m	
including	270,877	7,130,077	571	RC	40	-60	124	74	76	2	2.7	2m @ 2.7g/t Au from 74m	Bronco-Konik
and	1							82	87	5	1.0	5m @ 1g/t Au from 82m	
HWRC272	070.000	7 400 407	500	D 0	40		400	49	50	1	1.6	1m @ 1.6g/t Au from 49m	5 1/ "
and	270,903	7,130,107	569	RC	40	-60	100	64	65	1	1.0	1m @ 1g/t Au from 64m	Bronco-Konik
HWRC273	070.000	7 400 075	F70	D0	40	00	00	23	32	9	1.3	9m @ 1.3g/t Au from 23m	Daniel Kanila
including	270,928	7,130,075	570	RC	40	-60	88	26	29	3	3.3	3m @ 3.3g/t Au from 26m	Bronco-Konik
HWRC274	270,715	7,130,353	565	RC	40	-60	124					NSR	Bronco-Konik
HWRC336								146	162	16	1.2	16m @ 1.2g/t Au from 146m	
including	070.005	7 400 400	504	D O	50	00	400	146	149	3	4.6	3m @ 4.6g/t Au from 146m	1
and	270,835	7,130,433	564	RC	50	-60	192	157	158	1	2.1	1m @ 2.1g/t Au from 157m	Bronco-Konik
and								161	162	1	1.0	1m @ 1g/t Au from 161m	
HWRC337	270,832	7,130,495	564	RC	50	-60	150	83	86	3	0.5	3m @ 0.5g/t Au from 83m	Bronco-Konik
HWRC338	270,799	7,130,532	564	RC	50	-60	144	80	81	1	0.6	1m @ 0.6g/t Au from 80m	Bronco-Konik
HWRC339							4.5.5	20	21	1	0.5	1m @ 0.5g/t Au from 20m	
and	270,777	7,130,517	564	RC	50	-60	192	63	65	2	0.6	2m @ 0.6g/t Au from 63m	Bronco-Konik
HWRC340	270,768	7,130,573	564	RC	50	-60	96					NSR	Bronco-Konik
HWRC341	270,749	7,130,557	564	RC	50	-60	192	94	95	1	0.6	1m @ 0.6g/t Au from 94m	Bronco-Konik

	Coordinate	s (MGA94 Zor	ne 51)		Hole D	etails					ntercept De	etails	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
HWRC342	270,765	7,130,635	564	RC	50	-60	180					NSR	Bronco-Konik
HWRC343	270,739	7,130,612	564	RC	50	-60	156	125	126	1	0.5	1m @ 0.5g/t Au from 125m	Bronco-Konik
HWRC344								96	97	1	0.5	1m @ 0.5g/t Au from 96m	
and	270,716	7,130,596	564	RC	50	-60	198	99	101	2	0.5	2m @ 0.5g/t Au from 99m	Bronco-Konik
and								113	114	1	0.5	1m @ 0.5g/t Au from 113m	
HWRC345	270,733	7,130,674	564	RC	50	-60	144					NSR	Bronco-Konik
HWRC346	270,708	7,130,653	564	RC	50	-60	150					NSR	Bronco-Konik
HWRC347	270,689	7,130,639	564	RC	50	-60	210					NSR	Bronco-Konik
HWRC348	270,842	7,130,573	564	RC	50	-60	126					NSR	Bronco-Konik
HWDD012								31	32	1	3.8	1m @ 3.8g/t Au from 31m	
and	270,864	7,130,250	565	DDH	110	-60	169.8	51.4	52.6	1.2	3.1	1.2m @ 3.1g/t Au from 51.4m	Bronco-Konik
and	270,004	7,130,230	303	חטט	110	-00	109.0	60	66.2	6.2	2.1	6.2m @ 2.1g/t Au from 60m	DIOIICO-KOIIK
including								60	62	2	5.9	2m @ 5.9g/t Au from 60m	
HWDD013	270,737	7,130,253	565	RC_DDH	110	-60	100					NSR	Bronco-Konik
HWDD014								52	64	12	1.4	12m @ 1.4g/t Au from 52m	
including								53.5	58.3	4.8	2.5	4.8m @ 2.5g/t Au from 53.5m	
and	270,826	7,130,264	565	DDH	110	-60	227.6	74.1	83.3	9.2	1.7	9.2m @ 1.7g/t Au from 74.1m	Bronco-Konik
including								74.1	76	1.9	4.9	1.9m @ 4.9g/t Au from 74.1m	
and								99	100	1	1.4	1m @ 1.4g/t Au from 99m	
HWDD015	270,699	7,130,267	565	RC DDH	110	-60	148					NSR	Bronco-Konik
HWDD016								84	99.8	15.8	1.5	15.8m @ 1.5g/t Au from 84m	
including	270,848	7,130,383	565	DDH	110	-60	222	86.9	91.8	5	4.4	5m @ 4.4g/t Au from 86.9m	Bronco-Konik
including								86.9	88.9	2.1	8.4	2.1m @ 8.4g/t Au from 86.9m	
HWDD018	070.004	7 400 450	507	DDII	40	00	040	108	119	11	1.2	11m @ 1.2g/t Au from 108m	Daniel Karila
and	270,834	7,130,152	567	DDH	40	-60	219	137	148	11	0.7	11m @ 0.7g/t Au from 137m	Bronco-Konik
HWDD019								29.4	33.1	3.8	1.3	3.8m @ 1.3g/t Au from 29.4m	
and								38.4	39.4	1	1.2	1m @ 1.2g/t Au from 38.4m	
and	070.004	7 400 040	507	DDII	40	00	050.0	49.2	50	0.8	1.1	0.8m @ 1.1g/t Au from 49.2m	Danie Karila
and	270,904	7,130,313	567	DDH	40	-60	356.8	58.7	71	12.3	1.0	12.3m @ 1g/t Au from 58.7m	Bronco-Konik
including								58.7	61	2.3	3.4	2.3m @ 3.4g/t Au from 58.7m	
and	1							142.1	143.3	1.2	1.1	1.2m @ 1.1g/t Au from 142.1m	
HWDD038								66.5	69.9	3.4	1.2	3.4m @ 1.2g/t Au from 66.5m	
and								114	176.3	62.3	0.9	62.3m @ 0.9g/t Au from 114m	
including								115.4	121.5	6.1	2.0	6.1m @ 2g/t Au from 115.4m	
including	270,830	7,130,143	565	DDH	30	-60	220	170.7	173.8	3.1	3.0	3.1m @ 3g/t Au from 170.7m	Bronco-Konik
and	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,			-			192	193	1	0.6	1m @ 0.6g/t Au from 192m	
and								195	196	1	0.5	1m @ 0.5g/t Au from 195m	
and								204.9	207	2.1	0.5	2.1m @ 0.5g/t Au from 204.9m	
HWDD040	270,825	7,130,177	565	DDH	30	-60	180	81	101.2	20.2	1.1	20.2m @ 1.1g/t Au from 81m	Bronco-Konik

Hole ID Easting (m) Northing (m) (m) (m) (m) (deg)	
And a	Prospect
Second Color Seco	
Including and	
Second S	
And a	
Bendang	
HWDD041 and	
And a	
B1	
Including and	
And a	
And a	
And a	Bronco-Konik
and and and and BWDD044 and BWDD044 and BWDD044 and BWDD045 and	
and and and HWDD044 and BWDD044 and BWDD045 and	
and HWDD044 and and and and and and and and and and	
HWDD044 270,828 7,130,181 565 DDH 15 -60 198.14 39.9 43.1 3.2 1.2 3.2m @ 1.2g/t Au from 39.9m 1.2m @ 1g/t Au from 39.9m 1.2m @ 1g/t Au from 136.1m 169.8 173 3.2 0.6 3.2m @ 0.6g/t Au from 136.1m 169.8 173 3.2 0.6 3.2m @ 0.6g/t Au from 169.8m 169.8 173 3.2 0.6 3.2m @ 0.6g/t Au from 169.8m 169.8 173 3.2 0.6 3.2m @ 0.6g/t Au from 169.8m 169.8 173 3.2 0.6 3.2m @ 0.6g/t Au from 169.8m 169.8 173 3.2 0.6 3.2m @ 0.6g/t Au from 169.8m 169.8 173 3.2 0.6 3.2m @ 0.6g/t Au from 169.8m 169.8 173 3.2 0.6 3.2m @ 0.6g/t Au from 169.8m 169.8 173 3.2 0.6 3.2m @ 0.6g/t Au from 169.8m 169.8 173 3.2 0.6 3.2m @ 0.6g/t Au from 169.8m 169.8 173 3.2 0.6 3.2m @ 0.6g/t Au from 169.8m 169.8 173 3.2 0.6 3.2m @ 0.6g/t Au from 169.8m 169.8 173 3.2 0.6 3.2m @ 0.6g/t Au from 169.8m 169.8 173 3.2 0.6 3.2m @ 0.6g/t Au from 169.8m 169.8 173 3.2 0.6 3.2m @ 0.6g/t Au from 169.8m 169.8 173 3.2 0.6 3.2m @ 0.6g/t Au from 169.8m 169.8 173 3.2 0.6 3.2m @ 0.6g/t Au from 169.8m 169.8 173 3.2 0.6 3.2m @ 0.6g/t Au from 169.8m 169.8 173 173 174 175	
and and and and and and British and	
and 169.8 173 3.2 0.6 3.2m @ 0.6g/t Au from 169.8m HWDD045 And	Bronco-Konik
HWDD045 and	
and	
and	
and 270,789 7,130,188 565 DDH 30 -60 209.84 147 148.5 1.5 1.4 1.5m@ 1.4g/t Au from 147m and and 153.4 154 0.6 2.3 0.6m@ 2.3g/t Au from 153.4m AHWR076 270,879 7,130,232 541 RC 342 -58 72 19 26 7 1.7 7m@ 1.7g/t Au from 19m AHWR077 38 55 17 1.0 17m@ 0.5g/t Au from 20m 32 33 1 0.5 1m@ 0.5g/t Au from 32m	
and	Bronco-Konik
and 160 160.9 0.9 1.2 0.9m@ 1.2g/t Au from 160m AHWR076 and 270,879 7,130,232 541 RC 342 -58 72 19 26 7 1.7 7m@ 1.7g/t Au from 19m AHWR077 38 55 17 1.0 17m@ 1g/t Au from 38m AHWR077 20 21 1 0.5 1m@ 0.5g/t Au from 20m 32 33 1 0.5 1m@ 0.5g/t Au from 32m	
AHWR076 and 270,879 7,130,232 541 RC 342 -58 72 19 26 7 1.7 7m @ 1.7g/t Au from 19m 38 55 17 1.0 17m @ 1g/t Au from 38m 4HWR077 20 21 1 0.5 1m @ 0.5g/t Au from 20m 32 33 1 0.5 1m @ 0.5g/t Au from 32m 32m 32 33 1 0.5 1m @ 0.5g/t Au from 32m 32m 32 33 1 0.5 1m @ 0.5g/t Au from 32m 32	
and 270,879 7,130,232 541 RC 342 -58 72 38 55 17 1.0 17m@ 1g/t Au from 38m AHWR077 20 21 1 0.5 1m@ 0.5g/t Au from 20m 32 33 1 0.5 1m@ 0.5g/t Au from 32m	
AHWR077 20 21 1 0.5 1m @ 0.5g/t Au from 20m	Bronco-Konik
and 32 33 1 0.5 1m @ 0.5g/t Au from 32m	
and 270,860 7,130,226 541 RC 344 -59 120 39 51 12 2.1 12m @ 2.1g/t Au from 39m	Bronco-Konik
and 64 72 8 2.0 8m @ 2g/t Au from 64m	
AHWR078 36 38 2 0.5 2m @ 0.5g/t Au from 36m	
and 57 59 2 0.5 2m @ 0.5g/t7ta from 57m	
and 270,846 7,130,217 541 RC 342 -60 118 63 88 25 0.8 25m @ 0.8g/t Au from 63m, incl. 6m	Bronco-Konik
including 82 88 6 1.2 @ 1.2g/t Au	Dionico Ronik
and 98 118 20 1.5 20m @ 1.5g/t Au from 98m to BOH	
AHWR079 32 33 1 1.3 2011 @ 1.3g/t Au from 32m	
and 270,827 7,130,209 541 RC 346 -59 187 50 51 1 0.9 1m @ 0.9g/t Au from 50m	Bronco-Konik
and 270,027 7,130,209 341 100 340 139 107 30 31 1 0.5 1m @ 0.9g/t Ad itom 56m	DIOTICO-ROTIK

	Coordinate	es (MGA94 Zor	ne 51)		Hole Do	etails					ntercept D	Details Details	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
and								69	74	5	1.1	5m @ 1.1g/t Au from 69m	
and								96	140	44	0.6	44m @ 0.6g/t Au from 96m^, incl. 4m	
including								134	138	4	2.6	@ 2.6g/t Au	
AHWR080								16	18	2	1.0	2m @ 1g/t Au from 16m	
and	270,907	7,130,128	541	RC	74	-64	103	33	34	1	3.1	1m @ 3g/t Au from 33m	Bronco-Konik
and								44	53	9	1.2	9m @ 1.2g/t Au from 44m	
AHWR081								33	34	1	4.5	1m @ 4.5g/t Au from 33m	
and	270,886	7,130,120	541	RC	67	-63	103	45	46	1	1.1	1m @ 1.1g/t Au from 45m	Bronco-Konik
and	270,000	7,130,120	341	KC.	07	-03	103	72	75	3	0.8	3m @ 0.8g/t Au from 72m	DIONCO-KONK
and								82	83	1	1.3	1m @ 1.3g/t Au from 82m	
AHWR082								4	6	2	1.2	2m @ 1.2g/t Au from 4m	
and	270,887	7,130,177	541	RC	345	-60	91	13	21	8	1.5	8m @ 1.5g/t Au from 13m, incl. 2m @	Bronco-Konik
including	270,007	7,130,177	541	RC	345	-60	91	16	18	2	4.4	4.4g/t Au	DIONCO-KONK
and								68	69	1	0.6	1m @ 0.6g/t Au from 68m	
AHWR083	270,863	7 120 167	541	RC	72	-60	115	27	28	1	1.0	1m @ 1g/t Au from 27m	Bronco-Konik
and	270,003	7,130,167	541	RC	12	-60	115	39	41	2	1.8	2m @ 1.8g/t Au from 39m	DIONCO-KONK
AHWR084	270,845	7,130,155	541	RC	72	-61	151	46	81	35	0.5	35m @ 0.5g/t Au from 46m	Bronco-Konik
AHWR085	270,903	7,130,283	541	RC	346	-61	73	65	71	6	1.1	6m @ 1.1g/t Au from 65m	Bronco-Konik
AHWR086								19	20	1	0.6	1m @ 0.6g/t Au from 19m	
and	270,849	7,130,276	541	RC	344	-59	97	22	23	1	0.5	1m @ 0.5g/t Au from 22m	Bronco-Konik
and								48	49	1	3.1	1m @ 3.1g/t Au from 48m	
AHWR087								19	24	5	0.8	5m @ 0.8g/t Au from 19m, incl. 2m @	
including	070 000	7 400 004	- 4.4	50	0.47	00	00	19	21	2	1.6	1.6g/t Au from 19m	Daniel Kanila
and	270,832	7,130,264	541	RC	347	-60	92	35	36	1	3.6	1m @ 3.6g/t Au from 35m	Bronco-Konik
and								42	43	1	1.3	1m @ 1.3g/t Au from 42m	
AHWR088	270,812	7,130,253	541	RC	349	-59	67	64	65	1	0.5	1m @ 0.5g/t Au from 64m	Bronco-Konik
AHWR089	070.004	7 400 044	541	DC	270	-60	70	43	46	3	1.9	3m @ 1.9g/t Au from 43m	Duamas Kamile
and	270,904	7,130,344	541	RC	270	-60	79	60	61	1	28.6	1m @ 28.6g/t Au from 60m	Bronco-Konik
AHWR090								42	48	6	0.5	6m @ 0.5g/t Au from 42m	
and	270,863	7,130,329	541	RC	90	-60	139	72	84	12	0.7	12m @ 0.7g/t Au from 72m	Bronco-Konik
and								94	95	1	0.9	1m @ 0.9g/t Au from 94m	
AHWR091	270,832	7,130,320	541	RC	270	-60	139	92	120	28	0.7	28m @ 0.7g/t Au from 92m	Bronco-Konik
HWAC1447	270,700	7,130,500	541	AC	90	-60	51					NSR	Bronco-Konik
HWAC1448	270,750	7,130,500	541	AC	90	-60	61					NSR	Bronco-Konik
HWAC1449	270,800	7,130,500	541	AC	71	-58	56					NSR	Bronco-Konik
HWAC1450	270,850	7,130,500	541	AC	71	-59	57	37	38	1	0.5	1m @ 0.5g/t Au from 37m	Bronco-Konik
HWAC1451	270,900	7,130,500	541	AC	343	-61	58	31	32	1	1.7	1m @ 1.7g/t Au from 31m	Bronco-Konik
HWAC1452								44	45	1	1.2	1m @ 1.2g/t Au from 44m	
and	270,950	7,130,500	541	AC	341	-60	64	57	60	3	0.5	3m @ 0.5g/t Au from 57m	Bronco-Konik

	Coordinate	s (MGA94 Zor	ne 51)		Hole D	etails					ntercept D	Details	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
HWAC1453	271,000	7,130,500	541	AC	324	-61	61	29	30	1	0.6	1m @ 0.6g/t Au from 29m	Bronco-Konik
HWAC1454	271,050	7,130,500	541	AC	342	-59	90	48	49	1	0.7	1m @ 0.7g/t Au from 48m	Bronco-Konik
HWAC1482	270,750	7,130,400	541	AC	90	-60	65					NSR	Bronco-Konik
HWAC1483	270,700	7,130,400	541	AC	75	-60	65					NSR	Bronco-Konik
HWAC1484	270,800	7,130,400	541	AC	270	-60	69					NSR	Bronco-Konik
HWAC1485	270,850	7,130,400	541	AC	270	-60	75	32	33	1	0.8	1m @ 0.8g/t Au from 32m	Bronco-Konik
HWAC1486	270,900	7,130,400	541	AC	270	-60	86					NSR	Bronco-Konik
HWAC1487	270,950	7,130,400	541	AC	270	-60	71					NSR	Bronco-Konik
HWAC1488								1	6	5	1.4	5m @ 1.4g/t Au from 1m	
and	074 000	7 400 400	E 4.4	4.0	070	00	75	11	12	1	0.7	1m @ 0.7g/t Au from 11m	Duamaa Kanik
and	271,000	7,130,400	541	AC	270	-60	75	17	75	58	1.7	58m @ 1.7g/t Au from 17m to BOH,	Bronco-Konik
including								60	70	10	4.2	incl. 10m @ 4.2g/t Au	
HWAC1489	271,050	7,130,400	541	AC	270	-60	78					NSR	Bronco-Konik
HWAC1519	270,750	7,130,200	541	AC	345	-60	87					NSR	Bronco-Konik
HWAC1520	270,800	7,130,200	541	AC	340	-60	93					NSR	Bronco-Konik
HWAC1521	•							8	9	1	0.5	1m @ 0.5g/t Au from 8m	
and	270,850	7,130,200	541	AC	345	-59	93	18	19	1	0.8	1m @ 0.8g/t Au from 18m	Bronco-Konik
and	,							43	44	1	1.1	1m @ 1.1g/t Au from 43m	
HWAC1522								11	12	1	0.5	1m @ 0.5g/t Au from 11m	
and	270,900	7,130,200	541	AC	343	-58	99	24	26	2	0.7	2m @ 0.7g/t Au from 24m	Bronco-Konik
HWAC1523								28	36	8	1.0	8m @ 1g/t Au from 28m	
and								41	42	1	1.1	1m @ 1.1g/t Au from 41m	
and	270,950	7,130,200	541	AC	270	-60	100	80	81	1	0.8	1m @ 0.8g/t Au from 80m	Bronco-Konik
and								90	91	1	0.8	1m @ 0.8g/t Au from 90m	
HWAC1524								9	10	1	1.5	1m @ 1.5g/t Au from 9m	
and	271,000	7,130,200	541	AC	270	-60	95	26	29	3	4.3	3m @ 4.3g/t Au from 26m	Bronco-Konik
HWAC1525	271,050	7,130,200	541	AC	270	-60	89			_		NSR	Bronco-Konik
HWAC1643	270,900	7,130,450	541	AC	270	-60	66	30	34	4	0.6	4m @ 0.6g/t Au from 30m	Bronco-Konik
HWAC1643R		1,100,100						27	28	1	0.6	1m @ 0.6g/t Au from 27m	
and	270,900	7,130,450	541	AC	270	-60	75	48	49	1	1.0	1m @ 1g/t Au from 48m	Bronco-Konik
and	_: 0,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						70	71	1	0.5	1m @ 0.5g/t Au from 70m	
HWAC1644	270,950	7,130,450	541	AC	270	-60	85	. •			3.0	NSR	Bronco-Konik
HWAC1644R	270,950	7,130,450	541	AC	270	-60	68					NSR	Bronco-Konik
HWAC1645	271,000	7,130,450	541	AC	270	-60	80					NSR	Bronco-Konik
HWAC1645R	271,000	7,130,450	541	AC	270	-60	69					NSR	Bronco-Konik
HWAC1646	271,050	7,130,450	541	AC	270	-60	92	24	25	1	0.6	1m @ 0.6g/t Au from 24m	Bronco-Konik
HWAC1648	271,050	7,130,350	541	AC	270	-60	95			•	0.0	NSR	Bronco-Konik
HWAC1649								44	49	5	0.7	5m @ 0.7g/t Au from 44m, incl. 1m @	
including	271,000	7,130,350	541	AC	270	-60	93	44	45	1	2.0	2g/t Au	Bronco-Konik

	Coordinate	s (MGA94 Zor	ne 51)_		Hole D	etails					ntercept D	etails	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
and								64	67	3	0.5	3m @ 0.5g/t Au from 64m	
HWAC1650	270,950	7,130,350	541	AC	270	-60	86					NSR	Bronco-Konik
HWAC1651	271,050	7,130,300	541	AC	270	-60	96					NSR	Bronco-Konik
HWAC1652	271,000	7,130,300	541	AC	270	-60	102	40	41	1	0.6	1m @ 0.6g/t Au from 40m	Bronco-Konik
and								51	54	3	8.0	3m @ 0.8g/t Au from 51m	Dionco-Ronk
HWAC1653	270,950	7,130,300	541	AC	90	-60	106	19	28	9	0.6	9m @ 0.6g/t Au from 19m	Bronco-Konik
HWAC1656	271,050	7,130,250	541	AC	341	-60	98					NSR	Bronco-Konik
HWAC1657	271,000	7,130,250	541	AC	342	-60	105					NSR	Bronco-Konik
HWAC1661	271,050	7,130,150	541	AC	342	-59	96					NSR	Bronco-Konik
HWAC1683	271,050	7,130,000	541	AC	342	-60	66					NSR	Bronco-Konik
HWAC1684	271,000	7,130,000	541	AC	340	-60	88					NSR	Bronco-Konik
HWAC1685	270,950	7,130,000	541	AC	74	-61	94					NSR	Bronco-Konik
HWAC1686	270,900	7,130,000	541	AC	72	-61	89					NSR	Bronco-Konik
HWAC1687	270,850	7,130,000	541	AC	78	-64	83					NSR	Bronco-Konik
HWRC072	270.052	7 120 210	E 11	DC.	349	F0	107	18	107	89	3.0	89m @ 3.0g/t Au from 18m to BOH^,	Drange Kenik
including	270,853	7,130,219	541	RC	349	-59	107	18	33	15	14.2	incl. 15m @ 14.2g/t Au	Bronco-Konik
HWRC073	270,812	7,130,204	541	RC	350	-60	105	85	105	20	0.8	20m @ 0.8g/t Au from 85m to BOH	Bronco-Konik
HWRC074								73	74	1	0.6	1m @ 0.6g/t Au from 73m	
and	270,949	7,130,248	541	RC	350	-60	113	88	113	25	1.3	25m @ 1.3g/t Au from 88m to BOH,	Bronco-Konik
including								100	104	4	3.8	incl. 4m @ 3.8g/t Au	
HWRC075	270,745	7,130,394	541	RC	75	-61	107					NSR	Bronco-Konik
HWRC076	270,793	7,130,408	541	RC	90	-60	95					NSR	Bronco-Konik
HWRC091	070.004	7 400 000	- 44	D0	0.45	00	440	6	32	26	2.0	26m @ 2.0g/t Au from 6m	Daniel Karila
and	270,901	7,130,230	541	RC	345	-60	110	76	77	1	0.6	1m @ 0.6g/t Au from 76m	Bronco-Konik
HWRC092								12	33	21	0.8	21m @ 0.8g/t Au from 12m, incl. 4m	
including	070.007	7 400 044	E44	50	044	50	447	28	32	4	1.6	@ 1.6g/t Au from 28m	Daniel Kanila
and	270,907	7,130,211	541	RC	344	-59	117	41	66	25	0.9	25m @ 0.9g/t Au from 41m, incl. 8m	Bronco-Konik
including								50	58	8	1.7	@ 1.7g/t Au from 50m	
HWRC093	270,916	7,130,188	541	RC	345	-60	117	74	100	26	1.8	26m @ 1.8g/t Au from 74m	Bronco-Konik
HWRC094								15	16	1	1.0	1m @ 1g/t Au from 15m	
and	270,875	7,130,226	541	RC	345	-60	111	20	32	12	0.7	12m @ 0.7g/t Au from 20m	Bronco-Konik
and	, i							47	58	11	0.7	11m @ 0.7g/t Au from 47m	
HWRC095								25	34	9	0.5	9m @ 0.5g/t Au from 25m	
and								42	50	8	0.7	8m @ 0.7g/t Au from 42m	
and	070.000	7 400 000	E 4.4	50	0.40	0.4	4.47	64	66	2	4.4	2m @ 4.4g/t Au from 64m	
and	270,889	7,130,202	541	RC	343	-61	117	78	79	1	0.5	1m @ 0.5g/t Au from 78m	Bronco-Konik
and								87	91	4	3.4	4m @ 3.4g/t Au from 87m	
and								103	106	3	0.6	3m @ 0.6g/t Au from 103m	
HWRC096	270,894	7.130.179	541	RC	345	-60	117	5	14	9	1.5	9m @ 1.5g/t Au from 5m	Bronco-Konik

	Coordinate	s (MGA94 Zor	ne 51)		Hole D	etails					ntercept D	etails	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
and								65	97	32	1.2	32m @ 1.2g/t Au from 65m, incl. 7m	
including								68	75	7	3.2	@ 3.2g/t Au from 68m	
and								112	117	5	1.0	5m @ 1g/t Au from 112m to BOH	
HWRC097	270,853	7,130,219	541	RC	342	-60	117	50	51	1	4.2	1m @ 4.2g/t Au from 50m	Bronco-Konik
and	270,033	7,130,219	341	NO	542	-00	117	58	59	1	0.5	1m @ 0.5g/t Au from 58m	DIOIICO-ROIIK
HWRC098								35	36	1	0.6	1m @ 0.6g/t Au from 35m	
and								41	48	7	0.5	7m @ 0.5g/t Au from 41m	
and	270,862	7,130,191	541	RC	342	-59	117	53	56	3	0.5	3m @ 0.5g/t Au from 53m	Bronco-Konik
and								108	111	3	0.5	3m @ 0.5g/t Au from 108m	
and								115	117	2	1.8	2m @ 1.8g/t Au from 115m to BOH	
HWRC099								41	43	2	1.4	2m @ 1.4g/t Au from 41m	
and	270,869	7,130,170	541	RC	67	-62	117	72	98	26	0.5	26m @ 0.5g/t Au from 72m	Bronco-Konik
and								112	117	5	2.0	5m @ 2g/t Au from 112m to BOH	
HWRC100	070.000	7 400 040	- 44	DC	242	00	447	89	94	5	0.5	5m @ 0.5g/t Au from 89m	Danner Kerik
and	270,832	7,130,213	541	RC	343	-60	117	101	106	5	0.8	5m @ 0.8g/t Au from 101m	Bronco-Konik
HWRC101	270,837	7,130,186	541	RC	344	-60	111					NSR	Bronco-Konik
HWRC102	270,844	7,130,163	541	RC	71	-63	117	96	97	1	0.8	1m @ 0.8g/t Au from 96m	Bronco-Konik
HWRC103								22	28	6	0.8	6m @ 0.8g/t Au from 22m	
and								54	56	2	0.6	2m @ 0.6g/t Au from 54m	
and								69	70	1	0.6	1m @ 0.6g/t Au from 69m	
and	270,877	7,130,307	541	RC	90	-60	108	78	82	4	1.5	4m @ 1.5g/t Au from 78m	Bronco-Konik
and	1							93	94	1	0.5	1m @ 0.5g/t Au from 93m	
and								97	98	1	0.6	1m @ 0.6g/t Au from 97m	
and								105	106	1	0.6	1m @ 0.6g/t Au from 105m	
HWRC104								25	26	1	1.0	1m @ 1g/t Au from 25m	
and		_ ,,,,						100	102	2	0.5	2m @ 0.5g/t Au from 100m	
and	270,887	7,130,284	541	RC	344	-60	117	105	114	9	0.5	9m @ 0.5g/t Au from 105m	Bronco-Konik
and								116	117	1	0.5	1m @ 0.5g/t Au from 116m	
HWRC105								16	17	1	0.9	1m @ 0.9g/t Au from 16m	
and								36	37	1	0.5	1m @ 0.5g/t Au from 36m	
and	270,893	7,130,256	541	RC	26	-60	117	49	50	1	1.8	1m @ 1.8g/t Au from 49m	Bronco-Konik
and		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						100	101	1	0.5	1m @ 0.5g/t Au from 100m	
and								104	105	1	0.5	1m @ 0.5g/t Au from 104m	
HWRC112								16	18	2	1.2	2m @ 1.2g/t Au from 16m	
and	270,922	7,130,163	541	RC	72	-61	123	42	48	6	1.4	6m @ 1.4g/t Au from 42m	Bronco-Konik
and	,,,,,	.,,		0	_			103	123	20	0.8	20m @ 0.8g/t Au from 103m to BOH	2.550 (10.1111)
HWRC113	270,922	7,130,238	541	RC	211	-60	94	100	120		0.0	NSR	Bronco-Konik
HWRC114	270,954	7,130,093	541	RC	73	-60	117					NSR	Bronco-Konik
HWRC115	270,940	7,130,113	541	RC	73	-60	117	0	1	1	0.7	1m @ 0.7g/t Au from 0m	Bronco-Konik

