ASX Code: AIV

Issued Capital

161,703,236 ordinary shares (AIV) 140,000 unlisted options

Directors

Min Yang (Chairman, NED)
Grant Thomas (Managing Director)
Geoff Baker (NED)
Dongmei Ye (NED)
Craig McPherson (Company Secretary)

About ActivEX

ActivEX Limited is a Brisbane based mineral exploration company committed to the acquisition, identification and delineation of new resource projects through active exploration.

The ActivEX portfolio is focussed on copper and gold projects, with substantial tenement packages in north and southeast Queensland and in the Cloncurry district of northwest Queensland.

The Company also has an advanced potash project in Western Australia where it is investigating optimal leaching methods for extraction and production of potash and by-products.

Suite 3402, Level 34 Riverside Centre 123 Eagle Street BRISBANE QLD 4000 PO Box 1533 MILTON QLD 4064 Phone +61 (07) 3236 4188

admin@activex.com.au www.activex.com.au

ABN 11 113 452 896

GILBERTON GOLD PROJECT

EIGHT MILE CREEK LODES – EXPLORATION RESULTS EXCEPTIONAL ROCK ASSAYS TO 38.9% COPPER AND 49.5 g/t GOLD

Summary and Highlights

- Detailed exploration activities commenced within Gilberton EPM 18623.
- Portable XRF soil surveys and rock chip sampling completed over Caledonia, Oratava and Macedonia historic workings (copper and gold) have outlined high amplitude copper-gold anomalies, with the highest copper values detected to date at Gilberton Gold Project.
- Rock chip sampling at Caledonia lode returned high grade assays in the range 0.15 to 25.2%
 Cu (average 7.27% Cu) and 0.13 to 49.5g/t Au (average 5.02g/t Au).
- Rock chip sampling at Macedonia lode returned high grade assays in the range 0.02 to 31.6%
 Cu (average 6.32% Cu) and 0.01 to 9.23g/t Au (average 2.07g/t Au).
- Rock chip sampling at Oratava lode returned high grade assays up to 11.2% Cu (average 1.5% Cu) and up to 2.16g/t Au.
- These results indicate that the combined Eight Mile Creek lodes area is a high priority copper and gold target for 2017 field season.

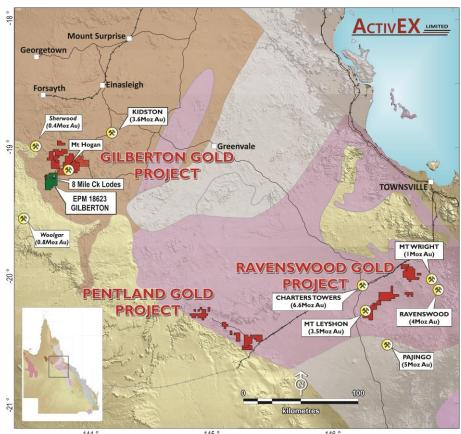


Figure 1. ActivEX Limited Gilberton Gold Project EPM and EPMA locations.

ActivEX Limited ('ActivEX' or the 'Company') is pleased to announce that detailed portable X-Ray Fluorescence (pXRF) soil geochemical surveys have been completed over the Eight Mile Creek lodes (Caledonia, Oratava and Macedonia coppergold historic workings) within the Gilberton tenement (EPM 18623, Figures 1 and 2). The pXRF surveys have detected high amplitude semi-continuous copper anomalies (Figures 4 and 5) over each individual lode, the highest values detected to date at Gilberton Gold Project. Rock chip sampling of the lodes was also completed and has returned high grade copper and gold assays results (Table 1) including: Caledonia lode in the range 0.15 to 25.2% Cu and 0.13 to 49.5g/t Au, Macedonia lode 0.02 to 31.6% Cu and 0.01 to 9.23g/t Au and Oratava lode up to 11.2% Cu and up to 2.16g/t Au. These results indicate that the combined Eight Mile Creek lodes area is a high priority copper and gold target for the 2017 field season.

The Gilberton Gold Project (Figure 1) is located in northeast Queensland within the Georgetown Province, approximately 300km west-northwest of Townsville. The Project consists of EPMs 18615 (Mt Hogan), 18623 (Gilberton), 19207 (Percy River), and EPM applications 26232 (Gum Flat) and 26307 (Split Rock), applied for in June and August 2016 respectively. The Project is comprised of a total of 184 sub-blocks and encompasses an area of 597km2 (Figure 1). The two applications (total 133 km²) cover areas considered highly prospective for gold mineralisation, such as the area immediately south of the Mt Hogan gold mine, and other promising prospects such as Split Rock and Christmas Hill porphyry adjacent to the Gilberton Fault. ActivEX Limited holds 100% interest in all the tenements. The Project area is prospective for a number of metals and a wide range of deposit styles. Important deposits near Gilberton include the worldclass Kidston breccia hosted Au-Ag deposit which occurs in similar geological terrain approximately 50km to the northeast, and the Sherwood and Woolgar epithermal deposits (Figure 1).