	Coordinate	s (MGA94 Zor	ne 51)		Hole D	etails					ntercept D	Details Tetrain Tetrain	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
and								19	20	1	0.7	1m @ 0.7g/t Au from 19m	
and								27	28	1	1.2	1m @ 1.2g/t Au from 27m	
and								45	47	2	0.5	2m @ 0.5g/t Au from 45m	
and								53	59	6	0.5	6m @ 0.5g/t Au from 53m	
HWRC116	270,929	7 120 145	541	RC	73	-60	94	10	49	39	0.7	39m @ 0.7g/t Au from 10m	Bronco-Konik
and	270,929	7,130,145	541	RC	13	-60	94	89	90	1	0.8	1m @ 0.8g/t Au from 89m	DIONCO-KONK
HWRC117	270,951	7,130,166	541	RC	69	-61	117					NSR	Bronco-Konik
HWRC118								14	15	1	0.6	1m @ 0.6g/t Au from 14m	
and	270,942	7,130,191	541	RC	342	-60	117	20	22	2	0.6	2m @ 0.6g/t Au from 20m	Bronco-Konik
and								35	36	1	1.7	1m @ 1.7g/t Au from 35m	
HWRC119								18	19	1	1.1	1m @ 1.1g/t Au from 18m	
and	270,930	7,130,218	541	RC	342	-60	117	26	27	1	0.6	1m @ 0.6g/t Au from 26m	Bronco-Konik
and								30	32	2	0.6	2m @ 0.6g/t Au from 30m	
HWRC120	270,833	7,130,291	541	RC	20	-60	117					NSR	Bronco-Konik
HWRC121	•							20	25	5	1.2	5m @ 1.2g/t Au from 20m	
and	070 000	7 400 000	- 4.4	50	00	00	447	42	50	8	2.5	8m @ 2.5g/t Au from 42m, incl. 2m @	5 1/ 11
including	270,839	7,130,269	541	RC	20	-60	117	42	44	2	8.0	8g/t Au from 42m	Bronco-Konik
and								62	64	2	0.5	2m @ 0.5g/t Au from 62m	
HWRC122								38	40	2	1.9	2m @ 1.9g/t Au from 38m	
and	270,844	7,130,245	541	RC	20	-60	117	48	63	15	0.6	15m @ 0.6g/t Au from 48m	Bronco-Konik
and	,							91	95	4	1.0	4m @ 1g/t Au from 91m	
HWRC123	270,920	7,130,342	541	RC	90	-60	117	61	63	2	1.4	2m @ 1.4g/t Au from 61m	Bronco-Konik
HWRC124	•							10	11	1	1.0	1m @ 1g/t Au from 10m	
and								15	49	34	0.6	34m @ 0.6g/t Au from 15m	
and	270,917	7,130,342	541	RC	90	-60	117	60	65	5	0.7	5m @ 0.74g/t Au from 60m	Bronco-Konik
and								84	89	5	1.4	5m @ 1.4g/t Au from 84m	
HWRC125								10	19	9	1.2	9m @ 1.2g/t Au from 10m	
and	270.934	7.130.296	541	RC	90	-60	117	33	41	8	3.2	8m @ 3.2g/t Au from 33m	Bronco-Konik
and	-,	, ,						50	109	59	0.8	59m @ 0.8g/t Au from 50m^	
HWRC126	270,940	7,130,272	541	RC	20	-60	117	66	67	1	0.9	1m @ 0.9g/t Au from 66m	Bronco-Konik
HWRC127	270,964	7,130,360	541	RC	90	-60	117	83	113	30	1.7	30m @ 1.7g/t Au from 83m	Bronco-Konik
HWRC128	,	, ,						19	20	1	0.6	1m @ 0.6g/t Au from 19m	
and	270,975	7,130,335	541	RC	90	-60	117	111	112	1	0.6	1m @ 0.6g/t Au from 111m	Bronco-Konik
and	,	, ,						115	116	1	0.5	1m @ 0.5g/t Au from 115m	
HWRC129	270,986	7,130,309	541	RC	90	-60	124	80	81	1	0.5	1m @ 0.5g/t Au from 80m	Bronco-Konik
HWRC130	270,990	7,130,290	541	RC	90	-60	117	59	61	2	1.3	2m @ 1.3g/t Au from 59m	Bronco-Konik
HWRC131	271,016	7,130,372	541	RC	90	-60	117	35	43	8	1.2	8m @ 1.2g/t Au from 35m	Bronco-Konik
HWRC132								61	65	4	0.6	4m @ 0.6g/t Au from 61m	
and	271,026	7,130,351	541	RC	90	-60	117	75	78	3	0.5	3m @ 0.5g/t Au from 75m	Bronco-Konik

	Coordinate	s (MGA94 Zor	ne 51)		Hole D	etails					Intercept D	Details	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
and								109	112	3	0.6	3m @ 0.6g/t Au from 109m	
HWRC133	271,032	7,130,328	541	RC	90	-60	117					NSR	Bronco-Konik
HWRC167								16	17	1	3.2	1m @ 3.2g/t Au from 16m	
and	270,875	7,130,172	541	RC	20	-60	83	66	69	3	0.5	3m @ 0.5g/t Au from 66m	Bronco-Konik
and								76	79	3	3.0	3m @ 3g/t Au from 76m	
HWRC168	270,863	7,130,273	541	RC	20	-60	53	42	45	3	0.5	3m @ 0.5g/t Au from 42m	Bronco-Konik
and	•							49	50	1	0.6	1m @ 0.6g/t Au from 49m	Dionico-Ronik
HWRC221	270,875	7,130,147	541	RC	69	-61	221					NSR	Bronco-Konik
HWRC222	270,936	7,130,129	541	RC	71	-60	155	9	43	34	8.0	34m @ 0.8g/t Au from 9m^	Bronco-Konik
HWRC223	270,983	7,130,184	541	RC	343	-59	125					NSR	Bronco-Konik
HWRC224	270,969	7,130,131	541	RC	270	-60	149					NSR	Bronco-Konik
HWRC225	270,790	7,130,285	541	RC	20	-60	113	85	86	1	2.4	1m @ 2.4g/t Au from 85m	Bronco-Konik
HWRC226	270,763	7,130,231	541	RC	20	-60	131	104	106	2	0.5	2m @ 0.5g/t Au from 104m	Bronco-Konik
and	,				-			111	115	4	0.6	4m @ 0.6g/t Au from 111m	DIOIICO-ROIIK
HWRC227	270,745	7,130,184	541	RC	20	-60	125					NSR	Bronco-Konik
HWRC228	270,953	7,130,099	541	RC	270	-60	143	8	24	16	0.5	16m @ 0.5g/t Au from 8m	Bronco-Konik
HWRC234								31	32	1	0.8	1m @ 0.8g/t Au from 31m	
and	270,841	7,130,423	541	RC	90	-60	209	38	39	1	1.0	1m @ 1g/t Au from 38m	Bronco-Konik
and								119	120	1	0.5	1m @ 0.5g/t Au from 119m	
HWRC235	270,728	7,130,389	541	RC	252	-60	203					NSR	Bronco-Konik
HWRC236	270,786	7,130,193	541	RC	73	-60	299	110	179	69	0.7	69m @ 0.7g/t Au from 110m^, incl. 4m	Bronco-Konik
including	270,700	7,130,193	341	NO	73	-00	233	173	177	4	2.6	@ 2.6g/t Au	DIOIICO-ROIIK
HWRC237								67	73	6	0.6	6m @ 0.6g/t Au from 67m	
and	270,857	7,130,113	541	RC	270	-60	280	83	84	1	0.5	1m @ 0.5g/t Au from 83m	Bronco-Konik
and	270,037	7,130,113	341	NO	210	-00	200	105	107	2	0.5	2m @ 0.5g/t Au from 105m	DIOIICO-ROIIK
and								110	111	1	0.5	1m @ 0.5g/t Au from 110m	
HWRC251								144	239	95	0.7	95m @ 0.7g/t Au from 144m^, incl.	
including	270,720	7,130,172	541	RC	72	-60	280	229	239	10	3.5	10m @ 3.5g/t Au	Bronco-Konik
and								258	264	6	0.6	6m @ 0.6g/t Au from 258m	
HWDD001	271,495	7,130,870	568	DDH	252	-62	213.0	127.91	129.4	1.4	1.3	1.4m @ 1.3g/t Au from 127.91m	Palomino
and								133.4	147	13.7	6.3	13.7m @ 6.3g/t Au from 133.4m	
including								133.9	136.9	3	20.0	3m @ 20g/t Au from 133.9m	
HWDD002	271,494	7,130,895	568	DDH	252	-62	201.0	14.2	17	2.9	0.9	2.9m @ 0.9g/t Au from 14.2m	Palomino
and								19	19.7	0.7	1.7	0.7m @ 1.7g/t Au from 19m	
and								144.7	161.6	17	10.6	17m @ 10.6g/t Au from 144.7m	
including								150.1	153.6	3.5	15.0	3.5m @ 15g/t Au from 150.1m	
HWDD004	271,274	7,130,918	565	RC_DD	72.5	-60	293.5	52.0	56.0	4.0	1.8	4m @ 1.8g/t Au from 52m	Palomino
and								166.2	167.9	1.6	3.1	1.6m @ 3.1g/t Au from 166.2m	
including								166.9	167.9	0.9	5.1	0.9m @ 5.1g/t Au from 166.9m	

	Coordinate	s (MGA94 Zor	ne 51)		Hole D	etails					ntercept De	etails	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
and								182.2	183.9	1.7	0.9	1.7m @ 0.9g/t Au from 182.2m	
and								222.1	236.9	14.9	3.9	14.9m @ 3.9g/t Au from 222.1m	
including								222.1	224.5	2.4	10.9	2.4m @ 10.9g/t Au from 222.1m	
and								230.8	234.6	3.7	5.9	3.7m @ 5.9g/t Au from 230.8m	
and								252.0	253.0	1.0	0.9	1m @ 0.9g/t Au from 252m	
HWDD006	271,250	7,130,994	565	RC_DD	72.5	-60	341.1	149.5	150.0	0.6	1.6	0.6m @ 1.6g/t Au from 149.5m	Palomino
and								178.8	179.3	0.5	0.8	0.5m @ 0.8g/t Au from 178.79m	
and								232.4	233.5	1.1	2.8	1.1m @ 2.8g/t Au from 232.4m	
and								240.0	242.0	2.0	0.8	2m @ 0.8g/t Au from 240m	
and								254.0	256.0	2.0	1.1	2m @ 1.1g/t Au from 254m	
and								329.6	330.2	0.6	0.4	0.6m @ 0.4g/t Au from 329.6m	
HWDD007	271,209	7,131,023	565	RC DD	72.5	-60	342.0	146.5	147.0	0.5	0.4	0.5m @ 0.4g/t Au from 146.5m	Palomino
and				_				150.5	151.0	0.5	0.5	0.5m @ 0.5g/t Au from 150.5m	
and								154.0	155.8	1.8	0.6	1.8m @ 0.6g/t Au from 154m	
and								161.8	162.5	0.7	0.8	0.7m @ 0.8g/t Au from 161.8m	
and								268.0	269.0	1.0	0.5	1m @ 0.5g/t Au from 268m	
and								307.0	310.0	3.0	1.0	3m @ 1g/t Au from 307m	1
and								320.0	321.0	1.0	0.6	1m @ 0.6g/t Au from 320m	1
HWDD008	271,384	7,130,709	567	RC DD	72.5	-60	256.6	175.0	177.0	2.0	0.5	2m @ 0.5g/t Au from 175m	Palomino
HWDD009	271,397	7,130,783	567	DDH	72.5	-60	174.0	19.5	20	0.5	1.0	0.5m @ 1g/t Au from 19.5m	Palomino
and	, , , ,	, ,						49	55.6	6.4	0.5	6.4m @ 0.5g/t Au from 49m	
and								61.3	67	6.7	0.5	6.7m @ 0.5g/t Au from 61.3m	1
and								68.9	73.5	4.6	0.4	4.6m @ 0.4g/t Au from 68.9m	
and								80	83	3	0.4	3m @ 0.4g/t Au from 80m	
and								103.6	123.9	20.3	1.9	20.3m @ 1.9g/t Au from 103.6m	
including								109	116	7	4.7	7m @ 4.7g/t Au from 109m	
HWDD011	271,310	7,130,929	565	DDH	72.5	-60	213.0	148	168	20	1.8	20m @ 1.8g/t Au from 148m	Palomino
HWDD020	271,368	7,130,751	567	RC_DD	72.5	-60	249.0	146	148.5	2.5	0.4	2.5m @ 0.4g/t Au from 146m	Palomino
and	,	, , .		_				171	172.9	1.9	0.7	1.9m @ 0.7g/t Au from 171m	
and								180.2	190	9.8	1.1	9.8m @ 1.1g/t Au from 180.2m	
and								193	195	2	0.7	2m @ 0.7g/t Au from 193m	
HWDD021	271,330	7,130,738	566	RC DD	252	-60	186	91	97	6	1.0	6m @ 1g/t Au from 91m	Palomino
and		, , . 30						102	104	2	0.5	2m @ 0.5g/t Au from 102m	
and								112	124.1	12.1	0.8	12.1m @ 0.8g/t Au from 112m	
and								128	133	5	1.0	5m @ 1g/t Au from 128m	1
and								124	151	9	0.7	9m @ 0.7g/t Au from 124m	1
and								163	165.8	2.8	1.0	2.8m @ 1g/t Au from 163m	
HWDD023	271,317	7,130,861	566	RC	252	-60	100	100	100.0	2.0	1.0	NSR	Palomino
HWDD024	271,281	7,130,962	565	RC DD	72.5	-60	267.0	24	29.2	5.2	0.6	5.2m @ 0.6g/t Au from 24m	Palomino

	Coordinate	s (MGA94 Zor	ne 51)		Hole D	etails					ntercept De	etails	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
and								150.9	151.7	0.8	3.3	0.8m @ 3.3g/t Au from 150.9m	
and								170	177.8	7.8	0.4	7.8m @ 0.4g/t Au from 170m	
and								180.9	183.5	2.6	0.4	2.6m @ 0.4g/t Au from 180.9m	
and								199.8	201.9	2.1	3.5	2.1m @ 3.5g/t Au from 199.8m	
including								201.3	201.9	0.6	6.9	0.6m @ 6.9g/t Au from 201.3m	
HWDD025	271,147	7,131,087	563	DDH	72.5	-60	423.1	345	351	6	2.3	6m @ 2.3g/t Au from 345m	Palomino
including								347	348.5	1.5	7.0	1.5m @ 7g/t Au from 347m	
HWDD026	271,425	7,130,825	565	DDH	73	-60	84	45	64	19	3.0	19m @ 3g/t Au from 45m	Palomino
including								58	61	3	12.0	3m @ 12g/t Au from 58m	
HWDD027	271,367	7,130,807	567	DDH	73	-60	207	90.8	93	2.2	2.1	2.2m @ 2.1g/t Au from 90.8m	Palomino
and								97	98	1	0.6	1m @ 0.6g/t Au from 97m	
and								122	123	1	2.4	1m @ 2.4g/t Au from 122m	
and								138.6	145.5	6.9	1.7	6.9m @ 1.7g/t Au from 138.6m	
and								151	151.5	0.5	0.8	0.5m @ 0.8g/t Au from 151m	
and								162	162.5	0.5	1.0	0.5m @ 1g/t Au from 162m	
HWDD030	271,179	7,131,097	565	DDH	73	-60	328	65.2	72.7	7.6	1.0	7.6m @ 1g/t Au from 65.2m	Palomino
and								146.5	147.3	0.7	0.5	0.7m @ 0.5g/t Au from 146.5m	
and								154.2	155.2	1	0.4	1m @ 0.4g/t Au from 154.2m	
and								199.5	200	0.5	1.0	0.5m @ 1g/t Au from 199.5m	
and								202.5	203.5	1	1.2	1m @ 1.2g/t Au from 202.5m	
and								205	205.5	0.5	2.0	0.5m @ 2g/t Au from 205m	
and								210	210.5	0.5	0.5	0.5m @ 0.5g/t Au from 210m	
and								326	327	1	1.3	1m @ 1.3g/t Au from 326m	
HWDD031	271,218	7,131,109	565	DDH	73	-60	321	12	13.6	1.6	0.4	1.6m @ 0.4g/t Au from 12m	Palomino
and	ŕ	, ,						34	35	1	0.9	1m @ 0.9g/t Au from 34m	
and								49	50.2	1.2	0.7	1.2m @ 0.7g/t Au from 49m	
and								62.4	64	1.6	0.4	1.6m @ 0.4g/t Au from 62.4m	
and								68.3	69.4	1.1	1.3	1.1m @ 1.3g/t Au from 68.3m	
and								106	107	1	1.0	1m @ 1g/t Au from 106m	
and								110.5	111	0.5	0.9	0.5m @ 0.9g/t Au from 110.5m	
and								117.5	118.8	1.3	0.4	1.3m @ 0.4g/t Au from 117.5m	1
and								123.4	126	2.6	0.3	2.6m @ 0.3g/t Au from 123.4m	1
and								128	130	2	0.3	2m @ 0.3g/t Au from 128m	-
and								132	133	1	0.5	1m @ 0.5g/t Au from 132m	
and								198	198.7	0.7	3.3	0.7m @ 3.3g/t Au from 198m	
and								218.7	222	3.3	0.3	3.3m @ 0.3g/t Au from 218.7m	
and								230	232	2	1.5	2m @ 1.5g/t Au from 230m	
and								256	257.9	1.9	0.4	1.9m @ 0.4g/t Au from 256m	+
and								258.8	259.7	0.9	0.4	0.9m @ 0.8g/t Au from 258.8m	

	Coordinate	s (MGA94 Zor	ne 51)		Hole De	etails					ntercept De	etails	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
and								273.5	275	1.5	0.7	1.5m @ 0.7g/t Au from 273.5m	
HWDD032	271,249	7,131,078	567	DDH	73	-60	249	49	50	1	1.3	1m @ 1.3g/t Au from 49m	Palomino
and								54	56	2	3.2	2m @ 3.2g/t Au from 54m	
and								131	132	1	0.5	1m @ 0.5g/t Au from 131m	
and								140	140.8	0.8	0.7	0.8m @ 0.7g/t Au from 140m	
and								141.8	147	5.2	1.0	5.2m @ 1g/t Au from 141.8m	
and								166.3	175.5	9.2	1.0	9.2m @ 1g/t Au from 166.3m	
and								177	179	2	0.5	2m @ 0.5g/t Au from 177m	
and								182	183	1	0.7	1m @ 0.7g/t Au from 182m	
and								195	199	4	1.9	4m @ 1.9g/t Au from 195m	
including								195.9	197	1.1	4.2	1.1m @ 4.2g/t Au from 195.9m	
HWDD033	271,280	7,131,046	567	DDH	73	-60	204	53.75	54.3	0.6	0.7	0.6m @ 0.7g/t Au from 53.75m	Palomino
and								90	91.2	1.2	1.5	1.2m @ 1.5g/t Au from 90m	
and								99.2	110.6	11.4	0.3	11.4m @ 0.3g/t Au from 99.2m	
and								102	103	1	0.6	1m @ 0.6g/t Au from 102m	
and								108	108.75	0.75	0.7	0.75m @ 0.7g/t Au from 108m	
and								118.5	124	5.5	0.4	5.5m @ 0.4g/t Au from 118.5m	
and								144	148	4	1.3	4m @ 1.3g/t Au from 144m	
and								161.2	173.5	12.3	1.3	12.3m @ 1.3g/t Au from 161.2m	
including								168	171.5	3.5	3.2	3.5m @ 3.2g/t Au from 168m	
HWDD034	271,273	7,131,001	567	DDH	73	-60	255	42	43.2	1.2	1.4	1.2m @ 1.4g/t Au from 42m	Palomino
and								89.6	90.5	0.9	0.5	0.9m @ 0.5g/t Au from 89.6m	
and								129	135.1	6.1	0.3	6.1m @ 0.3g/t Au from 129m	
and								154	155	1	0.9	1m @ 0.9g/t Au from 154m	
and								161	165.1	4.1	0.3	4.1m @ 0.3g/t Au from 161m	
and								170	180	10	6.9	10m @ 6.9g/t Au from 170m	
including								171.9	174	2.1	15.1	2.1m @ 15.1g/t Au from 171.9m	
HWDD035	271,242	7,131,033	567	DDH	73	-60	264	118.8	120.5	1.7	0.6	1.7m @ 0.6g/t Au from 118.8m	Palomino
and	,							229	231	2	0.8	2m @ 0.8g/t Au from 229m	
and								233.1	238	4.9	1.1	4.9m @ 1.1g/t Au from 233.1m	
and								243.3	245.9	2.6	3.7	2.6m @ 3.7g/t Au from 243.3m	
and								254	256	2	0.5	2m @ 0.5g/t Au from 254m	
HWRC254	271,350	7,130,942	567	RC	72.5	-60	136.0	22	31	9	2.4	9m @ 2.4g/t Au from 22m	Palomino
and	,	,,.						76	97	21	1.0	21m @ 1g/t Au from 76m	
HWRC255	271,319	7,130,974	566	RC	72.5	-60	172.0	62	64	2	0.4	2m @ 0.4g/t Au from 62m	Palomino
and	,	, ,		, ,				83	85	2	0.5	2m @ 0.5g/t Au from 83m	1
and								111	138	27	0.8	27m @ 0.8g/t Au from 111m	1
including								111	114	3	1.8	3m @ 1.8g/t Au from 111m	
including								134	136	2	2.8	2m @ 2.8g/t Au from 134m	

	Coordinate	s (MGA94 Zor	ne 51)		Hole D	etails					ntercept De	etails	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
and								141	142	1	0.4	1m @ 0.4g/t Au from 141m	
HWRC256D	271,330	7,130,873	566	RC_DD	72.5	-60	225.0	161.4	172	10.6	7.5	10.6m @ 7.5g/t Au from 161.4m	Palomino
including								165.9	168.9	3	21.2	3m @ 21.2g/t Au from 165.9m	
HWRC257	271,312	7,131,013	567	RC	72.5	-60	202.0	68	80	12	0.5	12m @ 0.5g/t Au from 68m	Palomino
and								108	129	21	1.2	21m @ 1.2g/t Au from 108m	
including								113	117	4	2.0	4m @ 2g/t Au from 113m	
including								126	129	3	2.7	3m @ 2.7g/t Au from 126m	
HWRC258	271,330	7,130,935	567	RC	72.5	-60	202.0	123	143	20	1.4	20m @ 1.4g/t Au from 123m	Palomino
including								133	137	4	4.9	4m @ 4.9g/t Au from 133m	
HWRC294	271,406	7,130,895	567	RC	72.5	-60	100.0	37	51	14	2.8	14m @ 2.8g/t Au from 37m	Palomino
including								37	46	9	4.2	9m @ 4.2g/t Au from 37m	
HWRC295	271,358	7,130,912	567	RC	72.5	-60	124.0	37	41	4	0.9	4m @ 0.9g/t Au from 37m	Palomino
and								79	95	16	2.4	16m @ 2.4g/t Au from 79m	
including								88	95	7	5.1	7m @ 5.1g/t Au from 88m	
HWRC290	271,003	7,131,566	561	RC	72.5	-60	148.0					NSR	Palomino
HWRC291	271,126	7,131,440	561	RC	72.5	-60	154.0					NSR	Palomino
HWRC292	271,070	7,131,420	561	RC	72.5	-60	202.0					NSR	Palomino
HWRC293	271,406	7,130,895	568	RC	72.5	-60	100.0	96	100	4	0.3	4m @ 0.3g/t Au from 96m	Palomino
HWRC296	271,376	7,130,922	568	RC	72.5	-60	100.0	51	52	1	0.6	1m @ 0.6g/t Au from 51m	Palomino
and	·							62	65	3	1.0	3m @ 1g/t Au from 62m	
and								71	72	1	5.2	1m @ 5.2g/t Au from 71m	
HWRC297	271,392	7,130,958	567	RC	72.5	-60	76.0	24	25	1	0.4	1m @ 0.4g/t Au from 24m	Palomino
HWRC298	271,371	7,130,951	567	RC	72.5	-60	100.0	60	61	1	1.1	1m @ 1.1g/t Au from 60m	Palomino
and								66	70	4	0.3	4m @ 0.3g/t Au from 66m	
HWRC299	271,357	7,130,990	567	RC	72.5	-60	100.0	51	62	11	0.7	11m @ 0.7g/t Au from 51m	Palomino
HWRC300	271,351	7,131,025	566	RC	72.5	-60	100.0	7	13	6	1.3	6m @ 1.3g/t Au from 7m	Palomino
HWRC301	271,319	7,131,058	565	RC	72.5	-60	124.0	31	33	2	1.4	2m @ 1.4g/t Au from 31m	Palomino
and	·							48	49	1	0.6	1m @ 0.6g/t Au from 48m	
and								61	67	6	1.0	6m @ 1g/t Au from 61m	
HWRC302	271,257	7,131,246	563	RC	72.5	-60	156.0					NSR	Palomino
HWRC303	271,218	7,131,234	563	RC	72.5	-60	150.0	92	96	4	0.5	4m @ 0.5g/t Au from 92m	Palomino
HWRC304	271,280	7,131,169	564	RC	72.5	-60	114.0	84	92	8	0.5	8m @ 0.5g/t Au from 84m	Palomino
HWRC305	271,243	7,131,156	563	RC	72.5	-60	174.0	16	20	4	0.4	4m @ 0.4g/t Au from 16m	Palomino
and	,							148	152	4	0.3	4m @ 0.3g/t Au from 148m	
and								164	168	4	0.5	4m @ 0.5g/t Au from 164m	
and								173	174	1	0.4	1m @ 0.4g/t Au from 173m	
HWRC306	271,324	7,131,098	565	RC	72.5	-60	78.0					NSR	Palomino
HWRC313	271,702	7,130,502	565	RC	72.5	-60	126.0	80	88	8	0.3	8m @ 0.3g/t Au from 80m	Palomino
and	,	, ,						104	112	8	0.6	8m @ 0.6g/t Au from 104m	

	Easting (m)	Northing											
HWRC314		(m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
	271,570	7,130,585	567	RC	72.5	-60	120.0	24	32	8	1.5	8m @ 1.5g/t Au from 24m	Palomino
and								36	38	2	0.3	2m @ 0.3g/t Au from 36m	
	271,532	7,130,573	567	RC	72.5	-60	138.0					NSR	Palomino
HWRC316 2	271,558	7,130,623	569	RC	72.5	-60	114.0	16	20	4	2.0	4m @ 2g/t Au from 16m	Palomino
and								28	32	4	0.4	4m @ 0.4g/t Au from 28m	
HWRC317	271,520	7,130,611	569	RC	72.5	-60	150.0	83	88	5	0.5	5m @ 0.5g/t Au from 83m	Palomino
HWRC318 2	271,488	7,130,643	565	RC	72.5	-60	156.0	101	112	11	1.0	11m @ 1g/t Au from 101m	Palomino
HWRC319	217,526	7,130,655	565	RC	72.5	-60	102.0					NSR	Palomino
HWRC320 2	217,337	7,131,064	565	RC	72.5	-60	78.0	33	34	1	0.4	1m @ 0.4g/t Au from 33m	Palomino
HWRC321	271,230	7,130,809	565	RC	72.5	-60	132.0	38	39	1	0.6	1m @ 0.6g/t Au from 38m	Palomino
and								55	74	19	1.1	19m @ 1.1g/t Au from 55m	
including								71	74	3	3.9	3m @ 3.9g/t Au from 71m	
AHWA170 2	271,534	7,130,721	565	AC	252	-60	64.0	15	18	3	0.7	3m @ 0.7g/t Au from 15m	Palomino
and								36	64	28	2.0	28m @ 2g/t Au from 36m	
AHWR007 2	271,494	7,131,051	567	AC	247.5	-60	264.0	236	237	1	0.8	1m @ 0.8g/t Au from 236m	Palomino
and	ŕ	, ,						250	264	14	0.8	14m @ 0.8g/t Au from 250m to BOH	
AHWR008 2	271,448	7,131,148	566	AC	247.5	-60	303.0	270	279	9	0.9	9m @ 0.9g/t Au from 270m	Palomino
	271,505	7,131,169	566	AC	247.5	-60	361.0	163	164	1	1.8	1m @ 1.8g/t Au from 163m	Palomino
and	,	, - ,			-			344	352	8	3.7	8m @ 3.7g/t Au from 344m	
including								347	350	3	8.2	3m @ 8.2g/t Au from 347m	
	271,503	7,130,710	568	AC	71.9	-60	56.0	24	32	8	2.3	8m @ 2.3g/t Au from 24m	Palomino
	271,480	7,130,703	568	AC	71.2	-60	85.0	20	21	1	0.5	1m @ 0.5g/t Au from 20m	Palomino
and	,	, ,						23	24	1	0.8	1m @ 0.8g/t Au from 23m	
and								28	29	1	4.0	1m @ 4g/t Au from 28m	
and								41	60	19	1.3	19m @ 1.3g/t Au from 41m	
	271,464	7,130,752	568	AC	75.1	-60	85.0	6	60	54	3.0	54m @ 3g/t Au from 6m	Palomino
including		.,,	000	7.0			00.0	27	35	8	8.6	8m @ 8.6g/t Au from 27m	
including								45	50	5	7.4	5m @ 7.4g/t Au from 45m	
	271,442	7,130,745	568	AC	73.8	-60	120.0	42	45	3	0.3	3m @ 0.3g/t Au from 42m	Palomino
and	,	.,,.	000	7.0	. 0.0			81	103	22	3.6	22m @ 3.6g/t Au from 81m	
	271,447	7,130,799	568	AC	73.8	-60	79.0	6	50	44	3.0	44m @ 3g/t Au from 6m	Palomino
including	,	.,.00,,00	000	,.0	7 0.0		7 0.0	32	37	5	12.2	5m @ 12.2g/t Au from 32m	i dioiiiiilo
	271,418	7,130,789	568	AC	68.7	-60	139.0	23	38	15	0.4	15m @ 0.4g/t Au from 23m	Palomino
and	,,,,,	.,100,100	000	,.0	00.1		100.0	48	52	4	0.8	4m @ 0.8g/t Au from 48m	i dioiiiiilo
and								72	88	16	3.9	16m @ 3.9g/t Au from 72m	
	271,371	7,130,775	568	AC	69.8	-60	199.0	117	118	10	0.6	1m @ 0.6g/t Au from 117m	Palomino
and	271,071	7,100,773	300	٨٥	00.0	-00	100.0	121	122	1	0.4	1m @ 0.4g/t Au from 121m	1 alomino
and								132	143	11	0.4	11m @ 0.4g/t Au from 132m	
and								174	187	13	1.0	13m @ 1g/t Au from 174m	

	Coordinate	s (MGA94 Zor	ne 51)		Hole D	etails					ntercept D	etails	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
and								192	199	7	0.3	7m @ 0.3g/t Au from 192m to BOH	
AHWR099	271,346	7,130,800	568	AC	69.5	-60	229.0	124	126	2	0.4	2m @ 0.4g/t Au from 124m	Palomino
and								159	166	7	0.4	7m @ 0.4g/t Au from 159m	
and								213	224	11	2.0	11m @ 2g/t Au from 213m	
AHWR100	271,343	7,130,845	566	AC	69.5	-60	229.0	173	184	11	2.3	11m @ 2.3g/t Au from 173m	Palomino
including								176	177	1	6.2	1m @ 6.2g/t Au from 176m	
HWAC1321	271,350	7,131,200	572	AC	270	-60	87.0	38	41	3	0.4	3m @ 0.4g/t Au from 38m	Palomino
and								69	70	1	0.4	1m @ 0.4g/t Au from 69m	
HWAC1348	271,400	7,131,000	572	AC	270	-60	61.0	34	35	1	1.6	1m @ 1.6g/t Au from 34m	Palomino
and								20	21	1	1.0	1m @ 1g/t Au from 20m	
and								24	28	4	0.7	4m @ 0.7g/t Au from 24m	
and								33	39	6	0.7	6m @ 0.7g/t Au from 33m	
HWAC1380	271500	7130800	572	AC	270	-60	69.0	0	3	3	0.4	3m @ 0.4g/t Au from 0m	Palomino
and								14	17	3	0.4	3m @ 0.4g/t Au from 14m	
and								20	22	2	0.5	2m @ 0.5g/t Au from 20m	
and								25	64	39	6.1	39m @ 6.1g/t Au from 25m	
including								45	52	7	22.2	7m @ 22.2g/t Au from 45m	
HWAC1438	271,600	7,130,600	572	RC	270	-60	57.0	28	52	24	0.9	24m @ 0.9g/t Au from 28m	Palomino
including								35	37	2	6.5	2m @ 6.5g/t Au from 35m	
HWDH001	271,491	7,130,791	568	DD	257	-60	108.0	0	11	11	0.5	11m @ 0.5g/t Au from 0m	Palomino
and								17	19	2	0.5	2m @ 0.5g/t Au from 17m	
and								65	66	1	0.3	1m @ 0.3g/t Au from 65m	
and								70	82	12	1.7	12m @ 1.7g/t Au from 70m	
and								87	89	2	0.3	2m @ 0.3g/t Au from 87m	
HWDH002	271,515	7,130,800	568	DD	252	-60	120.0	24	25	1	0.7	1m @ 0.7g/t Au from 24m	Palomino
and								32	33	1	1.5	1m @ 1.5g/t Au from 32m	
and								41	42	1	0.6	1m @ 0.6g/t Au from 41m	
and								54	57	3	0.3	3m @ 0.3g/t Au from 54m	
and								101	102	1	0.8	1m @ 0.8g/t Au from 101m	
and								106	108	2	0.4	2m @ 0.4g/t Au from 106m	
and								114	118	4	1.2	4m @ 1.2g/t Au from 114m	
HWRC006	271,526	7,130,745	568	RC	252	-60	120.0	24	58	34	2.2	34m @ 2.2g/t Au from 24m	Palomino
and								83	84	1	1.5	1m @ 1.5g/t Au from 83m	
and								89	90	1	0.5	1m @ 0.5g/t Au from 89m	
and								95	98	3	0.3	3m @ 0.3g/t Au from 95m	
and								102	103	1	0.4	1m @ 0.4g/t Au from 102m	
HWRC007	271,550	7,130,753	568	RC	252	-60	120.0	79	80	1	0.3	1m @ 0.3g/t Au from 79m	Palomino
and	, i	, , ,						84	99	15	2.3	15m @ 2.3g/t Au from 84m	
HWRC008	271,482	7,130,787	568	RC	252	-60	120.0	0	3	3	0.4	3m @ 0.4g/t Au from 0m	Palomino

	Coordinate	s (MGA94 Zor	ne 51)		Hole De	etails					ntercept D	etails	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
and								31	65	34	1.9	34m @ 1.9g/t Au from 31m	
and								98	105	7	0.3	7m @ 0.3g/t Au from 98m	
HWRC009	271,504	7,130,795	568	RC	252	-60	120.0	0	2	2	0.8	2m @ 0.8g/t Au from 0m	Palomino
and								26	105	79	1.9	79m @ 1.9g/t Au from 26m	
HWRC010	271,528	7,130,804	568	RC	252	-60	120.0	39	41	2	0.3	2m @ 0.3g/t Au from 39m	Palomino
and								51	52	1	0.4	1m @ 0.4g/t Au from 51m	
and								54	55	1	0.3	1m @ 0.3g/t Au from 54m	
and								114	120	6	0.9	6m @ 0.9g/t Au from 114m to BOH	
HWRC011	271,492	7,130,842	568	RC	252	-60	120.0	5	6	1	0.5	1m @ 0.5g/t Au from 5m	Palomino
and								40	41	1	0.5	1m @ 0.5g/t Au from 40m	
and								44	73	29	1.3	29m @ 1.3g/t Au from 44m	
and								80	83	3	0.3	3m @ 0.3g/t Au from 80m	
and								90	96	6	1.2	6m @ 1.2g/t Au from 90m	
and								110	111	1	0.5	1m @ 0.5g/t Au from 110m	
and								115	116	1	1.4	1m @ 1.4g/t Au from 115m	
HWRC016	271,453	7,130,881	568	RC	252	-60	117.0	16	36	20	5.1	20m @ 5.1g/t Au from 16m	Palomino
including								24	28	4	16.1	4m @ 16.1g/t Au from 24m	
HWRC017	271,476	7,130,889	568	RC	252	-60	120.0	45	46	1	0.3	1m @ 0.3g/t Au from 45m	Palomino
and								62	64	2	0.4	2m @ 0.4g/t Au from 62m	
and								75	76	1	0.3	1m @ 0.3g/t Au from 75m	
and								83	87	4	1.9	4m @ 1.9g/t Au from 83m	
HWRC019	271,467	7,130,834	568	RC	252	-60	120.0	6	16	10	1.4	10m @ 1.4g/t Au from 6m	Palomino
and								28	29	1	0.5	1m @ 0.5g/t Au from 28m	
and								92	96	4	0.6	4m @ 0.6g/t Au from 92m	
HWRC021	271,554	7,130,808	568	RC	252	-60	201.0	42	43	1	0.8	1m @ 0.8g/t Au from 42m	Palomino
and								160	162	2	1.3	2m @ 1.3g/t Au from 160m	
and								174	178	4	1.7	4m @ 1.7g/t Au from 174m	
HWRC023	271,571	7130765	568	RC	252	-60	171.0	152	163	11	2.7	11m @ 2.7g/t Au from 152m	Palomino
and								167	168	1	0.3	1m @ 0.3g/t Au from 167m	
HWRC024	271,535	7,130,698	568	RC	252	-60	120.0	2	9	7	0.4	7m @ 0.4g/t Au from 2m	Palomino
and								26	46	20	5.0	20m @ 5g/t Au from 26m	
and								82	83	1	0.3	1m @ 0.3g/t Au from 82m	
HWRC025	271,558	7,130,706	568	RC	252	-60	120.0	13	19	6	2.0	6m @ 2g/t Au from 13m	Palomino
and								36	37	1	0.3	1m @ 0.3g/t Au from 36m	
and								85	88	3	4.1	3m @ 4.1g/t Au from 85m	
HWRC027	271599	7,130,666	568	RC	252	-60	120.0	100	102	2	0.5	2m @ 0.5g/t Au from 100m	Palomino
HWRC030	271,434	7,130,929	568	RC	252	-60	117.0	26	59	33	0.5	33m @ 0.5g/t Au from 26m	Palomino
and								99	100	1	0.3	1m @ 0.3g/t Au from 99m	
HWRC031	271,459	7,130,936	568	RC	252	-60	120.0	105	109	4	3.4	4m @ 3.4g/t Au from 105m	Palomino

	Coordinate	s (MGA94 Zor	ne 51)		Hole Do	etails					ntercept D	etails	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
and								119	120	1	1.2	1m @ 1.2g/t Au from 119m to BOH	
HWRC034	271,463	7,130,884	568	RC	252	-60	99.0	41	43	2	0.7	2m @ 0.7g/t Au from 41m	Palomino
and								61	67	6	1.9	6m @ 1.9g/t Au from 61m	
HWRC036	271,459	7,130,857	568	RC	252	-60	117.0	10	20	10	1.9	10m @ 1.9g/t Au from 10m	Palomino
and								111	117	6	0.3	6m @ 0.3g/t Au from 111m to BOH	
HWRC037	271,484	7,130,864	568	RC	252	-60	120.0	20	21	1	0.4	1m @ 0.4g/t Au from 20m	Palomino
and								53	57	4	0.4	4m @ 0.4g/t Au from 53m	
and								63	67	4	0.3	4m @ 0.3g/t Au from 63m	
and								89	106	17	4.6	17m @ 4.6g/t Au from 89m	
including								97	104	7	10.2	7m @ 10.2g/t Au from 97m	
HWRC038	271,478	7,130,840	568	RC	252	-60	135.0	27	32	5	1.8	5m @ 1.8g/t Au from 27m	Palomino
and								37	38	1	0.6	1m @ 0.6g/t Au from 37m	
and								41	48	7	0.6	7m @ 0.6g/t Au from 41m	
and								67	68	1	0.4	1m @ 0.4g/t Au from 67m	
and								75	78	3	1.0	3m @ 1g/t Au from 75m	
and								81	83	2	0.4	2m @ 0.4g/t Au from 81m	
and								108	110	2	2.6	2m @ 2.6g/t Au from 108m	
HWRC039	271,503	7,130,844	568	RC	252	-60	141.0	35	36	1	1.2	1m @ 1.2g/t Au from 35m	Palomino
and								113	115	2	0.7	2m @ 0.7g/t Au from 113m	
and								120	131	11	3.9	11m @ 3.9g/t Au from 120m	
HWRC042	271,496	7,130,814	568	RC	252	-60	117.0	42	112	70	1.3	70m @ 1.3g/t Au from 42m	Palomino
HWRC045	271,471	7,130,783	568	RC	252	-60	120.0	9	32	23	0.8	23m @ 0.8g/t Au from 9m	Palomino
and								36	49	13	0.8	13m @ 0.8g/t Au from 36m	
and								83	94	11	0.3	11m @ 0.3g/t Au from 83m	
HWRC047	271,489	7,130,763	568	RC	252	-60	123.0	0	38	38	2.8	38m @ 2.8g/t Au from 0m	Palomino
including								13	18	5	17.1	5m @ 17.1g/t Au from 13m	
and								40	41	1	0.3	1m @ 0.3g/t Au from 40m	
and								77	86	9	0.3	9m @ 0.3g/t Au from 77m	
HWRC048	271,514	7,130,768	568	RC	252	-60	129.0	29	93	64	1.7	64m @ 1.7g/t Au from 29m	Palomino
and								110	112	2	0.5	2m @ 0.5g/t Au from 110m	
and								119	122	3	0.4	3m @ 0.4g/t Au from 119m	
HWRC049	271,538	7,130,776	568	RC	252	-60	129.0	40	42	2	0.6	2m @ 0.6g/t Au from 40m	Palomino
and	ĺ							50	53	3	0.7	3m @ 0.7g/t Au from 50m	
and								90	129	39	2.9	39m @ 2.9g/t Au from 90m	
including								111	119	8	12.5	8m @ 12.5g/t Au from 111m	
HWRC051	271,532	7,130,718	568	RC	252	-60	123.0	0	14	14	3.9	14m @ 3.9g/t Au from 0m	Palomino
and	,	, ,						24	31	7	8.3	7m @ 8.3g/t Au from 24m	
and								40	63	23	5.8	23m @ 5.8g/t Au from 40m	
and								77	78	1	0.7	1m @ 0.7g/t Au from 77m	

	Coordinate	s (MGA94 Zor	ne 51)		Hole D	etails					ntercept D	etails	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
and								85	89	4	0.3	4m @ 0.3g/t Au from 85m	
HWRC052	271,553	7,130,728	568	RC	252	-60	123.0	90	101	11	0.4	11m @ 0.4g/t Au from 90m	Palomino
HWRC053	271,547	7,130,705	568	RC	252	-60	129.0	4	5	1	0.3	1m @ 0.3g/t Au from 4m	Palomino
and								19	20	1	0.3	1m @ 0.3g/t Au from 19m	
and								57	58	1	0.5	1m @ 0.5g/t Au from 57m	
HWRC056	271,574	7,130,658	568	RC	252	-60	99.0	44	46	2	0.4	2m @ 0.4g/t Au from 44m	Palomino
HWRC058	271,588	7,130,610	568	RC	252	-60	108.0					NSR	Palomino
HWRC059	271,611	7,130,619	568	RC	252	-60	123.0	69	79	10	1.0	10m @ 1g/t Au from 69m	Palomino
HWRC061	271,627	7,130,571	568	RC	252	-60	135.0	47	48	1	0.6	1m @ 0.56g/t Au from 47m	Palomino
HWRC063	271,440	7,130,720	568	RC	252	-60	168.0	42	49	7	5.8	7m @ 5.8g/t Au from 42m	Palomino
and								104	114	10	1.5	10m @ 1.5g/t Au from 104m	
HWRC135	271,486	7,130,855	568	RC	252	-60	131.0	75	78	3	0.6	3m @ 0.6g/t Au from 75m	Palomino
and								94	110	16	0.8	16m @ 0.8g/t Au from 94m	
and								120	123	3	0.8	3m @ 0.8g/t Au from 120m	
HWRC136	271,508	7,130,780	568	RC	252	-60	107.0	0	4	4	0.4	4m @ 0.4g/t Au from 0m	Palomino
and	1							11	13	2	0.5	2m @ 0.5g/t Au from 11m	
and								21	24	3	0.6	3m @ 0.6g/t Au from 21m	
and								40	59	19	1.5	19m @ 1.5g/t Au from 40m	
and								76	89	13	0.9	13m @ 0.9g/t Au from 76m	
HWRC137	271,310	7,130,703	568	RC	252	-60	119.0	4	11	7	0.3	4m @ 0.3g/t Au from 4m	Palomino
and	, -	,,						16	23	7	1.1	7m @ 1.1g/t Au from 16m	
and								36	50	14	1.7	14m @ 1.7g/t Au from 36m	
HWRC138	271,345	7,130,713	568	RC	252	-60	119.0	50	59	9	0.7	9m @ 0.7g/t Au from 50m	Palomino
and	ĺ							62	66	4	0.3	4m @ 0.3g/t Au from 62m	
and								76	91	15	1.4	15m @ 1.4g/t Au from 76m	
including								76	81	5	2.3	5m @ 2.3g/t Au from 76m	
and								105	107	2	0.3	2m @ 0.3g/t Au from 105m	
and								117	118	1	0.4	1m @ 0.4g/t Au from 117m	
HWRC152	271,466	7,130,912	568	RC	252	-60	185.0	70	74	4	0.7	4m @ 0.7g/t Au from 70m	Palomino
and	1,	,,,,,,,,,						86	118	32	0.7	32m @ 0.7g/t Au from 86m	
and								173	177	4	0.6	4m @ 0.6g/t Au from 173m	
and	1							183	185	2	1.7	2m @ 1.7g/t Au from 183m to BOH	
HWRC155	271,505	7,130,872	568	RC	252	-60	185.0	34	35	1	0.5	1m @ 0.5g/t Au from 34m	Palomino
and		, ,						140	165	25	3.8	25m @ 3.8g/t Au from 140m	
including								154	160	6	13.6	6m @ 13.6g/t Au from 154m	
and								180	181	1	0.4	1m @ 0.4g/t Au from 180m	
and								184	185	1	0.3	1m @ 0.3g/t Au from 184m to BOH	
HWRC156	271,528	7,130,879	568	RC	252	-60	233.0	112	113	1	0.6	1m @ 0.6g/t Au from 112m	Palomino
and	1,020	1,.55,575						206	216	10	2.1	10m @ 2.1g/t Au from 206m	

	Coordinate	s (MGA94 Zor	ne 51)		Hole D	etails				1	ntercept D	etails	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
and								220	223	3	0.3	3m @ 0.3g/t Au from 220m	
HWRC157	271,524	7,130,854	568	RC	252	-60	179.0	173	178	5	1.1	5m @ 1.1g/t Au from 173m	Palomino
HWRC160	271,559	7,130,785	568	RC	252	-60	201.0	7	10	3	1.0	3m @ 1g/t Au from 7m	Palomino
and								39	41	2	0.3	2m @ 0.3g/t Au from 39m	
and								68	69	1	0.9	1m @ 0.9g/t Au from 68m	
and								72	73	1	0.8	0m @ 0.8g/t Au from 72m	
and								88	89	1	0.3	1m @ 0.3g/t Au from 88m	
and								98	99	1	0.3	1m @ 0.3g/t Au from 98m	
and								182	188	6	2.6	6m @ 2.6g/t Au from 182m	
HWRC162	271,590	7,130,769	568	RC	252	-60	203.0					NSR	Palomino
HWRC165	271,594	7,130,747	568	RC	252	-60	203.0	104	105	1	0.5	1m @ 0.47g/t Au from 104m	Palomino
HWRC166	271,595	7,130,719	568	RC	252	-60	209.0					NSR	Palomino
HWRC229	271,492	7,130,948	568	RC	252	-60	280.0	16	18	2	0.3	2m @ 0.3g/t Au from 16m	Palomino
and								165	176	11	3.0	11m @ 3g/t Au from 165m	
including								168	172	4	6.8	4m @ 6.8g/t Au from 168m	
and								219	221	2	0.5	2m @ 0.5g/t Au from 219m	
HWRC231	271,574	7,130,893	568	RC	252	-60	323.0	87	92	5	0.3	5m @ 0.3g/t Au from 87m	Palomino
and								98	103	5	0.4	5m @ 0.4g/t Au from 98m	
HWRC239	271,530	7,130,959	568	RC	252	-60	330.0	243	247	4	2.4	4m @ 2.4g/t Au from 243m	Palomino
including								245	246	1	8.1	1m @ 8.1g/t Au from 245m	
and								296	297	1	0.3	1m @ 0.3g/t Au from 296m	
and								306	308	2	0.4	2m @ 0.4g/t Au from 306m	
and								312	314	2	2.3	2m @ 2.3g/t Au from 312m	
HWRC249	271,462	7,131,044	568	RC	252	-60	287.0	143	161	18	1.8	18m @ 1.8g/t Au from 143m	Palomino
including								144	146	2	7.0	2m @ 7g/t Au from 144m	
and								189	190	1	2.3	1m @ 2.3g/t Au from 189m	
PLRC001	271,419	7,131,027	568	RC	250	-60	150.0	74	99	25	0.6	25m @ 0.6g/t Au from 74m	Palomino
and								121	131	10	0.4	10m @ 0.4g/t Au from 121m	

[^]Reported bulk intercept includes internal waste: AHWR079 (13m), HWRC072 (13m), HWRC125 (11m), HWRC222 (10m), HWRC236 (16m), HWRC251 (17m). Drill intercepts reported at a 0.3g/t Au cut-off and include consecutive internal waste up to 3m unless stated otherwise.

Table 2: Dusk 'til Dawn Gold Camp – Significant Intercepts

	Coordina	tes (MGA94	Zone 51)		Hole [Details					Intercept	Details	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
CDA002	264,316	7,143,468	543	AC	90	-60	68	64	68	4	1.3	4m @ 1.3 g/t from 64m	Dusk 'til Dawn
ACDA003	264,286	7,143,475	541	AC	90	-60	58	56	58	2	1.4	2m @ 1.4g/t from 56m	Dusk 'til Dawn
ACDA004	264,261	7,143,469	543	AC	90	-60	64	24	28	4	1.9	4m @ 1.9g/t from 24m	Dusk to Dawn
ACDA009	264,341	7,143,487	544	AC	180	-60	63.5	52	63.5	11.5	1.6	11.5m @ 1.6g/t from 52m	Dusk 'til Dawn
ACDA016	263,195	7,144,418	545	AC	180	-60	74	24	36	12	1.1	12m @ 1.1g/t from 24m	Dusk 'til Dawn
ACDA036	263,387	7,144,719	543	AC	180	-60	60	52	56	4	0.9	4m @ 0.9g/t from 52m	Dusk 'til Dawn
ACDA038	263,406	7,144,622	541	AC	90	-60	79	68	72	4	3	4m @ 3.0g/t from 68m	Dusk 'til Dawn
ACDD001								70	71	1	1	1m @ 1.0g/t from 70m	
and								107	108	1	0.6	1m @ 0.6g/t from 107m	
and								116	124	8	0.8	8m @ 0.8g/t from 116m	
and								141	144	3	1.7	3m @ 1.7g/t from 141m	
and								148	155	7	1.9	7m @ 1.9g/t from 148m	
and	000 407	7 4 4 4 000	F 4 7	DDU	000	00	000.0	159	160	1	0.6	1m @ 0.6 g/t from 159m	DI. (#1 D
and	263,187	7,144,290	547	DDH	360	-60	298.9	162	169	7	0.6	7m @ 0.6g/t from 162m	Dusk 'til Dawn
and								170	171	1	1.3	1m @ 1.3g/t from 170m	
and								176	181	5	0.7	5m @ 0.7g/t from 176m	
and								184	193	9	0.7	9m @ 0.7g/t from 184m	
and								194	205	11	1.1	11m @ 1.1g/t from 194m	
and								212	221	9	0.6	9m @ 0.6g/t from 212m	
ACDR001	004.007	7 4 40 400	545	D0	70	00	440	65	70	5	1.7	5m @ 1.7g/t from 65m	D I. (#1 D
and	264,387	7,143,463	545	RC	70	-60	119	74	80	6	0.6	6m @ 0.6g/t from 74m	Dusk 'til Dawn
ACDR002								34	40	6	0.6	6m @ 0.6g/t from 34m	
and								46	47	1	3.4	1m @ 3.4g/t from 46m	
and	263,200	7,144,342	546	RC	357.5	-60	139	58	59	1	0.7	1m @ 0.7g/t from 58m	Dusk 'til Dawn
and								98	99	1	3.6	1m @ 3.6g/t from 98m	
and								106	115	9	1.9	9m @ 1.9g/t from 106m	
ACDR003								52	54	2	0.7	2m @ 0.7g/t from 52m	
and								69	70	1	0.8	1m @ 0.8g/t from 69m	
and	263,192	7,144,263	546	RC	360	-60	234	91	93	2	0.9	2m @ 0.9g/t from 91m	Dusk 'til Dawn
and		, , ,						144	162	18	2.6	18m @ 2.6 g/t from 144m	
and								164	174	10	1.2	10m @ 1.2g/t from 164m	
ACDR004	263,400	7,144,334	543	RC	360	-60	179	92	94	2	1	2m @ 1.0g/t from 92m	Dusk 'til Dawn
ACDR005	263,600	7,144,326	537	RC	360	-60	40					NSR	
ACDR006	·							33	35	2	1	2m @ 1.0g/t from 33m	5
and	263,203	7,144,357	546	RC	90	-60	159	54	55	1	1.7	1m @ 1.7g/t from 54m	Dusk 'til Dawn
ACDR007	263,270	7,144,453	543	RC	90	-60	159					NSR	
ACDR008		, , . 30						44	48	4	1	4m @ 1.0g/t from 44m	
and	263,201	7,144,403	545	RC	0	-60	110	52	56	4	0.8	4m @ 0.8g/t from 52m	Dusk 'til Dawn
and	7,	1,,	•					68	76	8	0.7	8m @ 0.7g/t from 68m	

	Coordina	tes (MGA94	Zone 51)		Hole I	Details					Intercept	Details	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
ACDR009								40	44	4	1.3	4m @ 1.3g/t from 40m	
and	263,106	7,144,348	545	RC	0	-60	154	72	80	8	1.1	8m @ 1.1g/t from 72m	Dusk 'til Dawn
and								96	104	8	1.2	8m @ 1.2g/t from 96m	
ACDR010	263,002	7,144,342	547	RC	355	-60	154					NSR	
ACDR011	263,157	7,144,390	544	RC	355	-60	110	28	36	8	1.9	8m @ 1.9g/t from 28m	Dusk 'til Dawn
ACDR012								44	48	4	0.8	4m @ 0.8g/t from 44m	
and	263,155	7,144,305	546	RC	0	-60	149	100	120	20	0.9	20m @ 0.9g/t from 100m	Dusk 'til Dawn
and	200,100	7,144,000	340	110		-00	143	123	128	5	0.7	5m @ 0.7g/t from 123m	Dusk til Dawii
and								132	136	4	0.7	4m @ 0.7g/t from 132m	
ACDR013	263,264	7,144,398	543	RC	10	-60	149					NSR	
ACDR014	263,249	7,144,347	543	RC	10	-60	179					NSR	
ACDR015	263,220	7,144,390	546	RC	10	-60	107	28	32	4	8.0	4m @ 0.8g/t from 28m	Dusk 'til Dawn
and								48	49	1	0.9	1m @ 0.9 g/t from 48m	
CDAC003	263,899	7,143,533	540	AC	90	-60	58	49	51	2	1	2m @ 1.0g/t from 49m	Dusk 'til Dawn
DDAC036	262,850	7,144,602	550	AC	90	-60	56	41	42	1	0.6	1m @ 0.6g/t from 41m	Dusk 'til Dawn
DDAC044	262,686	7,144,600	549	AC	90	-60	52	39	42	3	2.4	3m @ 2.4g/t from 39m	Dusk 'til Dawn
DDAC046	263,010	7,144,603	551	AC	90	-60	59	55	56	1	0.7	1m @ 0.7g/t from 55m	Dusk 'til Dawn
DDAC054								62	66	4	12.7	4m @ 12.7g/t from 62m	
and	263,056	7,144,459	542	AC	90	-60	85	78	82	4	0.5	4m @ 0.5g/t from 78m	Dusk 'til Dawn
and								83	84	1	0.5	1m @ 0.5g/t from 83m	
DDAC059	262,892	7,144,460	545	AC	90	-60	54	25	26	1	8.0	1m @ 0.8g/t from 25m	Dusk 'til Dawn
DDAC062	262,805	7,144,456	542	AC	90	-60	54	44	50	6	0.9	6m @ 0.9g/t from 44m	Dusk 'til Dawn
DDRC001								28	34	6	1.4	6m @ 1.4g/t from 28m	
and								50	64	14	7.2	14m @ 7.2g/t from 50m	
and								67	74	7	1.4	7m @ 1.4g/t from 67m	
and	263,193	7,144,425	545	RC	225	-55	180	78	87	9	0.9	9m @ 0.9g/t from 78m	Dusk 'til Dawn
and	200,190	7,144,423	343	IXO	223	-55	100	92	108	16	2.2	16m @ 2.2g/t from 92m	Dusk til Dawii
and								110	113	3	0.6	3m @ 0.6g/t from 110m	
and								122	131	9	0.8	9m @ 0.8g/t from 122m	
and								141	142	1	0.5	1m @ 0.5g/t from 141m	
DDRC002								65	68	3	0.6	3m @ 0.6g/t from 65m	
and								72	76	4	0.7	4m @ 0.7g/t from 72m	
and	263,224	7,144,460	545	RC	225	-60	220	99	102	3	0.8	3m @ 0.8g/t from 99m	Dusk 'til Dawn
and	200,224	7,144,400	343	IXO	223	-00	220	141	149	8	8.0	8m @ 0.8g/t from 141m	Dusk til Dawii
and								150	158	8	0.8	8m @ 0.8g/t from 150m	
and								159	161	2	0.6	2m @ 0.6g/t from 159m	
DDRC003								73	78	5	1.8	5m @ 1.8g/t from 73m	
and	263,162	7,144,462	546	RC	225	-55.9	180	84	85	1	0.5	1m @ 0.5g/t from 84m	Dusk 'til Dawn
and	203,102	7,144,402	540	KC.	225	-55.9	100	98	99	1	0.6	1m @ 0.6g/t from 98m	Dusk III Dawn
and								103	104	1	0.6	1m @ 0.6g/t from 103m	
DDRC004	263,192	7,144,495	546	RC	225	-60	250					NSR	Dusk 'til Dawn

	Coordina	tes (MGA94	Zone 51)		Hole [Details					Intercept	Details	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
DDRC005	263,100	7,144,551	544	RC	250	-60	250					NSR	Dusk 'til Dawn
DDRC006								187	188	1	0.9	1m @ 0.9g/t from 187m	
and	263,293	7,144,387	541	RC	225	-60	250	204	212	8	0.7	8m @ 0.7g/t from 204m	Dusk 'til Dawn
and								213	221	8	0.9	8m @ 0.9 g/t from 213m	
DDRC007	_							183	184	1	0.5	1m @ 0.5g/t from 183m	
and								185	192	7	1	7m @ 1.0g/t from 185m	
and	263,329	7,144,348	543	RC	225	-60	280	195	196	1	0.9	1m @ 0.9g/t from 195m	Dusk 'til Dawn
and	_							208	215	7	0.6	7m @ 0.6g/t from 208m	
and								220	243	23	1.2	23m @ 1.2g/t from 220m	
DDRC008	_							98	99	1	0.6	1m @ 0.6g/t from 98m	
and								126	128	2	2.1	2m @ 2.1g/t from 126m	
and	263,271	7,144,296	543	RC	225	-60	270	132	133	1	0.7	1m @ 0.7g/t from 132m	Dusk 'til Dawn
and								229	230	1	0.6	1m @ 0.6 g/t from 229m	
and								236	237	1	0.9	1m @ 0.9g/t from 236m	
DDRC009								204	205	1	0.5	1m @ 0.5g/t from 204 m	
and	263,387	7,144,404	539	RC	225	-60	270	255	258	3	0.6	3m @ 0.6g/t from 255 m	Dusk 'til Dawn
and								265	268	3	1.3	3m @ 1.3g/t from 265m	
DDRC010	263,236	7,144,330	545	RC	225	-60	250	38	40	2	0.7	2m @ 0.7g/t from 38m	Dusk 'til Dawn
and	203,230	7,144,330	545	K	223	-00	230	124	127	3	8.0	3m @ 0.8g/t from 124m	Dusk til Dawii
DDRC011								51	52	1	0.6	1m @ 0.6g/t from 51m	
and								67	68	1	0.7	1m @ 0.7g/t from 67m	
and								71	72	1	0.7	1m @ 0.7g/t from 71m	
and	263,263	7,144,359	544	RC	225	-60	250	135	136	1	0.6	1m @ 0.6 g/t from 135m	Dusk 'til Dawn
and								145	146	1	0.5	1m @ 0.5g/t from 145m	
and								154	158	4	0.6	4m @ 0.6g/t from 154m	
and								161	184	23	1.5	23m @ 1.5g/t from 161m	
DDRC012								190	209	19	1.9	19m @ 1.9g/t from 190m	
and								212	213	1	0.6	1m @ 0.6g/t from 212m	
and	263,321	7,144,418	542	RC	225	-65	250	217	227	10	0.7	10m @ 0.7g/t from 217m	Dusk 'til Dawn
and								238	245	7	0.8	7m @ 0.8g/t from 238m	
and								248	249	1	0.5	1m @ 0.5g/t from 248m	
DDRC013								39	44	5	0.9	5m @ 0.9g/t from 39m	
and								67	69	2	1.2	2m @ 1.2g/t from 67m	
and						-62		92	93	1	0.5	1m @ 0.5g/t from 92m	
and	263,193	7,144,359	546	RC	225		230	98	102	4	1.4	4m @ 1.4g/t from 98m	Dusk 'til Dawn
and	203,193	7,144,559	340	NO	223		230	106	115	9	1	9m @ 1.0g/t from 106m	Dusk iii Dawii
and								119	120	1	0.9	1m @ 0.9g/t from 119m	
and								216	219	3	0.6	3m @ 0.6g/t from 216m	
and								221	222	1	0.5	1m @ 0.5g/t from 221m	
DDRC014	263,229	7,144,391	546	RC	225	-62	230	30	35	5	1.1	5m @ 1.1g/t from 30m	Dusk 'til Dawn
and	203,229	7,144,391	540	KC.	223	-02	230	40	43	3	0.6	3m @ 0.6g/t from 40m	Dusk III Dawii

	Coordina	tes (MGA94	Zone 51)		Hole I	Details					Intercept	Details	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
and								100	101	1	1	1m @ 1.0g/t from 100m	
and								109	124	15	7.7	15m @ 7.7g/t from 109m	
and								135	141	6	0.6	6m @ 0.6g/t from 135m	
and								143	146	3	0.7	3m @ 0.7g/t from 143m	
and								150	169	19	1.4	19m @ 1.4g/t from 150m	
DDRC015								125	141	16	1.4	16m @ 1.4g/t from 125m	
and	263,252	7,144,413	545	RC	225	-62	230	142	166	24	1.6	24m @ 1.6g/t from 142m	Dusk 'til Dawn
and	203,232	7,144,413	343	KC	225	-02	230	172	179	7	8.0	7m @ 0.8g/t from 172m	Dusk til Dawii
and								220	221	1	0.7	1m @ 0.7g/t from 220m	
DDRC016								107	112	5	1.1	5m @ 1.1g/t from 107m	
and								115	116	1	0.7	1m @ 0.7g/t from 115m	
and	262 202	7 1 1 1 1 1 1 2	EAG	RC	225	-62	230	138	141	3	0.9	3m @ 0.9g/t from 138m	Duck til Down
and	263,282	7,144,442	546	RC	225	-62	230	148	165	17	1.9	17m @ 1.9g/t from 148m	Dusk 'til Dawn
and								169	175	6	1.2	6m @ 1.2g/t from 169m	
and								185	191	6	1	6m @ 1.0g/t from 185m	
DDRC017								41	55	14	2	14m @ 2.0g/t from 41m	
and	263,138	7,144,369	543	RC	225	-62	203	73	74	1	1.4	1m @ 1.4g/t from 73m	Dusk 'til Dawn
and								187	193	6	1.7	6m @ 1.7g/t from 187m	
DDRC018								35	47	12	1.7	12m @ 1.7g/t from 35m	
and								52	54	2	1.2	2m @ 1.2g/t from 52m	
and								63	68	5	0.6	5m @ 0.6g/t from 63m	
and	263,166	7,144,393	544	RC	225	-62	202	70	84	14	0.9	14m @ 0.9g/t from 70m	Dusk 'til Dawn
and								100	107	7	2.6	7m @ 2.6g/t from 100m	
and								155	156	1	0.6	1m @ 0.6g/t from 155m	
and								185	186	1	0.6	1m @ 0.6g/t from 185m	
DDRC019	263,255	7,144,484	543	RC	225	-62	250					NSR	Dusk 'til Dawn
DDRC020								36	37	1	0.7	1m @ 0.7g/t from 36m	
and								40	42	2	0.9	2m @ 0.9g/t from 40m	
and	263,104	7,144,407	543	RC	223	-62	180	65	66	1	0.6	1m @ 0.6g/t from 65m	Dusk 'til Dawn
and								107	108	1	0.5	1m @ 0.5g/t from 107m	
and								112	113	1	0.6	1m @ 0.6g/t from 112m	
DDRC021								30	31	1	0.9	1m @ 0.9g/t from 30m	
and	263,135	7,144,435	544	RC	223	-62	184	92	93	1	0.6	1m @ 0.6g/t from 92m	
and		, , ,						96	97	1	0.7	1m @ 0.7g/t from 96m	D I. #1 D
DDRC022								88	89	1	1.3	1m @ 1.3g/t from 88m	Dusk 'til Dawn
and	263,064	7,144,438	542	RC	225	-62	190	176	177	1	0.6	1m @ 0.6g/t from 176m	
and		, , ,						181	183	2	1.4	2m @ 1.4g/t from 181m	
DDRC023	000	_ ,,,,,,,,,						31	33	2	1.1	2m @ 1.1g/t from 31m	.
and	263,096	7,144,467	541	RC	225	-62	180	55	61	6	0.9	6m @ 0.9g/t from 55m	Dusk 'til Dawn
DDRC024								78	79	1	1.9	1m @ 1.9g/t from 78m	
and	263,121	7,144,495	545	RC	225	-62	172	85	89	4	0.6	4m @ 0.6g/t from 85m	Dusk 'til Dawn