During this phase of field exploration activities at the Gilberton Gold Project (October-November 2016) a total of 541 pXRF soil geochemical readings were acquired on 100m spaced north-south traverses at a nominal sampling interval of 25 to 100m. The pXRF survey was centred on the Eight Mile Creek lodes (Figure 3) in the north-western part of EPM 18623 (Gilberton), and covered an area of 1.9km².

The pXRF surveys have clearly defined an east-west trending >500ppm Cu anomaly over the Caledonia and Macedonia lodes extending for approximately 1.4km (maximum pXRF to

4.7% Cu), and a NW trending >500ppm Cu anomaly over the Oratava lode (maximum pXRF to 1.5% Cu, Figures 4).

In addition, a total of 86 rock chip samples (largely quartz veins or gossanous outcrop) were collected and subsequently assayed at ALS Townsville (Table 1). The rock assays have returned high grade copper and gold results of up to 38.9% Cu and 49.5g/t Au (56% of samples > 1% Cu and 35% of samples > 1g/t Au).

The **Eight Mile Creek lodes** area consists of a group of gossans at the head of Eight Mile Creek, about 6km northwest of Gilberton homestead. The lodes were mined for gold in 1907 and again in 1913 (Withnall, 1981). The lodes are associated with discordant patches of metadolerite, diorite, and sparsely porphyritic rhyolite, all intruding Proterozoic metasediments of the Bernecker Creek and Daniel Creek Formations (Figure 5).

Caledonia lode returned high grade assays in the range 0.15 to 25.2% Cu (average 7.27% Cu) and 0.13 to 49.5g/t Au (average 5.02g/t Au). The Caledonia area contains numerous lodes up to 5-6m wide approximately 430m long, occupying E-W trending shear zones and hosted in Proterozoic metasediments (Figure 5). There are no records of previous drill testing.

Macedonia lode returned high grade assays in the range 0.02 to 31.6% Cu (average 6.32% Cu) and 0.01 to 9.23g/t Au (average 2.07g/t Au). Macedonia lode is located east of Caledonia along the same E-W trending shear zone. The lode outcrops continuously for over 860m and is up to 10m wide. Macedonia was drill tested with a single hole (GLB-16) in 1983 by Seltrust Mining (Company Report 12372, Figures 4, 5 and Table 2), which intersected 36m @ 0.79% Cu and 0.56g/t Au from 48m, including 24m @ 1.07% Cu and 0.79g/t Au from 52m).

Oratava lode returned high grade assays up to 11.2% Cu (average 1.5% Cu) and up to 2.16g/t Au. Oratava lode is located south of Macedonia on a NW-trending shear zone that cuts through east-west striking Proterozoic metasediments (Figure 4). The lode outcrops for 930m and is up to 10m wide. Oratava was drill tested with a single hole (GLB-15) in 1983 by Seltrust Mining (Company Report 12372, Figures 4, 5 and Table 2), which intersected 18m @ 0.81% Cu, including 10m @ 1.35% Cu from 70m and 4m @ 3.65g/t Au from 38m).

Initial rock chip sampling was completed over historical prospects **Second** Chance and **Granite Junction** in the Gilberton EPM (Figure 3, Table 1). These rock chip samples have been assayed returning high grade assays up to 14.05% Cu and 435g/t Ag (Second Chance) and up to 8.59g/t Au and 36.7g/t Ag (Granite Junction).

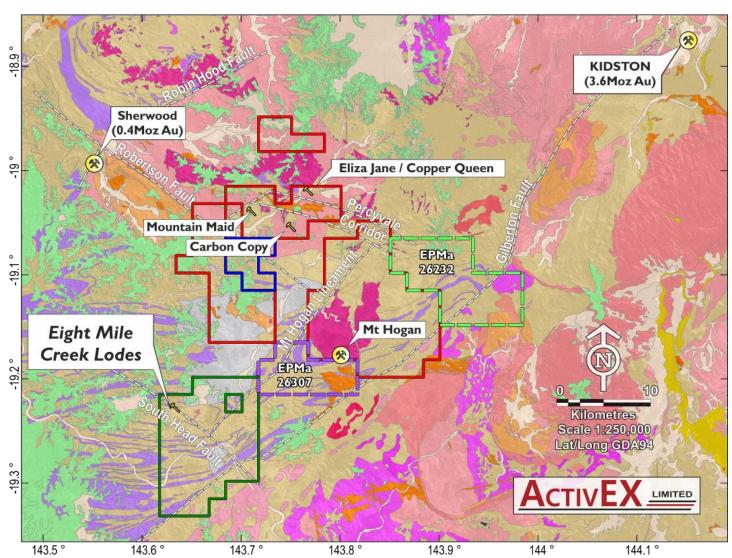


Figure 2. ActivEX Limited Gilberton Gold Project Eight Mile Creek Lode location.