Hole ID	Details	ept Details	Intercep					Details	Hol <u>e</u> [Zone 51)	tes (MGA94 2	Coordinat	
HWAC030 262,318 7,145,860 547 AC 90 -60 33 28 29 1 0.7 1m @ 0.7gh from 28m HWAC032 263,719 7,145,665 538 AC 270 -60 51 49 50 1 0.6 1m @ 0.6gh from 49m HWAC112 265,098 7,145,055 550 AC 270 -60 58 44 58 14 3.6 14m @ 3.6gh Au from 44m to BOH HWAC097 263,354 7,145,758 550 AC 270 -60 54 36 40 4 0.6 4m @ 0.6 gh from 36m HWAC112 263,831 7,145,561 550 AC 270 -60 54 36 40 4 0.6 4m @ 0.6 gh from 36m HWAC112 263,831 7,145,561 550 AC 270 -60 58 36 40 4 0.9 4m @ 0.9gh from 36m HWAC112 263,831 7,145,4561 550 AC 270 -60 60 52 56 4 0.8 4m @ 0.8gh from 36m HWAC12 263,352 7,145,199 550 AC 270 -60 60 52 56 4 0.8 4m @ 0.8gh from 36m HWAC132 264,336 7,143,494 544 AC 0 -90 55 44 55 11 3.5 11m @ 3.5gh from 44m HWAC1965 262,800 7,144,550 543 AC 270 -60 57 40 44 4 0.2 4m @ 0.2gh Au from 48m HWAC1970 263,050 7,144,550 543 AC 270 -60 62 48 52 4 0.3 4m @ 0.3gh Au from 48m HWAC1970 263,050 7,144,550 543 AC 270 -60 74 64 68 4 0.2 4m @ 0.2gh Au from 64m HWAC1973 262,800 7,144,550 543 AC 270 -60 72 60 64 4 0.1 4m @ 0.1gh Au from 64m HWAC1973 262,800 7,144,500 543 AC 270 -60 60 56 60 4 0.1 4m @ 0.1gh Au from 64m HWAC1975 262,900 7,144,500 543 AC 270 -60 68 52 68 16 0.5 16m @ 0.5gh Au from 64m HWAC1976 262,950 7,144,500 543 AC 270 -60 68 52 68 16 0.5 16m @ 0.5gh Au from 64m HWAC1976 262,950 7,144,500 543 AC 270 -60 68 52 68 16 0.5 16m @ 0.3gh Au from 64m HWAC1977 263,000 7,144,500 543 AC 270 -60 68 52 68 16 0.5 16m @ 0.3gh Au from 64m HWAC1977 263,000 7,144,500 543 AC 270 -60 68 52 68 68 60 0.5 60 60 60 60 60 60 60 6				Width		from	Depth (m)	(deg)	(deg)	Type		(m)	(m) _	
HWAC192 263,719 7,145,462 538 AC 270 -60 51 49 50 1 0.6 1m @ 0.6g/t from 49m HWAC112 265,098 7,145,055 550 AC 270 -60 58 44 58 14 3.6 14m @ 3.6g/t Au from 44m to BOH HWAC697 263,364 7,145,758 550 AC 270 -60 54 36 40 4 0.6 4m @ 0.6 g/t from 36m 1 HWAC192 263,331 7,145,757 550 AC 270 -60 44 16 20 4 1.3 4m @ 1.3g/t from 16m HWAC192 263,331 7,145,757 550 AC 270 -60 58 36 40 4 0.9 4m @ 0.9g/t from 36m 1 HWAC192 263,335 7,145,199 550 AC 270 -60 60 52 56 4 0.8 4m @ 0.8g/t from 52m HWAC130 263,355 7,145,199 550 AC 270 -60 60 52 56 4 0.8 4m @ 0.8g/t from 52m HWAC1965 262,800 7,144,550 543 AC 270 -60 65 44 55 11 3.5 11m @ 3.5g/t from 44m HWAC1966 262,850 7,144,550 543 AC 270 -60 62 48 52 4 0.3 4m @ 0.3g/t Au from 46m HWAC1971 263,050 7,144,550 543 AC 270 -60 62 48 52 4 0.3 4m @ 0.3g/t Au from 84m HWAC1971 262,800 7,144,500 543 AC 270 -60 82 64 68 4 0.2 4m @ 0.2g/t Au from 64m HWAC1973 262,800 7,144,500 543 AC 270 -60 60 82 64 68 4 0.2 4m @ 0.2g/t Au from 64m HWAC1974 262,800 7,144,500 543 AC 270 -60 60 60 66 60 60 60														
HWAC112 265,098 7,145,055 550 AC 270 -60 58 44 58 14 3.6 14m@ 3.6g/t Au from 44m to BOH HWAC697 263,354 7,145,758 550 AC 270 -60 54 36 40 4 0.6 4m@ 0.6g/t from 36m HWAC712 263,831 7,145,751 550 AC 270 -60 58 36 40 4 0.9 4m@ 0.9g/t from 36m HWAC712 263,831 7,145,561 550 AC 270 -60 60 52 56 4 0.8 4m@ 0.0g/t from 36m HWAC730 263,525 7,145,199 550 AC 270 -60 60 52 56 4 0.8 4m@ 0.0g/t from 36m HWAC30 263,525 7,145,199 550 AC 270 -60 60 52 56 4 0.8 4m@ 0.0g/t from 36m HWAC136 263,035 7,143,94 544 AC 0 -90 55 44 55 11 3.5 11m@ 3.5g/t from 44m HWAC1966 262,850 7,144,550 543 AC 270 -60 62 48 52 4 0.3 4m@ 0.2g/t Au from 40m HWAC1970 263,050 7,144,550 543 AC 270 -60 62 48 52 4 0.3 4m@ 0.3g/t Au from 48m HWAC1971 263,100 7,144,550 543 AC 270 -60 74 64 68 4 0.2 4m@ 0.2g/t Au from 64m HWAC1973 262,800 7,144,500 543 AC 270 -60 72 60 64 4 0.1 4m@ 0.1g/t Au from 64m HWAC1974 262,850 7,144,500 543 AC 270 -60 68 52 68 16 0.5 16m@ 0.5g/t Au from 52m HWAC1975 262,900 7,144,500 543 AC 270 -60 68 52 68 16 0.5 16m@ 0.5g/t Au from 52m HWAC1976 262,950 7,144,500 543 AC 270 -60 68 52 68 16 0.5 16m@ 0.5g/t Au from 52m HWAC1979 263,100 7,144,500 543 AC 270 -60 68 52 68 16 0.5 16m@ 0.5g/t Au from 64m HWAC1984 263,050 7,144,400 543 AC 270 -60 68 52 68 16 0.5 16m@ 0.5g/t Au from 64m HWAC1984 263,050 7,144,500 543 AC 270 -60 68 52 68 16 0.5 16m@ 0.3g/t Au from 64m HWAC1984 263,050 7,144,500 543 AC 270 -60 71 28 36 8 0.2 8m@ 0.2g/t Au from 64m HWAC1984 263,050 7,144,500 543 AC 270 -60 71 28 36 8 0.2 8m@ 0.2g/t Au from 28m	1m @ 0.7g/t from 28m Dusk 'til Dav			1	29									
HWAC697 263,354 7,145,758 550 AC 270 -60 54 36 40 4 0.6 4m @ 0.6 g/t from 36m HWAC698 263,431 7,145,757 550 AC 270 -60 58 36 40 4 0.9 4m @ 0.9g/t from 36m HWAC712 263,831 7,145,561 550 AC 270 -60 58 36 40 4 0.9 4m @ 0.9g/t from 36m HWAC730 263,525 7,145,199 550 AC 270 -60 60 52 56 4 0.8 4m @ 0.9g/t from 52m HWAC1965 262,800 7,144,550 543 AC 270 -60 60 57 40 44 4 0.2 4m @ 0.2g/t Au from 40m HWAC1966 262,850 7,144,550 543 AC 270 -60 62 48 52 4 0.3 4m @ 0.2g/t Au from 48m HWAC1971 263,050 7,144,550 543 AC 270 -60 62 48 52 4 0.3 4m @ 0.2g/t Au from 64m HWAC1971 263,050 7,144,550 543 AC 270 -60 82 64 68 4 0.2 4m @ 0.2g/t Au from 64m HWAC1971 263,050 7,144,550 543 AC 270 -60 82 64 68 4 0.2 4m @ 0.2g/t Au from 64m HWAC1971 263,050 7,144,550 543 AC 270 -60 82 64 68 4 0.2 4m @ 0.2g/t Au from 64m HWAC1971 263,050 7,144,550 543 AC 270 -60 82 64 68 4 0.2 4m @ 0.2g/t Au from 64m HWAC1972 262,850 7,144,500 543 AC 270 -60 60 56 60 4 0.1 4m @ 0.1g/t Au from 65m to BOH HWAC1975 262,950 7,144,500 543 AC 270 -60 68 52 68 16 0.5 16m @ 0.5g/t Au from 52m to BOH HWAC1977 263,000 7,144,500 543 AC 270 -60 67 65 67 2 0.4 2 2 4m @ 0.2g/t Au from 82m 4m AU 60,000 4m AU 6	1m @ 0.6g/t from 49m Dusk 'til Day													
HWAC698 263,431 7,145,757 550 AC 270 -60 44 16 20 4 1.3 4m @ 1.3g/t from 16m 1.8g/t from 16m								-60						
HWAC712														
HWAC730			1.3				44							
MTAC32 264,336 7,143,494 544 AC 0 -90 55 44 55 11 3.5 11m @ 3.5g/t from 44m 1 HWAC1965 262,800 7,144,550 543 AC 270 -60 57 40 44 4 0.2 4m @ 0.2g/t Au from 40m 1 HWAC1970 263,050 7,144,550 543 AC 270 -60 62 48 52 4 0.3 4m @ 0.3g/t Au from 46m 1 HWAC1971 263,050 7,144,550 543 AC 270 -60 74 64 68 4 0.2 4m @ 0.2g/t Au from 64m 1 HWAC1971 263,100 7,144,550 543 AC 270 -60 82 64 68 4 0.2 4m @ 0.2g/t Au from 64m 1 HWAC1973 262,800 7,144,500 543 AC 270 -60 60 72 60 64 4 0.1 4m @ 0.1g/t Au from 64m 1 HWAC1973 262,800 7,144,500 543 AC 270 -60 60 56 60 4 0.1 4m @ 0.1g/t Au from 56m to BOH 1 HWAC1975 262,900 7,144,500 543 AC 270 -60 68 52 68 16 0.5 16m @ 0.5g/t Au from 52m to BOH 1 HWAC1976 262,950 7,144,500 543 AC 270 -60 67 65 67 2 0.4 2m @ 0.4g/t Au from 67m to BOH 1 HWAC1976 263,950 7,144,500 543 AC 270 -60 67 65 67 2 0.4 2m @ 0.4g/t Au from 68m to BOH 1 HWAC1979 263,100 7,144,500 543 AC 270 -60 67 65 67 2 0.4 2m @ 0.4g/t Au from 68m to BOH 1 HWAC1979 263,100 7,144,500 543 AC 270 -60 72 68 77 78 1 0.4 1m @ 0.4g/t Au from 77m to BOH 1 HWAC1984 263,500 7,144,500 543 AC 270 -60 72 68 77 78 1 0.4 1m @ 0.4g/t Au from 64m 1 1 1 1 1 1 1 1 1	4m @ 0.9g/t from 36m Dusk 'til Day		0.9	4					270	AC	550			HWAC712
HWAC1965 262,800 7,144,550 543 AC 270 -60 57 40 44 4 4 0.2 4m @ 0.2g/t Au from 40m 1				4					270	AC		7,145,199	263,525	
HWAC1976 262,850 7,144,550 543 AC 270 -60 62 48 52 4 0.3 4m @ 0.3g/t Au from 48m 1				11		44							264,336	
HWAC1970	4m @ 0.2g/t Au from 40m Dusk 'til Dav			4		40								
HWAC1971 263,100 7,144,550 543 AC 270 -60 82 64 68 4 0.2 4m @ 0.2g/t Au from 64m 1 HWAC1973 262,800 7,144,500 543 AC 270 -60 60 60 64 4 0.1 4m @ 0.1g/t Au from 56m to BOH 1 HWAC1974 262,855 7,144,500 543 AC 270 -60 60 66 60 4 0.1 4m @ 0.1g/t Au from 56m to BOH 1 HWAC1975 262,900 7,144,500 543 AC 270 -60 68 52 68 16 0.5 16m @ 0.5g/t Au from 52m to BOH 1 HWAC1976 262,950 7,144,500 543 AC 270 -60 67 65 67 2 0.4 2m @ 0.4g/t Au from 65m to BOH 1 HWAC1977 263000 7144500 543 AC 270 -60 78 48 52 4 0.2 4m @ 0.2g/t Au from 48m 1 HWAC1979 263,100 7,144,500 543 AC 270 -60 72 68 72 4 0.5 4m @ 0.5g/t Au from 68m to BOH 1 HWAC1979 263,100 7,144,500 543 AC 270 -60 72 68 72 4 0.5 4m @ 0.5g/t Au from 68m to BOH 1 HWAC1982 262,950 7,144,400 543 AC 270 -60 72 68 72 4 0.5 4m @ 0.5g/t Au from 64m 1 HWAC1984 263050 7144400 543 AC 270 -60 88 64 80 16 0.6 16m @ 0.6g/t Au from 64m 1 HWAC1984 263050 7144400 543 AC 270 -60 80 12 24 12 0.3 12m @ 0.3g/t Au from 12m 1 HWAC1988 263000 7144350 543 AC 270 -60 79 24 28 4 0.2 4m @ 0.2g/t Au from 24m 1 HWAC1988 263000 7144350 543 AC 270 -60 79 52 68 16 0.1 16m @ 0.1g/t Au from 24m 1 HWAC1989 263,050 7,144,350 543 AC 270 -60 76 12 24 12 0.1 12m @ 0.1g/t Au from 24m 1 HWAC1989 263,050 7,144,350 543 AC 270 -60 76 12 24 12 0.1 12m @ 0.1g/t Au from 24m 1 1 12m @ 0.1g/t Au from 24m 1 12m @ 0.1g/t Au from 24m 1 12m @ 0.1g/t Au from 24m 1 12m @ 0.1g/t Au from 12m 1	4m @ 0.3g/t Au from 48m Dusk 'til Dav			4		48				AC		7,144,550	262,850	HWAC1966
HWAC1973 262,800 7,144,500 543 AC 270 -60 72 60 64 4 0.1 4m @ 0.1g/t Au from 60 1 HWAC1974 262,850 7,144,500 543 AC 270 -60 60 56 60 4 0.1 4m @ 0.1g/t Au from 56m to BOH 1 HWAC1975 262,900 7,144,500 543 AC 270 -60 68 52 68 16 0.5 16m @ 0.5g/t Au from 52m to BOH 1 HWAC1976 262,950 7,144,500 543 AC 270 -60 67 65 67 2 0.4 2m @ 0.4g/t Au from 65m to BOH 1 HWAC1977 263000 7144500 543 AC 270 -60 78 77 78 1 0.4 1m @ 0.4g/t Au from 77m to BOH 1 HWAC1979 263,100 7,144,500 543 AC 270 -60 72 68 72 4 0.2 4m @ 0.5g/t Au from 68m to BOH 1 HWAC1982 262,950 7,144,400 543 AC 270 -60 72 68 72 4 0.5 4m @ 0.5g/t Au from 68m to BOH 1 HWAC1984 263050 7,144,400 543 AC 270 -60 88 64 80 16 0.6 16m @ 0.6g/t Au from 64m 1 HWAC1984 263050 7,144,350 543 AC 270 -60 80 12 24 12 0.3 12m @ 0.3g/t Au from 12m 1 HWAC1988 263000 7,144,350 543 AC 270 -60 79 52 68 16 0.1 16m @ 0.2g/t Au from 52m 1 HWAC1989 263,050 7,144,350 543 AC 270 -60 76 12 24 12 0.1 12m @ 0.1g/t Au from 52m 1	4m @ 0.2g/t Au from 64m Dusk 'til Dav		0.2	4	68	64	74	-60	270	AC	543	7,144,550	263,050	HWAC1970
HWAC1973 262,800 7,144,500 543 AC 270 -60 72 60 64 4 0.1 4m @ 0.1g/t Au from 60 1 HWAC1974 262,850 7,144,500 543 AC 270 -60 60 56 60 4 0.1 4m @ 0.1g/t Au from 56m to BOH 1 HWAC1975 262,950 7,144,500 543 AC 270 -60 68 52 68 16 0.5 16m @ 0.5g/t Au from 52m to BOH 1 HWAC1976 262,950 7,144,500 543 AC 270 -60 67 65 67 2 0.4 2m @ 0.4g/t Au from 52m to BOH 1 HWAC1977 263000 7144500 543 AC 270 -60 78 48 52 4 0.2 4m @ 0.2g/t Au from 48m 48 52 4 0.4 1m @ 0.4g/t Au from 77m to BOH 1 HWAC1979 263,100 7,144,500 543 AC 270 -60 72 68 72 4 0.5 4m @ 0.5g/t Au from 68m to BOH 1 HWAC1982 262,950 7,144,400 543 AC 270 -60 88 64 80 16 0.6 16m @ 0.6g/t Au from 64m 1 HWAC1984 263050 7144400 543 AC 270 -60 71 28 36 8 0.3 8m @ 0.3g/t Au from 44m 1 HWAC1984 263050 7144350 543 AC 270 -60 80 12 24 12 0.3 12m @ 0.3g/t Au from 12m 1 HWAC1988 263000 7144350 543 AC 270 -60 79 52 68 16 0.1 16m @ 0.1g/t Au from 52m 1 HWAC1989 263,050 7,144,350 543 AC 270 -60 76 12 24 12 0.1 12m @ 0.1g/t Au from 52m 1	4m @ 0.2g/t Au from 64m Dusk 'til Dav		0.2	4	68	64	82	-60	270	AC	543	7,144,550	263,100	HWAC1971
HWAC1975 262,900 7,144,500 543 AC 270 -60 68 52 68 16 0.5 16m @ 0.5g/t Au from 52m to BOH HWAC1976 262,950 7,144,500 543 AC 270 -60 67 65 67 2 0.4 2m @ 0.4g/t Au from 65m to BOH HWAC1977 263000 7144500 543 AC 270 -60 78 77 78 1 0.4 1m @ 0.4g/t Au from 77m to BOH HWAC1979 263,100 7,144,500 543 AC 270 -60 72 68 72 4 0.5 4m @ 0.5g/t Au from 68m to BOH HWAC1989 263,050 7,144,400 543 AC 270 -60 88 64 80 16 0.6 16m @ 0.6g/t Au from 64m HWAC1984 263050 7,144,350 543 AC 270 -60 80 12 24 12 0.3 12m @ 0.3g/t Au from 12m HWAC1988 263,050 7,144,350 543 AC 270 -60 79 52 68 16 0.1 16m @ 0.1g/t Au from 52m 12m @ 0.1g/t Au from 52m 12m @ 0.1g/t Au from 12m 12m @ 0.1g/t Au from 52m 12m @ 0.1g/t Au from 52m 12m @ 0.1g/t Au from 52m 12m @ 0.1g/t Au from 12m 12m @ 0.1g/t Au from 52m 12m @ 0.1g/t Au from 12m 12m @ 0.1g/t Au from			0.1	4	64	60			270	AC	543	7,144,500	262,800	HWAC1973
HWAC1976 262,950 7,144,500 543 AC 270 -60 67 65 67 2 0.4 2m @ 0.4g/t Au from 65m to BOH HWAC1977 263000 7144500 543 AC 270 -60 78 48 52 4 0.2 4m @ 0.2g/t Au from 48m HWAC1979 263,100 7,144,500 543 AC 270 -60 72 68 72 4 0.5 4m @ 0.5g/t Au from 68m to BOH HWAC1979 263,100 7,144,400 543 AC 270 -60 88 64 80 16 0.6 16m @ 0.6g/t Au from 64m 16m @ 0.3g/t Au from 64m 16m @ 0.3g	4m @ 0.1g/t Au from 56m to BOH Dusk 'til Day	4r	0.1	4		56			270	AC		7,144,500	262,850	HWAC1974
HWAC1977 263000 7144500 543 AC 270 -60 78 48 52 4 0.2 4m @ 0.2g/t Au from 48m 1 0.4 1m @ 0.4g/t Au from 77m to BOH 1 1 0.4 1m @ 0.4g/t Au from 68m to BOH 1 1 0.4 1m @ 0.5g/t Au from 68m to BOH 1 0.5 1 0.5 1 0.5g/t Au from 68m to BOH 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0 0.6g/t Au from 64m 1 0.6 1 0 0.6g/t Au from 64m 1 0.6 1 0 0 0 0 0 0 0 0 0	16m @ 0.5g/t Au from 52m to BOH Dusk 'til Dav	16	0.5	16	68	52	68	-60	270	AC	543	7,144,500	262,900	HWAC1975
HWAC1977 263000 7144500 543 AC 270 -60 78 48 52 4 0.2 4m @ 0.2g/t Au from 48m 1 0.4 1m @ 0.4g/t Au from 77m to BOH 1 1 0.4 1m @ 0.4g/t Au from 68m to BOH 1 1 0.4 1m @ 0.5g/t Au from 68m to BOH 1 0.5 1 0.5 1 0.5g/t Au from 68m to BOH 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 0.6 1 0.6 0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6		2m @ 0.4g/t Au from 65m to BO				65	67	-60	270	AC	543			
HWAC1979 263,100 7144,500 543 AC 270 -60 72 68 72 4 0.5 4m @ 0.5g/t Au from 68m to BOH 1 1 1 1 1 1 1 1 1	4m @ 0 2a/t Au from 48m													
HWAC1979 263,100 7,144,500 543 AC 270 -60 72 68 72 4 0.5 4m @ 0.5g/t Au from 68m to BOH I HWAC1982 262,950 7,144,400 543 AC 270 -60 88 64 80 16 0.6 16m @ 0.6g/t Au from 64m (incl. 4m @ 1.7g/t Au from 64m) I HWAC1984 263050 7144400 543 AC 270 -60 71 28 36 8 0.2 8m @ 0.2g/t Au from 28m (incl. 4m @ 1.7g/t Au from 64m) I HWAC1984 263050 7144400 543 AC 270 -60 71 28 36 8 0.2 8m @ 0.2g/t Au from 28m I HWAC1986 262,900 7,144,350 543 AC 270 -60 80 12 24 12 0.3 12m @ 0.3g/t Au from 12m I HWAC1988 263000 7144350 543 AC 270 -60 79 24 28 4 0.2						77	78	-60	270	AC	543	7144500	263000	HWAC1977
HWAC1982 262,950 7,144,400 543 AC 270 -60 88 64 80 16 0.6 16m @ 0.6g/t Au from 28m HWAC1984 263050 7144400 543 AC 270 -60 71 28 36 8 0.2 8m @ 0.2g/t Au from 28m HWAC1986 262,900 7,144,350 543 AC 270 -60 80 12 24 12 0.3 12m @ 0.3g/t Au from 12m HWAC1988 263000 7144350 543 AC 270 -60 79 24 28 4 0.2 4m @ 0.2g/t Au from 24m HWAC1989 263,050 7,144,350 543 AC 270 -60 76 12 24 12 0.1 12m @ 0.1g/t Au from 52m HWAC1989 263,050 7,144,350 543 AC 270 -60 76 12 24 12 0.1 12m @ 0.1g/t Au from 12m				4			72	-60	270	AC	543	7.144.500	263.100	HWAC1979
HWAC1988 263000 7144350 543 AC 270 -60 80 12 24 12 0.3 12m @ 0.3g/t Au from 44m HWAC1988 263000 7144350 543 AC 270 -60 79 24 28 4 0.2 4m @ 0.2g/t Au from 24m HWAC1989 263,050 7,144,350 543 AC 270 -60 76 12 24 12 0.1 12m @ 0.1g/t Au from 52m	16m @ 0.6g/t Au from 64m Dusk 'til Dav						88	-60	270	AC	543	7,144,400	262,950	HWAC1982
HWAC1986 262,900 7,144,350 543 AC 270 -60 80 12 24 12 0.3 12m@0.3g/t Au from 12m 1 HWAC1988 263000 7144350 543 AC 270 -60 79 24 28 4 0.2 4m@0.2g/t Au from 24m HWAC1989 263,050 7,144,350 543 AC 270 -60 76 12 24 12 0.1 12m@0.1g/t Au from 52m	8m @ 0.2g/t Au from 28m		0.2	8	36	28	74	00	070	4.0	540	74.44400	000050	1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
HWAC1986 262,900 7,144,350 543 AC 270 -60 80 12 24 12 0.3 12m @ 0.3g/t Au from 12m I HWAC1988 263000 7144350 543 AC 270 -60 79 24 28 4 0.2 4m @ 0.2g/t Au from 24m I HWAC1989 263,050 7,144,350 543 AC 270 -60 76 12 24 12 0.1 12m @ 0.1g/t Au from 12m I				4	48	44	71	-60	270	AC	543	7144400	263050	HWAC1984
HWAC1988 263000 7144350 543 AC 270 -60 79 24 28 4 0.2 4m @ 0.2g/t Au from 24m I HWAC1989 263,050 7,144,350 543 AC 270 -60 76 12 24 12 0.1 12m @ 0.1g/t Au from 12m I	12m @ 0.3g/t Au from 12m Dusk 'til Day		0.3	12	24	12	80	-60	270	AC	543	7,144,350	262,900	HWAC1986
HWAC1989 263,050 7,144,350 543 AC 270 -60 76 12 24 12 0.1 12m@ 0.1g/t Au from 12m							79	-60	270	AC	543	7144350	263000	HWAC1988
							76	-60	270	AC	543	7.144.350	263.050	HWAC1989
I HWAC1990 I 263 100 I 7 144 350 I 543 I AC I 270 I −60 I 78 I 24 I 28 I 4 I 0.2 I 4m @ 0.2g t Au from 24m I 7	4m @ 0.2g.t Au from 24m Dusk 'til Dav		0.2	4	28	24	78	-60	270	AC	543	7,144,350	263,100	HWAC1990
													,	
	U U													
				·										
				· ·										
				1										
	1m @ 0.1g/t Au from 77m to BOH Dusk 'til Day		0.1	1	78	77	78	-60	270	AC	543	7,144,200	263,050	HWAC2004

	Coordina	tes (MGA94	Zone 51)		Hole [Details					Intercept	Details	
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Azi (deg)	Dip (deg)	Total Depth (m)	Depth from (m)	Depth To (m)	Intercept Width (m)	Grade (g/t)	Grade Summary/ Comments	Prospect
HWAC2007	263100	7144200	543	AC	270	-60	78	64	78	14	0.1	14m @ 0.1g/t Au from 64m to BOH	Dusk 'til Dawn
HVVAC2007	263100	7 144200	543	AC	270	-60	70	77	78	1	0.6	(incl. 1m @ 0.6g/t Au from 77m to BOH)	Dusk III Dawn
HWAC2008	263,150	7,144,200	543	AC	270	-60	71	69	71	2	0.2	2m @ 0.2/gt Au from 69m to BOH	Dusk 'til Dawn
HWAC2012	262,950	7,144,150	543	AC	270	-60	84	76	84	8	0.2	8m @ 0.2g/t Au from 76m to BOH	Dusk 'til Dawn
HWAC2015	263,100	7,144,150	543	AC	270	-60	84	72	76	4	0.1	4m @ 0.2g/t Au from 72m	Dusk 'til Dawn
HWAC2017	263,200	7,144,150	543	AC	270	-60	78	68	78	10	0.3	10m @ 0.3g/t Au from 68m to BOH	Dusk 'til Dawn
HWAC2018	263,250	7,144,150	543	AC	270	-60	81	68	81	13	0.3	13m @ 0.3g/t Au from 68m to BOH (incl. 5m @ 0.6g/t Au from 76m to BOH)	Dusk 'til Dawn
HWAC2019	263,300	7,144,150	543	AC	270	-60	76	68	82	4	0.2	4m @ 0.2g/t Au from 68m	Dusk 'til Dawn
HWAC2020	263,350	7,144,150	543	AC	270	-60	71	44	48	4	0.3	4m @ 0.3g/t Au from 44m	Dusk 'til Dawn

Drill intercepts reported at a 0.3g/t Au cut-off and include consecutive internal waste up to 3m unless stated otherwise.