The exceptional first pass exploration results at Eight Mile Creek lodes clearly indicate that the area is a high priority copper and gold target. As soon as field activities are possible in 2017, further exploration activities, such as pXRF surveys and focussed rock chip and conventional soil sampling will be undertaken at Eight Mile Creek lodes with a view to selecting the most prospective targets for drill testing.

For further information, contact: Mr Grant Thomas, Managing Director or Mr Craig McPherson, Company Secretary

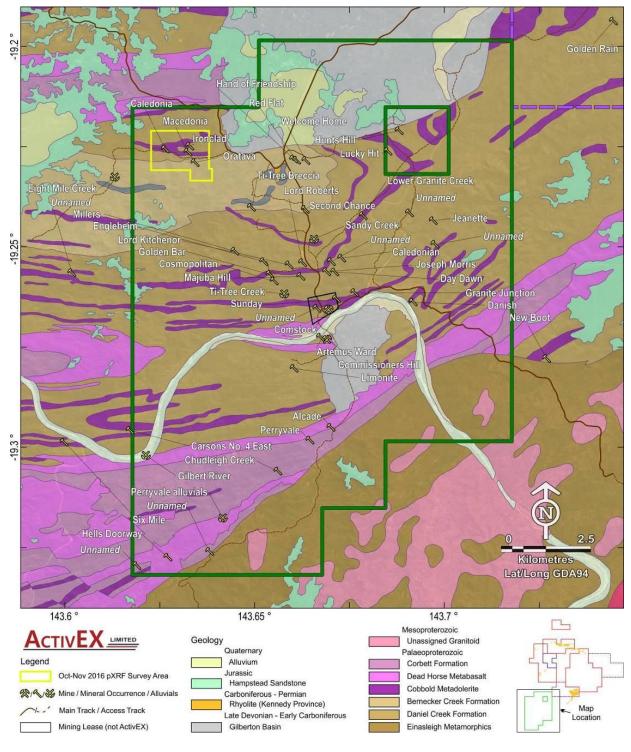


Figure 3. ActivEX Limited Gilberton EPM 18623, geology, mineral occurrences, and portable XRF survey area.

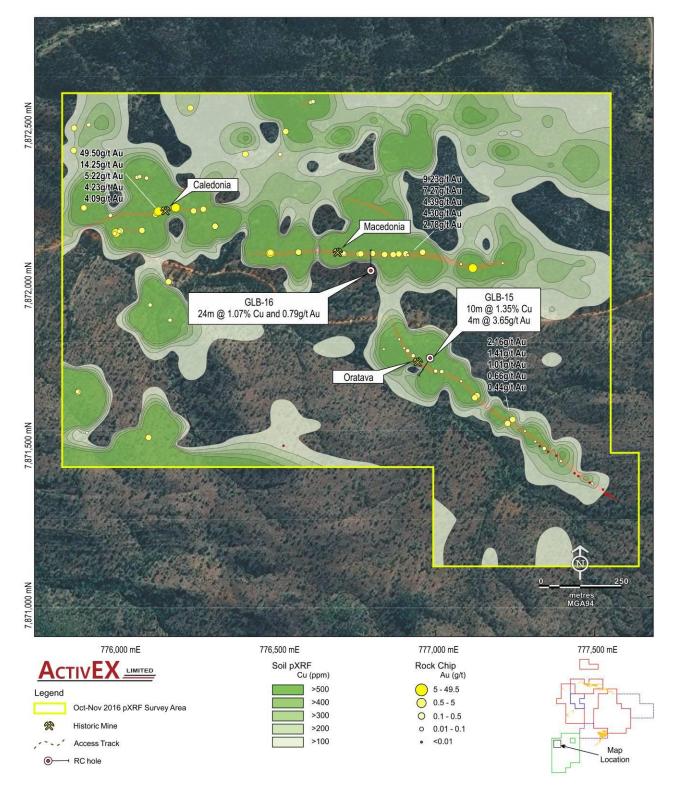


Figure 4. ActivEX Limited Eight Mile Creek lodes area prospects defined by portable XRF surveys (Cu, ppm) and rock chip Au assays.