Table 3: Dusk 'til Dawn Gold Camp – Geochemical Trends (Au-Mo-Bi)

		nates (MGA Zone 51)	94		Hole	Details		Max	imum in-	hole Au A	ssay			Maxim	num in-ho	ole Multi-	element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
DJRC007	265,834	7145075	550	RC	197	-58	260	63	64	1	0.2	6	158	7.3	4,749	380.3	75	1	2.5	404
HWAC081	266,001	7144268	533	AC	50	-60	270	0	4	4	0	0.3	10	1.9	1,532	32.6	24	1	0.2	174
HWAC681	266,148	7144108	550	AC	60	-60	270	59	60	1	0	0.2	9	1.1	1,271	51.5	33	3	0.1	181
HWAC315	266,301	7143895	550	AC	67	-60	270	64	66	2	0	0.3	10	8.7	961	56.9	28	23	0.4	170
HWAC763	264,808	7142200	547	AC	65	-60	270	56	60	4	0	0.1	20	1.2	929	15.1	71	4	0.3	658
HWAC314	266,193	7143899	550	AC	51	-60	270	32	36	4	0	0.3	10	6.7	848	10.9	26	1	0.1	113
DJRC005	265,679	7145066	550	RC	180	-55.6	254.8	53	54	1	0.2	1.5	20	1.8	793	199.9	59	1	0.8	318
HWAC814	266,040	7143200	539	AC	70	-60	270	69	70	1	0	0.1	9	0.2	745	5.9	78	2	0.1	356
DJRC016	265,570	7145500	550	RC	180	-50.1	268.4	80	81	1	0.5	3.8	19	9.6	714	133.4	104	23	1.9	284
HWAC913	267,304	7142001	543	AC	101	-60	270	56	60	4	0.3	0.7	9	0.2	713	1.3	51	1	0.1	297
HWAC680	266,097	7144111	550	AC	52	-60	270	28	32	4	0	0.4	13	7.4	697	50	64	6	0.4	129
HWAC085	263,440	7145853	540	AC	30	-60	270	28	30	2	0.1	3.6	662	1.2	694	5.8	966	2	0.1	2298
HWAC849	266,434	7143598	542	AC	53	-60	270	36	40	4	0	0.3	22	10.9	639	10.6	48	1	0.1	177
HWAC248	265,803	7144654	550	AC	68	-60	270	60	64	4	0.2	1.6	10	1.3	586	51.9	28	1	0.3	110
DJRC006	265,760	7145063	550	RC	192	-58.5	254.2	70	71	1	0.1	2.6	132	2.6	543	170.8	146	2	1.1	403
HWAC662	265,947	7144466	550	AC	53	-60	270	24	28	4	0	0.1	11	1.5	537	42.6	27	1	0.3	255
HWAC848	266,268	7143594	537	AC	47	-60	270	44	46	2	0	0.5	9	0.9	530	8.5	24	1	0.1	168
HWAC212	264,351	7146203	550	AC	44	-60	270	32	36	4	0.1	0.4	143	0.4	522	5.7	996	4	0.1	4986
HWAC678	265,997	7144112	550	AC	70	-60	270	48	52	4	0	0.1	10	2.4	518	24	28	1	0.5	261
HWAC082	266,203	7144266	536	AC	88	-60	270	76	80	4	0.1	1	10	1.2	500	115.7	27	1	0.2	60

		inates (MGA Zone 51)	94		Hole	Details		Max	imum in-	hole Au As	ssay			Maxin	num in-ho	ole Multi-	-element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
HWAC684	266,296	7144109	550	AC	94	-60	270	72	76	4	0	0.6	9	0.6	475	17.5	25	1	0.2	206
HWAC645	265,750	7144866	550	AC	57	-60	270	56	57	1	0	0.1	6	0.6	469	18.9	51	1	0.1	359
HWAC656	266,102	7144269	550	AC	60	-60	270	59	60	1	0.1	0.3	13	1.8	459	48.2	35	1	0.2	130
HWAC783	264,782	7142796	545	AC	62	-60	270	44	48	4	0.2	0.3	13	0.3	453	4.1	100	4	0.1	383
HWAC024	264,995	7146661	531	AC	79	-60	270	72	76	4	0	0.2	226	0.2	438	1	71	1	0.1	421
HWAC249	265,900	7144660	550	AC	63	-60	270	52	56	4	0.1	0.2	7	8.0	423	18.6	35	1	0.3	477
HWAC679	266,047	7144106	550	AC	54	-60	270	52	53	1	0	0.1	11	4.8	411	50.8	33	1	0.4	159
HWAC866	269,154	7143608	534	AC	48	-60	270	44	47	3	0	0.1	20	1.6	394	1	9	1	0.4	149
HWAC663	265,998	7144465	550	AC	57	-60	270	36	40	4	0.1	0.1	10	4.1	381	80.4	25	1	0.9	162
HWAC117	265,600	7145056	550	AC	57	-60	270	56	57	1	0	0.1	7	1.5	372	12.9	40	1	0.4	255
HWAC661	265,898	7144462	550	AC	60	-60	270	52	56	4	0	0.1	10	2.3	371	76.4	27	1	0.2	189
HWAC682	266,198	7144113	550	AC	84	-60	270	68	72	4	0	0.4	9	1.2	370	161.5	30	2	0.3	222
HWAC703	263,835	7145762	550	AC	67	-60	270	60	64	4	0.1	2.7	42	1.4	366	2.6	273	2	0.4	1423
HWAC412	265,750	7145260	550	AC	100	-60	270	52	56	4	0	0.2	15	0.3	364	2.9	64	0	0.1	393
HWAC675	265,845	7144110	550	AC	73	-60	270	60	64	4	0	0.2	11	0.4	361	4.6	134	2	0.4	168
HWAC895	267,141	7141998	542	AC	138	-60	270	104	108	4	0	1.2	61	0.3	358	2.3	15	0	0.1	258
HWAC818	266,680	7143195	539	AC	67	-60	270	52	56	4	0.1	0.1	17	3.6	355	23.1	19	3	0.7	71
DJRC015	265,479	7145501	550	RC	180	-57.2	266.3	38	39	1	2.1	13.5	18	4	352	112.2	5647	4	11.2	313
HWAC795	267,201	7144256	542	AC	55	-60	270	48	52	4	0	0.3	10	0.2	347	1.5	33	1	0.1	117
HWAC817	266,523	7143198	539	AC	100	-60	270	44	48	4	0.4	1.8	17	3	343	38.8	34	1	0.3	173
HWAC887	269,396	7142798	539	AC	30	-60	270	20	24	4	0	0.1	12	0.2	341	0.7	12	0	0.1	922
HWAC804	269,277	7144271	543	AC	62	-60	270	44	48	4	0.2	0.7	22	0.4	341	3.2	594	2	0.1	1814
HWAC861	268,350	7143601	539	AC	39	-60	270	28	32	4	0	0.2	4	0.1	338	0.5	18	0	0.1	548
HWAC644	265,704	7144866	550	AC	59	-60	270	56	58	2	0	0.1	8	2.3	330	30.7	32	1	0.4	149
HWAC287	264,240	7142005	550	AC	37	-60	270	8	12	4	0	0.1	43	0.3	329	2.7	39	1	0.1	82
HWAC015	263,507	7146661	539	AC	40	-60	270	16	20	4	0	1.6	46	0.4	327	0.9	439	7	0.3	1117
HWAC235	265,455	7145493	550	AC	66	-60	270	65	66	1	0.2	0.1	10	1.4	326	3.5	40	1	0.2	129
HWAC834	263,871	7146058	539	AC	67	-60	270	48	52	4	0.1	0.7	33	0.3	321	2.2	412	4	0.1	3406
HWAC796	267,345	7144269	549	AC	53	-60	270	52	53	1	0	0.4	7	0.1	316	5.9	12	0	0.1	249
HWAC683	266,244	7144112	550	AC	90	-60	270	80	84	4	0	2.8	11	2	315	55.7	39	2	0.3	116
HWAC770	265,215	7142402	543	AC	89	-60	270	76	80	4	0.1	0.3	23	0.4	315	3.5	55	2	0.1	445
HWAC670	266,350	7144461	550	AC	75	-60	270	72	74	2	0	0.1	86	0.3	313	4.8	51	0	0.1	209
HWAC341	263,705	7143193	542	AC	69	-60	270	68	69	1	0	0.1	88	3.3	313	2.4	91	1	0.2	290
HWAC873	267,159	7142800	535	AC	87	-60	270	48	52	4	0.1	0	5	0.2	310	0.7	11	1	0.1	106
HWAC1139	266,437	7143199	535	AC	112	-60	270	72	76	4	0.1	1.6	15	2.9	309	6.7	160	1	0.7	225
HWAC649	265,751	7144665	550	AC	61	-60	270	52	56	4	0.1	0.2	19	1.4	309	42.8	69	3	0.5	222
DJRC017	265,650	7145500	550	RC	187	-54.9	275.2	128	129	1	9	2.2	60	2	300	16.1	168	4	0.3	321
HWAC407	265,496	7145260	550	AC	76	-60	270	75	76	1	0	0.2	11	2.3	298	44.3	32	1	0.4	133
HWAC655	265,895	7144272	550	AC	90	-60	270	88	89	1	0.1	0.4	11	1.8	295	37.1	36	1	0.4	167
HWAC699	263,513	7145760	550	AC	47	-60	270	44	46	2	0.2	0.5	30	2.4	295	11.3	191	2	0.7	1925

		inates (MGA Zone 51)	94		Hole	Details		Max	imum in-	hole Au As	ssay			Maxin	num in-ho	ole Multi-	-element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
HWAC673	266,497	7144462	550	AC	74	-60	270	68	72	4	0	0.1	130	0.2	292	2.5	30	0	0.1	469
HWAC380	264,947	7146063	550	AC	48	-60	270	44	47	3	0	0.5	336	0.5	291	3.2	491	10	0.1	1168
HWAC794	267,028	7144265	537	AC	45	-60	270	36	40	4	0	0.3	9	0.2	287	1	22	0	0.1	352
HWAC650	265,852	7144649	550	AC	60	-60	270	52	56	4	0	0.1	10	4.7	284	43.8	39	1	0.1	103
HWAC805	269,430	7144271	535	AC	72	-60	270	56	60	4	0	10.4	110	0.3	276	12.6	2628	2	0.1	4344
HWAC105	265,097	7145866	536	AC	88	-60	270	81	82	1	0.7	0.9	36	0.3	276	5.5	263	1	0.3	1163
HWAC333	266,199	7145057	550	AC	107	-60	270	100	104	4	0.1	1.4	25	6.6	273	8.4	38	1	1.9	432
HWAC660	265,853	7144464	550	AC	64	-60	270	56	60	4	0	0.4	15	4.1	273	43	120	4	1.8	166
HWAC901	269,224	7142001	540	AC	29	-60	270	16	20	4	0	0.1	6	0.3	272	0.8	10	0	0.1	134
HWAC823	267,477	7143203	538	AC	73	-60	270	60	64	4	0	0.2	9	0.2	263	1.4	18	1	0.1	181
HWAC778	264,710	7142603	543	AC	55	-60	270	54	55	1	0	0.3	14	0.3	261	3.3	59	1	0.1	421
HWAC668	266,246	7144467	550	AC	84	-60	270	44	48	4	0	0.1	11	0.3	260	7.5	37	0	0.1	292
HWAC863	268,672	7143601	541	AC	43	-60	270	0	4	4	0	0.1	3	0	258	0.4	6	0	0	457
HWAC1140	266,599	7143194	539	AC	65	-60	270	60	64	4	0.1	0.1	16	8.9	257	35.2	24	2	0.6	96
HWAC674	265,796	7144108	550	AC	72	-60	270	48	52	4	0	0.1	21	0.3	255	7.7	63	1	0.6	282
HWAC858	267,869	7143600	543	AC	38	-60	270	36	37	1	0	0.1	6	0.1	254	0.7	11	0	0.1	285
HWAC876	267,641	7142797	540	AC	81	-60	270	64	68	4	0	0.1	5	0.2	250	0.8	22	0	0.1	193
DJRC013	265,000	7145499	550	RC	181	-57.1	243.9	81	82	1	2.2	4.6	17	1	249	134.8	100	2	3.2	161
HWAC313	266,095	7143891	550	AC	74	-60	270	56	60	4	0	0.6	9	4	248	11.2	36	1	0.2	375
DJRC014	265,080	7145504	550	RC	186	-54.2	253.5	140	141	1	3.4	66.2	27	0.5	247	104.5	77	4	8.7	105
HWAC797	268,146	7144271	548	AC	41	-60	270	36	40	4	0	0.3	5	0.1	246	1	7	0	0	308
HWAC316	266,397	7143927	550	AC	85	-60	270	80	84	4	0	0.1	9	1.3	244	4.8	30	1	0.1	223
HWAC323	267,099	7143898	550	AC	99	-60	270	52	56	4	0.1	0.2	203	0.3	244	1	31	1	0.4	621
HWAC862	268,512	7143601	537	AC	40	-60	270	36	39	3	0	0.1	5	0.1	243	0.6	10	1	0	317
HWAC1159	268,340	7142007	542	AC	102	-60	270	80	84	4	0	0.4	1199	0.2	243	1.1	27	1	0.1	473
HWAC915	267,619	7142005	541	AC	87	-60	270	68	69	1	3.4	0.3	55	2.3	243	14	27	0	2.6	290
HWAC275	264,551	7142002	550	AC	75	-60	270	8	12	4	0	0.1	127	0.3	243	2.6	63	2	0	246
HWAC413	265,803	7145263	550	AC	96	-60	270	72	76	4	0.1	0.4	64	0.3	242	2.4	26	0	0.3	409
HWAC223	265,457	7146197	550	AC	69	-60	270	60	64	4	0	0.3	31	0.2	241	6.2	25	1	0.5	364
HWAC695	266,842	7144108	550	AC	78	-60	270	72	76	4	0	0.1	172	0.3	240	1.1	89	1	0.1	552
HWAC801	268,819	7144277	545	AC	42	-60	270	36	40	4	0	0.3	28	0.7	239	3	5	1	1.8	573
HWAC332	266,103	7145059	550	AC	43	-60	270	36	40	4	0	0.3	14	0.3	239	5.7	37	1	0.3	233
HWAC017	264,003	7146662	535	AC	37	-60	270	8	12	4	0	1.1	180	0.3	238	3.1	365	7	0.2	901
HWAC016	263,702	7146659	541	AC	37	-60	270	20	24	4	0	1.8	205	0.5	238	1.5	321	6	0.5	772
HWAC036	263,638	7145859	542	AC	63	-60	270	60	63	3	0	5.1	23	0.6	235	4.2	66	1	0.2	2644
HWAC636	265,749	7145058	550	AC	85	-60	270	60	61	1	0.9	0.7	90	0.3	234	2.8	49	0	0.1	444
DJRC018	265,210	7145700	550	RC	183	-53.7	253.7	97	98	1	0.7	35.7	14	0.6	233	8.5	74	9	1.5	148
HWAC1136	266,924	7143199	544	AC	63	-60	270	52	56	4	0.1	0.2	26	0.3	231	1.5	25	1	0.1	232
HWAC708	263,509	7145563	550	AC	57	-60	270	28	32	4	0.1	0.5	64	1	230	13.1	338	1	0.2	709
HWAC075	264,799	7144271	541	AC	59	-60	270	8	12	4	0	0.2	13	0.3	229	4.1	68	0	0.1	474

Hole ID	Coordinates (MGA94 Zone 51)			Hole Details				Maximum in-hole Au Assay				Maximum in-hole Multi-element Assay								
	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
HWAC027	262,786	7145857	541	AC	23	-60	90	17	18	1	0.3	0.1	80	7.6	226	1.9	63	2	0.4	50
HWAC824	267,640	7143204	541	AC	39	-60	270	28	32	4	0	0.1	10	0.2	226	1	53	1	0.1	186
HWAC221	265,249	7146199	550	AC	60	-60	270	0	4	4	0	0.2	10	0.2	226	2.4	20	0	0	650
HWAC685	266,348	7144109	550	AC	87	-60	270	60	64	4	0	0.2	9	0.5	225	4.5	21	1	0.1	168
HWAC1153	267,378	7142001	540	AC	116	-60	270	76	80	4	0.9	0.5	45	0.5	225	2.3	14	1	0.1	203
HWAC894	266,980	7142004	535	AC	132	-60	270	56	60	4	0.1	0.1	21	0.2	223	1.4	22	1	0.1	403
HWAC377	265,450	7145700	550	AC	84	-60	270	48	52	4	0	0.1	9	0.4	222	1.9	51	0	0.1	160
HWAC914	267,463	7142002	545	AC	87	-60	270	60	64	4	0.1	0.3	48	0.2	222	1.5	50	1	0.1	704
HWAC219	265,053	7146196	550	AC	57	-60	270	56	57	1	0.1	0.3	22	0.3	221	3.1	32	1	0.1	610
HWAC327	266,296	7144654	550	AC	76	-60	270	75	76	1	0.1	0.1	12	0.2	219	7.8	18	1	0.1	446
HWAC083	266,403	7144265	540	AC	83	-60	270	54	55	1	3	0.1	12	0.3	219	3	25	0	0.1	364
HWAC1156	267,859	7142006	541	AC	91	-60	270	64	68	4	0	0.3	22	0.2	216	1.6	15	1	0.1	251
HWAC860	268,192	7143600	550	AC	40	-60	270	36	39	3	0	0.1	4	0.2	213	0.7	19	1	0	128
HWAC357	264,647	7146059	550	AC	61	-60	270	52	56	4	0	8.0	19	0.3	211	8.0	303	3	0.2	741
HWAC852	266,907	7143602	541	AC	80	-60	270	79	80	1	0.1	0.1	52	0.3	210	1.2	22	1	0.1	451
HWAC1145	266,914	7142800	540	AC	100	-60	270	88	92	4	0	0.2	9	0.3	210	1.7	13	2	0.1	175
HWAC1135	266,765	7143203	537	AC	70	-60	270	12	16	4	0	0.1	20	1.2	209	16	19	1	0.3	161
HWAC039	263,880	7145862	541	AC	63	-60	270	32	36	4	0	2.9	44	0.3	208	1.9	138	2	0.1	5052
HWAC793	266,870	7144269	539	AC	82	-60	270	36	40	4	0	0.4	32	1.2	208	1.5	24	1	0.7	288
HWAC665	266,102	7144462	550	AC	77	-60	270	76	77	1	0	0.3	13	0.5	206	6.8	29	1	0.1	229
HWAC365	264,845	7145710	550	AC	78	-60	270	28	32	4	0	0.1	19	0.3	205	2.8	66	1	1.1	304
HWAC1151	267,060	7141995	542	AC	101	-60	270	92	96	4	0	0.7	9	0.3	205	2.3	17	1	0.1	245
HWAC917	267,941	7142007	544	AC	105	-60	270	64	68	4	0.3	0.5	64	0.6	205	1.2	76	0	0.4	437
HWAC218	264,952	7146198	550	AC	61	-60	270	60	61	1	0.1	0.1	12	0.2	203	3.4	20	1	0.1	429
HWAC882	268,600	7142802	539	AC	40	-60	270	36	39	3	0	0	4	0.1	203	0.7	8	0	0.1	365
HWAC330	265,897	7145065	550	AC	110	-60	270	76	80	4	0	2.6	35	0.3	202	2	46	1	0.1	565
HWAC803	269,106	7144271	541	AC	61	-60	270	36	40	4	0	1	10	0.4	202	0.7	157	1	0.1	229
HWAC355	264,997	7146197	550	AC	82	-60	270	78	81	3	0	0.1	8	0.2	201	3.5	20	0	0.1	561
HWAC856	267,551	7143602	530	AC	44	-60	270	43	44	1	0	0.2	8	0.1	201	0.6	13	0	0	430
HWAC393	265,396	7145489	550	AC	70	-60	270	32	36	4	0.1	0.1	8	1.6	198	37.9	37	1	0.3	148
HWAC677	265,947	7144112	550	AC	60	-60	270	59	60	1	0	0.1	11	0.4	197	7.9	33	1	0.1	149
HWAC224	265,553	7146199	550	AC	49	-60	270	0	4	4	0	0.2	11	0.2	197	3.9	28	0	0.1	368
HWAC884	268,920	7142806	539	AC	51	-60	270	36	40	4	0	0	4	0.2	197	0.8	8	0	0	121
HWAC807	264,930	7143200	543	AC	85	-60	270	68	72	4	0	0.3	15	0.3	197	6.4	26	1	0.1	152
HWAC900	269,058	7142004	529	AC	45	-60	270	24	28	4	0	0.2	5	0.3	197	0.8	10	1	0.1	397
HWAC787	265,430	7142800	540	AC	57	-60	270	48	52	4	0	0.3	17	0.3	196	2.4	69	1	0.1	212
HWAC916	267,781	7142000	542	AC	64	-60	270	60	63	3	0	0.1	5	0.2	196	1.3	7	0	0.1	368
HWAC356	264,603	7146061	550	AC	54	-60	270	24	28	4	0	0.2	170	1.3	196	2.8	645	6	0.2	1122
HWAC347	264,306	7143213	540	AC	60	-60	270	52	56	4	0.2	0.1	12	4.9	195	48.4	34	5	1.1	128
HWAC344	263,992	7143202	541	AC	67	-60	270	12	16	4	0	0.1	18	0.7	194	1.6	33	1	0.3	218

	7 7 7	inates (MGA Zone 51)	94		Hole	Details		Max	timum in-	hole Au As	ssay			Maxin	num in-h	ole Multi-	-element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
HWAC658	265,749	7144463	550	AC	76	-60	270	52	56	4	0.1	0.1	18	0.4	194	9.6	45	1	0.1	169
HWAC364	264,800	7145707	550	AC	74	-60	270	64	68	4	0	0.2	12	0.3	194	1.4	28	0	0.1	784
HWAC664	266,047	7144465	550	AC	64	-60	270	47	48	1	8.0	0.1	11	4.5	193	35.4	29	1	1.3	245
HWAC899	268,903	7142003	542	AC	43	-60	270	32	36	4	0	0.1	8	0.3	193	1.1	9	0	0.1	548
HWAC048	265,814	7145853	528	AC	56	-60	270	0	4	4	0	0.1	36	0.3	192	3.9	37	1	0	305
HWAC859	268,027	7143601	543	AC	39	-60	270	38	39	1	0	0.1	5	0.1	192	0.8	6	0	0	201
HWAC822	267,320	7143201	541	AC	82	-60	270	60	64	4	0	0.1	37	0.2	190	0.8	29	1	0.1	435
HWAC095	266,422	7144262	540	AC	97	-60	270	67	68	1	1.1	0.1	8	0.4	190	3	18	1	0.2	278
ACDD001	263,189	7144289	543	DDH	298.9	-53.9	6.3	150	151	1	7.5	1.2	21	2.8	189	83.8	39	2	1.4	125
HWAC277	264,752	7142003	550	AC	72	-60	270	64	68	4	0	0.7	31	0.4	189	2.5	24	1	0.2	243
HWAC865	268,989	7143603	535	AC	40	-60	270	28	32	4	0	0.1	5	0.1	188	0.9	9	0	0.1	160
HWAC245	265,500	7144658	550	AC	85	-60	270	60	64	4	0.1	0.2	7	0.3	188	4.9	38	1	0.1	127
DJRC003	265,212	7145061	550	RC	163	-55.4	256	138	139	1	0.8	2.6	21	0.8	187	14.5	589	1	4	198
HWAC659	265,802	7144459	550	AC	88	-60	270	8	12	4	0	1.6	14	1.4	187	25.5	73	3	0.4	344
HWAC220	265,148	7146198	550	AC	40	-60	270	39	40	1	0	0.1	73	0.5	186	3.1	26	0	0.1	298
HWAC652	265,297	7144272	550	AC	68	-60	270	67	68	1	0	0.1	10	0.4	185	3.3	66	1	0.1	216
HWAC829	263,465	7146064	557	AC	46	-60	270	12	16	4	0	0.7	111	0.6	184	3.6	199	5	0.2	1424
HWAC080	265,805	7144268	537	AC	62	-60	270	48	52	4	0.1	0.1	9	0.3	183	3.3	23	1	0.1	203
HWAC1142	266,437	7142795	539	AC	87	-60	270	80	84	4	0	0.1	9	0.4	183	3	27	2	0.1	362
DJRC011	265,201	7145263	550	RC	181	-53.6	248.6	178	179	1	0.8	6.8	21	0.8	182	13.4	263	1	6.5	272
HWAC877	267,800	7142797	545	AC	65	-60	270	24	28	4	0	0.2	5	0.2	182	0.7	10	0	0.1	290
HWAC857	267,701	7143602	542	AC	47	-60	270	16	20	4	0	0.1	6	0.3	182	0.6	41	1	0.3	317
HWAC092	266,298	7144267	535	AC	80	-60	270	0	4	4	0	0.1	9	0.3	182	3.5	20	1	0.1	218
HWAC022	264,850	7146658	543	AC	60	-60	270	44	48	4	0	0.1	6	0.2	180	1.3	47	0	0	572
HWAC905	269,865	7142003	545	AC	36	-60	270	24	28	4	0	0.2	8	0.3	180	0.8	8	0	0.1	185
HWAC893	266,823	7142002	537	AC	96	-60	270	84	88	4	0	0.2	27	0.3	180	2.8	13	5	0	138
HWAC890	269,878	7142800	536	AC	43	-60	270	28	32	4	0	0.1	6	0.2	179	0.8	14	0	0.1	321
HWAC854	267,233	7143602	537	AC	45	-60	270	36	40	4	0	0	2	0.1	178	0.5	3	1	0	151
HWAC869	266,517	7142798	526	AC	106	-60	270	105	106	1	0.1	13.8	100	3.4	177	4.9	248	4	2.7	313
HWAC373	265,248	7145707	550	AC	78	-60	270	73	74	1	1.1	3.3	8	4.7	176	95.4	276	1	0.6	204
HWAC885	269,074	7142799	539	AC	29	-60	270	24	28	4	0	0.1	6	0.2	175	1.2	7	0	0	337
HWAC329	265,800	7145064	550	AC	73	-60	270	72	73	1	0.2	0	8	1.2	175	4.2	26	1	0.4	373
HWAC325	266,097	7144656	550	AC	73	-60	270	64	68	4	0	0.1	14	3.5	174	6.7	23	2	0.5	323
HWAC1146	267,077	7142800	532	AC	72	-60	270	64	68	4	0.3	0.1	19	0.2	174	1.6	13	1	0.1	196
HWAC326	266,211	7144655	550	AC	77	-60	270	56	60	4	0	0.1	8	0.2	173	5.3	15	1	0.1	319
HWAC798	268,311	7144271	541	AC	36	-60	270	32	35	3	0	0.3	5	0.1	171	0.9	8	0	0	281
DJRC019	265,280	7145700	550	RC	183	-51.5	259	134	135	1	1.1	8.7	12	8	169	127	159	2	3.3	192
HWAC349	264,496	7143217	539	AC	53	-60	270	0	4	4	0.1	0.1	10	0.8	169	6.5	27	1	0.2	113
HWAC021	264,807	7146661	543	AC	72	-60	270	56	60	4	0	0.1	40	0.3	169	2.3	31	1	0.1	490
HWAC011	263,101	7146661	545	AC	37	-60	270	32	36	4	0	0.6	71	0.5	169	1.4	87	2	0.3	643

		nates (MGA Zone 51)	94		Hole	Details		Max	imum in-	hole Au As	ssay			Maxin	num in-ho	ole Multi-	-element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
HWAC820	266,996	7143200	540	AC	99	-60	270	64	68	4	0.1	0.3	25	0.5	167	1.7	25	1	0.3	220
HWAC086	263,521	7145856	543	AC	42	-60	270	40	41	1	0.2	0.4	30	0.3	167	5.9	97	1	0.1	1138
HWAC1150	266,898	7142001	544	AC	130	-60	270	60	64	4	0	0.1	12	0.2	167	1.5	14	3	0	189
HWAC354	264,893	7146201	550	AC	53	-60	270	52	53	1	0	0.1	40	0.2	166	1.4	68	2	0.1	730
HWAC792	266,709	7144267	538	AC	78	-60	270	52	56	4	0	0.3	9	0.2	166	0.8	19	0	0.1	156
HWAC381	264,994	7146060	550	AC	53	-60	270	48	52	4	0.1	0.1	33	0.3	166	3	48	2	0.1	1372
HWAC702	263,759	7145761	550	AC	64	-60	270	52	56	4	0	8.0	48	1	165	5.6	192	1	0.2	940
HWAC312	265,997	7143889	550	AC	54	-60	270	12	16	4	0	0.2	11	0.3	165	8.3	63	1	0.1	489
DJRC002	265,060	7145060	550	RC	186	-63.2	253.5	53	54	1	0.9	0.6	22	0.6	164	13.2	78	1	4	241
HWAC672	266,452	7144465	550	AC	80	-60	270	48	52	4	0	0.1	35	1	164	2.9	39	0	0.1	312
HWAC331	266,001	7145059	550	AC	105	-60	270	40	44	4	0.1	0.1	51	0.3	164	2.8	36	1	0.4	530
HWAC1144	266,757	7142799	530	AC	89	-60	270	60	64	4	0.8	0.3	17	0.7	162	6.4	26	3	0.1	324
HWAC1157	268,022	7142000	543	AC	104	-60	270	72	76	4	0	0.5	59	0.2	162	2.3	27	1	0.2	239
HWAC084	263,402	7145857	542	AC	35	-60	270	32	35	3	0.1	0.7	50	0.4	160	1.6	360	6	0.2	697
HWAC855	267,339	7143602	533	AC	42	-60	270	28	32	4	0	0.1	5	0.1	160	0.4	13	0	0	287
HWAC889	269,721	7142797	542	AC	61	-60	270	60	61	1	0	0.4	6	2.9	160	0.8	15	0	0.7	259
HWAC886	269,229	7142798	505	AC	27	-60	270	24	26	2	0	0.1	6	0.2	159	0.8	8	0	0	334
HWAC634	265,650	7145057	550	AC	54	-60	270	48	52	4	0.1	0.1	6	1	159	14.2	20	0	0.3	111
HWAC376	265,399	7145707	550	AC	80	-60	270	72	76	4	0	0.1	12	0.4	158	2.2	41	0	0	130
HWAC181	262,794	7144696	545	AC	48	-60	270	20	24	4	0	0.3	5	0.6	158	4.6	27	1	0.1	108
HWAC903	269,540	7142003	542	AC	27	-60	270	24	26	2	0	0.1	7	0.2	157	1.1	7	0	0.1	400
HWAC339	266,051	7145494	550	AC	81	-60	270	56	60	4	0.1	0.1	52	0.4	157	1.8	33	1	0.5	294
HWAC779	264,869	7142601	550	AC	67	-60	270	0	4	4	0	0.3	17	0.3	155	5.2	136	2	0.1	430
HWAC883	268,759	7142806	539	AC	45	-60	270	28	32	4	0	0.2	4	0.1	155	0.6	8	0	0	113
HWAC696	266,897	7144110	550	AC	77	-60	270	8	12	4	0	0.1	88	0.2	153	0.7	16	0	0.1	223
HWAC700	263,597	7145759	550	AC	57	-60	270	56	57	1	0.1	0.9	30	0.9	153	10.6	131	1	0.2	3587
HWAC833	263,796	7146057	572	AC	64	-60	270	48	52	4	0.1	8.1	30	0.6	153	1.4	1229	2	0.5	3132
HWAC653	265,503	7144263	550	AC	90	-60	270	64	68	4	0	0.1	13	0.5	152	41	57	2	0	243
HWAC136	262,404	7145406	550	AC	20	-60	270	12	16	4	0	0.3	5	24.5	152	2.1	54	1	0.3	90
HWAC286	264,260	7142002	550	AC	48	-60	270	12	16	4	0	0.1	22	0.3	152	2.3	46	1	0.1	251
HWAC383	265,101	7146063	550	AC	70	-60	270	68	69	1	0	0.2	10	0.3	152	2.7	32	0	0	169
DJRC010	265,116	7145261	550	RC	180	-63.6	256.2	73	74	1	2.5	7.2	13	0.4	151	14.5	90	1	7.2	148
DJRC009	265,046	7145262	550	RC	194	-65.1	253.8	84	85	1	1.9	10.7	16	0.7	151	22.7	88	1	14.4	114
HWAC215	264,647	7146197	550	AC	38	-60	270	4	8	4	0	0.7	24	0.3	151	1.3	322	5	0.2	597
HWAC872	267,002	7142801	541	AC	96	-60	270	56	60	4	0	0.7	5	0.2	151	1.1	10	1	0.1	216
HWAC059	263,561	7145855	544	AC	34	-60	270	33	34	1	0.1	0.4	24	0.5	151	1	143	1	0.1	1592
HWAC384	265,143	7146061	550	AC	64	-60	270	20	24	4	0	0.1	7	0.2	151	3.2	14	0	0	365
HWAC020	264,595	7146659	553	AC	45	-60	270	44	45	1	0	0.3	32	0.3	150	1	188	2	0.1	415
HWAC784	264,960	7142797	543	AC	62	-60	270	60	61	1	0	0.4	17	0.3	150	5.4	51	2	0.1	288
DJRC001	265,132	7145060	550	RC	180	-59.7	249.1	61	62	1	3.2	2.4	10	0.5	150	116.7	111	1	3.8	200