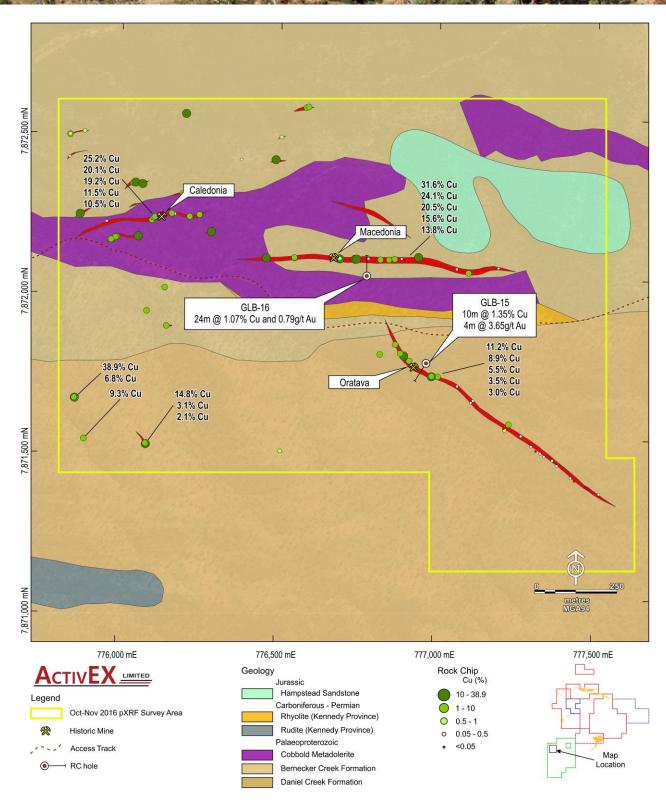


Figure 5. ActivEX Limited Eight Mile Creek lodes area prospects defined by portable XRF surveys (Cu, ppm) and rock chip Cu assays.

 Table 1. Rock chips assay results.

t	Easting	Northing	Au	Ag	Cu	Pb	Zn	As	Bi	Hg	Мо	Sb	Se	Te
Prospect	MGA94	MGA94	g/t	g/t	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Pro	Zone 54	Zone 54												
	775984	7872162	14.25	2.24	1.51	23.2	54	5480	27.1	0.269	11.3	6.57	10	16.00
	776296	7872180	4.09	17.95	8.01	24.9	51	1835	26	0.358	13	10.9	28	26.70
	776296	7872178	4.23	8.26	25.2	8.6	28	1145	9.03	0.559	11.65	3.74	30	22.00
	776260	7872234	0.21	0.86	0.898	17.7	45	3120	0.91	0.27	63.6	3.02	1	0.82
	776260	7872232	2.32	7.51	3.67	23.1	31	2520	9.52	1.46	112.5	5.64	7	7.90
	776173	7872238	5.22	23.5	8.2	23	35	8840	6.14	1.65	22.4	5.54	25	9.82
	776119	7872228	49.5	23.2	1.81	388	304	771	70.9	2.95	5.25	248	6	38.10
	775967	7872217	0.41	0.71	0.357	10	18	233	1.39	0.206	9.83	3.47	1	0.88
Caledonia	775884	7872242	2.36	39.7	11.45	40.8	26	629	235	68	93.4	5.89	7	251.00
Salec	776110	7872218	3.11	13.1	6.57	35.5	65	1840	132	4.37	3.65	91.4	80	47.70
	776395	7872402	1.53	1.3	0.105	4.8	21	81	3.56	0.202	1.18	1.8	1	2.52
	776066	7872169	1.33	18.2	20.1	34.2	48	2570	3.84	0.829	123.5	11.75	9	51.00
	775998	7872168	0.54	3.13	6.05	6.8	53	10050	8.26	0.133	4.91	7.32	3	2.26
	775994	7872167	0.36	2.4	1.29	9.8	42	1645	1.9	0.104	6.02	1.28	2	0.74
	775980	7872160	0.38	6.59	3.29	3.5	9	420	1.22	0.063	7.06	1.63	1	2.18
	776053	7872335	0.26	18.9	2.68	472	59	424	2.53	6.04	1.86	17.8	2	0.98
	776061	7872337	0.2	32	10.55	371	150	626	3.78	22.5	4.25	38.1	5	0.38
	776083	7872332	0.13	76.8	19.25	76.8	27	792	3.91	28	14.35	26.2	18	0.52
	776610	7872563	0.16	5.69	1.735	14	297	805	1.24	0.269	1.01	5.26	1	0.15
	776603	7872561	0.34	4.92	5.84	55.3	132	907	5.5	0.224	2.17	11.85	1	1.56
g g	776523	7872471	2.08	4.02	0.608	65.9	258	5900	2.67	0.108	49	553	7	1.25
η Are	776504	7872400	0.37	1.18	11.85	15	53	251	2.19	0.07	3.87	7.01	9	0.65
Nort	776209	7872299	0.02	1.35	7.31	7.9	89	21.2	0.17	0.015	1.61	1.78	3	0.15
Caledonia North Area	776224	7872549	0.76	3.12	28.4	14	19	146.5	12.1	0.205	9.46	15.05	8	10.20
aled	775855	7872422	2.36	1.47	0.402	75.3	16	251000	12.2	0.47	6.89	191.5	4	4.97
0	775857	7872491	0.04	18.45	1.275	9.3	9	616	0.6	0.17	3.61	6.99	<1	0.35
	775857	7872492	2.51	4.39	0.638	12	25	199	2.43	0.264	7.23	17.55	<1	0.33
	775903	7872501	0.17	0.94	0.516	13.6	25	13650	1.61	0.606	1.41	19.55	3	0.65
	776501	7871489	<0.01	13.5	0.551	10.6	15	118.5	2.62	0.595	2.9	1.39	5	0.25
a	776147	7872007	4.52	15.6	8.93	22.1	27	165	2.11	0.718	24.6	13.75	6	10.95
h Are	776150	7871887	0.46	2.22	1.615	44.3	743	5470	66.5	0.103	2.31	38	9	0.61
Caledonia South Area	776078	7871518	0.24	138	14.8	8.5	93	573	5.47	0.208	3.17	4.9	7	0.72
onia	776078	7871519	0.35	22	3.05	29.6	398	1040	6.15	0.146	3.63	5.93	2	0.48
aledc	776077	7871521	0.96	14.1	2.09	11.6	622	2310	56.1	0.907	6.33	91.2	32	0.34
Ö	776088	7871935	0.16	9.23	3.62	73.5	589	4150	16.2	0.068	1.98	5.56	4	0.20
	775883	7871539	0.09	17.5	9.23	37.3	93	103.5	1.67	0.822	2.98	7.54	2	0.22