		inates (MGA Zone 51)	94		Hole	Details		Max	imum in-	hole Au As	ssay			Maxin	num in-h	ole Multi-	element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
HWAC697	263,354	7145758	550	AC	54	-60	270	36	40	4	0.5	0.1	144	1.1	150	4	133	1	0.2	1351
HWAC904	269,702	7142004	551	AC	40	-60	270	36	39	3	0	0.1	7	0.2	149	1.9	11	0	0.1	845
HWAC871	266,840	7142801	541	AC	97	-60	270	48	52	4	0.1	0.9	11	0.2	149	2.3	7	1	0	159
HWAC799	268,471	7144272	536	AC	32	-60	270	24	28	4	0	0.3	7	0.2	148	1.1	22	0	0	236
HWAC648	265,902	7144863	550	AC	82	-60	270	80	81	1	0.1	1.1	7	1	148	8.3	23	1	0.2	207
HWAC1132	266,681	7143599	491	AC	61	-60	270	60	61	1	0	0.1	17	0.3	148	1.5	27	1	0.1	239
HWAC918	268,110	7141999	541	AC	129	-60	270	52	56	4	0	0.3	91	0.5	147	1.5	35	0	0.1	353
HWAC394	265,494	7145501	550	AC	82	-60	270	64	68	4	0.1	0.1	7	0.3	147	3.5	31	0	0.1	157
HWAC227	264,650	7145503	550	AC	84	-60	270	60	64	4	0	0.2	14	0.3	147	2.8	73	1	0	457
DJRC008	264,956	7145265	550	RC	180	-55.4	253.4	56	57	1	1.3	9.2	15	0.7	146	12.1	59	2	10.1	100
HWAC851	266,751	7143602	541	AC	104	-60	270	44	48	4	0.3	0.1	19	0.3	146	1.1	32	1	0.1	152
HWAC646	265,798	7144861	550	AC	54	-60	270	52	53	1	0	0.3	7	0.9	145	11	47	0	0.1	232
HWAC382	265,044	7146065	550	AC	64	-60	270	52	56	4	0	0.2	14	0.3	145	4	27	1	0.2	360
HWAC030	262,318	7145860	547	AC	33	-60	90	28	29	1	0.7	0.1	150	0.7	145	2	97	1	0.1	55
HWAC411	265,699	7145266	550	AC	102	-60	270	100	101	1	0	0.5	183	0.9	145	8.2	45	1	0.1	304
HWAC676	265,899	7144111	550	AC	49	-60	270	44	48	4	0.1	0.3	12	2	145	11.9	344	1	0.3	259
HWAC309	265,697	7143893	550	AC	61	-60	270	32	36	4	0	0	11	0.3	145	4	34	1	0	288
HWAC1155	267,704	7142001	539	AC	105	-60	270	56	60	4	0.1	0.2	49	0.2	145	1.2	14	1	0.1	289
HWAC907	270,183	7142002	552	AC	25	-60	270	24	25	1	0	0.1	6	0.4	143	1.4	8	0	0.1	207
HWAC671	266,401	7144463	550	AC	83	-60	270	56	60	4	0	0.1	35	0.2	142	3.8	42	0	0.1	601
HWAC752	265,588	7141999	550	AC	54	-60	270	8	12	4	0	0.3	26	0.4	142	1.9	46	3	0.1	265
HWAC222	265,346	7146198	550	AC	54	-60	270	4	8	4	0	0.1	11	0.2	141	4	25	0	0.1	246
HWAC237	265,658	7145492	550	AC	95	-60	270	28	32	4	0.1	0.4	77	0.3	140	3.8	243	1	0.1	372
HWAC322	266,996	7143900	550	AC	78	-60	270	68	72	4	0	0.1	82	0.3	139	1.1	20	1	0.1	379
HWAC094	266,374	7144264	538	AC	90	-60	270	76	80	4	0	0	10	0.3	138	2.1	17	1	0.1	400
HWAC1127	262,867	7147397	546	AC	14	-60	270	12	13	1	0	2.1	54	0.6	138	1.4	226	2	0.1	454
HWAC295	264,453	7142407	550	AC	69	-60	270	64	68	4	0.1	0.1	238	0.4	138	2.8	37	2	0.2	415
HWAC831	263,630	7146058	540	AC	57	-60	270	36	40	4	0	1.9	207	1.3	137	10.4	102	7	0.5	2405
HWAC755	266,068	7142000	550	AC	70	-60	270	64	68	4	0	-0.1	12	0.3	137	1.8	24	0	0	104
HWAC1154	267,540	7141999	540	AC	84	-60	270	28	32	4	0.3	0.3	106	0.4	136	2.6	16	1	0.2	402
HWAC371	265,147	7145704	550	AC	62	-60	270	61	62	1	0.1	0.1	12	0.4	136	1.2	34	1	0.1	127
HWAC879	268,116	7142803	537	AC	34	-60	270	28	32	4	0	0.1	4	0.2	136	0.5	9	0	0	232
HWAC328	265,700	7145061	550	AC	66	-60	270	65	66	1	0.2	2.3	8	1.2	135	5.6	27	1	0.4	330
HWAC875	267,479	7142796	539	AC	96	-60	270	76	80	4	0.1	0.2	42	1.3	134	1	73	1	0.3	320
HWAC409	265,599	7145263	550	AC	71	-60	270	64	68	4	0	0.1	12	0.8	134	4.4	28	1	0.3	96
HWAC774	264,071	7142599	541	AC	87	-60	270	84	86	2	0	0.3	32	0.3	133	2.8	33	1	0.1	155
HWAC1133	266,831	7143602	528	AC	70	-60	270	40	44	4	0.3	0.2	62	0.3	132	1.5	33	0	0.1	289
HWAC698	263,431	7145757	550	AC	44	-60	270	16	20	4	1.3	0.5	6	3.1	132	8.2	221	0	0.1	290
DDAC034	262,895	7144603	545	AC	64	-60	90	60	64	4	0	0.3	7	0.4	132	3.7	55	1	0	133
HWAC337	265,847	7145494	550	AC	111	-60	270	88	92	4	0	0.5	25	0.4	132	2.7	30	0	0.2	133

		inates (MGA Zone 51)	94		Hole	Details		Max	imum in-	hole Au As	ssay			Maxin	num in-ho	ole Multi-	-element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
HWAC880	268,278	7142803	542	AC	45	-60	270	28	32	4	0	0.1	15	0.2	131	1.4	21	0	0.2	161
HWAC100	264,748	7145853	543	AC	66	-60	270	64	66	2	0	0.2	22	0.2	131	1.8	59	0	0.2	875
HWAC888	269,556	7142799	537	AC	52	-60	270	40	44	4	0	0.2	8	4.6	130	1.5	16	0	0.1	165
HWAC902	269,382	7142006	549	AC	26	-60	270	16	20	4	0	0.1	7	0.2	130	1	8	0	0.1	146
HWAC688	266,495	7144110	550	AC	80	-60	270	77	78	1	1.1	0.1	57	1.1	129	2.6	35	1	0.1	233
HWAC301	263,947	7142795	550	AC	79	-60	270	68	72	4	0	0.1	88	2	129	2.3	32	2	0.1	529
HWAC878	267,954	7142803	542	AC	30	-60	270	24	28	4	0	0.1	4	0.2	128	0.8	9	0	0	163
HWAC408	265,552	7145263	550	AC	67	-60	270	65	66	1	0.2	0.2	8	1.2	128	6.5	51	1	0.7	118
HWAC806	264,760	7143202	538	AC	67	-60	270	52	56	4	0	0.1	23	1.4	128	4.9	30	2	8.0	169
HWAC897	268,578	7141999	546	AC	66	-60	270	44	48	4	0	0.2	6	0.6	127	2.3	9	0	0.5	296
HWAC049	265,997	7145855	533	AC	62	-60	270	60	62	2	0	0.1	7	12.6	127	1.5	29	0	0.1	251
HWAC709	263,591	7145562	550	AC	63	-60	270	60	62	2	0.1	0.6	75	1.1	127	13.5	120	1	0.1	681
HWAC079	265,602	7144267	534	AC	80	-60	270	56	60	4	0	0.1	9	0.3	127	4	38	1	0	181
DDAC063	262,781	7144466	545	AC	68	-60	90	0	4	4	0	0.2	7	0.3	127	2.3	29	1	0.1	94
HWAC019	264,407	7146662	543	AC	39	-60	270	8	12	4	0	0.4	80	0.4	127	3.2	271	2	0.1	2267
HWAC881	268,435	7142803	538	AC	32	-60	270	24	28	4	0	0.1	5	0.1	126	0.5	7	0	0	150
HWAC909	270,501	7142003	543	AC	47	-60	270	40	44	4	0	0.2	7	0.3	126	6.4	17	0	0.1	475
HWAC047	265,598	7145861	538	AC	81	-60	270	80	81	1	0	0.2	16	0.3	126	1.9	29	0	0	165
HWAC336	265,754	7145500	550	AC	104	-60	270	80	84	4	0	0.5	9	0.3	125	2.4	31	1	0.2	447
HWAC366	264,903	7145713	550	AC	78	-60	270	68	72	4	0.1	0.2	14	0.3	125	3	21	0	0.7	340
HWAC115	265,397	7145057	550	AC	84	-60	270	72	76	4	0	0.4	8	5.1	124	3.6	30	0	0.1	180
HWAC1147	267,243	7142797	527	AC	64	-60	270	63	64	1	0	0.1	51	1.9	124	1.6	67	1	0.2	195
HWAC802	268,952	7144271	537	AC	55	-60	270	44	48	4	0	0.3	5	0.4	124	1.5	11	0	0.1	177
HWAC864	268,827	7143604	539	AC	39	-60	270	0	4	4	0	0.1	5	0.2	124	0.8	10	0	0.1	105
HWAC757	266,389	7141996	550	AC	60	-60	270	48	52	4	0	0.1	15	0.3	122	0.8	31	0	0	261
HWAC324	265,998	7144670	550	AC	82	-60	270	80	81	1	0	0.1	10	0.5	122	5.1	27	1	0.2	205
HWAC1143	266,602	7142797	536	AC	127	-60	270	72	76	4	0.1	2.4	334	1.5	121	10.4	465	2	0.6	491
HWAC247	265,700	7144656	550	AC	86	-60	270	8	12	4	0	0.9	14	0.6	121	16.8	41	1	0.4	270
HWAC919	268,262	7142004	544	AC	100	-60	270	40	44	4	0.2	0.2	202	0.4	120	1.9	76	1	0.3	598
HWAC214	264,546	7146201	550	AC	33	-60	270	8	12	4	0	0.3	51	0.2	120	2.7	322	6	0	678
HWAC898	268,740	7142002	539	AC	52	-60	270	32	36	4	0	0.2	7	0.3	119	1.2	8	0	0.1	165
HWAC1137	267,081	7143202	537	AC	72	-60	270	0	4	4	0	0.2	60	0.4	118	1.2	26	1	0.1	269
HWAC297	264,653	7142401	550	AC	64	-60	270	44	48	4	0.1	0.2	15	2.8	118	3.4	35	2	0.1	183
HWAC691	266,650	7144107	550	AC	76	-60	270	72	75	3	0	0.1	58	0.3	118	2	35	1	0.1	105
HWAC320	266,800	7143908	550	AC	77	-60	270	76	77	1	0	0.1	75	0.3	118	1.2	35	1	0.1	295
HWAC812	265,716	7143202	538	AC	33	-60	270	0	4	4	0	0	9	0.3	117	2.3	35	2	0.1	95
HWAC666	266,149	7144459	550	AC	86	-60	270	72	76	4	0.1	0.6	11	0.5	117	5.6	36	1	0.1	386
HWAC206	263,547	7145657	550	AC	61	-60	270	56	60	4	0.2	0.2	29	4.7	117	20.7	61	1	0.1	1060
HWAC311	265,893	7143892	550	AC	71	-60	270	60	64	4	0	0.1	18	0.3	117	3.5	54	1	0.1	174
HWAC290	263,946	7142398	550	AC	77	-60	270	76	77	1	0.1	0.2	99	0.9	117	3.5	47	1	0.1	236

		inates (MGA Zone 51)	94		Hole	Details		Max	timum in-	hole Au A	ssay			Maxin	num in-h	ole Multi-	-element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
HWAC294	264,346	7142408	550	AC	94	-60	270	8	12	4	0	0.4	239	1	117	2.6	45	2	0.2	304
HWAC1149	267,563	7142793	540	AC	73	-60	270	48	52	4	0	0.1	11	0.3	117	8.0	20	0	0	175
HWAC342	263,800	7143193	542	AC	66	-60	270	28	32	4	0	0.1	116	0.4	117	1.8	34	2	0.2	236
HWAC023	264,902	7146661	543	AC	69	-60	270	68	69	1	0	0.5	14	0.3	116	2.4	38	1	0.1	188
HWAC321	266,890	7143908	550	AC	81	-60	270	56	60	4	0	0.1	63	0.3	116	1	22	0	0.1	390
HWAC1152	267,217	7141999	544	AC	118	-60	270	48	52	4	0.1	0.5	126	0.2	116	2.8	16	1	0.1	395
HWAC031	262,253	7145861	545	AC	26	-60	90	24	26	2	0.1	0.2	68	2.6	116	1.5	56	1	0.1	27
HWAC171	263,097	7144800	544	AC	46	-60	270	36	40	4	0	0.6	5	1.4	116	5.1	17	1	0.1	92
HWAC811	265,546	7143199	538	AC	59	-60	270	58	59	1	0	0	15	0.4	116	3	58	1	0.1	105
DDRC005	263,101	7144551	544	RC	250	-64.8	224.7	240	241	1	0.5	0.5	16	5.2	116	14.5	46	1	0.1	82
DDRC003	263,154	7144462	544	RC	180	-55	225	75	76	1	5.8	0.7	15	6.8	115	31.8	33	2	0.4	120
DDAC060	262,865	7144459	545	AC	60	-60	90	56	60	4	0	0.2	8	0.8	115	5.7	72	2	0.2	192
HWAC647	265,851	7144868	550	AC	76	-60	270	75	76	1	0	0.6	9	0.8	114	5.8	34	1	0.3	299
HWAC669	266,301	7144461	550	AC	87	-60	270	65	66	1	0.5	0.1	10	0.2	114	5.3	42	0	0.1	142
HWAC667	266,201	7144460	550	AC	78	-60	270	72	76	4	0	0.1	10	0.3	114	6.5	25	0	0.1	188
HWAC785	265,105	7142802	538	AC	63	-60	270	60	62	2	0	0.3	16	0.3	113	5.2	33	3	0.1	256
HWAC765	265,126	7142203	540	AC	96	-60	270	76	80	4	0.1	0.4	25	0.4	113	3	27	3	0.1	322
HWAC236	265,551	7145500	550	AC	85	-60	270	60	64	4	0.4	0.1	6	0.3	113	3.1	47	0	0.1	176
HWAC343	263,907	7143194	541	AC	71	-60	270	52	56	4	0	0.1	39	0.3	113	2	89	1	0.2	228
HWAC874	267,317	7142798	540	AC	76	-60	270	60	64	4	0.6	0.1	48	0.2	112	1	83	1	0.2	274
HWAC847	266,111	7143601	539	AC	81	-60	270	64	68	4	0	0.1	36	0.3	112	3.6	29	1	0.1	109
HWAC310	265,796	7143904	550	AC	48	-60	270	20	24	4	0	0.2	18	0.6	112	5.4	49	2	0.1	206
HWAC767	264,727	7142393	552	AC	69	-60	270	48	52	4	0.1	0.2	13	0.5	112	4.1	36	2	0.2	281
HWAC252	264,048	7143535	541	AC	61	-60	270	44	48	4	0.3	0.1	5	1.5	112	2.3	24	1	0.1	81
CDAC006	263,695	7143539	542	AC	72	-60	90	68	72	4	0.1	0.5	24	1.8	112	5.9	56	3	0.6	60
HWAC191	262,937	7144171	545	AC	60	-60	225	32	36	4	0	0.4	5	0.9	111	3.2	36	1	0.1	180
DDRC001	263,192	7144426	544	RC	180	-47.4	219.8	50	51	1	27.8	2.5	18	3.2	111	36.9	63	2	1.3	115
HWAC385	265,195	7146066	550	AC	71	-60	270	68	70	2	0	0.1	20	0.3	111	4.8	24	1	0.1	196
HWAC392	265,296	7145505	550	AC	92	-60	270	8	12	4	0	1.2	8	0.4	110	4.3	41	1	0.8	206
HWAC338	265,951	7145493	550	AC	109	-60	270	68	72	4	0	0.3	8	0.3	109	2.7	125	0	0.2	86
HWAC296	264,551	7142394	550	AC	73	-60	270	52	56	4	0	0.6	31	0.3	109	2.1	27	1	0.1	237
DDAC038	262,806	7144603	545	AC	46	-60	90	44	46	2	0	0.3	5	0.4	109	4.1	33	1	0.1	149
HWAC051	263,639	7145459	546	AC	46	-60	270	33	34	1	0.4	0.5	10	1.3	109	6.9	61	0	0.1	138
HWAC187	263,401	7144703	543	AC	59	-60	270	56	58	2	0.1	0.3	8	1.8	109	33.5	42	1	0.2	109
HWAC318	266,599	7143896	550	AC	67	-60	270	64	66	2	0.2	0.1	50	0.3	109	3	48	0	0.1	155
HWAC038	263,797	7145858	540	AC	59	-60	270	56	59	3	0.1	0.6	44	1	108	1.5	149	3	0.3	3045
HWAC169	262,401	7144800	550	AC	45	-60	270	44	45	1	0	0.2	13	0.9	108	1.9	139	0	0.1	227
HWAC906	270,025	7142003	547	AC	28	-60	270	20	24	4	0	0.1	5	0.2	108	1.1	6	0	0.1	112
DDAC059	262,892	7144460	545	AC	54	-60	90	25	26	1	0.8	0.2	7	0.5	107	7.7	27	1	0.1	157
HWAC271	263,851	7142001	550	AC	72	-60	270	68	71	3	0	0.1	157	3.7	107	2.6	25	1	0.4	243

		inates (MGA Zone 51)	94		Hole	Details		Max	imum in-	hole Au As	ssay			Maxin	num in-ho	ole Multi-	-element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
HWAC087	263,597	7145856	543	AC	55	-60	270	52	55	3	0.1	0.6	22	2.6	107	5.9	34	1	0.3	2042
HWAC093	266,352	7144263	538	AC	93	-60	270	52	56	4	0.1	0	11	0.4	107	2.5	28	1	0.1	251
HWAC078	265,402	7144270	542	AC	87	-60	270	68	72	4	0	0.1	8	0.3	106	2.3	32	1	0	248
HWAC272	263,956	7141991	550	AC	81	-60	270	64	68	4	0	0.1	9	0.3	105	2.2	31	1	0.1	490
HWAC099	264,701	7145857	545	AC	69	-60	270	64	68	4	0	0.2	17	0.3	105	5.8	41	0	1.5	623
HWAC213	264,446	7146201	550	AC	32	-60	270	4	8	4	0	0.4	98	0.3	105	1.8	806	5	0.1	1542
HWAC211	264,050	7145660	550	AC	80	-60	270	68	72	4	0	0.5	9	0.3	105	1.1	225	1	0.1	442
DDAC036	262,850	7144602	545	AC	56	-60	90	41	42	1	0.6	0.2	5	0.6	105	9.7	54	1	0.2	123
HWAC1138	267,243	7143200	542	AC	83	-60	270	48	52	4	0.1	0.2	77	0.7	104	2.1	22	1	0.1	225
HWAC813	265,881	7143200	536	AC	36	-60	270	0	4	4	0	0.1	9	0.2	104	2.1	50	6	0.1	99
HWAC781	265,199	7142601	542	AC	73	-60	270	56	60	4	0	0.6	15	0.3	104	4.5	37	2	0.1	243
HWAC282	265,244	7142026	550	AC	110	-60	270	109	110	1	0.1	0.2	104	0.4	104	3.1	35	3	0.2	171
HWAC651	265,100	7144263	550	AC	68	-60	270	8	12	4	0	0.1	10	0.3	104	2.2	59	1	0	141
HWAC640	265,145	7144864	550	AC	72	-60	270	60	64	4	0	0.1	8	0.3	103	6.2	31	1	0	154
HWAC758	264,009	7142201	550	AC	80	-60	270	79	80	1	0.1	0.2	215	0.3	103	2.3	38	1	0.2	234
HWAC308	265,596	7143895	550	AC	56	-60	270	53	56	3	0	0.1	8	0.3	103	6.6	38	1	0.1	388
HWAC207	263,649	7145656	550	AC	58	-60	270	52	56	4	0.2	0.4	33	1	103	19.1	53	2	0.1	1164
HWAC395	265,599	7145494	550	AC	93	-60	270	63	64	1	2.5	0.5	9	4	102	4.1	146	1	0.2	97
HWAC209	263,852	7145653	550	AC	62	-60	270	48	52	4	0.1	0.2	45	0.7	102	3.1	113	1	0.1	713
HWAC250	263,365	7143554	543	AC	77	-60	270	76	77	1	0	0.1	24	0.4	102	1.7	41	1	0.1	198
HWAC147	262,199	7145059	550	AC	47	-60	270	0	4	4	0	0.2	14	0.3	101	1.8	59	0	0.1	276
HWAC276	264,651	7141996	550	AC	81	-60	270	80	81	1	0.1	0.3	158	7.9	101	3.7	33	2	1.2	298
HWAC242	265,205	7144653	550	AC	78	-60	270	60	64	4	0	0.1	8	2.1	100	2.1	27	0	0.1	115
HWAC808	265,080	7143201	546	AC	70	-60	270	8	12	4	0	0.1	17	0.3	100	3.3	35	1	0.1	262
HWAC689	266,547	7144114	550	AC	77	-60	270	76	77	1	0.1	0.1	49	0.3	99	1.6	28	1	0.1	176
HWAC246	265,601	7144660	550	AC	87	-60	270	60	64	4	0	0.1	8	0.4	99	3.8	39	1	0.1	130
HWAC119	263,545	7143855	542	AC	77	-60	270	48	52	4	0	0.1	64	1.3	99	3.6	57	1	0.1	142
HWAC387	264,801	7145502	550	AC	71	-60	270	28	32	4	0	0.1	11	0.3	99	4.5	66	1	0	754
HWAC096	266,469	7144264	546	AC	78	-60	270	76	77	1	0.2	0.1	11	0.3	99	1.6	18	0	0.1	214
HWAC406	265,445	7145264	550	AC	80	-60	270	32	36	4	0	0.1	16	0.8	99	14.2	32	1	0.4	172
HWAC701	263,681	7145760	550	AC	66	-60	270	56	60	4	0	1.2	41	2	98	10.8	31	1	0.4	2600
HWAC704	263,908	7145761	550	AC	52	-60	270	20	24	4	0.4	0.4	14	0.5	98	0.8	154	1	0.1	691
HWAC002	262,600	7146660	544	AC	24	-60	90	4	8	4	0	0.2	101	0.6	98	1.3	212	1	0.1	658
HWAC378	265,496	7145702	550	AC	84	-60	270	83	84	1	0.5	0.2	34	2.3	98	1.7	37	1	0.5	152
DDRC004	263,192	7144495	544	RC	250	-66.8	209.9	130	131	1	0.3	0.4	14	20	97	95.5	94	1	0.5	102
HWAC058	263,480	7145856	540	AC	33	-60	270	31	32	1	0.2	0.7	21	0.6	97	1.9	86	1	0.1	810
HWAC896	268,411	7141999	544	AC	45	-60	270	20	24	4	0	0	5	0.2	97	1.1	7	0	0	89
HWAC186	263,298	7144698	543	AC	48	-60	270	47	48	1	0.2	0.2	8	3.9	96	16.6	70	1	0.2	122
HWAC800	268,630	7144269	541	AC	49	-60	270	40	44	4	0	0.3	10	0.9	96	0.4	12	0	0.1	144
HWAC003	262,496	7146656	548	AC	26	-60	90	24	26	2	0	0.4	58	1.7	96	1.6	132	3	0.2	444

		inates (MGA Zone 51)	.94		Hole	Details		Max	imum in-	hole Au As	ssay			Maxin	num in-ho	ole Multi-	-element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
HWAC091	263,760	7145457	539	AC	64	-60	270	40	44	4	0.1	0.3	26	0.7	96	72.5	59	1	0	411
HWAC772	263,744	7142608	552	AC	90	-60	270	84	88	4	0	0.3	57	1.1	96	2.7	26	1	0.2	298
DDAC064	262,750	7144467	545	AC	66	-60	90	40	44	4	0	0.2	15	0.3	96	1.8	35	1	0.1	161
DDAC058	262,926	7144458	544	AC	72	-60	90	68	72	4	0.1	0.3	7	0.8	96	4.3	18	1	0.1	257
DDAC035	262,870	7144603	545	AC	51	-60	90	48	51	3	0	0.2	4	0.3	95	3.7	21	0	0	89
HWAC172	263,202	7144798	544	AC	46	-60	270	44	45	1	0.1	0.1	4	1.9	95	11.8	50	1	0.2	130
HWAC317	266,500	7143899	550	AC	81	-60	270	56	60	4	0.1	0	10	0.3	95	4.2	25	0	0.1	201
HWAC768	264,893	7142401	550	AC	78	-60	270	76	77	1	0	0.8	17	0.3	95	4.5	42	1	0.1	193
HWAC692	266,696	7144109	550	AC	75	-60	270	54	55	1	0.7	0.1	57	0.2	95	1	17	1	0.1	113
HWAC298	263,650	7142795	550	AC	74	-60	270	72	73	1	0.1	0.2	64	1.1	95	2.5	27	1	0.1	281
HWAC234	265,348	7145492	550	AC	63	-60	270	62	63	1	0.2	0.2	12	0.7	94	5.3	70	1	0.7	365
HWAC637	265,000	7144858	550	AC	67	-60	270	60	64	4	0	0.1	6	0.4	94	1.5	19	0	0.1	98
HWAC657	265,704	7144456	550	AC	90	-60	270	4	8	4	0	0.2	9	0.6	92	6.2	33	1	0.1	155
HWAC761	264,495	7142201	550	AC	87	-60	270	86	87	1	0	0.1	394	2	92	3.4	110	3	0.1	148
HWAC102	264,899	7145858	538	AC	72	-60	270	64	68	4	0	0.2	10	0.2	92	1.6	14	1	0.3	308
HWAC638	265,058	7144862	550	AC	87	-60	270	68	72	4	0	0.2	7	0.3	92	2.1	34	1	0.1	70
HWAC361	264,848	7146061	550	AC	45	-60	270	40	44	4	0	0.9	51	0.3	91	1.1	274	2	0.1	207
HWAC040	263,966	7145863	546	AC	74	-60	270	68	72	4	0	1.3	17	0.2	91	0.9	180	1	0.1	1390
HWAC850	266,585	7143602	538	AC	85	-60	270	84	85	1	0	0.1	15	0.6	91	3.6	20	2	0.1	229
HWAC037	263,719	7145860	545	AC	65	-60	270	48	52	4	0.1	1.9	41	2.2	91	8.6	434	0	0.6	3403
DJRC012	264,916	7145500	550	RC	99	-60	275	94	95	1	0.8	9.2	15	0.4	91	11.4	106	0	4.4	140
HWAC846	265,946	7143601	536	AC	44	-60	270	16	20	4	0	0.1	9	0.3	91	7.4	36	2	0.1	229
HWAC283	265,350	7141999	550	AC	74	-60	270	44	48	4	0	0.5	24	0.4	91	2.6	55	0	0.1	108
HWAC791	266,065	7142801	543	AC	77	-60	270	16	20	4	0	0.3	11	0.2	91	1.8	31	1	0.1	90
DDAC040	262,766	7144602	545	AC	51	-60	90	20	24	4	0	0.2	5	0.5	90	9.2	15	2	0.2	113
DDAC041	262,744	7144601	545	AC	40	-60	90	24	28	4	0	0.3	5	0.3	90	2.9	22	1	0.1	118
HWAC010	262,899	7146660	548	AC	45	-60	270	0	4	4	0	1.6	133	3	90	2.9	121	2	0.4	108
HWAC188	263,499	7144696	542	AC	79	-60	270	52	56	4	0.1	0.7	5	14.3	90	16.2	45	0	0.5	104
HWAC713	263,908	7145559	550	AC	61	-60	270	52	56	4	0.1	0.2	13	0.5	90	3.7	27	0	0.2	301
HWAC302	264,049	7142797	550	AC	87	-60	270	68	72	4	0	1	161	0.3	89	2.4	51	2	0	162
HWAC120	263,650	7143856	542	AC	69	-60	270	36	40	4	0.1	0	11	0.6	89	15	35	1	0.1	139
HWAC738	263,522	7145058	550	AC	61	-60	270	52	56	4	0.3	0.1	8	1.2	89	25.5	41	1	0.2	198
HWAC715	263,207	7145361	550	AC	49	-60	270	48	49	1	0.2	0.4	5	1	89	2	38	1	0.1	120
HWAC067	264,085	7145056	545	AC	69	-60	270	68	69	1	0.1	0.2	12	1	88	4.2	73	1	0.5	189
HWAC1148	267,399	7142795	537	AC	75	-60	270	44	48	4	0.1	0	44	0.3	88	1.1	28	1	0.2	227
HWAC853	267,069	7143598	534	AC	91	-60	270	0	4	4	0	0.1	60	0.3	88	0.9	18	1	0.4	170
HWAC835	263,948	7146060	541	AC	51	-60	270	28	32	4	0	0.6	21	0.8	88	1.3	173	4	1.2	1069
HWAC167	263,600	7144900	542	AC	53	-60	270	40	44	4	0.1	0.2	5	1.8	88	7.8	57	1	0.1	93
HWAC307	264,550	7142802	550	AC	51	-60	270	50	51	1	0	0.1	13	0.7	88	4.7	30	2	0.1	277
HWAC821	267,161	7143200	540	AC	85	-60	270	44	48	4	0.1	0.2	51	0.3	88	1.3	31	1	0.1	199

		inates (MGA Zone 51)	94		Hole	Details		Max	imum in-	hole Au As	ssay			Maxin	num in-h	ole Multi-	-element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
HWAC176	263,603	7144799	542	AC	58	-60	270	44	48	4	0.1	0.2	12	8.1	87	6.7	59	1	0.1	107
DDRC007	263,326	7144349	543	RC	280	-53.4	224.4	239	240	1	3.7	1.3	21	1.7	87	407.1	36	2	0.6	114
HWAC756	266,229	7142002	550	AC	60	-60	270	12	16	4	0	-0.1	11	0.3	87	1.2	44	0	0	97
DDAC052	263,121	7144457	544	AC	68	-60	90	24	28	4	0.1	0.2	14	3.5	86	24.7	29	1	0.2	99
HWAC239	264,901	7144652	550	AC	62	-60	270	4	8	4	0	0.2	8	0.3	86	2.4	124	2	0	338
HWAC279	264,951	7142007	550	AC	78	-60	270	60	64	4	0	0.2	23	0.4	86	2.9	45	1	0.1	226
HWAC782	264,628	7142807	544	AC	75	-60	270	64	68	4	0	0.7	11	0.5	86	2.6	56	2	0.1	144
HWAC712	263,831	7145561	550	AC	58	-60	270	36	40	4	0.9	0.2	27	7.4	86	18.7	63	1	0.5	250
HWAC810	265,400	7143198	542	AC	72	-60	270	71	72	1	0	0.1	14	0.3	86	5.7	68	1	0.1	97
DDAC061	262,835	7144458	545	AC	60	-60	90	56	60	4	0.1	0.1	7	0.7	85	4.9	21	1	0.2	95
HWAC340	263,601	7143186	542	AC	76	-60	270	60	64	4	0	0.2	178	5.5	85	1.9	45	1	0.3	303
HWAC788	265,597	7142799	541	AC	68	-60	270	52	56	4	0	0.3	10	0.3	85	1.7	39	1	0.1	144
HWAC790	265,912	7142799	545	AC	60	-60	270	16	20	4	0	0.3	15	0.3	85	3.2	46	1	0.1	151
HWAC819	266,837	7143200	537	AC	83	-60	270	82	83	1	0.1	0.2	24	0.3	85	2.3	23	1	0.1	377
HWAC363	264,747	7145704	550	AC	67	-60	270	66	67	1	0	0.3	7	0.6	85	1	28	1	0.1	265
HWAC760	264,327	7142199	550	AC	85	-60	270	56	60	4	0	0.5	222	2.5	85	3.8	66	2	0.1	437
HWAC042	264,603	7145858	536	AC	65	-60	270	48	52	4	0	0.1	15	0.3	85	1.2	23	1	0.1	186
HWAC116	265,494	7145057	550	AC	69	-60	270	60	64	4	0	4.4	13	0.3	85	9.1	47	0	0.1	137
HWAC842	265,313	7143604	538	AC	63	-60	270	8	12	4	0	0.1	12	0.3	85	2.1	52	0	0.1	90
HWAC870	266,685	7142797	550	AC	120	-60	270	80	84	4	0.1	8.0	16	3.2	84	35.9	33	1	0.5	283
DDAC057	262,957	7144458	544	AC	70	-60	90	69	70	1	0.2	0.2	8	0.8	84	8.8	30	1	0.1	213
HWAC1134	266,993	7143598	533	AC	78	-60	270	12	16	4	0.1	0.1	10	0.3	84	1.1	19	0	0.1	230
HWAC293	264,249	7142404	550	AC	80	-60	270	79	80	1	0	0.1	81	0.5	84	3.7	29	1	0	308
HWAC289	263,848	7142402	550	AC	66	-60	270	8	12	4	0	0.2	15	1.9	84	2.4	26	1	0.2	284
HWAC410	265,651	7145264	550	AC	72	-60	270	54	55	1	0.8	0.1	125	0.5	84	4.6	38	1	0.1	186
HWAC184	263,099	7144707	544	AC	57	-60	270	20	24	4	0.2	0.2	4	0.7	83	5.7	37	1	0	159
DDAC003	262,874	7144804	545	AC	51	-60	90	48	51	3	0	0.2	12	0.7	83	2.2	21	1	0.1	145
HWAC654	265,700	7144267	550	AC	72	-60	270	4	8	4	0	0.1	9	0.3	83	4.2	29	1	0.2	185
HWAC044	265,003	7145863	538	AC	86	-60	270	72	76	4	0.1	1.8	16	0.3	83	6.5	31	1	0.1	507
HWAC1158	268,179	7141997	544	AC	115	-60	270	72	76	4	0	0.2	60	0.3	83	2.9	17	1	0.1	181
HWAC725	263,992	7145366	550	AC	64	-60	270	60	63	3	0	0.2	6	0.2	83	4.6	70	1	0.1	102
HWAC281	265,151	7142002	550	AC	93	-60	270	72	76	4	0.1	0.2	29	0.4	83	3.3	54	2	0.2	202
HWAC780	265,027	7142600	541	AC	86	-60	270	72	76	4	0	0.3	30	0.4	83	5.3	45	1	0.1	286
HWAC892	266,665	7142002	538	AC	90	-60	270	76	80	4	0	0.1	15	0.6	83	2.2	21	2	0.1	139
HWAC386	265,246	7146064	550	AC	68	-60	270	67	68	1	0	0.2	22	2	82	5	35	1	0.2	106
HWAC210	263,950	7145657	550	AC	53	-60	270	12	16	4	0	0.4	13	0.2	82	3	107	1	0.1	890
HWAC789	265,749	7142798	550	AC	67	-60	270	60	64	4	0	0.3	12	0.3	82	2.1	34	1	0.1	129
HWAC719	263,527	7145360	550	AC	62	-60	270	60	61	1	0.3	0.2	8	1.2	82	16.6	92	1	0.1	149
HWAC203	263,250	7143864	543	AC	82	-60	270	72	76	4	0	0.2	16	0.3	82	4.8	55	1	0.1	157
CDAC004	263,795	7143540	542	AC	54	-60	90	0	4	4	0	0	7	2.4	82	4.9	37	1	0.1	137