75	Easting	Northing	Au	Ag	Cu	Pb	Zn	As	Bi	Hg	Мо	Sb	Se	Te
Prospect	MGA94	MGA94	g/t	g/t	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Pro	Zone 54	Zone 54												
	775857	7871667	1.01	619	38.9	24.6	42	39.7	5.55	1.2	9.36	3.16	6	1.54
	775855	7871668	0.23	40.6	6.82	6.1	123	88.4	1.34	1.34	3.55	3.09	2	0.19
Granite	781159	7868044	8.59	36.7	0.0844	2210	40	138	267	23.9	11.3	37.9	63	427.00
Junction	781166	7868005	0.03	1.4	0.0281	16.9	37	45.7	1.23	0.215	0.87	10.7	1	2.02
	776469	7872092	9.23	23.6	3.92	14.7	28	4960	36.1	0.244	68.5	6.79	8	22.20
	776469	7872093	4.3	55.6	24.1	21.5	58	10050	28.8	0.677	49.4	9.13	5	22.60
	776829	7872078	0.01	0.97	0.499	45.8	44	426	0.8	0.503	1.07	175	1	0.15
	776828	7872082	1.75	10	1.475	257	547	3910	3.56	8.87	7.24	3310	3	1.71
	776873	7872083	0.77	11.15	2.96	558	272	5600	8.82	10.7	7.95	967	13	1.86
	776895	7872083	0.66	0.84	0.163	10.2	17	575	7.91	0.233	3.24	94.8	<1	2.67
	776901	7872081	0.03	0.75	0.042	6.5	13	241	0.9	0.236	0.96	66.7	1	0.28
	776901	7872079	0.02	0.37	0.0254	3.6	10	173	0.07	0.057	0.69	23.8	<1	<0.05
	776948	7872087	1.75	38.8	20.5	25.5	29	519	18.3	0.442	7.29	14.3	6	4.61
nia	776855	7872081	2.51	12.95	2.02	340	391	3360	26.1	12.15	5.67	1650	3	8.93
Macedonia	777068	7872048	0.04	1.01	0.246	4.7	217	66.6	0.37	0.121	1.75	12.1	1	0.16
Ma	777105	7872035	7.27	4.15	1.17	5.5	47	294	5.96	0.179	2.22	16.15	1	8.12
	777199	7872049	0.04	0.45	0.111	12.4	20	126.5	0.91	0.449	0.57	50.3	1	0.43
	776790	7872086	0.96	12.3	0.4	151	453	3340	16.75	8.37	7.3	230	8	8.04
	776751	7872085	0.18	1.47	0.149	10.5	32	689	0.46	0.048	1.09	22.1	<1	0.33
	776748	7872085	2.44	79.8	13.8	39.7	57	1885	28.9	24.1	28.3	24.8	6	42.20
	776753	7872085	2.1	63	15.6	16.5	63	1985	13.1	8.05	6.41	29.4	2	11.95
	776700	7872087	2.19	43	31.6	65.4	92	5560	154	1.305	9.49	61.3	4	0.39
	776700	7872088	0.17	2.39	0.548	14.2	15	217	1.14	1.355	2.67	6.45	1	0.80
	776558	7872092	2.78	20.2	3.46	14.5	40	4860	4.74	0.456	3.54	14.45	5	0.41
	776557	7872093	4.39	92.3	9.87	383	244	9640	15.8	2.83	3.68	110.5	4	0.49
	777261	7871523	0.06	0.78	0.185	11.7	99	190.5	1.69	0.298	2.51	28	3	0.84
	777293	7871490	0.04	0.88	0.223	4.9	35	57.9	3.73	1.55	2.78	11.25	1	3.29
	777321	7871468	0.18	0.81	0.466	6.3	35	108.5	6.68	0.445	2.43	7.74	5	2.03
	777333	7871458	<0.01	0.12	0.0688	5.5	143	54.9	0.16	0.099	1.78	5.89	3	0.10
	777359	7871445	<0.01	0.21	0.0912	4.5	18	22.3	0.4	0.507	0.7	1.61	1	0.20
Oratava	777373	7871428	0.08	0.34	0.184	7	83	37.6	0.29	0.112	2.07	2.49	3	0.44
Orat	777415	7871389	<0.01	0.33	0.123	11.1	147	82.2	0.48	0.18	4.43	5.67	7	0.18
	777427	7871380	<0.01	0.49	0.0041	49.5	13	24.4	0.27	0.172	0.44	3.16	31	1.29
	777462	7871359	<0.01	0.09	0.0146	5	7	8.9	0.17	0.042	0.56	1.15	2	0.09
	777472	7871353	0.04	0.2	0.0461	5.3	11	20.1	0.43	0.063	0.86	3.53	2	0.08
	777470	7871357	0.01	0.1	0.0137	3.6	4	9.3	0.17	0.066	0.48	1.81	2	0.09
	777223	7871560	1.01	19.4	3.02	40.2	127	1005	53.4	1.34	3.12	7.89	3	0.10

ಕ	Easting	Northing	Au	Ag	Cu	Pb	Zn	As	Bi	Hg	Мо	Sb	Se	Te
Prospect	MGA94	MGA94	g/t	g/t	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
g.	Zone 54	Zone 54												
	777210	7871543	0.44	19.45	0.6	33.2	204	2980	84.3	5.12	3.06	14.05	26	0.17
	777207	7871548	0.66	2.8	0.047	17.7	5	871	22.2	0.229	1.79	32.9	1	0.13
	777112	7871636	2.16	3.51	0.087	35.4	67	127.5	5.7	0.23	1.81	4.42	1	2.79
	777105	7871630	1.41	1.07	0.315	12.5	123	166.5	1.71	0.035	3.69	3.24	1	0.87
	777063	7871682	0.01	3.81	0.316	121	425	1135	8.45	0.134	1.42	2.06	3	0.16
	777002	7871713	0.41	20.9	3.5	6.5	385	239	3.85	2.03	4.26	1.14	4	3.02
	776913	7871764	0.18	4.5	8.94	32.6	122	3380	11.25	0.218	3.48	9.74	3	1.07
	776982	7871714	0.19	8.49	11.2	22.8	229	329	5.27	1.81	6.93	0.95	12	4.98
	776983	7871715	0.31	3.55	5.54	6.5	231	382	1.46	0.311	2.76	0.92	4	0.73
	777504	7871337	<0.01	1.03	0.0753	3.4	3	79.5	0.2	0.061	0.42	2.57	<1	<0.05
	777307	7871475	<0.01	0.2	0.0398	2	5	555	0.16	0.041	0.41	2.39	<1	<0.05
Second	779972	7870376	0.24	30.4	0.669	1065	1890	1550	13.2	2.04	12.2	116.5	3	0.87
Chance	779971	7870376	0.39	435	14.05	269	281	395	56	9.85	12.55	28.5	14	2.86

Table 2. Oratava and Macedonia lodes RC drill hole intercepts (Seltrust Mining Corporation Pty Ltd, 1983).

Hole ID	Prospect	Easting MGA94 Zone 54	Northing MGA94 Zone 54	Depth (m)	Dip (°)	Mag Azimuth (°)	From (m)	To (m)	Interval (m)	Au (g/t)	Cu (%)
							62	80	18	NSI	0.81
GLB-15	GLB-15 Oratava	776966	7871756	87	-60	210	70	80	10	NSI	1.35
							38	42	4	3.65	NSI
CLD 46	Macedonia	776780	7872030	87	-60	0	48	84	36	0.56	0.79
GLB-16	wac c u0ma	770700	1012030	07	-00	U	52	76	24	0.79	1.07

It is recommended that the supporting information contained in JORC Table 1 (Gilberton EPM 18623 – Geochemical Sampling) is read in conjunction with these results.