		inates (MGA Zone 51)	94		Hole	Details		Max	imum in-	hole Au As	ssay			Maxin	num in-h	ole Multi	-element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
DDRC006	263,294	7144388	543	RC	250	-51.4	227.5	218	219	1	1.9	2.9	17	1.7	81	218	42	1	0.8	82
DDAC055	263,017	7144457	544	AC	67	-60	90	3	4	1	0.1	0.1	8	0.7	81	9.6	16	1	0.1	150
HWAC374	265,297	7145709	550	AC	67	-60	270	66	67	1	0.6	0.1	9	1	81	5	27	1	0.4	99
HWAC229	264,851	7145510	550	AC	80	-60	270	56	60	4	0.2	0.2	11	0.4	81	2.8	64	1	2.8	183
HWAC367	264,944	7145704	550	AC	85	-60	270	68	72	4	0	0.7	11	0.2	81	4.3	76	1	0.4	420
DDAC051	263,147	7144457	544	AC	66	-60	90	48	52	4	0	0.3	18	6.8	80	70	73	1	1	70
HWAC686	266,396	7144112	550	AC	105	-60	270	72	76	4	0.1	0.1	9	0.3	80	2	35	0	0.1	128
HWAC154	262,299	7144894	550	AC	47	-60	270	40	44	4	0	0.1	14	0.5	80	1.3	27	0	0.1	241
DJRC004	265,299	7145063	550	RC	181	-57.2	262.6	159	160	1	6.4	1.2	44	0.8	79	9	40	1	0.6	176
HWAC710	263,669	7145560	550	AC	59	-60	270	56	58	2	0	0.2	10	1.3	79	6.5	73	1	0.2	134
HWAC334	265,049	7145056	550	AC	85	-60	270	48	52	4	0.4	0.1	12	0.4	79	2.1	35	1	2	232
HWAC190	262,912	7144144	545	AC	63	-60	225	28	32	4	0	0.1	8	0.4	79	1.9	54	1	0	117
HWAC771	263,847	7142210	547	AC	66	-60	270	65	66	1	0	0.2	307	0.3	79	1.5	60	1	0.1	286
HWAC720	263,608	7145363	550	AC	50	-60	270	40	44	4	0.1	0.2	6	3	79	7.9	132	1	0.1	148
DDAC016	262,673	7144791	545	AC	33	-60	90	24	28	4	0	0.1	6	0.4	79	1.5	26	1	0	71
DDAC062	262,805	7144456	545	AC	54	-60	90	45	46	1	2.3	0.2	26	1	79	2.4	29	1	0.2	31
HWAC908	270,344	7142003	545	AC	39	-60	270	24	28	4	0	0.1	7	0.3	78	3.2	9	0	0.1	105
HWAC111	265,002	7145062	550	AC	78	-60	270	60	64	4	0	0.2	7	0.3	78	2	32	1	0	156
HWAC353	264,798	7146203	550	AC	41	-60	270	36	40	4	0	0.6	155	0.2	78	4.8	131	4	0.1	382
HWAC177	262,399	7144699	550	AC	63	-60	270	62	63	1	0	0.1	14	0.5	78	2.6	48	0	0.1	196
HWAC278	264,856	7142009	550	AC	75	-60	270	68	72	4	0.1	0.8	23	0.7	77	8.1	40	2	0.1	218
HWAC305	264,352	7142799	550	AC	74	-60	270	73	74	1	0.1	0.1	29	0.6	77	4.5	34	0	0.2	139
HWAC288	263,748	7142396	550	AC	58	-60	270	57	58	1	0.1	0.1	7	0.3	77	3.1	40	1	0.1	164
HWAC754	265,905	7142002	550	AC	72	-60	270	4	8	4	0	0.3	32	0.4	77	2.6	50	1	0.1	95
CDAC003	263,899	7143533	541	AC	58	-60	90	50	51	1	1.4	0.1	7	0.4	77	1.9	41	1	0.1	102
HWAC208	263,754	7145658	550	AC	65	-60	270	60	64	4	0	0.2	25	3	76	9.1	48	2	0.7	1172
HWAC113	265,201	7145056	550	AC	59	-60	270	56	58	2	0.3	0.1	12	0.3	76	5.4	51	1	0.3	374
DDAC039	262,787	7144603	545	AC	39	-60	90	28	32	4	0.1	0.2	5	0.4	76	3.8	18	1	0.1	125
HWAC358	264,699	7146065	550	AC	66	-60	270	55	56	1	0.8	0.3	35	2.6	76	3.4	186	3	0.7	328
HWAC844	265,626	7143600	543	AC	49	-60	270	24	28	4	0	0.2	8	0.2	76	4	56	1	0.1	125
HWAC109	265,344	7145855	533	AC	83	-60	270	28	32	4	0.1	0.2	9	0.3	76	1.7	24	1	0	90
HWAC163	263,201	7144900	544	AC	55	-60	270	54	55	1	0.1	0.2	4	0.9	75	10.2	27	1	0.1	110
HWAC773	263,910	7142601	545	AC	89	-60	270	8	12	4	0	0.3	387	0.4	75	3.7	31	1	0.1	315
HWAC241	265,091	7144662	550	AC	90	-60	270	80	84	4	0	0.3	10	0.9	75	3.6	25	1	0.1	147
HWAC306	264,443	7142803	550	AC	54	-60	270	44	48	4	0	0.1	10	0.4	75	6.1	23	1	0.1	107
HWAC043	264,802	7145852	538	AC	71	-60	270	67	68	1	0.3	0.2	20	0.6	75	1	49	1	0.5	300
HWAC843	265,471	7143603	543	AC	52	-60	270	48	51	3	0	0.1	9	0.2	74	4.1	57	1	0.1	86
HWAC867	266,204	7142799	543	AC	74	-60	270	48	52	4	0	0	12	0.6	74	3.3	150	1	0.2	156
HWAC168	262,305	7144799	550	AC	54	-60	270	52	53	1	0	0.3	23	2.5	73	1.5	59	0	0.2	283
HWAC775	264,232	7142603	546	AC	91	-60	270	90	91	1	0.1	0.4	229	1.3	73	10.7	30	1	0.3	311

		inates (MGA Zone 51)	94		Hole	Details		Max	imum in-	hole Au As	ssay			Maxin	num in-h	ole Multi	-element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
HWAC205	263,451	7145659	550	AC	51	-60	270	48	50	2	0.1	0.3	40	1.1	73	8.9	154	1	0.2	1786
HWAC072	264,318	7144663	540	AC	66	-60	270	44	48	4	0.1	0.2	7	0.4	73	1.8	60	1	0.1	79
HWAC632	265,252	7145259	550	AC	82	-60	270	80	81	1	0	1.1	8	0.4	73	1.6	34	0	0	168
HWAC189	263,599	7144698	542	AC	45	-60	270	44	45	1	0.3	0.2	9	8.0	73	10.6	61	0	0.1	144
HWAC304	264,249	7142800	550	AC	78	-60	270	77	78	1	0	0.7	81	0.7	73	4.7	35	1	0.1	225
HWAC198	262,777	7143866	545	AC	58	-60	270	48	52	4	0	0.1	6	0.5	73	1.4	26	0	0.1	227
HWAC405	265,397	7145267	550	AC	71	-60	270	36	40	4	0	0.1	7	0.4	72	2.2	34	0	0.1	105
HWAC050	263,562	7145456	542	AC	62	-60	270	58	59	1	0.2	0.5	10	1.3	72	16.8	32	1	0.2	214
HWAC077	265,201	7144271	540	AC	63	-60	270	4	8	4	0	0.3	12	0.3	72	1.4	35	1	0	104
HWAC690	266,587	7144107	550	AC	73	-60	270	72	73	1	0	0.1	8	0.3	71	1.3	29	0	0.1	107
HWAC029	262,394	7145857	546	AC	39	-60	90	28	32	4	0	0.2	11	0.5	71	1.7	36	1	0.2	97
HWAC711	263,749	7145559	550	AC	60	-60	270	24	28	4	0	0.4	23	6.1	71	10.5	128	1	0.7	197
DDRC002	263,222	7144461	544	RC	220	-55	225	152	153	1	1.7	2.2	21	4.7	71	45.2	88	3	0.4	120
HWAC055	263,928	7145460	538	AC	68	-60	270	64	68	4	0.1	0.2	16	1.7	71	6.1	92	1	0.4	131
HWAC762	264,651	7142199	548	AC	69	-60	270	68	69	1	0	0.4	24	0.7	71	4.5	23	2	0.2	169
HWAC114	265,297	7145057	550	AC	62	-60	270	61	62	1	0	0.1	8	0.3	71	2.1	29	0	0.1	159
DDAC053	263,092	7144457	544	AC	78	-60	90	22	23	1	0.4	0.1	10	2.6	70	23.7	25	1	0.2	54
HWAC766	265,286	7142200	546	AC	70	-60	270	8	12	4	0	0.1	20	0.4	70	2.5	65	1	0.1	100
HWAC032	262,199	7145862	545	AC	21	-60	90	8	12	4	0	0.1	17	1	70	1.5	64	1	0.1	33
HWAC346	264,203	7143205	540	AC	61	-60	270	60	61	1	0.1	0.2	11	1.1	70	7.5	41	1	0.3	121
HWAC193	262,993	7144222	544	AC	68	-60	225	67	68	1	0.3	0.1	10	0.7	70	3.7	26	1	0.3	219
HWAC845	265,795	7143601	546	AC	63	-60	270	56	60	4	0	0.1	11	0.2	70	3.5	48	2	0.1	107
CDAC012	263,996	7143201	541	AC	68	-60	360	12	16	4	0	0	13	0.3	70	1.8	28	1	0.1	166
HWAC104	265,059	7145865	536	AC	85	-60	270	51	52	1	0.2	2.3	21	0.5	70	4.7	88	1	0.2	277
HWAC066	264,279	7145059	541	AC	86	-60	270	36	40	4	0	0.2	35	0.7	70	3.7	55	1	0.3	118
HWAC360	264,799	7146064	550	AC	43	-60	270	40	42	2	0	3.4	16	0.4	69	5.9	283	2	0	157
HWAC052	263,719	7145462	538	AC	51	-60	270	49	50	1	0.6	0.1	25	3.3	69	11	75	1	0.2	251
HWAC303	264,145	7142800	550	AC	79	-60	270	76	78	2	0	0.2	55	1	69	2	27	1	0.2	167
HWAC404	265,344	7145260	550	AC	78	-60	270	39	40	1	0.1	0.2	5	0.3	69	2.4	94	1	0.1	117
HWAC098	264,647	7145854	539	AC	62	-60	270	52	56	4	0	1.3	10	0.2	69	1.8	33	1	0.1	236
HWAC635	265,850	7145064	550	AC	77	-60	270	76	77	1	0	0.1	7	0.3	68	2.6	21	1	0.1	197
DDAC015	262,689	7144793	545	AC	43	-60	90	20	24	4	0	0.1	4	0.9	68	2.6	17	1	0.1	79
HWAC401	265,148	7145261	550	AC	71	-60	270	63	64	1	0.5	0.1	6	0.3	68	1.6	53	0	0.1	128
HWAC714	263,986	7145563	550	AC	66	-60	270	60	64	4	0.1	0.4	6	0.3	68	1	188	1	0	161
CDAC011	264,006	7143302	541	AC	60	-60	360	43	44	1	0.1	0	13	0.8	68	12.4	29	2	0.2	80
HWAC101	264,853	7145857	538	AC	83	-60	270	50	51	1	3.9	0.2	13	0.3	67	1.2	143	1	1	390
CDAC005	263,701	7143541	542	AC	67	-60	90	52	56	4	0.1	0.1	48	16.4	67	44.6	167	2	0.6	63
HWAC192	262,964	7144199	544	AC	77	-60	225	76	77	1	0	0.1	11	0.7	67	2.2	24	1	0.1	153
DDAC004	262,855	7144801	545	AC	38	-60	90	36	38	2	0	0.1	9	0.4	67	3.9	15	1	0.1	132
HWAC730	263,525	7145199	550	AC	60	-60	270	52	56	4	0.8	0.1	9	1.1	67	6.9	18	0	0.1	73

		inates (MGA Zone 51)	94		Hole	Details		Max	imum in-	hole Au As	ssay			Maxin	num in-ho	ole Multi-	-element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
HWAC164	263,302	7144901	543	AC	55	-60	270	54	55	1	0.2	0.3	4	2.6	67	9.3	54	1	0.3	121
DDAC037	262,827	7144604	545	AC	46	-60	90	44	46	2	0.1	0.1	5	0.3	67	3.9	16	0	0.1	130
HWAC389	264,994	7145508	550	AC	80	-60	270	68	72	4	0.1	0.2	8	0.4	67	1.5	55	1	0.5	121
HWAC739	263,681	7145057	550	AC	60	-60	270	52	56	4	0.1	0.1	14	4.2	66	3.6	68	1	0.1	154
HWAC687	266,447	7144110	550	AC	78	-60	270	60	64	4	0	0.1	10	0.4	66	2	28	0	0.2	155
HWAC299	263,750	7142795	550	AC	74	-60	270	73	74	1	0.4	0.2	134	0.3	66	2	41	1	0	210
HWAC194	263,025	7144255	544	AC	72	-60	225	68	71	3	0.2	0.1	5	0.4	66	2.5	17	1	0.1	193
HWAC197	263,108	7144341	544	AC	72	-60	225	44	48	4	0.2	0.2	7	2.5	66	32.2	21	1	0.2	110
HWAC868	266,362	7142800	552	AC	89	-60	270	64	68	4	0.1	0	12	0.6	65	3.4	19	1	0.2	248
HWAC402	265,194	7145256	550	AC	76	-60	270	69	70	1	0.3	0.1	11	8.0	65	2.1	59	1	0.2	183
HWAC195	263,052	7144284	544	AC	74	-60	225	73	74	1	0.1	0.1	10	0.4	65	4.2	20	1	0.1	235
HWAC751	265,428	7142006	550	AC	55	-60	270	12	16	4	0	0.3	28	0.4	64	2.6	43	2	0.1	142
HWAC396	264,900	7145265	550	AC	76	-60	270	45	46	1	0.8	0	8	0.4	64	3.3	40	1	0	94
DDAC043	262,707	7144602	545	AC	47	-60	90	44	47	3	0.1	0.1	6	0.3	64	2.1	17	1	0.1	129
HWAC639	265,100	7144865	550	AC	75	-60	270	48	52	4	0.1	0.1	7	0.3	64	1.7	26	1	0.1	72
HWAC280	265,055	7142002	550	AC	81	-60	270	68	72	4	0	0.1	21	0.4	64	2.7	47	1	0.1	196
HWAC182	262,900	7144697	544	AC	46	-60	270	44	45	1	0	0.2	9	0.3	64	6.7	15	1	0	79
HWAC057	264,039	7145444	542	AC	71	-60	270	56	60	4	0.1	0.2	10	0.7	64	0.8	58	1	0.1	90
HWAC028	262,594	7145860	544	AC	20	-60	90	0	4	4	0	0	26	1	63	0.9	24	1	0.1	29
DDAC048	263,242	7144460	543	AC	63	-60	90	20	24	4	0	0.1	7	9.2	63	16.6	31	1	0.1	77
HWAC372	265,197	7145704	550	AC	77	-60	270	73	74	1	0.5	0.1	11	0.5	63	2.4	33	0	0.2	73
HWAC403	265,296	7145263	550	AC	89	-60	270	76	80	4	0	0.2	4	0.3	63	2	30	0	0.1	100
HWAC033	262,191	7145859	545	AC	30	-60	90	24	28	4	0	0.1	16	1.1	63	1.3	37	1	0.1	35
DDAC056	262,986	7144460	544	AC	66	-60	90	16	20	4	0.1	0.1	7	0.6	63	9.2	23	1	0.1	127
HWAC776	264,378	7142600	542	AC	78	-60	270	60	64	4	0	0.5	40	0.6	63	2	51	1	0.1	236
HWAC694	266,799	7144108	550	AC	75	-60	270	44	48	4	0	0.1	168	0.3	62	1	18	0	0.1	193
HWAC350	264,607	7143222	539	AC	39	-60	270	38	39	1	0.1	0.1	11	0.8	62	3.9	26	1	0.4	114
HWAC054	263,859	7145467	540	AC	69	-60	270	52	56	4	0.1	1.2	5	0.5	62	2.8	45	1	0.1	160
HWAC108	265,300	7145866	535	AC	81	-60	270	36	40	4	0	0.3	10	0.2	62	1.6	28	0	0	68
HWAC240	265,005	7144655	550	AC	66	-60	270	8	12	4	0	0.2	9	0.3	61	2.3	56	1	0.1	113
HWAC693	266,747	7144108	550	AC	78	-60	270	64	65	1	0.5	0.4	8	0.2	61	1.1	15	0	0.1	130
HWAC204	263,350	7145660	550	AC	43	-60	270	42	43	1	0	0.1	13	1.2	61	16	23	1	0.1	611
HWAC335	265,145	7145060	550	AC	67	-60	270	66	67	1	0.5	0.2	11	0.3	61	2	44	1	0.3	229
HWAC133	262,108	7145397	550	AC	39	-60	270	32	36	4	0	0.2	17	0.5	61	0.9	42	0	0.1	201
HWAC034	262,139	7145860	545	AC	18	-60	90	8	12	4	0	0	9	1.2	61	0.7	23	1	0.1	27
HWAC045	265,205	7145868	538	AC	75	-60	270	74	75	1	0.2	0.2	13	0.4	60	1.5	41	1	0.1	215
HWAC200	262,947	7143862	545	AC	38	-60	270	37	38	1	0	0.1	4	0.4	60	1.1	20	0	0	113
HWAC106	265,149	7145861	537	AC	81	-60	270	60	64	4	0.1	7.2	24	1.9	60	6.3	101	1	0.6	317
HWAC233	265,256	7145494	550	AC	77	-60	270	68	72	4	0	0.9	10	0.4	60	2.4	119	0	0	89
HWAC753	265,754	7142000	550	AC	43	-60	270	4	8	4	0	0.3	28	0.4	60	1.9	41	1	0.1	102

		inates (MGA Zone 51)	94		Hole	Details		Max	imum in-	hole Au As	ssay			Maxin	num in-h	ole Multi	-element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
HWAC777	264,548	7142602	545	AC	62	-60	270	56	60	4	0.1	0.3	12	0.4	60	4.4	51	1	0.1	108
DDAC033	262,922	7144602	544	AC	69	-60	90	68	69	1	0.1	0.3	5	0.3	59	2.8	23	0	0.1	118
DDAC042	262,725	7144601	545	AC	42	-60	90	40	42	2	0	0.3	8	0.5	59	2	28	1	0.1	125
HWAC391	265,197	7145519	550	AC	72	-60	270	32	36	4	0	0.1	8	0.3	59	1.7	35	1	0.1	114
HWAC243	265,298	7144655	550	AC	58	-60	270	57	58	1	0	0.3	9	0.3	59	2.4	30	1	0.1	83
HWAC185	263,199	7144703	544	AC	58	-60	270	56	57	1	0.1	0.3	5	0.9	58	9.3	44	0	0.1	132
HWAC146	262,405	7145199	550	AC	39	-60	270	38	39	1	0	0.5	8	0.4	58	3.8	29	1	0.1	203
HWAC388	264,902	7145513	550	AC	75	-60	270	64	68	4	0.1	2.2	11	0.3	58	1.7	64	1	0.1	155
HWAC1141	266,282	7142803	501	AC	75	-60	270	64	68	4	0	0.1	37	0.3	57	2.1	39	1	0.1	165
HWAC090	263,680	7145456	544	AC	39	-60	270	36	39	3	0	0.3	17	2.3	57	10.5	60	1	0.1	189
HWAC809	265,234	7143198	544	AC	61	-60	270	4	8	4	0	0.1	16	0.3	57	3.3	55	2	0.1	152
HWAC284	264,052	7142000	550	AC	80	-60	270	64	68	4	0	0.1	47	0.3	57	1.7	32	0	0.1	143
HWAC769	265,052	7142399	550	AC	84	-60	270	72	76	4	0.1	0.2	23	0.3	57	3.5	40	4	0.2	153
HWAC400	265,094	7145266	550	AC	62	-60	270	56	60	4	0.1	0.1	6	0.3	57	1.8	35	1	0.1	86
ACDR002	263,200	7144342	544	RC	139	-62.2	2.5	112	113	1	5.3	0.6	13	0.5	57	12.5	9	1	0.7	75
HWAC166	263,498	7144903	543	AC	60	-60	270	48	52	4	0.1	0.2	6	1	57	17.4	31	0	0.1	72
DDAC044	262,686	7144600	545	AC	52	-60	90	39	40	1	3.1	0.1	7	0.4	56	2	28	0	0.1	141
CDAC008	263,496	7143544	543	AC	83	-60	90	68	72	4	0	0.6	9	0.6	56	4.7	51	1	0.1	232
HWAC202	263,155	7143859	544	AC	71	-60	270	68	70	2	0.1	0.1	9	0.4	56	1.2	37	1	0.1	120
HWAC642	265,252	7144863	550	AC	73	-60	270	68	72	4	0.1	0.2	7	0.3	56	1.9	35	0	0.1	91
HWAC832	263,708	7146059	544	AC	69	-60	270	44	48	4	0.1	1.1	26	0.9	55	10.7	274	1	0.3	1781
DDAC021	262,592	7144800	546	AC	32	-60	90	28	32	4	0	0.1	8	0.4	55	2.4	15	0	0.1	89
HWAC107	265,254	7145865	538	AC	85	-60	270	52	53	1	0.3	0.2	9	0.2	54	3.4	61	0	0	90
HWAC643	265,300	7144865	550	AC	67	-60	270	64	66	2	0	0.1	7	0.3	54	2.7	29	0	0	133
HWAC179	262,604	7144695	546	AC	46	-60	270	0	4	4	0	0.2	7	0.6	54	1.6	24	0	0.1	88
HWAC345	264,103	7143207	540	AC	65	-60	270	60	64	4	0.1	0.1	9	0.5	54	3.8	36	1	0.2	128
HWAC707	263,431	7145560	550	AC	46	-60	270	45	46	1	0.1	0.1	10	1.4	54	18.9	35	0	0.3	240
HWAC816	266,358	7143196	538	AC	103	-60	270	88	92	4	0	0.1	19	1.5	54	4.2	88	1	0.4	153
HWAC300	263,851	7142796	550	AC	74	-60	270	73	74	1	0.1	0.2	224	0.4	54	2.2	36	1	0.1	186
HWAC633	265,250	7145057	550	AC	68	-60	270	55	56	1	0.8	0.3	8	0.3	53	2.5	59	0	0.2	194
DDAC026	262,518	7144803	552	AC	35	-60	90	32	35	3	0	0.2	6	0.6	53	2.1	18	1	0.1	105
CDAC001	264,002	7143527	541	AC	60	-60	90	48	52	4	0.1	0.1	6	0.6	53	1.3	23	1	0	65
HWAC370	265,102	7145701	550	AC	72	-60	270	68	71	3	0	0.1	12	0.3	53	1.6	30	1	0	97
HWAC180	262,696	7144697	545	AC	38	-60	270	32	36	4	0	0.1	7	0.6	53	5.1	17	1	0.2	114
HWAC125	262,001	7145601	550	AC	40	-60	270	28	32	4	0	0.3	9	0.8	52	1.1	15	0	0.2	113
HWAC641	265,200	7144861	550	AC	57	-60	270	8	12	4	0	0.1	10	0.3	52	2.6	34	0	0.1	86
HWAC891	266,501	7142003	543	AC	79	-60	270	52	56	4	0	0.2	47	0.4	52	3.5	24	4	0.2	167
HWAC244	265,403	7144658	550	AC	56	-60	270	52	55	3	0	0.1	7	0.3	52	3.9	32	0	0.1	112
HWAC397	264,944	7145261	550	AC	70	-60	270	44	48	4	0.1	1.3	8	0.4	52	3.3	43	1	0.2	95
HWAC1125	261,905	7147403	545	AC	17	-60	270	4	8	4	0	0.3	57	1.5	51	2.4	144	1	0.3	215

		inates (MGA Zone 51)	94		Hole	Details		Max	imum in-	hole Au As	ssay			Maxin	num in-h	ole Multi	-element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
HWAC285	264,152	7142007	550	AC	71	-60	270	70	71	1	0	0.1	123	0.6	51	6.1	31	1	0.1	285
HWAC157	262,599	7144902	545	AC	28	-60	270	20	24	4	0	0.2	3	0.4	51	4	28	1	0	136
HWAC124	266,552	7144247	550	AC	74	-60	270	68	72	4	0	0	412	0.3	51	4.5	55	1	0.1	208
DDAC002	262,889	7144803	544	AC	56	-60	90	48	52	4	0	0.6	7	0.7	51	8.5	23	0	0.1	95
HWAC764	264,963	7142198	540	AC	81	-60	270	80	81	1	0	0.1	21	0.4	51	3.6	32	1	0.2	144
HWAC065	264,225	7145055	542	AC	63	-60	270	60	63	3	0	0.1	8	0.3	51	1.4	36	1	0.1	102
HWAC089	263,519	7145457	541	AC	54	-60	270	34	35	1	0.1	0.1	16	0.6	51	14.2	23	1	0.2	277
DDAC014	262,702	7144796	545	AC	26	-60	90	0	4	4	0	0.1	6	0.6	50	6.8	12	1	0.1	80
HWAC073	264,376	7144675	540	AC	69	-60	270	36	40	4	0	0	5	0.3	50	2.5	39	1	0	88
HWAC217	264,850	7146201	550	AC	41	-60	270	8	12	4	0	0.1	26	0.3	50	2.2	54	1	0.1	521
HWAC196	263,076	7144313	544	AC	71	-60	225	70	71	1	0.3	0.1	17	0.9	50	11.6	16	1	0.1	148
HWAC721	263,682	7145359	550	AC	54	-60	270	53	54	1	0.1	0.6	7	0.9	50	4.8	57	1	0.1	194
DDAC022	262,579	7144802	546	AC	30	-60	90	28	30	2	0	0.1	5	0.8	50	6	14	1	0.2	84
DDAC046	263,010	7144603	544	AC	59	-60	90	55	56	1	0.7	0.2	5	0.5	50	3.4	23	1	0	189
HWAC348	264,400	7143217	539	AC	60	-60	270	59	60	1	0.4	0.2	12	17	49	10.4	27	1	0.3	126
HWAC140	262,199	7145198	550	AC	54	-60	270	52	53	1	0	0.2	8	2	49	3.2	20	0	0.2	105
HWAC274	264,456	7142000	550	AC	86	-60	270	8	12	4	0	0.2	278	0.5	49	2.4	28	1	0.1	260
DDAC018	262,644	7144791	545	AC	39	-60	90	36	39	3	0	0.1	4	0.3	49	2.1	21	1	0.1	80
HWAC216	264,751	7146202	550	AC	41	-60	270	40	41	1	0	0.5	7	0.5	49	1.6	109	1	0.1	113
HWAC148	262,298	7145058	550	AC	27	-60	270	26	27	1	0.1	0.2	4	0.4	49	1.1	12	0	0.1	117
HWAC025	264,509	7146660	541	AC	36	-60	270	32	36	4	0	1.6	28	0.3	49	0.7	133	2	0.1	388
DDAC045	262,661	7144600	545	AC	58	-60	90	36	40	4	0	0.3	7	0.5	49	1.6	15	0	0.1	234
HWAC705	263,990	7145762	550	AC	66	-60	270	52	56	4	0	0.2	23	0.3	49	0.8	78	1	0.1	662
ACDR001	264,386	7143461	540	RC	119	-61.6	267.5	67	68	1	3.7	2.8	17	7.5	48	15.4	20	5	0.3	122
HWAC359	264,750	7146066	550	AC	39	-60	270	36	38	2	0	1.2	15	0.2	48	5.2	158	2	0	114
HWAC134	262,201	7145398	550	AC	46	-60	270	20	24	4	0.1	0.5	4	0.3	48	0.8	15	0	0.1	247
HWAC319	266,699	7143897	550	AC	61	-60	270	56	60	4	0	0.1	14	0.3	48	1.2	38	0	0.1	189
HWAC231	265,050	7145517	550	AC	67	-60	270	40	44	4	0.1	0.7	10	0.3	48	1.5	48	1	0	90
HWAC399	265,045	7145267	550	AC	59	-60	270	58	59	1	0.2	0.2	6	0.3	47	30	33	1	0.3	90
HWAC046	265,404	7145866	535	AC	81	-60	270	28	32	4	0.1	0.1	11	0.6	47	2	29	1	0.6	66
HWAC273	264,353	7142009	550	AC	82	-60	270	8	12	4	0	0.3	20	0.2	47	2.8	103	1	0	259
DDAC032	262,431	7144803	555	AC	30	-60	90	20	24	4	0	0.1	6	0.3	47	1.3	17	0	0.1	86
HWAC112	265,098	7145055	550	AC	58	-60	270	48	52	4	6.1	0.1	8	0.5	46	4.5	54	1	0.6	225
HWAC056	263,978	7145451	542	AC	69	-60	270	68	69	1	0	1.7	8	0.3	46	2.1	90	1	0.1	648
HWAC375	265,351	7145706	550	AC	66	-60	270	28	32	4	0.1	0.1	8	0.3	46	1.3	29	0	0.1	79
HWAC071	264,270	7144665	540	AC	63	-60	270	56	60	4	0	2.3	8	0.5	46	4.3	77	1	0.4	64
HWAC103	264,949	7145861	541	AC	72	-60	270	56	60	4	0.1	0.1	14	0.2	46	2.7	39	1	0.7	456
DDAC029	262,477	7144798	552	AC	30	-60	90	16	20	4	0	0.1	9	0.4	46	1.8	14	0	0.1	91
HWAC035	262,502	7145860	549	AC	24	-60	90	20	24	4	0	0.1	80	2.9	45	0.8	25	1	0.1	20
HWAC201	263,050	7143860	544	AC	60	-60	270	48	52	4	0	0.1	13	0.4	45	1.1	24	0	0	90