Previous Disclosure - 2012 JORC Code

Information relating to Mineral Resources, Exploration Targets and Exploration Data associated with previous disclosures relating to the Gilberton Gold Project in this announcement has been extracted from the following ASX Announcement:

- ASX announcement titled "Mt Hogan EPM Gold Targets and High Grade Gold Rock Assays" dated 30 September 2015;
- ASX announcement titled "Mt Hogan EPM New Prospects Outline and High Grade Rock Assays Up to 144g/t Gold" dated 18 January 2016;
- ASX announcement titled "Mt Hogan Exploration Results" dated 3 February 2016;
- ASX announcement titled "Activities Report Quarter Ended 31 March 2016" dated 18 March 2016;
- ASX announcement titled "Welcome Prospect Exploration Results" dated 1 June 2016;
- ASX announcement titled "Gilberton Gold Project Percyvale Corridor Prospects Return High Grade Assays (up to 101g/t Au)" dated 4
 July 2016, and
- ASX announcement titled "Gilberton Gold Project Gilberton Gold Project Carbon Copy Exploration Results" dated 10 October 2016.

Copies of reports are available to view on the ActivEX Limited website www.activex.com.au. These reports were issued in accordance with the 2012 Edition of the JORC Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Current Disclosure - Declarations under 2012 JORC Code and JORC Tables

The information in this report which relates to new exploration results for the Mt Hogan tenement, specifically portable XRF soil sampling, is based on information compiled by Mr G. Thomas, who is a Member of the Australasian Institute of Mining and Metallurgy (MAusIMM) and a Member of the Australian Institute of Geoscientists (MAIG) and Ms J. Hugenholtz, who is a Member of the Australian Institute of Geoscientists (MAIG). Both Mr Thomas (Managing Director) and Ms Hugenholtz (Exploration Manager) are full-time employees of ActivEX Limited and have sufficient experience relevant to the styles of mineralisation and types of deposit under consideration and the activities being undertaken to qualify as a Competent Person as defined by the 2012 Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012).

Mr Thomas and Ms Hugenholtz consent to the inclusion of their names in this report and to the issue of this report in the form and context in which it appears. Refer to previous reports for Tables detailing sampling techniques, data management and reporting criteria relating to the New Disclosure according to the JORC Code (2012).

JORC Table 1 - Gilberton EPM 18623 - Geochemical Sampling

Section 1 - Sampling Techniques and Data - EPM 18623

Criteria	Explanation
Sampling techniques	 Two portable X-Ray Fluorescence (pXRF) soil geochemical surveys were conducted. A Niton XL3t-950 handheld XRF analyser was used to obtain soil analyses. Random rock samples were collected during the course of the pXRF survey.
Sub-sampling techniques and sample preparation	 Soil samples were prepared by scuffing a 10cm² area to remove any light vegetation and immediate top soil. The instrument was then used to analyse the area directly. The analyser window is checked for any foreign contaminant between samples. Rock samples obtained using geo-pick and collected in calico bag. Rock samples sent for laboratory analysis to ALS Global, Townsville laboratory. Assays were conducted using standard procedures and standard laboratory checks, by methods Au-AA25 for Au; Hg-MS42 for Hg; ME-MS61r for Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr, Dy, Er, Eu, Gd, Ho, Lu, Nd, Pr, Sm, Tb, Tm and Yb. The nature and quality of the sample preparation is considered appropriate for the mineralisation style. The samples sizes are appropriate for the material being sampled.
Quality of assay data and laboratory tests	 Portable XRF sampling carried out using a Niton XL3t-950 handheld XRF analyser on 'Soil' mode, using three filters, each with 30 second duration to give a total analysing time of 90 seconds. Handheld XRF analyses are considered to be partial assays. The four acid digest used in ME-MS61r is considered to be a 'near-total' digest. The nature and quality of the assaying and laboratory procedures used is considered appropriate for the mineralisation style. Historic drilling assay data was sourced from Seltrust Mining, Company Report 12372. Samples were prepared and analysed at Seltrust Mining's laboratory in Perth in 1983. Au was digested with aqua regia and the analysis method was AAS (0.02ppm detection limit). Cu was digested with 4 HF, HClO4 and a 30% HCl final solution (method ICP, 10ppm detection limit). The significant drill hole intersections outlined in this report are those published by Seltrust Mining (1983), CR12372. No assay data was adjusted and paper copies of the certificate of analyses are available.
Verification of sampling and assaying	 Geochemical data generated by the portable XRF instrument are checked and verified by the Project Geologist. Laboratory results and associated QAQC documentation is stored digitally. Seltrust Mining's drilling assay results include associated QAQC: one control sample of known and trusted geochemical assay results and one repeated sample every 20 assays.
Location of data points	 Location of rock chip and pXRF samples was recorded by hand held Garmin GPS device. North Queensland – grid system MGA94, Zone 54. Refer to body of report for location of pXRF survey areas. Refer to Table 1 for location of rock samples. The location of drill hole GLB-15 at Oratava prospect was verified by ActivEX personnel and is considered accurate and reliable. The location of drill hole GLB-16 at Macedonia prospect was extracted from Seltrust geology paper map, but could not be verified by ActivEX personnel and therefore the location is only approximate. The coordinates presented in this report are in MGA94 standard. No downhole survey data is available and survey methods are unknown.