		nates (MGA Zone 51)	94		Hole	Details		Max	timum in-	hole Au A	ssay			Maxin	num in-h	ole Multi-	-element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
HWAC379	265,550	7145701	550	AC	78	-60	270	76	77	1	0.1	0.2	10	0.4	45	1.4	71	0	0	80
HWAC737	263,359	7145058	550	AC	57	-60	270	56	57	1	0.1	0.2	5	11.6	45	12.1	48	0	0.3	96
HWAC759	264,170	7142202	550	AC	83	-60	270	8	12	4	0	0.4	28	1.9	45	2	106	1	0.1	225
DDAC047	262,952	7144605	544	AC	66	-60	90	60	64	4	0	0.2	6	0.6	44	3	18	1	0.1	99
HWAC291	264,052	7142399	550	AC	87	-60	270	86	87	1	0	0.1	178	0.5	44	2.1	36	1	0.2	173
HWAC390	265,102	7145520	550	AC	73	-60	270	64	68	4	0.1	0.2	9	0.3	44	1.2	42	1	0.2	82
HWAC232	265,149	7145521	550	AC	71	-60	270	32	36	4	0.1	0.1	9	0.3	44	1	50	1	0	97
HWAC178	262,497	7144699	550	AC	45	-60	270	44	45	1	0	0.1	7	0.4	44	1.1	15	0	0.1	82
DDAC025	262,535	7144800	546	AC	37	-60	90	36	37	1	0.1	0.2	8	0.8	43	8.7	25	0	0.1	95
HWAC368	264,997	7145704	550	AC	69	-60	270	64	65	1	0.3	0.2	10	0.3	43	3.3	21	1	0	342
DDAC028	262,490	7144801	551	AC	29	-60	90	28	29	1	0	0.2	7	16.1	43	2.3	17	0	0	95
HWAC126	262,100	7145601	550	AC	47	-60	270	28	32	4	0	0.2	8	0.5	43	1.3	22	0	0.1	101
DDAC027	262,504	7144800	551	AC	32	-60	90	0	4	4	0	0.2	9	0.7	42	1.9	14	0	0.1	83
DDAC009	262,778	7144796	545	AC	26	-60	90	16	20	4	0	0.1	5	0.6	42	2.8	26	0	0.1	112
HWAC137	262,501	7145398	550	AC	18	-60	270	4	8	4	0	0.1	6	0.4	42	1.1	12	0	0.1	80
DDAC019	262,628	7144796	545	AC	35	-60	90	4	8	4	0	0.1	4	0.5	42	1.7	12	1	0.1	91
HWAC369	265,047	7145704	550	AC	69	-60	270	68	69	1	0.1	0.3	9	0.3	42	1.7	35	1	0.1	151
HWAC199	262,850	7143859	545	AC	49	-60	270	40	44	4	0	0.1	4	0.4	42	1.1	18	0	0	112
HWAC135	262,303	7145400	550	AC	17	-60	270	12	16	4	0	0.1	4	0.3	42	2.1	13	0	0.1	88
HWAC149	262,396	7145065	550	AC	37	-60	270	32	36	4	0.1	0.4	4	0.5	42	1.3	12	0	0.1	91
HWAC174	263,403	7144800	543	AC	57	-60	270	56	57	1	0.2	0.1	4	4.9	41	16.7	65	1	0.1	78
HWAC815	266,203	7143200	549	AC	85	-60	270	12	16	4	0	0.1	13	0.3	41	4.4	51	2	0.1	143
HWAC230	264,949	7145500	550	AC	71	-60	270	60	64	4	0.1	0.3	10	0.3	41	1.7	56	0	0.8	91
HWAC292	264,150	7142401	550	AC	79	-60	270	8	12	4	0	0.1	65	0.4	41	2.8	30	2	0.1	169
HWAC251	263,450	7143549	543	AC	81	-60	270	48	52	4	0	0.2	100	0.5	40	1.7	76	0	0	137
DDAC031	262,445	7144801	555	AC	29	-60	90	28	29	1	0	0.1	6	0.5	40	1.3	18	0	0.1	90
HWAC398	264,996	7145267	550	AC	58	-60	270	57	58	1	0.3	0.7	8	0.3	40	1.8	42	1	1.6	86
HWAC064	264,152	7145057	541	AC	57	-60	270	56	57	1	0	0.1	8	0.3	39	7.4	21	1	0.2	64
CDAC010	263,999	7143423	541	AC	69	-60	360	44	48	4	0	0.2	6	0.5	39	2.6	31	1	0.1	60
DDAC006	262,825	7144800	545	AC	45	-60	90	16	20	4	0	0.1	4	9.6	39	8.2	25	1	0.1	90
HWAC726	262,879	7145195	550	AC	23	-60	270	16	20	4	0	0.7	4	0.3	39	2.2	35	0	0.1	114
HWAC150	262,494	7145058	550	AC	16	-60	270	0	4	4	0	0.1	4	0.3	39	1.2	19	0	0.1	70
HWAC004	262,396	7146659	547	AC	23	-60	90	4	8	4	0	0.2	15	0.9	38	0.7	214	1	0	31
HWAC175	263,495	7144797	542	AC	72	-60	270	68	71	3	0.1	0.1	5	2	38	17	41	0	0.2	101
HWAC155	262,397	7144901	550	AC	23	-60	270	20	22	2	0	0.1	4	0.3	38	0.8	13	0	0	76
HWAC786	265,267	7142805	543	AC	57	-60	270	56	57	1	0	0.3	15	0.5	38	5	79	2	0.1	121
HWAC127	262,195	7145599	550	AC	28	-60	270	16	20	4	0.1	0.2	6	1.7	38	4.3	18	0	0.1	93
ACDA013	263,185	7144218	544	AC	76	-60	180	68	72	4	0.1	0.1	5	0.4	38	4.2	17	1	0.1	118
DDAC050	263,180	7144458	544	AC	64	-60	90	60	64	4	0.1	0.2	17	4.1	37	60.4	47	1	0.3	107
HWAC141	262,303	7145196	550	AC	27	-60	270	26	27	1	0	0.3	4	0.4	37	0.8	13	0	0.1	132

		inates (MGA Zone 51)	94		Hole	Details		Max	imum in-	hole Au As	ssay			Maxin	num in-h	ole Multi	-element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
DDAC017	262,657	7144788	545	AC	30	-60	90	28	30	2	0	0.1	6	2.2	37	1	13	0	0.1	65
DDAC020	262,609	7144795	545	AC	31	-60	90	28	31	3	0	0.1	6	0.4	37	2.7	15	0	0	102
HWAC097	266,516	7144265	545	AC	80	-60	270	40	44	4	0	0.1	156	0.2	36	5	22	0	0.1	239
HWAC736	263,201	7145066	550	AC	69	-60	270	64	68	4	0	0.2	7	1.5	36	2.2	77	1	0.1	86
DDAC030	262,459	7144801	552	AC	30	-60	90	24	28	4	0	0.7	6	0.3	36	1.3	17	0	0.1	86
HWAC156	262,495	7144900	550	AC	26	-60	270	25	26	1	0	0.1	7	0.5	36	1.7	18	0	0.1	76
DDAC010	262,768	7144797	545	AC	40	-60	90	36	40	4	0	0.2	5	5.8	36	4.5	211	1	0.3	184
HWAC070	264,202	7144664	540	AC	69	-60	270	44	48	4	0.1	0.9	6	0.6	35	3	82	0	0.1	51
HWAC060	263,922	7145059	545	AC	54	-60	270	20	24	4	0.1	0.3	16	1.5	35	5.5	43	1	0.1	61
HWAC706	263,351	7145556	550	AC	49	-60	270	48	49	1	0.2	0.1	9	2.2	35	20.9	22	0	0.2	197
HWAC226	263,401	7145461	550	AC	42	-60	270	24	28	4	0.1	0.2	4	1.1	35	14.1	35	1	0.2	106
HWAC723	263,847	7145365	550	AC	58	-60	270	56	57	1	0.1	0.4	6	0.7	35	2.4	34	0	0.1	144
HWAC053	263,792	7145464	540	AC	60	-60	270	48	52	4	0	0.1	8	0.9	35	2.1	33	0	0.1	122
HWAC129	262,398	7145596	550	AC	15	-60	270	12	14	2	0	0.1	13	0.5	35	2.1	27	1	0.1	74
HWAC731	263,682	7145200	550	AC	62	-60	270	60	61	1	0.1	0.1	8	1.2	35	2.7	19	1	0.1	116
HWAC110	264,901	7145059	550	AC	57	-60	270	40	44	4	0	0.2	6	0.4	34	2.3	31	1	0	140
HWAC732	263,845	7145200	550	AC	63	-60	270	60	62	2	0.1	0.1	6	1	34	3.4	21	1	0.1	99
HWAC128	262,293	7145607	550	AC	23	-60	270	22	23	1	0	0.1	4	0.9	34	2.9	14	0	0.1	61
HWAC841	265,144	7143612	538	AC	64	-60	270	63	64	1	0	0.1	9	0.3	33	2.2	37	3	0.1	116
HWAC041	264,404	7145862	542	AC	51	-60	270	8	12	4	0	0.2	23	0.4	33	1.7	38	1	0.2	313
HWAC088	263,601	7145460	541	AC	39	-60	270	36	39	3	0	0.4	7	0.8	33	5	37	0	0.1	116
HWAC1128	263,345	7147402	545	AC	28	-60	270	24	27	3	0	0.7	11	0.3	33	1.1	141	1	0.2	266
HWAC729	263,360	7145200	550	AC	59	-60	270	56	58	2	0.1	0.1	7	31.7	33	7.4	52	0	0.1	88
DDAC054	263,056	7144459	544	AC	85	-60	90	65	66	1	20.4	0.1	7	0.7	33	10.8	19	1	0.2	36
HWAC076	265,001	7144269	536	AC	58	-60	270	40	44	4	0	0.5	9	0.3	32	2.2	47	1	0	89
DDAC011	262,750	7144795	545	AC	39	-60	90	38	39	1	0.3	0.3	4	0.7	32	5.8	27	0	0.1	120
HWAC183	263,000	7144703	544	AC	41	-60	270	20	24	4	0	0	4	0.3	32	2.2	12	1	0	75
HWAC740	263,840	7145061	550	AC	64	-60	270	48	52	4	0.2	0.2	8	1	32	3.1	36	1	0.2	102
ACDA037	263,576	7144799	542	AC	57	-60	360	44	48	4	0.1	0.2	2	0.5	32	3.1	34	1	-0.1	111
HWAC165	263,407	7144905	543	AC	54	-60	270	16	20	4	0	0.2	5	3.3	32	7.3	102	0	0.1	110
ACDA024	264,333	7143309	540	AC	66	-60	90	64	66	2	0	0.5	9	0.6	32	3.1	16	2	0.1	54
ACDA030	263,210	7144614	544	AC	60	-60	90	56	60	4	0	0.1	2	0.3	31	6.1	28	1	-0.1	59
CDAC007	263,600	7143537	542	AC	84	-60	90	64	68	4	0	0	12	0.3	31	1.8	56	1	0.1	108
HWAC118	263,445	7143851	543	AC	74	-60	270	73	74	1	0.1	0	9	0.4	31	3.6	49	1	0.1	135
HWAC724	263,922	7145363	550	AC	65	-60	270	64	65	1	0	0.2	8	1.5	30	1.6	59	0	0.1	90
HWAC173	263,295	7144799	543	AC	50	-60	270	49	50	1	0.1	0.2	4	3.4	29	8.6	35	0	1.1	78
HWAC123	264,248	7143846	541	AC	48	-60	270	16	20	4	0	0.2	5	2.7	29	2.3	36	1	0.1	124
DDAC005	262,838	7144800	545	AC	27	-60	90	16	20	4	0	0.1	5	0.4	28	1.2	13	0	0	69
HWAC728	263,205	7145200	550	AC	44	-60	270	16	20	4	0.3	0.1	4	1	28	2	20	0	0.1	85
HWAC026	262,991	7145856	542	AC	20	-60	90	16	20	4	0.1	0.1	7	2	28	1.8	19	0	0.1	44

		inates (MGA Zone 51)	94		Hole	Details		Max	imum in-	hole Au As	ssay			Maxin	num in-h	ole Multi	-element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
HWAC254	264,253	7143547	540	AC	54	-60	270	53	54	1	0.1	0.2	9	1.2	28	2.1	28	1	0.1	83
DDAC007	262,803	7144797	545	AC	40	-60	90	12	16	4	0	0.1	6	0.5	28	2	50	0	0	114
HWAC162	263,101	7144906	544	AC	56	-60	270	16	20	4	0	0.1	5	4.2	27	4	20	1	0.1	72
HWAC225	263,305	7145457	550	AC	41	-60	270	16	20	4	0.2	0.3	5	1.1	27	6.7	29	0	0.1	90
HWAC138	262,597	7145393	550	AC	15	-60	270	14	15	1	0	0.1	7	0.5	27	1	21	0	0.1	43
HWAC722	263,763	7145359	550	AC	60	-60	270	20	24	4	0.2	0.4	7	1.9	27	4.9	35	1	0.2	73
HWAC228	264,750	7145491	550	AC	55	-60	270	0	4	4	0	0.1	11	0.5	27	2.8	93	1	0.1	431
HWAC718	263,444	7145358	550	AC	57	-60	270	52	56	4	0	0.3	8	9.3	27	7	62	0	0.2	105
HWAC238	264,806	7144666	550	AC	59	-60	270	58	59	1	0	0.1	7	0.3	26	3	32	1	0	80
HWAC362	264,900	7146065	550	AC	39	-60	270	16	20	4	0	0.7	8	0.2	26	5.7	52	0	0	103
HWAC253	264,145	7143554	541	AC	61	-60	270	60	61	1	0.1	0.1	7	1.2	26	1.7	26	1	0.4	64
ACDA003	264,286	7143475	540	AC	58	-60	90	56	58	2	1.4	0	7	0.3	26	2.3	83	0	0	40
HWAC142	262,502	7145196	550	AC	14	-60	270	13	14	1	0	0.1	7	0.3	26	1.2	22	0	0.1	35
HWAC161	262,999	7144907	544	AC	36	-60	270	32	35	3	0.2	0.2	3	0.4	26	1.8	15	0	0.1	67
HWAC160	262,902	7144898	544	AC	25	-60	270	20	24	4	0	0.1	3	0.5	26	1	16	0	0.1	79
HWAC727	263,045	7145198	550	AC	21	-60	270	20	21	1	0.1	0.1	5	0.3	25	0.8	24	0	0	86
HWAC121	263,850	7143860	542	AC	54	-60	270	36	40	4	0	0.1	5	0.8	25	3	32	1	0.1	153
HWAC170	262,997	7144808	544	AC	36	-60	270	16	20	4	0	0.1	5	0.4	25	1.5	18	0	0	91
ACDA033	262,968	7144602	544	AC	62	-60	90	44	48	4	0	0.1	4	0.2	25	2	26	1	0.1	86
HWAC351	264,602	7146195	550	AC	40	-60	270	39	40	1	0	0.6	57	0.2	25	0.9	126	2	0.1	463
HWAC145	262,800	7145201	550	AC	27	-60	270	20	24	4	0	0.7	4	1.7	25	4.9	19	0	0.1	105
DDAC001	262,919	7144804	544	AC	57	-60	90	16	20	4	0	0.2	19	2.4	25	3.7	18	0	0.1	86
HWAC074	264,133	7144658	540	AC	62	-60	270	60	62	2	0.1	0.2	5	1.2	25	2.5	42	0	0.1	40
ACDA018	263,189	7144569	544	AC	68	-60	180	64	68	4	0.1	0	6	0.3	25	1.8	14	0	0.1	22
HWAC716	263,283	7145364	550	AC	54	-60	270	53	54	1	0	0.2	7	0.4	25	2.1	32	0	0.1	87
DDAC049	263,210	7144456	543	AC	66	-60	90	24	28	4	0	0.3	10	4.8	25	13	41	1	0.1	100
HWAC717	263,361	7145362	550	AC	51	-60	270	16	20	4	0	0.1	5	0.7	25	3.7	45	0	0.1	70
CDAC009	263,998	7143522	541	AC	60	-60	360	40	44	4	0	0	7	0.4	24	1.5	28	1	0	56
CDAC002	263,970	7143530	541	AC	63	-60	90	40	44	4	0	0.1	6	0.5	24	2.8	28	1	0.1	58
HWAC062	264,040	7145057	544	AC	66	-60	270	36	40	4	0	0.1	6	0.7	24	2.8	27	1	0.1	83
HWAC061	263,979	7145058	544	AC	57	-60	270	56	57	1	0	0.1	14	3	24	5.5	36	1	0.2	66
HWAC069	264,137	7144664	540	AC	55	-60	270	40	44	4	0	0.1	6	1.2	24	1.5	134	0	0.1	33
HWAC158	262,698	7144903	545	AC	23	-60	270	22	23	1	0	0.1	4	0.3	24	0.8	14	0	0	72
HWAC130	262,500	7145600	550	AC	15	-60	270	12	14	2	0	0.1	4	0.3	23	0.7	15	0	0.1	52
HWAC132	262,698	7145606	550	AC	16	-60	270	12	14	2	0	0.2	7	0.8	23	1.6	17	0	0.1	56
HWAC1129	263,827	7147402	539	AC	15	-60	270	8	12	4	0	2.8	7	0.3	23	0.9	23	1	0.1	39
DDAC024	262,550	7144800	546	AC	31	-60	90	24	28	4	0	0.1	4	0.4	23	3.8	16	0	0.1	69
HWAC139	262,699	7145394	550	AC	37	-60	270	36	37	1	0.2	0.3	4	0.8	23	3	15	0	0.1	88
ACDA036	263,387	7144719	543	AC	60	-60	180	52	56	4	0.9	0	6	0.4	23	3.5	16	0	0.1	34
HWAC352	264,701	7146199	550	AC	42	-60	270	40	41	1	0	2.7	10	0.2	22	7.1	153	1	0.1	147

		nates (MGA Zone 51)	.94		Hole	Details		Max	imum in-	hole Au As	ssay			Maxin	num in-h	ole Multi	-element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
HWAC153	262,795	7145061	550	AC	17	-60	270	16	17	1	0	0	5	8.0	22	0.7	18	0	0.1	28
HWAC159	262,797	7144898	545	AC	38	-60	270	20	24	4	0	0.1	6	0.7	22	7.3	18	1	0.1	79
HWAC1126	262,387	7147400	545	AC	13	-60	270	12	13	1	0	0.5	9	0.4	22	1.1	19	1	0.1	32
HWAC143	262,598	7145198	550	AC	15	-60	270	0	4	4	0	0.1	5	0.2	22	0.9	17	0	0	33
HWAC122	264,048	7143852	541	AC	62	-60	270	36	40	4	0.1	0	5	0.5	22	3.4	25	0	0	67
HWAC734	262,882	7145058	550	AC	40	-60	270	16	20	4	0	0.4	3	0.3	22	2.8	34	0	0	101
HWAC068	264,078	7144655	541	AC	60	-60	270	32	36	4	0	0.1	14	4	22	11.5	196	1	0.4	41
HWAC825	263,149	7146060	550	AC	12	-60	270	0	4	4	0	0.1	6	0.2	21	0.9	23	1	0.1	39
HWAC131	262,596	7145600	550	AC	30	-60	270	16	20	4	0	0.1	5	0.3	21	0.7	15	0	0.1	66
DDAC013	262,717	7144796	545	AC	32	-60	90	28	32	4	0	0.1	6	0.5	21	4.7	20	0	0.1	62
HWAC144	262,697	7145201	550	AC	19	-60	270	16	18	2	0	0.1	4	0.3	21	0.8	50	0	0	65
HWAC826	263,228	7146060	555	AC	18	-60	270	17	18	1	0	0.7	17	0.2	21	1.4	42	2	0	57
HWAC735	263,041	7145064	550	AC	41	-60	270	16	20	4	0	0.6	4	1.3	21	1.7	101	0	0.1	106
HWAC733	263,981	7145200	550	AC	65	-60	270	64	65	1	0	0.1	6	0.6	21	3.7	24	0	0.1	63
DDAC023	262,564	7144801	546	AC	30	-60	90	12	16	4	0	0.1	7	0.4	21	2	13	0	0.1	54
HWAC1130	264,298	7147398	535	AC	12	-60	270	0	4	4	0	0.6	8	0.3	21	1.2	27	0	0.1	56
HWAC910	270,661	7142002	543	AC	48	-60	270	24	28	4	0	0.1	7	0.2	19	1.5	9	0	0.1	85
ACDA029	263,290	7144620	543	AC	65	-60	90	64	65	1	0.1	0.1	4	0.2	19	1.7	9	0	0.1	30
DDAC008	262,789	7144798	545	AC	30	-60	90	16	20	4	0	0.1	5	1	19	2.9	39	0	0.1	114
HWAC152	262,695	7145060	550	AC	16	-60	270	15	16	1	0	0	4	0.3	19	8.0	13	0	0	44
DDAC012	262,731	7144796	545	AC	36	-60	90	28	32	4	0	0.1	4	1.4	19	16.6	15	0	0.1	69
HWAC151	262,597	7145058	550	AC	15	-60	270	14	15	1	0	0	4	0.3	19	0.9	13	0	0	34
ACDA022	264,293	7143545	540	AC	64	-60	90	48	52	4	0.3	0	4	0.2	18	1	10	0	0	27
ACDA027	263,443	7144621	543	AC	80	-60	90	60	64	4	0.1	0.1	3	3	18	4.2	24	1	0	94
HWAC063	264,102	7145054	542	AC	34	-60	270	24	28	4	0	0	6	0.5	18	1.4	16	0	0	26
ACDA040	263,584	7144490	542	AC	73	-60	360	32	36	4	0.1	0	4	0.2	17	1.8	9	0	0	18
HWAC827	263,310	7146060	553	AC	20	-60	270	16	19	3	0	0.3	14	0.2	17	0.9	39	1	0	65
HWAC001	262,700	7146659	547	AC	31	-60	90	0	4	4	0	0.7	5	0.2	17	0.8	88	0	0.1	45
ACDA012	264,360	7143544	540	AC	68	-60	90	56	60	4	0	0	4	0.2	17	1.1	11	0	0	26
HWAC018	264,207	7146662	542	AC	22	-60	270	16	20	4	0	0.4	4	0.2	17	0.9	34	0	0	768
ACDA042	263,599	7144316	542	AC	66	-60	360	56	60	4	0	0.1	7	0.7	16	3.5	21	1	0.1	50
HWAC006	262,199	7146658	541	AC	28	-60	90	0	4	4	0	0.2	11	0.5	16	1.2	51	1	0.1	37
HWAC1131	264,781	7147400	538	AC	13	-60	270	0	4	4	0	0.1	4	0.2	16	0.8	15	0	0	28
ACDA031	263,128	7144606	544	AC	62	-60	90	60	62	2	0	0	4	0.2	16	1.6	10	0	0.1	21
ACDA034	263,391	7144479	543	AC	67	-60	180	28	32	4	0.1	0	3	0.2	16	1.3	9	0	0	24
ACDA016	263,195	7144418	544	AC	74	-60	180	28	32	4	1.9	0	4	0.2	16	1	10	0	0.1	16
ACDA014	263,191	7144267	543	AC	76	-60	180	44	48	4	0	0	3	0.2	16	1.3	10	0	0.1	16
ACDA020	263,188	7144725	544	AC	54	-60	180	52	54	2	0.1	0	4	0.2	15	1.4	10	0	0.1	22
HWAC012	263,305	7146660	543	AC	23	-60	270	0	4	4	0	0.9	5	0.2	15	0.5	304	0	0	20
HWAC828	263,389	7146059	548	AC	25	-60	270	12	16	4	0	0.4	18	0.2	15	1.4	30	1	0	101

		nates (MGA Zone 51)	94		Hole	Details		Max	imum in-	hole Au As	ssay			Maxim	num in-ho	ole Multi-	element	Assay		
Hole ID	Easting (m)	Northing (m)	RL (m)	Hole Type	Total Depth (m)	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval Length (m)	Au (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)	Cu (ppm)	Mo (ppm)	Pb (ppm)	Sb (ppm)	Te (ppm)	Zn (ppm)
ACDA025	263,605	7144612	542	AC	48	-60	90	36	40	4	0	0	3	0.2	14	1.2	8	0	0	19
HWAC009	261,897	7146659	550	AC	25	-60	90	0	4	4	0	0.1	8	0.3	14	8.0	25	0	0	20
HWAC014	263,395	7146658	540	AC	31	-60	270	4	8	4	0	0.4	3	0.2	14	0.7	28	0	0	18
HWAC013	263,250	7146658	539	AC	22	-60	270	0	4	4	0	0.3	3	0.2	14	0.6	66	1	0.1	17
HWAC005	262,295	7146660	547	AC	25	-60	90	20	24	4	0	0.2	4	0.3	14	0.7	21	0	0	24
HWAC007	262,098	7146659	550	AC	28	-60	90	12	16	4	0	0.1	7	0.3	13	8.0	31	1	0	28
HWAC911	270,824	7142001	534	AC	36	-60	270	12	16	4	0	0	5	0.2	13	1.2	7	0	0	195
HWAC912	270,979	7142003	538	AC	34	-60	270	0	4	4	0	0.1	5	0.2	13	1.2	7	0	0	58
HWAC008	261,997	7146660	545	AC	31	-60	90	16	20	4	0	0.1	24	0.2	13	1.9	32	1	0	31
HWAC830	263,554	7146061	550	AC	18	-60	270	12	16	4	0	0.3	8	0.1	12	1.1	13	1	0	127
ACDA001	264,347	7143465	540	AC	65	-60	90	2	3	1	0	0	3	0.2	9	0.6	7	0	0	12

APPENDIX E - METALLURGICAL TESTWORK INFORMATION

Table 1: Palomino Composite Sample Information

Composite	Hole ID	Depth	Depth To	Interval	Mass (kg)	SMC	Original Assay
Composite 1	LIMPDOOL	From (m)	(m)	Length (m)		Pieces	Value (g/t Au)
Composite 1	HWDD001	128.6	129.4	0.8	1.30	1	1.18
Composite 1	HWDD001	130.9	131.4	0.5	0.59	1	0.03
Composite 1	HWDD001	131.4	131.9	0.5	1.08	1	0.42
Composite 1	HWDD001	132.4	132.9	0.5	0.95	1	0.39
Composite 1	HWDD001	132.9	133.4	0.5	1.49	1	0.32
Composite 1	HWDD001	134.4	134.9	0.5	1.04	1	24.80
Composite 1	HWDD001	135.4	135.9	0.5	0.47	1	9.52
Composite 1	HWDD001	136.9	137.4	0.5	0.87	1	4.30
Composite 1	HWDD001	137.4	137.9	0.5	0.67	1	1.98
Composite 1	HWDD001	138.9	139.4	0.5	0.67	1	0.56
Composite 1	HWDD001	139.4	139.9	0.5	0.66	1	3.35
Composite 1	HWDD001	141	142	1.0	1.27	2	3.42
Composite 1	HWDD001	146	147	1.0	1.51	2	1.18
Total Compos	ite 1				12.57	15	
Mass-weighte	d Expected Gra	ade					3.73
Composite 2	HWDD002	145.6	146.1	0.5	0.94	1	7.84
Composite 2	HWDD002	147.1	147.6	0.5	1.01	1	2.77
Composite 2	HWDD002	147.6	148.1	0.5	0.94	1	1.14
Composite 2	HWDD002	148.6	149.1	0.5	0.73	1	3.87
Composite 2	HWDD002	149.1	149.6	0.5	0.80	1	1.75
Composite 2	HWDD002	150.1	150.6	0.5	0.72	1	11.40
Composite 2	HWDD002	151.1	151.6	0.5	0.72	1	13.39
Composite 2	HWDD002	151.6	152.1	0.5	1.01	1	2.74
Composite 2	HWDD002	153.6	154.1	0.5	1.05	1	5.74
Composite 2	HWDD002	154.1	154.6	0.5	0.95	1	2.14
Composite 2	HWDD002	155.6	156.1	0.5	0.83	1	5.23
Composite 2	HWDD002	158.1	158.6	0.5	0.98	1	5.91
Composite 2	HWDD002	158.6	159.1	0.5	0.89	1	6.31
Composite 2	HWDD002	159.6	160.1	0.5	0.80	1	1.48
Composite 2	HWDD002	160.1	160.6	0.5	0.88	1	7.72
Total Compos					13.23	15	
	d Expected Gra						5.11
Composite 3	HWDD004	223.5	224	0.5	0.76	1	17.15
Composite 3	HWDD004	224	224.5	0.5	0.90	1	8.35
Composite 3	HWDD004	225.05	225.97	0.9	1.69	2	2.96
Composite 3	HWDD004	225.97	226.5	0.5	1.05	1	0.73
Composite 3	HWDD004	227.35	227.87	0.5	0.88	1	0.08
Composite 3	HWDD004	227.87	228.72	0.8	1.69	1	0.03
Composite 3	HWDD004	229.78	230.84	1.1	1.72	2	1.11
Composite 3	HWDD004	230.84	231.8	1.0	1.95	2	3.64
Composite 3	HWDD004	232.8	233.4	0.6	1.02	1	6.92
Composite 3	HWDD004	233.4	233.94	0.5	0.99	1	5.71
Composite 3	HWDD004	234.55	235.16	0.6	1.15	1	0.31
Composite 3	HWDD004	235.16	236	0.8	1.63	1	0.98
Total Compos					15.43	15	
	d Expected Gra	ade				-	3.24
Composite 4	HWDD009	104.7	105.9	1.2	2.86	2	0.23
Composite 4	HWDD009	105.9	107	1.1	1.91	2	0.13
Composite 4	HWDD009	109.5	110	1.0	1.81	2	2.84
Composite 4	HWDD009	110	111	1.0	1.81	2	9.27
Composite 4	HWDD009	113	114	1.0	1.95	2	2.59
Composite 4	HWDD009	114	115	1.0	1.80	2	5.66
Composite 4		117			1.92	2	
	HWDD009		118	1.0			0.13
Composite 4	HWDD009	118	119	1.0	1.95	2	0.18
Composite 4	HWDD009	121	122	1.0	1.96	2	0.05
Composite 4	HWDD009	122	123	1.0	1.88	2	2.26
Total Compos					19.85	20	
	d Expected Gra						2.17
Composite 5	HWDD0011	150.7	151.7	1.0	1.79	2	1.65
Composite 5	HWDD0011	151.7	152.7	1.0	1.70	2	12.10

Composite ID	Hole ID	Depth From (m)	Depth To (m)	Interval Length (m)	Mass (kg)	SMC Pieces	Original Assay Value (g/t Au)
Composite 5	HWDD0011	154.59	155.5	0.9	1.77	2	0.82
Composite 5	HWDD0011	155.5	156.5	1.0	1.73	2	0.06
Composite 5	HWDD0011	158.5	159.5	1.0	1.75	2	0.78
Composite 5	HWDD0011	159.5	160.47	1.0	1.75	2	3.13
Composite 5	HWDD0011	162.18	163	0.8	1.54	1	0.39
Composite 5	HWDD0011	163	164	1.0	1.73	2	0.25
Composite 5	HWDD0011	165.96	167	1.0	2.04	2	0.73
Composite 5	HWDD0011	167	168	1.0	1.82	2	1.27
Total Compos	ite 5				17.61	19	
Mass-weighter	d Expected Gra	ade					2.09
Composite 6	HWDD0020	182	183	1.0	1.28	2	0.50
Composite 6	HWDD0020	183	184	1.0	1.34	2	0.31
Composite 6	HWDD0020	184	185	1.0	1.26	2	1.51
Composite 6	HWDD0020	185	186	1.0	1.38	2	2.92
Composite 6	HWDD0020	186	187	1.0	1.31	2	0.14
Composite 6	HWDD0020	187	188	1.0	1.36	2	1.10
Composite 6	HWDD0020	188	189	1.0	1.27	2	0.47
Composite 6	HWDD0020	189	190	1.0	1.30	2	3.21
Total Compos	ite 6				10.50	16	
Mass-weighted	d Expected Gra	ade			_		1.28

Table 2: Palomino Composite Leach Testwork

Composite ID			Au Ex	traction % per	hour		
Composite in	0 hrs*	2 hrs	4 hrs	8 hrs	12 hrs	24 hrs	48 hrs
Composite 1	32.5	84.8	86.2	87.6	87.6	88.6	88.6
Composite 2	29.3	82.9	84.5	86.2	86.5	87.1	88.1
Composite 3	31.5	84.5	85	86.6	87.1	87.6	88.6
Composite 4	16.6	77	78.3	80.1	80.7	82	82
Composite 5	17.7	72.4	74.4	76.5	76.5	78	78.5
Composite 6	18.2	82.8	84.1	84.7	85.4	86.7	86.7

Table 3: Drill hole Collar Table

Hole ID	Hole Type	Total Depth	Easting	Northing	RL
HWDD001	DDH	213.1	271493.219	7130868.27	568.069
HWDD002	DDH	201.1	271490.302	7130894.435	568.549
HWDD004	RC DDH	293.5	271274.287	7130918.75	565.173
HWDD009	DDH	174.0	271393.119	7130783.173	566.886
HWDD011	DDH	213.2	271312.836	7130929.727	566.286
HWDD020	RC DDH	249.0	271368.087	7130750.818	566.644

Coordinates in GDA94 Zone 51S