Data spacing and distribution	 Soil samples taken at 25 to 100 metre spacings, on lines 25 to 100 metres apart, no compositing of samples. Rock samples were collected at random spacing and distribution.
Orientation of data in relation to geological structure	 The portable XRF sampling grid is designed to determine effectiveness of XRF geochemistry at delineating historic rock chip anomalies. Rock samples collected at points of geological interest.
Sample security	 The Niton XL3t-950 handheld XRF analyser generates unique identifier fields to accompany analysis data which cannot be tampered with in any way and is backed up by ActivEX staff to ensure data traceability. Rock samples were packed into polyweave bags for transport. Samples were transported to the ALS Global Townsville laboratory by ActivEX personnel.
Audits or reviews	 The Niton XRF analyser is checked against five or more standards of varying compositions, prior to, and after operation each working day. The instrument is calibrated annually. Standard laboratory procedure and QAQC for laboratory samples.

Section 2 - Reporting of Exploration Results – EPM 18623

Criteria	Explanation
Mineral tenement and land tenure status	 EPM18623 Gilberton is 100% owned by ActivEX Limited. EPM 18623 form part of the ActivEX Gilberton Gold Project, which also includes EPM 18615, 19207, EPMa 26232, and EPMa 26307; all 100% owned by ActivEX Limited. See Figure 1 for location. The Gilberton Gold Project tenements were granted under the Native Title Protection Conditions. The Ewamian People are the Registered Native Title Claimant for the Project area.
Exploration done by other parties	 Numerous companies have carried out surface exploration programs in the Gilberton Gold Project area and several occurrences have had limited (and mainly shallow) drill testing. The most recent exploration in the area was carried out by Newcrest Mining, who conducted extensive grid soil sampling, local ground geophysical surveys, and limited diamond drilling. For additional information, refer to the ActivEX website (http://www.activex.com.au/gilberton-gold.php).
Geology	 The geology of the Project area is dominated by Proterozoic metamorphics and granites, with local mid-Palaeozoic intrusions, fault-bounded Devonian basins, and Early Permian volcanics and intrusions of the Kennedy Association. The main units occurring within the Project area are: Metamorphic units of the Proterozoic Etheridge group consisting mainly of calcareous sandstone, siltstone, shale, limestone units of the Bernecker Creek and Daniel Creek Formations; basic metavolcanics, metadolerite and metagabbro of the Dead Horse Metabasalt and Cobbold Metadolerite; gneiss and schist of the Einasleigh Metamorphics in the north east of EPM 18623. Siluro-Devonian Robin Hood Granodiorite in the north of the tenement area. Late Devonian sediments of the Gilberton Formation in two fault-bounded structures in the central project area, consisting of pebbly coarse sandstone grading to coarse arkosic sandstone and polymict conglomerate. A north-west trending group of Early Permian volcanics considered to be related to the Agate Creek Volcanic Group (basalt, andesite, rhyolite, agglomerate, ignimbrite, minor interbedded siltstone and air-fall tuff), in the south west of EPM 18623. Carboniferous – Permian intrusive rhyolites as small outcrops associated with the Early Permian Agate Creek Volcanics, and as a more extensive east-west trending intrusion and network of dykes in the north, around the Lower Percy gold field.

	 Mesozoic sandstones and pebble conglomerates, occurring mainly in the north west of the tenement area, and forming dissected plateaux and mesas.
Drill hole information	Refer to body of report for 1983 Seltrust drill hole location information
Data aggregation methods	No data aggregation applied.
Relationship between mineralisation widths and intercept lengths	 It is unknown at this stage whether drilling of primary mineralisation has been intersected perpendicular to the mineralised trend. Therefore, reported intersections from 1983 Seltrust drilling should be considered as down hole lengths only.
Diagrams	Refer to body of report for diagrams.
Balanced reporting	New drill hole data not being reported.
Other substantive exploration data	Refer to body of report for additional geological observations.
Further work	Refer to body of report for further work plans.